(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Wolfram 14.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 154, 7] NotebookDataLength[ 614374, 11053] NotebookOptionsPosition[ 609401, 10970] NotebookOutlinePosition[ 609796, 10986] CellTagsIndexPosition[ 609753, 10983] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{ RowBox[{"generateData", "[", RowBox[{"y_", ",", "m_", ",", "\[Sigma]_", ",", RowBox[{"domain_", ":", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ":=", RowBox[{"Map", "[", RowBox[{ RowBox[{"x", "\[Function]", RowBox[{"{", RowBox[{"x", ",", RowBox[{ RowBox[{"y", "[", "x", "]"}], "+", RowBox[{"RandomVariate", "[", RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "\[Sigma]"}], "]"}], "]"}]}]}], "}"}]}], ",", RowBox[{"Range", "[", RowBox[{"0", ",", "1", ",", RowBox[{"1", "/", RowBox[{"(", RowBox[{"m", "-", "1"}], ")"}]}]}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.948114696478565*^9, 3.9481148271627007`*^9}, { 3.948114875117189*^9, 3.9481148817889967`*^9}, {3.948114934919499*^9, 3.9481149379113903`*^9}, {3.948119416254571*^9, 3.948119431654923*^9}}, CellLabel-> "In[183]:=",ExpressionUUID->"8a6144b2-4825-430e-8735-470868f9d585"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"ListPlot", "[", RowBox[{"generateData", "[", RowBox[{"Sin", ",", "20", ",", "0.1"}], "]"}], "]"}], ",", RowBox[{"Plot", "[", RowBox[{ RowBox[{"Sin", "[", "x", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.948114828854376*^9, 3.948114901333522*^9}}, CellLabel-> "In[184]:=",ExpressionUUID->"bdf3d894-e06b-445f-a47d-201455db00a7"], Cell[BoxData[ GraphicsBox[{{{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[0.24, 0.6, 0.8], PointSize[0.012833333333333334`], AbsoluteThickness[2], PointBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQPztzuuk9dcYK+xfuGetk+r7Ff9vxubrHERyt9l b9OQuE+R5Yx9nHMl71PTI/bL1A4zG+3eD5U/ZS+dHiK05fBWe5DslOsX7K/d qVfzTd8MVX/F/rzbpmNOJy/bO0MU2Ltd8kjKUb4B1X/Lvityv3Q89x17sGzA PftfZ+5yFTHcgJr3wP60/QUlPtHH9jlgDY/sV+SpipZEPoCa/8Q+0/uszIW8 e/aBYIGn9skd5Z/U17+E2vfcXku3wv7h1Uf2ZkDT45xf2pdffLmk8ehLqP2v 7Jfo1Z447/PCXvpUNlDojT2H+OkXf369h7rnnf2FH/++fM18aw8JrQ/2ry4e SVrD+MoeAJ5mnOw= "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ PointSize[0.012833333333333334`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQPztzuuk9dcYK+xfuGetk+r7Ff9vxubrHERyt9l b9OQuE+R5Yx9nHMl71PTI/bL1A4zG+3eD5U/ZS+dHiK05fBWe5DslOsX7K/d qVfzTd8MVX/F/rzbpmNOJy/bO0MU2Ltd8kjKUb4B1X/Lvityv3Q89x17sGzA PftfZ+5yFTHcgJr3wP60/QUlPtHH9jlgDY/sV+SpipZEPoCa/8Q+0/uszIW8 e/aBYIGn9skd5Z/U17+E2vfcXku3wv7h1Uf2ZkDT45xf2pdffLmk8ehLqP2v 7Jfo1Z447/PCXvpUNlDojT2H+OkXf369h7rnnf2FH/++fM18aw8JrQ/2ry4e SVrD+MoeAJ5mnOw= "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {0, 0.9993881747002158}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.012833333333333334`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {0, 0.9993881747002158}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.012833333333333334`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ PointSize[0.012833333333333334`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQPztzuuk9dcYK+xfuGetk+r7Ff9vxubrHERyt9l b9OQuE+R5Yx9nHMl71PTI/bL1A4zG+3eD5U/ZS+dHiK05fBWe5DslOsX7K/d qVfzTd8MVX/F/rzbpmNOJy/bO0MU2Ltd8kjKUb4B1X/Lvityv3Q89x17sGzA PftfZ+5yFTHcgJr3wP60/QUlPtHH9jlgDY/sV+SpipZEPoCa/8Q+0/uszIW8 e/aBYIGn9skd5Z/U17+E2vfcXku3wv7h1Uf2ZkDT45xf2pdffLmk8ehLqP2v 7Jfo1Z447/PCXvpUNlDojT2H+OkXf369h7rnnf2FH/++fM18aw8JrQ/2ry4e SVrD+MoeAJ5mnOw= "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {0, 0.9993881747002158}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.012833333333333334`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJw10H840wkAx/EpRXQruqsW8qi4i0lJKd31cSLFJNJJh5bohy7lVy6XK5df iXCPJ3OZ0tZPT1bXeJSV0q6OZ/m1lR+tzWbN9h2+UyEVbv64Pz7P6/n8+7aL OhocM41CoQQYNqVfjKbtsXbnxv813rTomJzmhsGy1tgpV19ild2jeWNdUUL2 lP4vOv5m00IQdsszcsrQ6NGHf9KioZzJPlxk8I1L9qZ8WhKehC/5lG3w8jeB Wbm0DPQdbWQmG0w3vfftWVoxcsTjRW4Gd4VV8PRDXPyU3C2N13NhPpke7ruY B4WHpRmTxoN90KDm6Tk+Gm35HYuz+EhpXg/Wh/tgjnDj3bX3sYBvITMyqkdM WG5i+cAj1Cg3iVq+b0Dydu9BE+cGNMSyrcL6hVDMza3Nkggx7PDDnNtHnkNs 5RG4kfEc08Yq51rZNyFoLOf0zZFGrJ1k1uyoEoEzyyffLF4EUYZb8zPHFrzz KJ9wlDbDtlA3dnOwFVkV89p8BK3QjcplL1e2I/DRxzdR79rAJeqaqOfFWBhn 7ZDtKQbV5jqpUklQtXCsb2+WBHmHqvdfXvYK1S7Lh9z4LzHiWak6eKoDikZ0 O429QpKrkD//aSdsWYoYa4dOyKuE59rsusHy9vY9cagLn2MlF5envoZ46G7d bG43nH40mdhfJ4XV740bmp+9hu8VuwN3F8igzimjfpiQIsVmzxJFuByMXbJz kbYy0Pt3mncE9IAyo/AA3V2OeXP0psJPPVA5X7t/dVUPjOsv8paWKfB5zdUH xoIeHHar65rlr0SSvx/farsClVujLj8aUYLezmJlyxUY1i2aq77QC1/XM81p +5So3uE7vdhbhVCvG6aFeiVObcm8xFerYBdyZPrWhF7YvfHr5GS+hW1GV14B 2QsP94ximqsa9jtmsoOTVQhf3DJmJFZjtSbugKleheGmfOWx9D5soygjaxPe gmUcmRS8TIN/9jNK0om3mCervjJNqMG4RHi+KUKNGWnpIevjtWDK6U57O9Wg 3IzkKS0JVBwvcT26pQ8Jf/HyLRsIuEuPm2+s78NDpxxTizgdHEjZ5hWrNLDw S6D/Qe3Hk6gzHKNSDaTOreITgn7ol77nds/U4k45lqkiB2CdGv5eFKtFBG+t hc2E4evJBkaTFqczK9Kltwbxxaekb74Lgdsam4tUBon2Ijo7MZdADjuTKdtG IlUUyJ6RRyA6eMC+KoiEE/3LwZJ8AtYCwZ2AUBJN73qjHhQSyC34+VleFIk2 Katn/AKBg2tLh8xOkKCl9FJ+4xBYkvH1FpNrJL5UHa4PEBCYWHfyq44bJESa WseuhwS6Bnrbr1WSsGyh742uJ1AYei9i810SrkdOuqQaOkw6BidmCkjMLosJ 4vxLQNpWUD5dTCIirea6TkKgNmt0n/glCRMfI2HiKwLFG/Ys53SS2EXzqvzc QcD/6gq+l4wEo7m02+w1gQe/vmhM15IYFzEEDgoCF5zXFAT1kzi1+73LbSWB eGVZiB1JwkyUErdaReA7xi/yxx9IVG+jMtBHwNhIwi0cJVG6e5FOqCHQU70h lvmJBNXzY4gfQUAQy3FZOU4ibZx7tkVHoMTWfHhykkRNkc3ZkAEC/wE4VX0d "]]}, Annotation[#, "Charting`Private`Tag#1"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJw10H840wkAx/EpRXQruqsW8qi4i0lJKd31cSLFJNJJh5bohy7lVy6XK5df iXCPJ3OZ0tZPT1bXeJSV0q6OZ/m1lR+tzWbN9h2+UyEVbv64Pz7P6/n8+7aL OhocM41CoQQYNqVfjKbtsXbnxv813rTomJzmhsGy1tgpV19ild2jeWNdUUL2 lP4vOv5m00IQdsszcsrQ6NGHf9KioZzJPlxk8I1L9qZ8WhKehC/5lG3w8jeB Wbm0DPQdbWQmG0w3vfftWVoxcsTjRW4Gd4VV8PRDXPyU3C2N13NhPpke7ruY B4WHpRmTxoN90KDm6Tk+Gm35HYuz+EhpXg/Wh/tgjnDj3bX3sYBvITMyqkdM WG5i+cAj1Cg3iVq+b0Dydu9BE+cGNMSyrcL6hVDMza3Nkggx7PDDnNtHnkNs 5RG4kfEc08Yq51rZNyFoLOf0zZFGrJ1k1uyoEoEzyyffLF4EUYZb8zPHFrzz KJ9wlDbDtlA3dnOwFVkV89p8BK3QjcplL1e2I/DRxzdR79rAJeqaqOfFWBhn 7ZDtKQbV5jqpUklQtXCsb2+WBHmHqvdfXvYK1S7Lh9z4LzHiWak6eKoDikZ0 O429QpKrkD//aSdsWYoYa4dOyKuE59rsusHy9vY9cagLn2MlF5envoZ46G7d bG43nH40mdhfJ4XV740bmp+9hu8VuwN3F8igzimjfpiQIsVmzxJFuByMXbJz kbYy0Pt3mncE9IAyo/AA3V2OeXP0psJPPVA5X7t/dVUPjOsv8paWKfB5zdUH xoIeHHar65rlr0SSvx/farsClVujLj8aUYLezmJlyxUY1i2aq77QC1/XM81p +5So3uE7vdhbhVCvG6aFeiVObcm8xFerYBdyZPrWhF7YvfHr5GS+hW1GV14B 2QsP94ximqsa9jtmsoOTVQhf3DJmJFZjtSbugKleheGmfOWx9D5soygjaxPe gmUcmRS8TIN/9jNK0om3mCervjJNqMG4RHi+KUKNGWnpIevjtWDK6U57O9Wg 3IzkKS0JVBwvcT26pQ8Jf/HyLRsIuEuPm2+s78NDpxxTizgdHEjZ5hWrNLDw S6D/Qe3Hk6gzHKNSDaTOreITgn7ol77nds/U4k45lqkiB2CdGv5eFKtFBG+t hc2E4evJBkaTFqczK9Kltwbxxaekb74Lgdsam4tUBon2Ijo7MZdADjuTKdtG IlUUyJ6RRyA6eMC+KoiEE/3LwZJ8AtYCwZ2AUBJN73qjHhQSyC34+VleFIk2 Katn/AKBg2tLh8xOkKCl9FJ+4xBYkvH1FpNrJL5UHa4PEBCYWHfyq44bJESa WseuhwS6Bnrbr1WSsGyh742uJ1AYei9i810SrkdOuqQaOkw6BidmCkjMLosJ 4vxLQNpWUD5dTCIirea6TkKgNmt0n/glCRMfI2HiKwLFG/Ys53SS2EXzqvzc QcD/6gq+l4wEo7m02+w1gQe/vmhM15IYFzEEDgoCF5zXFAT1kzi1+73LbSWB eGVZiB1JwkyUErdaReA7xi/yxx9IVG+jMtBHwNhIwi0cJVG6e5FOqCHQU70h lvmJBNXzY4gfQUAQy3FZOU4ibZx7tkVHoMTWfHhykkRNkc3ZkAEC/wE4VX0d "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {0., 0.8414709737813186}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {0., 0.8414709737813186}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJw10H840wkAx/EpRXQruqsW8qi4i0lJKd31cSLFJNJJh5bohy7lVy6XK5df iXCPJ3OZ0tZPT1bXeJSV0q6OZ/m1lR+tzWbN9h2+UyEVbv64Pz7P6/n8+7aL OhocM41CoQQYNqVfjKbtsXbnxv813rTomJzmhsGy1tgpV19ild2jeWNdUUL2 lP4vOv5m00IQdsszcsrQ6NGHf9KioZzJPlxk8I1L9qZ8WhKehC/5lG3w8jeB Wbm0DPQdbWQmG0w3vfftWVoxcsTjRW4Gd4VV8PRDXPyU3C2N13NhPpke7ruY B4WHpRmTxoN90KDm6Tk+Gm35HYuz+EhpXg/Wh/tgjnDj3bX3sYBvITMyqkdM WG5i+cAj1Cg3iVq+b0Dydu9BE+cGNMSyrcL6hVDMza3Nkggx7PDDnNtHnkNs 5RG4kfEc08Yq51rZNyFoLOf0zZFGrJ1k1uyoEoEzyyffLF4EUYZb8zPHFrzz KJ9wlDbDtlA3dnOwFVkV89p8BK3QjcplL1e2I/DRxzdR79rAJeqaqOfFWBhn 7ZDtKQbV5jqpUklQtXCsb2+WBHmHqvdfXvYK1S7Lh9z4LzHiWak6eKoDikZ0 O429QpKrkD//aSdsWYoYa4dOyKuE59rsusHy9vY9cagLn2MlF5envoZ46G7d bG43nH40mdhfJ4XV740bmp+9hu8VuwN3F8igzimjfpiQIsVmzxJFuByMXbJz kbYy0Pt3mncE9IAyo/AA3V2OeXP0psJPPVA5X7t/dVUPjOsv8paWKfB5zdUH xoIeHHar65rlr0SSvx/farsClVujLj8aUYLezmJlyxUY1i2aq77QC1/XM81p +5So3uE7vdhbhVCvG6aFeiVObcm8xFerYBdyZPrWhF7YvfHr5GS+hW1GV14B 2QsP94ximqsa9jtmsoOTVQhf3DJmJFZjtSbugKleheGmfOWx9D5soygjaxPe gmUcmRS8TIN/9jNK0om3mCervjJNqMG4RHi+KUKNGWnpIevjtWDK6U57O9Wg 3IzkKS0JVBwvcT26pQ8Jf/HyLRsIuEuPm2+s78NDpxxTizgdHEjZ5hWrNLDw S6D/Qe3Hk6gzHKNSDaTOreITgn7ol77nds/U4k45lqkiB2CdGv5eFKtFBG+t hc2E4evJBkaTFqczK9Kltwbxxaekb74Lgdsam4tUBon2Ijo7MZdADjuTKdtG IlUUyJ6RRyA6eMC+KoiEE/3LwZJ8AtYCwZ2AUBJN73qjHhQSyC34+VleFIk2 Katn/AKBg2tLh8xOkKCl9FJ+4xBYkvH1FpNrJL5UHa4PEBCYWHfyq44bJESa WseuhwS6Bnrbr1WSsGyh742uJ1AYei9i810SrkdOuqQaOkw6BidmCkjMLosJ 4vxLQNpWUD5dTCIirea6TkKgNmt0n/glCRMfI2HiKwLFG/Ys53SS2EXzqvzc QcD/6gq+l4wEo7m02+w1gQe/vmhM15IYFzEEDgoCF5zXFAT1kzi1+73LbSWB eGVZiB1JwkyUErdaReA7xi/yxx9IVG+jMtBHwNhIwi0cJVG6e5FOqCHQU70h lvmJBNXzY4gfQUAQy3FZOU4ibZx7tkVHoMTWfHhykkRNkc3ZkAEC/wE4VX0d "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {0., 0.8414709737813186}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Directive[ RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ RGBColor[0.455, 0.7, 0.21], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.578, 0.51, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.4, 0.64, 1.], AbsoluteThickness[2]], Directive[ RGBColor[1., 0.75, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.8, 0.4, 0.76], AbsoluteThickness[2]], Directive[ RGBColor[0.637, 0.65, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.}, {0, 0.9993881747002158}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.948114839001459*^9, 3.948114901655436*^9}, 3.948114939391678*^9, 3.948116826378652*^9, 3.948116913553625*^9, 3.948119433490168*^9}, CellLabel-> "Out[184]=",ExpressionUUID->"967c071c-4eae-4105-9feb-985162975a4e"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"cost", "[", RowBox[{"basis_", ",", "data_"}], "]"}], ":=", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"Map", "[", RowBox[{ RowBox[{"dat", "\[Function]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"Total", "[", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"f", ",", "i"}], "}"}], "\[Function]", RowBox[{ RowBox[{"Slot", "[", RowBox[{"First", "[", "i", "]"}], "]"}], RowBox[{"f", "[", RowBox[{"dat", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}]}]}], ",", "basis"}], "]"}], "]"}], "-", RowBox[{"dat", "[", RowBox[{"[", "2", "]"}], "]"}]}], ")"}], "2"]}], ",", "data"}], "]"}], "]"}], "&"}]}]], "Input", CellChangeTimes->{{3.9481146507550297`*^9, 3.948114694517828*^9}, { 3.948114911613784*^9, 3.948115120006487*^9}, {3.948115220931177*^9, 3.948115247355875*^9}, {3.9481160066355257`*^9, 3.94811600696346*^9}, { 3.948116213121961*^9, 3.9481162477815857`*^9}, {3.948116331824791*^9, 3.948116376834261*^9}, {3.9481208471533947`*^9, 3.94812085444923*^9}}, CellLabel-> "In[299]:=",ExpressionUUID->"ebcff5a2-5e76-49f1-974f-f698316f393b"], Cell[BoxData[ RowBox[{ RowBox[{"dCost", "[", RowBox[{"basis_", ",", "data_"}], "]"}], ":=", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"2", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"g", ",", "j"}], "}"}], "\[Function]", RowBox[{"Map", "[", RowBox[{ RowBox[{"dat", "\[Function]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Total", "[", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"f", ",", "i"}], "}"}], "\[Function]", RowBox[{ RowBox[{"Slot", "[", RowBox[{"First", "[", "i", "]"}], "]"}], RowBox[{"f", "[", RowBox[{"dat", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}]}]}], ",", "basis"}], "]"}], "]"}], "-", RowBox[{"dat", "[", RowBox[{"[", "2", "]"}], "]"}]}], ")"}], RowBox[{"g", "[", RowBox[{"dat", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}]}]}], ",", "data"}], "]"}]}], ",", "basis"}], "]"}]}], "]"}], "&"}]}]], "Input", CellChangeTimes->{{3.948115437620953*^9, 3.948115462277137*^9}, { 3.94811549743038*^9, 3.948115538808263*^9}, {3.9481156457327147`*^9, 3.948115693454411*^9}, {3.9481158115876617`*^9, 3.948115827677*^9}, { 3.948115867016262*^9, 3.948115887054863*^9}, {3.9481160125721827`*^9, 3.948116014267969*^9}, {3.9481162205968657`*^9, 3.94811622169214*^9}, { 3.948116384891034*^9, 3.9481163886508923`*^9}, {3.948120885650681*^9, 3.948120888442535*^9}, {3.948120969862526*^9, 3.948120971702037*^9}}, CellLabel-> "In[300]:=",ExpressionUUID->"ea7cb2c9-e52d-4b28-a789-25e067a66acf"], Cell[BoxData[ RowBox[{"ClearAll", "[", "gradientDescent", "]"}]], "Input", CellChangeTimes->{{3.948121363351396*^9, 3.9481213671171227`*^9}}, CellLabel-> "In[301]:=",ExpressionUUID->"bb0fd94f-bd94-4931-9ceb-b1c843b6ffed"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"gradientDescent", "[", RowBox[{"basis_", ",", "data_", ",", "N_", ",", RowBox[{"batchSize_", ":", "1"}]}], "]"}], "[", "a0__", "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"as", "=", RowBox[{"{", "a0", "}"}]}], ",", RowBox[{"dC", "=", RowBox[{"Compile", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"a", "[", "#", "]"}], ",", "_Real"}], "}"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"Length", "[", "basis", "]"}], "]"}]}], "]"}], ",", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"dCost", "[", RowBox[{"basis", ",", "data"}], "]"}], "@@", RowBox[{"Array", "[", RowBox[{"a", ",", RowBox[{"Length", "[", "basis", "]"}]}], "]"}]}], "]"}]}], "]"}]}], ",", RowBox[{"c", "=", RowBox[{"Compile", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"a", "[", "#", "]"}], ",", "_Real"}], "}"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"Length", "[", "basis", "]"}], "]"}]}], "]"}], ",", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"cost", "[", RowBox[{"basis", ",", "data"}], "]"}], "@@", RowBox[{"Array", "[", RowBox[{"a", ",", RowBox[{"Length", "[", "basis", "]"}]}], "]"}]}], "]"}]}], "]"}]}], ",", RowBox[{"\[Alpha]", "=", RowBox[{"1.", "/", "1000"}]}], ",", "gC", ",", "ds"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Do", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"ds", "=", RowBox[{"RandomSample", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"Length", "[", "data", "]"}], "]"}], ",", RowBox[{"Ceiling", "[", RowBox[{"batchSize", " ", RowBox[{"Length", "[", "data", "]"}]}], "]"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"gC", "=", RowBox[{"Total", "[", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"dC", "@@", "as"}], "]"}], "[", RowBox[{"[", "ds", "]"}], "]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"While", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"Total", "[", RowBox[{ RowBox[{"(", RowBox[{"c", "@@", "as"}], ")"}], "[", RowBox[{"[", "ds", "]"}], "]"}], "]"}], ")"}], "-", RowBox[{"(", RowBox[{"Total", "[", RowBox[{ RowBox[{"(", RowBox[{"c", "@@", RowBox[{"(", RowBox[{"as", "-", RowBox[{"\[Alpha]", " ", "gC"}]}], ")"}]}], ")"}], "[", RowBox[{"[", "ds", "]"}], "]"}], "]"}], ")"}]}], "<=", RowBox[{ FractionBox["1", "2"], "\[Alpha]", " ", SuperscriptBox[ RowBox[{"Norm", "[", "gC", "]"}], "2"]}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Alpha]", "/=", "2"}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"as", "-=", RowBox[{"\[Alpha]", " ", "gC"}]}], ";", "\[IndentingNewLine]", RowBox[{"\[Alpha]", "*=", "1.5"}], ";"}], "\[IndentingNewLine]", ",", "N"}], "]"}], ";", "\[IndentingNewLine]", "as"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.948117233526268*^9, 3.948117603852785*^9}, { 3.9481176659671373`*^9, 3.9481176719591713`*^9}, 3.948117735041892*^9, { 3.948117805692868*^9, 3.9481178357418127`*^9}, {3.948117937610026*^9, 3.94811793789774*^9}, {3.948118111668573*^9, 3.9481181166207647`*^9}, 3.948118193932486*^9, {3.948118273183552*^9, 3.948118279959346*^9}, { 3.9481184892486267`*^9, 3.948118507753124*^9}, {3.948118555059259*^9, 3.9481186949930067`*^9}, {3.948118745259131*^9, 3.9481187773723097`*^9}, 3.948119143004342*^9, 3.94811918666159*^9, 3.948119633761348*^9, { 3.948120810376543*^9, 3.9481208175284843`*^9}, {3.948120901435948*^9, 3.9481209201279697`*^9}, {3.94812102608088*^9, 3.948121029457165*^9}, { 3.948121408520773*^9, 3.948121428465313*^9}, {3.948121468978998*^9, 3.948121528102345*^9}, {3.948122702389986*^9, 3.948122705597598*^9}, { 3.948124909199629*^9, 3.948124909775044*^9}}, CellLabel-> "In[551]:=",ExpressionUUID->"50ff86b5-737b-41c1-94ff-2145f7b2e4d1"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"gradientDescent2", "[", RowBox[{"basis_", ",", "data_", ",", "N_", ",", RowBox[{"\[Gamma]_", ":", "0"}]}], "]"}], "[", "a0__", "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"as", "=", RowBox[{"{", "a0", "}"}]}], ",", RowBox[{"dC", "=", RowBox[{"Compile", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"a", "[", "#", "]"}], ",", "_Real"}], "}"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"Length", "[", "basis", "]"}], "]"}]}], "]"}], ",", RowBox[{"Evaluate", "[", RowBox[{"Total", "[", RowBox[{"Transpose", "[", RowBox[{ RowBox[{"dCost", "[", RowBox[{"basis", ",", "data"}], "]"}], "@@", RowBox[{"Array", "[", RowBox[{"a", ",", RowBox[{"Length", "[", "basis", "]"}]}], "]"}]}], "]"}], "]"}], "]"}]}], "]"}]}], ",", RowBox[{"c", "=", RowBox[{"Compile", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"a", "[", "#", "]"}], ",", "_Real"}], "}"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"Length", "[", "basis", "]"}], "]"}]}], "]"}], ",", RowBox[{"Evaluate", "[", RowBox[{"Total", "[", RowBox[{ RowBox[{"cost", "[", RowBox[{"basis", ",", "data"}], "]"}], "@@", RowBox[{"Array", "[", RowBox[{"a", ",", RowBox[{"Length", "[", "basis", "]"}]}], "]"}]}], "]"}], "]"}]}], "]"}]}], ",", RowBox[{"\[Alpha]", "=", RowBox[{"1.", "/", "1000"}]}], ",", "gC", ",", "ds"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Do", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"gC", "=", RowBox[{"dC", "@@", "as"}]}], ";", "\[IndentingNewLine]", RowBox[{"as", "-=", RowBox[{ RowBox[{"\[Alpha]", " ", "gC"}], "+", RowBox[{"\[Gamma]", " ", RowBox[{"RandomVariate", "[", RowBox[{ RowBox[{"NormalDistribution", "[", "]"}], ",", RowBox[{"Length", "[", "as", "]"}]}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]", ",", "N"}], "]"}], ";", "\[IndentingNewLine]", "as"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.9481238367824097`*^9, 3.948123884509636*^9}, { 3.948123924305654*^9, 3.948123933543521*^9}, 3.948123967984892*^9, { 3.948125127504175*^9, 3.948125203394734*^9}}, CellLabel-> "In[559]:=",ExpressionUUID->"e23ecac0-2ba7-4f6f-af3e-48836159571d"], Cell[BoxData[ RowBox[{ RowBox[{"polynomialBasis", "[", "m_", "]"}], ":=", RowBox[{"Prepend", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "\[Function]", SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"1", ",", RowBox[{"m", "-", "1"}]}], "]"}]}], ",", RowBox[{"1", "&"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.948116462294406*^9, 3.9481164893104753`*^9}, { 3.9481194510477343`*^9, 3.948119460559915*^9}}, CellLabel-> "In[188]:=",ExpressionUUID->"a4305efd-2d5e-45f6-868d-8e07fb522f0e"], Cell[BoxData[ RowBox[{ RowBox[{"edgeBasis", "[", "m_", "]"}], ":=", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "\[Function]", RowBox[{"Abs", "[", RowBox[{"x", "-", RowBox[{"#", "/", RowBox[{"(", RowBox[{"m", "-", "1"}], ")"}]}]}], "]"}]}], ")"}], "&"}], ",", RowBox[{"Range", "[", RowBox[{"0", ",", RowBox[{"m", "-", "1"}]}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.948119521796258*^9, 3.948119527674906*^9}, { 3.9481195633012466`*^9, 3.9481195659801826`*^9}, {3.948119914147265*^9, 3.948120012039339*^9}, {3.948120104674686*^9, 3.948120112218534*^9}, { 3.948120146260414*^9, 3.948120149652207*^9}, {3.9481203905183697`*^9, 3.9481204000139303`*^9}, {3.9481243585199614`*^9, 3.9481243588162127`*^9}, { 3.94813222387157*^9, 3.9481322295417624`*^9}}, CellLabel-> "In[619]:=",ExpressionUUID->"5af352c6-8896-4a1b-b393-d7f34eecf643"], Cell[BoxData[ RowBox[{ RowBox[{"edgeBasis", "[", "m_", "]"}], ":=", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "\[Function]", RowBox[{"UnitStep", "[", RowBox[{ RowBox[{"(", RowBox[{"x", "-", RowBox[{"#", "/", RowBox[{"(", RowBox[{"m", "-", "1"}], ")"}]}]}], ")"}], RowBox[{"(", RowBox[{"m", "-", "1"}], ")"}]}], "]"}]}], ")"}], "&"}], ",", RowBox[{"Range", "[", RowBox[{"0", ",", RowBox[{"m", "-", "1"}]}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.948123281274746*^9, 3.9481233203014507`*^9}, { 3.948123420961874*^9, 3.948123423809853*^9}}, CellLabel-> "In[415]:=",ExpressionUUID->"8ba63f81-4994-40a7-b866-6e34144d0207"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"trialFunction", "[", "basis_", "]"}], "[", "as__", "]"}], ":=", RowBox[{ RowBox[{"Total", "[", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"f", ",", "i"}], "}"}], "\[Function]", RowBox[{ RowBox[{ RowBox[{"{", "as", "}"}], "[", RowBox[{"[", RowBox[{"First", "[", "i", "]"}], "]"}], "]"}], RowBox[{"f", "[", "#", "]"}]}]}], ",", "basis"}], "]"}], "]"}], "&"}]}]], "Input", CellChangeTimes->{{3.948116940034223*^9, 3.948117016419715*^9}, { 3.94811710860789*^9, 3.9481171110325108`*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"81c87f69-631d-4c87-9a94-4038f7ee3d75"], Cell[BoxData[ RowBox[{ RowBox[{"testdat", "=", RowBox[{"generateData", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"2", "\[Pi]", "#"}], "]"}], "&"}], ",", "100", ",", "0.2"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9481168508702173`*^9, 3.948116899454852*^9}, 3.9481171447782393`*^9, {3.948117180762624*^9, 3.948117214019606*^9}, { 3.94811837277113*^9, 3.948118383699266*^9}, {3.948118899312563*^9, 3.948118899447995*^9}, 3.948119050950959*^9, {3.948119293465208*^9, 3.948119293552874*^9}, {3.9481203068749104`*^9, 3.9481203145627117`*^9}, { 3.948121823993528*^9, 3.9481218474731483`*^9}, {3.948122734317855*^9, 3.948122734405447*^9}, {3.9481241265745087`*^9, 3.948124128286194*^9}, { 3.948125429403038*^9, 3.9481254296907167`*^9}}, CellLabel-> "In[573]:=",ExpressionUUID->"8b2c7f0e-f6fa-4dcd-a222-e419e5bac57f"], Cell[BoxData[ RowBox[{ RowBox[{"testini", "=", RowBox[{"RandomVariate", "[", RowBox[{ RowBox[{"NormalDistribution", "[", "]"}], ",", "10"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.948117958635509*^9, 3.948117961737759*^9}, 3.948118009196693*^9, {3.948119243510982*^9, 3.9481192435827293`*^9}, { 3.948119319522298*^9, 3.948119319625621*^9}, {3.948120201798565*^9, 3.948120228031189*^9}}, CellLabel-> "In[574]:=",ExpressionUUID->"234f897f-aaa8-4394-81a2-948744438d34"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Norm", "[", RowBox[{"Total", "[", RowBox[{"Transpose", "[", RowBox[{ RowBox[{"dCost", "[", RowBox[{ RowBox[{"edgeBasis", "[", "10", "]"}], ",", "testdat"}], "]"}], "@@", RowBox[{"(", RowBox[{"testresult", "=", RowBox[{ RowBox[{"gradientDescent", "[", RowBox[{ RowBox[{"edgeBasis", "[", "10", "]"}], ",", "testdat", ",", "60000"}], "]"}], "@@", "testini"}]}], ")"}]}], "]"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.948116443805812*^9, 3.948116595874456*^9}, 3.94811663448494*^9, {3.948116675111467*^9, 3.94811669012147*^9}, { 3.9481170279593077`*^9, 3.948117034948435*^9}, {3.948117139185307*^9, 3.948117139416718*^9}, {3.948117619301654*^9, 3.948117644869664*^9}, { 3.948117701129861*^9, 3.948117725424323*^9}, 3.9481177976042557`*^9, { 3.948117949234351*^9, 3.948118005251853*^9}, {3.9481181222490892`*^9, 3.948118131658963*^9}, {3.948118183420438*^9, 3.948118183730976*^9}, { 3.948118290031867*^9, 3.948118300008397*^9}, {3.948118391012185*^9, 3.9481183956216516`*^9}, {3.948118651465261*^9, 3.9481186519421597`*^9}, { 3.948118782923333*^9, 3.948118793932273*^9}, 3.948118905648818*^9, { 3.948119076145598*^9, 3.948119102008594*^9}, {3.9481191951971827`*^9, 3.948119248246908*^9}, {3.948119314874256*^9, 3.94811936783634*^9}, { 3.9481194690246973`*^9, 3.948119485561571*^9}, {3.948119589261383*^9, 3.9481196477516117`*^9}, {3.948119679469735*^9, 3.948119689161141*^9}, { 3.9481200324083853`*^9, 3.9481200368079777`*^9}, {3.9481201730465384`*^9, 3.9481202343674183`*^9}, {3.9481203633966293`*^9, 3.948120371429234*^9}, { 3.9481204224315767`*^9, 3.948120494522078*^9}, {3.948120930197262*^9, 3.948120931685192*^9}, {3.9481213776067333`*^9, 3.9481213788862867`*^9}, 3.948121538590053*^9, {3.948121870162993*^9, 3.948121871410328*^9}, { 3.94812275751991*^9, 3.948122766831901*^9}, {3.9481228662998743`*^9, 3.948122877747407*^9}, {3.948123336406896*^9, 3.948123353258017*^9}, { 3.94812343127054*^9, 3.948123446330563*^9}, {3.9481243179996367`*^9, 3.9481243264310627`*^9}, {3.9481243644242563`*^9, 3.948124380784541*^9}, { 3.94812544819646*^9, 3.9481254615569973`*^9}}, CellLabel-> "In[578]:=",ExpressionUUID->"56984f37-ab18-406a-b6c4-61b6a859e4b1"], Cell[BoxData["0.000022340104493946678`"], "Output", CellChangeTimes->{ 3.948116920781104*^9, {3.948117036764943*^9, 3.948117051224715*^9}, { 3.948117143594776*^9, 3.948117150513681*^9}, 3.94811718447971*^9, 3.9481172182141438`*^9, {3.948117638498147*^9, 3.9481177376918983`*^9}, { 3.948117798579523*^9, 3.948117841103928*^9}, {3.948117941742052*^9, 3.94811801037414*^9}, {3.9481181194825706`*^9, 3.948118132143605*^9}, 3.948118184196604*^9, {3.9481182858143787`*^9, 3.948118292728421*^9}, 3.948118322966217*^9, {3.948118392460451*^9, 3.948118404573513*^9}, { 3.948118653119342*^9, 3.948118698646429*^9}, {3.948118766073882*^9, 3.948118794596593*^9}, {3.948118903300827*^9, 3.948118909133889*^9}, { 3.9481190572606773`*^9, 3.948119081170752*^9}, 3.948119111637991*^9, { 3.948119166557391*^9, 3.948119265285523*^9}, {3.948119305677433*^9, 3.9481193498353577`*^9}, 3.94811938690238*^9, {3.948119442465448*^9, 3.948119488768084*^9}, {3.948119601064068*^9, 3.94811965103616*^9}, { 3.9481196820036488`*^9, 3.948119689423168*^9}, 3.9481199378971252`*^9, 3.94811996818202*^9, {3.9481200239541616`*^9, 3.948120037451919*^9}, 3.948120124437718*^9, {3.94812016545816*^9, 3.948120182462428*^9}, { 3.948120213371776*^9, 3.9481202375587273`*^9}, {3.948120347649246*^9, 3.948120375297764*^9}, 3.948120423026642*^9, {3.948120453235249*^9, 3.948120502281745*^9}, 3.948120933029711*^9, 3.948120980517907*^9, 3.948121033986322*^9, {3.9481213707851553`*^9, 3.948121384234291*^9}, 3.948121539500517*^9, {3.94812186005191*^9, 3.948121878155533*^9}, 3.948122744627069*^9, {3.9481228647789917`*^9, 3.948122892044383*^9}, 3.948123301430662*^9, {3.948123334216116*^9, 3.948123353618032*^9}, { 3.948123427082261*^9, 3.948123446662758*^9}, 3.9481241304086237`*^9, { 3.948124312952623*^9, 3.948124385437797*^9}, {3.9481254397972193`*^9, 3.94812546942111*^9}}, CellLabel-> "Out[578]=",ExpressionUUID->"919b4663-4a6a-4083-b40d-cf6c6b427a33"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"ListPlot", "[", "testdat", "]"}], ",", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", RowBox[{"2", "\[Pi]", " ", "x"}], "]"}], ",", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"trialFunction", "[", RowBox[{"edgeBasis", "[", "10", "]"}], "]"}], "@@", "testresult"}], ")"}], "[", "x", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9481229332378893`*^9, 3.948122934349903*^9}}, CellLabel-> "In[579]:=",ExpressionUUID->"5945f6d0-c38c-4966-b262-8c714abbd4ad"], Cell[BoxData[ GraphicsBox[{{{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[0.24, 0.6, 0.8], PointSize[0.009166666666666668], AbsoluteThickness[2], PointBox[CompressedData[" 1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v /77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete 8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1 4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2 ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE 10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6 2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2 ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE 4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9 0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf tOB/IhAvzw== "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v /77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete 8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1 4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2 ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE 10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6 2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2 ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE 4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9 0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf tOB/IhAvzw== "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v /77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete 8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1 4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2 ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE 10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6 2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2 ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE 4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9 0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf tOB/IhAvzw== "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[ {RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwVV3k4ld0XNZVCQuqL9GUsJClUJNuUKUOoSEjGkspUnwyhkKgIKZHMIUUR Mh0JFdc8lDJ13eG97nvvfW+pJOV3f3+dZz377POsvc5z9l5HweuCo68AHx+f BT8f3/9Xa19ssI1x1DD2pJx42FgpEjKVDZqW0QG+xVcrHr8vQdqP7ufWyJgB 313nP+PNxehQ74cXD2WOQOz7dByKCpGzz8+WdBkf4POXyvpnJhdN7rxueksm DPgUP265vTUJ5a+3T0yWiQe+PM+l44l3IW5VzbYbMpnQdsVwhb9mHbgcL6gi uMUQW3xxrsu2F0SX49ws/q0C+UtN96q2fQAVBzb2JqUW5FvoV95FT4NsjIW+ f0EtePZZnJ4vmAaJp/kpIvW1kDb92EG+axoWVzlpOpBrQYhfR8pAeAYG2upD p/a9hECleUqG/QxEaMX9XaC+hMOnw5JNZ2agb620tKZRPUh8DRst5CfDmwPn fAeP1kPlonJ3wzoyNJztqgs7Ww9mgqOtfSpkKHobfrwpqx7CpXXLFq3IEB4z mWfJqgdiz/cIx3QyKHJK1bwfNMBA5EV5AaVZ+K9PD+7Pv4LMFZfOnjKjgLjm S+r7VY3Apyfoa3KUAsW3tG7+lmuE+MA0DyU/CgzabBv3ONgIScMVDtTrFNje Ix2qktUIsQXTe8/0UGD6Laf0xd4mCD9gJRTsSIVL287aUg41ARE09sfBmwpi 12nf1ns2QVCx98/dYVTQM580upzEw6JX5ubvUiGjo/sTjDeBz/iLgfBxKqgr m8cFs5oAEzPqPj5HhbZrr7cV8TeDj1HvG/3fVGCZNIStVG8Gl8f0uiU5GsQX am/aZ9gMM5/Cqid30EBWoOr1Gcdm8BQXqGg1pEH1KfXTOX7NQDFOLXpkTwOL 1yXivRHNcP/OXJKUOw2m5BVe/r3dDHIVHifN/WgQFpt7QquoGarbh3QjLtCg ADLKMnqagfStkfwljga/W2JNXOVaYNWxFIPnpTSoajxxid7SAkmyGoQ9QYN/ aiWn+PkRhBWdc751jQ5uN38foWxAMOF1ICDxFh0Kfag9XRoI9imuiY65RweN 9a9epbggWMivLAx+QgeTS55311cjiM1jso4O02FPrnNp5s42uJ99Jv5fJQxO eZS6l021QXWq7/OqdgzqyKakfoN2mI90Fx3in4P2gIebjuMdUBwl/iEkDIfv Ww+sfXruLViexPV/NLNB4NcTiU0q3eDye9zVJ4eATb0m32BnN1hSljsE8wnQ KRgf9dHrBoNelZ1FxQT4WgnnPLPtBsVHwYLkpwS8y/ZSMbnUDXMmqytPthGQ qi+jf+ZtN0Qk7/vjSiWgTLxa7vZgN4SEevgvMghoI5svv/jcDX5u8YPZbAK+ Jod1LHG6wVpzoOTjTwKOfe63S9vYAxuG/O2OiXBBLirRu/5MD1TI3HvksJML uoc3m0+E9kCuQMtqrjYX7JRrVfmv9EAakxyato8LMaQvLOv0Hghr0bTsN+YC We5A+FRjDxie6iJsjnDhNzHsKtjZA5rWuCvuwgXpzoADqv09oKwt1ZnizgXz c/cFQmZ7YOUKj+xuPy6Ut3y7uUKMBENl340tL3Oh/U7yBfUNJOi6s6mSHs2F T74KjvbyJGiIMN5w/SoXxMTt/8nWIUGeza25zhQuqJCpv1oMSZCuW3PEN40L hnVRE2RLElz9d7xV6C4XgjwqCjTcSRBIKGeY5nHhxm7jeAd/EniMW/8hF3Kh cOVHv0vBJLBrD/K/+pgLjZ/OW+VEkiAzTzJ8ooQLw89WaLQlkOBToKuIYDEX 8Ku54tRUEmzdX5SrxssXctbmrn5AgoDVuObhfC7sWfasc3pGgoWSaKeHuVyw sW27erCBBGx7oT29D7jgnbPFfm87Cci/kjf+uc+FtL1TdNkxEgzY3p904/Fl XDghQ/5DgtLvL/zlbnMhd+ZoVBCvLx4+iEXmxHCBv93a5BbeC88ojsXZXlwg xev0dan3g5eS6ve7qlzYksb8Vc4egPv3+IueVxDA/Dk9Nao1BCPc71/0dAko nmvqFr89DG0Ju127z3Lg/D17pYCMYSh2Fj5K9ufAXrPZyM77w5CmNmG/6M2B 7ociO6KKhuFYb8JBdTcOcA8fT2U0DAMmPa6VbMMBw/ofTh2zw7ChOEbYegcH xq/tmrysNwIB7aTa92w2FGp16o4ajoBdZkHVlzk2BE663NYyGwEtv0sVv2hs 4NsbC3S7EVhaLZ+vNs2GrXN9BUd8RiDTITTlRj8bwg4H+u1MHYG6GRkvq2o2 iG9+zKFQRkBi2W/t+2A2GB27NjnLGIGtZR3nlc+zIST1ZA+ZPQIGDop9MQFs GOPf+HhmYQS8iiZv7vFmQx4tyWNCbBSaLY6IFB9hw8AWX5vPkqMwRDw/s3yY 916PG+t/2jAKWPba9662bPDr+bX+o/woSOHd1yXN2aBZHdA7rDMKPmnGK2L2 ssGTYd40pDcKEXqPfD5psyFdUal80HAUkslLb3S12NBxYjlrwHQUylJcle5o sOFH5uf4fstRaNRpuIqrskG1rz6kz3YUSJPryRYqbHAVzvTsdRyFmcRQ4yIF Ntw0CrIjOY+C9LRQucdGNrRetjHocRsFVc/xY06r2UC8UFXvPjUKBl+eClku skARF9r43m8UHL2uvjBgsiDRo+VbVxCPn8928a29LLA11XzSHj8KA6ejOxfS WHAlSiT79Y1RIDMcQllxLKh+SUtsuz0KCwFbFcghLJBWfeTVen8U5M/1R/Uc YcGEmIRsY+UoBAUr6ORtZEHgGDfp+cgoSER0Fprm43DzzEu/fOUxOJKyJvZ2 FRPmjJ4miaqPAZ719tiBR0yw2FhScWnnGNwsjNuB32aCwNtMto3+GLS/+v7J 6jwTLiuHXfplPwYa2KTuih1M8JvenegYOQZ8B58xIyvmwPhodYnQ0BhU/7Vz PlPCgB9GTyinYz6ASEiaplkOHcJ2d9RuePMRlkIcNt8izcL0s46UQYVPoLF9 LrnNZRp+B4zkqEV8hoHyoMoJww+w3Vj4r1/TBCz03dknIzgAFoUK/s//mQJs RFaQqGmH/zafVPziNg2xIx51D9aWgwZ+VPSD7QzwqQxGXKh7jNatJVZ1LM4A oetntLTtDRJCOVVKuV/A5XL6DaXYfnRWp2l89SEyLAVKk/oLPqAnVl75rT/I oFEtuM6pbRp9Z8pK0LJmIWm3Zk9M+Sx66WQhmMnzCV91/grUdNBR0qGGBDkL CnywOKa4aoSO3EzVVpVYUaDb9Zmx+ywdCWiLrqmzo0BBrEessACG7KT6N3x0 oYATqfXPCcAQNnBMXe4cBVq9YxaEGjEka+fnUHyXAtfT+djHqhiIdfDDsMZ9 CoSXuKypbGWgtgOWx14+oIB7Q7UGfx8D+e1QP9H1iAJ7pjzPPsEZqEaM7YOV U4Cj9hpbVptDNj0XwzVaKXD4ddxsWfEcirFMeFRLo4A8ITC+mM1EQx6n3bQY FLghbfVEoJyJlC8ekqlkUoC7LzVapIGJugskM4oICjTGbVKUHWMi6d8PE9MX KXBonc5ZPSkclT2tOxckToWze3z//JeMo8U32eq4BBX6XJ/0x2TjyPZTFN1/ HRU0Y7gF18tw9HWl6amTG6nw9220+b0uHBl49h+xU6RC4vGs1DoBFhqQwvZr 7KFCVdRbhe8RLKSo1rPweB8VVhesmV+6wUIX4dlLpf1UCOl06hLKZiHZwLCd m4yoYCg+EyBdz0KBV53xLBMq5O7eekCui4XQff1yqYNUWOkcuFZ5lIV8OvmU RKyp8P7RQo32Nxaq+zw7nWBDhR0dhon7Bdho9deuXH57KmRh8S6mkmzktqri eLQDFRbFetQPybPRs39vbfjlRAX3XZJ/HHeyEZ9u0HDYMSrMe9S5RexjI6dD TmmECxWw9Ece1/TZqPTUHtvAE1QY6UryvGnARgv/yYhg7lRoXwz2umvIRta3 l7q8PalQqXnCJ8+IjR4WT1+b9uLx9zLze2zCRiaDJX/G/KkQ3L0h4JU5G91U 383tDOb5wgdNwZN2bKQwaf2xKIEKaXor4lROslFy+/6qo0lUGNh5Zdz1FBt9 fayRKJxChXVbf+5K82aj9hBxnbNpVEiRYpAX/dnIZ9VQ6u4cKsQzSWYDQWxU pn3c4nU1FcIfZq6KvMpGmsn+dVOfqeDJr5w2UMJG+nvjM2V200D1vcmjSJyn z7/9v/iHaRC+SmmTaxAHfe++RQ6Ko8PmiW/6dsscdF/II8xRGYOWKm03XxMC /fX+R3dwKwaSEudlzpoSyOfNwHd7NQz8gsrGgswIpHXV9D9bTQzEd212iDIn 0Ltl1QjLfRi4vVhpnmFNoJ+L32IMbTD4Uzu+87UjgY5xb6Soh2Fg2BgjuNmb QM2HTW3KL2GQLtvYpuhDIMXqJTHVyxhQI+ajVX0JxD5/4bbKFQxu7D+zoO1P oAT8yB35JAymmh1Z1mcJVEvfcm9DLgbhSOVDeCiBZC3Gne/mYdC3xTPzShiB YkvTN0oXYKAS+8Ah/iKBbHxXPJAsxaDbaC0p9T8CUchzuWLVGMi0L7SVRhJo 3dTLQoEODF519FSMXCPQbbHo6PouDHRW2mUQ8QQS2W/mEvgeg+cWA5FiiQQS uD+0ZqwPg4ruERuzJAJd6crGkgcx2CrmrOt5g0CL855vYASDQtvxzVHJBPrq wAkvH8cgd2CSXXOTQOdj65w8JjCQk/L80H+LQHPPojXXTWOQ5URGzNsE8ps0 W/3uCwbSd33KhNMI9EVUjBJFwcBOMjTcN5VAbvrDrbvoGPQK7nIPSSHQx9MP smkMDKx/sI1jrhNooFPV/jAHA/PPAaLZMbz65zlqK75i8KZXlSjh1ftOsV6o cR4D0zbayAueHijmYKPSIgYmJV55pAsEeqbnpfJTiAF6F1x38XkS6ObTnN8P ZRmgJmjt7G9EoFUTXmOOmxk8fyVsEGZAoHgR9efC8gxQxTrl4/YRKNK/wS9Y hQHKvcZzD7QIFKAwOmimxYB/7+lF98kTyPKueBnzIAPEt6sV6fITaEV03BG9 YAbMlkhMCcdzUC0X/4VCGZAdlZhQFsVBPn4uj8wvMcDKaUnD6iIHddjvnHOK ZEAJHxaZ7MdB8YqTMecTGOB/AsmsseIgoXf7nhRlM4Ahcf6olDgHCawj+MXb GcCM7CHJ3ef1g3KPKrLUHPxwSGzaVclCIQ+qbkm1z0HbyfVPvlQyUcv2pFWS vDmqoHHUeraOgfaM/NObHsQE0c0kzXRev6+OenxHOpQ3l9eYrjMuY6DC3i7Z jeFMqONoTeRlM1DShRU7tlxlgmWN2HnXKAZyrLnqsCOLN5f1O+4MGjMQXT/6 gVUrEz5aao8jEoY8Z8VO9rQxoVGvouV8J4Y+peQq2b5hQra6QuHmVgyRJpoq D79jgo/Y2rORVRh6cWWx1XmICX/755b2pGMoqv2/WV8aE3Y6F8o/c8aQpHWI xlVxHBJ9JU/nkuko//VaUX1JHLhNAz5PP9GRlt5TBncdDo5Saadah+jIThUr PSWDgxYSPzHTTkfJKz0UjJVxmN0oZqdcREdCb6w28OnjYEdaqVPpTUcZ+vT5 egMcGhW7tFpO0JHii/jhC4CD0uWEHX1OdGRUgNKmzXD4pSK0jTClo+gYXVFk j0NFDL+sjjIdif0cYlxyxGH9WNuGg3J0lHs+6J3mUR5fjdh1x6TpqNH9SUKe Kw4nxv+KhQvR0Y/9CnxXfHFYqb203EShoYSa1ind0zhcvtG0RJqgIentbi2s ABwo0xG/JkdoqLjwV07JORxs9+j/YJNoSFv2XoR7EA5tN399Xe6gofY7OsfX h+Ig8UY5nFVPQ46rh/b2XsTBZqtc7aESGgpaEPtuEIlDOy6isSqWhpYvVAzP R+Pwx17gtN85GrpNt3hRGYvDvppfRR2uNFQ5dvWCXCLO85XYpjhdGmLULjB+ p+FQtLJLdHGOisI1st7VZOBAO9Ni4fKRilYVaz8+m4WDVG/ttbpOKtqacd7n cw4OSRlFv0PyqcgrmDLVWIrDNfk4JvMoFU3sGBi+3IyDs75Bz2QbBT1iSkYL Ihw4NLv28CoK8ip32nrrNU+PjFOv1uVREEP5Q3h+F89H4omPrSIp6Memqc1v B3B4mzd47aUuBUmK4P7SVN59Cfob3KqYReY04aVna1hA77nz1CCTjKrzQJni wYJwd3pqjv8Mcq/aI7n5LwuSyldLhVt+RLEJBXETFWw4HedokSvRh55im3PE ef8Ygq9OVPjBK5T0MMFzyo4DErJp5p+WG5CPI0vlmQMHPHcHxD31bUByzc3V ts4ckPf+96fTrnqUnHqi66YXB/I7E8n572rR6T3ZXJHLvPi6qpCL7CqkGC9t KVzKASNLSs4rh2z0d1/Umg9lHGh7YnN9JSMLjbNmh0qfcIBP/GWIU2wmSnOu cTd/zsMlohmf3FPRsrpjaEIzDwc+nLimFY4mBlPzBIc5ELtt+wlOSDI0JP70 Hh7lxb1c44+apULm/pNqRR95eKBjbFIkHQ6VaNaaTPGw6Pyy6UQWNIb3vo9j 8PKN1dSSIB+yduimOuA8PhIXa76EFkAwOfeIAofHf7rtwP6yQlC1CZxum+fx j3ZxZEuUgBD/SHHaT17cpnjC4mApzLzcH+C5yNNnE+FXcPkxNAcU7dT6wzuP sZ+7+LQM7m0R/b68zNv/6nrkEXI5/A8YAMAT "]]}, Annotation[#, "Charting`Private`Tag#2"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVV3k4ld0XNZVCQuqL9GUsJClUJNuUKUOoSEjGkspUnwyhkKgIKZHMIUUR Mh0JFdc8lDJ13eG97nvvfW+pJOV3f3+dZz377POsvc5z9l5HweuCo68AHx+f BT8f3/9Xa19ssI1x1DD2pJx42FgpEjKVDZqW0QG+xVcrHr8vQdqP7ufWyJgB 313nP+PNxehQ74cXD2WOQOz7dByKCpGzz8+WdBkf4POXyvpnJhdN7rxueksm DPgUP265vTUJ5a+3T0yWiQe+PM+l44l3IW5VzbYbMpnQdsVwhb9mHbgcL6gi uMUQW3xxrsu2F0SX49ws/q0C+UtN96q2fQAVBzb2JqUW5FvoV95FT4NsjIW+ f0EtePZZnJ4vmAaJp/kpIvW1kDb92EG+axoWVzlpOpBrQYhfR8pAeAYG2upD p/a9hECleUqG/QxEaMX9XaC+hMOnw5JNZ2agb620tKZRPUh8DRst5CfDmwPn fAeP1kPlonJ3wzoyNJztqgs7Ww9mgqOtfSpkKHobfrwpqx7CpXXLFq3IEB4z mWfJqgdiz/cIx3QyKHJK1bwfNMBA5EV5AaVZ+K9PD+7Pv4LMFZfOnjKjgLjm S+r7VY3Apyfoa3KUAsW3tG7+lmuE+MA0DyU/CgzabBv3ONgIScMVDtTrFNje Ix2qktUIsQXTe8/0UGD6Laf0xd4mCD9gJRTsSIVL287aUg41ARE09sfBmwpi 12nf1ns2QVCx98/dYVTQM580upzEw6JX5ubvUiGjo/sTjDeBz/iLgfBxKqgr m8cFs5oAEzPqPj5HhbZrr7cV8TeDj1HvG/3fVGCZNIStVG8Gl8f0uiU5GsQX am/aZ9gMM5/Cqid30EBWoOr1Gcdm8BQXqGg1pEH1KfXTOX7NQDFOLXpkTwOL 1yXivRHNcP/OXJKUOw2m5BVe/r3dDHIVHifN/WgQFpt7QquoGarbh3QjLtCg ADLKMnqagfStkfwljga/W2JNXOVaYNWxFIPnpTSoajxxid7SAkmyGoQ9QYN/ aiWn+PkRhBWdc751jQ5uN38foWxAMOF1ICDxFh0Kfag9XRoI9imuiY65RweN 9a9epbggWMivLAx+QgeTS55311cjiM1jso4O02FPrnNp5s42uJ99Jv5fJQxO eZS6l021QXWq7/OqdgzqyKakfoN2mI90Fx3in4P2gIebjuMdUBwl/iEkDIfv Ww+sfXruLViexPV/NLNB4NcTiU0q3eDye9zVJ4eATb0m32BnN1hSljsE8wnQ KRgf9dHrBoNelZ1FxQT4WgnnPLPtBsVHwYLkpwS8y/ZSMbnUDXMmqytPthGQ qi+jf+ZtN0Qk7/vjSiWgTLxa7vZgN4SEevgvMghoI5svv/jcDX5u8YPZbAK+ Jod1LHG6wVpzoOTjTwKOfe63S9vYAxuG/O2OiXBBLirRu/5MD1TI3HvksJML uoc3m0+E9kCuQMtqrjYX7JRrVfmv9EAakxyato8LMaQvLOv0Hghr0bTsN+YC We5A+FRjDxie6iJsjnDhNzHsKtjZA5rWuCvuwgXpzoADqv09oKwt1ZnizgXz c/cFQmZ7YOUKj+xuPy6Ut3y7uUKMBENl340tL3Oh/U7yBfUNJOi6s6mSHs2F T74KjvbyJGiIMN5w/SoXxMTt/8nWIUGeza25zhQuqJCpv1oMSZCuW3PEN40L hnVRE2RLElz9d7xV6C4XgjwqCjTcSRBIKGeY5nHhxm7jeAd/EniMW/8hF3Kh cOVHv0vBJLBrD/K/+pgLjZ/OW+VEkiAzTzJ8ooQLw89WaLQlkOBToKuIYDEX 8Ku54tRUEmzdX5SrxssXctbmrn5AgoDVuObhfC7sWfasc3pGgoWSaKeHuVyw sW27erCBBGx7oT29D7jgnbPFfm87Cci/kjf+uc+FtL1TdNkxEgzY3p904/Fl XDghQ/5DgtLvL/zlbnMhd+ZoVBCvLx4+iEXmxHCBv93a5BbeC88ojsXZXlwg xev0dan3g5eS6ve7qlzYksb8Vc4egPv3+IueVxDA/Dk9Nao1BCPc71/0dAko nmvqFr89DG0Ju127z3Lg/D17pYCMYSh2Fj5K9ufAXrPZyM77w5CmNmG/6M2B 7ociO6KKhuFYb8JBdTcOcA8fT2U0DAMmPa6VbMMBw/ofTh2zw7ChOEbYegcH xq/tmrysNwIB7aTa92w2FGp16o4ajoBdZkHVlzk2BE663NYyGwEtv0sVv2hs 4NsbC3S7EVhaLZ+vNs2GrXN9BUd8RiDTITTlRj8bwg4H+u1MHYG6GRkvq2o2 iG9+zKFQRkBi2W/t+2A2GB27NjnLGIGtZR3nlc+zIST1ZA+ZPQIGDop9MQFs GOPf+HhmYQS8iiZv7vFmQx4tyWNCbBSaLY6IFB9hw8AWX5vPkqMwRDw/s3yY 916PG+t/2jAKWPba9662bPDr+bX+o/woSOHd1yXN2aBZHdA7rDMKPmnGK2L2 ssGTYd40pDcKEXqPfD5psyFdUal80HAUkslLb3S12NBxYjlrwHQUylJcle5o sOFH5uf4fstRaNRpuIqrskG1rz6kz3YUSJPryRYqbHAVzvTsdRyFmcRQ4yIF Ntw0CrIjOY+C9LRQucdGNrRetjHocRsFVc/xY06r2UC8UFXvPjUKBl+eClku skARF9r43m8UHL2uvjBgsiDRo+VbVxCPn8928a29LLA11XzSHj8KA6ejOxfS WHAlSiT79Y1RIDMcQllxLKh+SUtsuz0KCwFbFcghLJBWfeTVen8U5M/1R/Uc YcGEmIRsY+UoBAUr6ORtZEHgGDfp+cgoSER0Fprm43DzzEu/fOUxOJKyJvZ2 FRPmjJ4miaqPAZ719tiBR0yw2FhScWnnGNwsjNuB32aCwNtMto3+GLS/+v7J 6jwTLiuHXfplPwYa2KTuih1M8JvenegYOQZ8B58xIyvmwPhodYnQ0BhU/7Vz PlPCgB9GTyinYz6ASEiaplkOHcJ2d9RuePMRlkIcNt8izcL0s46UQYVPoLF9 LrnNZRp+B4zkqEV8hoHyoMoJww+w3Vj4r1/TBCz03dknIzgAFoUK/s//mQJs RFaQqGmH/zafVPziNg2xIx51D9aWgwZ+VPSD7QzwqQxGXKh7jNatJVZ1LM4A oetntLTtDRJCOVVKuV/A5XL6DaXYfnRWp2l89SEyLAVKk/oLPqAnVl75rT/I oFEtuM6pbRp9Z8pK0LJmIWm3Zk9M+Sx66WQhmMnzCV91/grUdNBR0qGGBDkL CnywOKa4aoSO3EzVVpVYUaDb9Zmx+ywdCWiLrqmzo0BBrEessACG7KT6N3x0 oYATqfXPCcAQNnBMXe4cBVq9YxaEGjEka+fnUHyXAtfT+djHqhiIdfDDsMZ9 CoSXuKypbGWgtgOWx14+oIB7Q7UGfx8D+e1QP9H1iAJ7pjzPPsEZqEaM7YOV U4Cj9hpbVptDNj0XwzVaKXD4ddxsWfEcirFMeFRLo4A8ITC+mM1EQx6n3bQY FLghbfVEoJyJlC8ekqlkUoC7LzVapIGJugskM4oICjTGbVKUHWMi6d8PE9MX KXBonc5ZPSkclT2tOxckToWze3z//JeMo8U32eq4BBX6XJ/0x2TjyPZTFN1/ HRU0Y7gF18tw9HWl6amTG6nw9220+b0uHBl49h+xU6RC4vGs1DoBFhqQwvZr 7KFCVdRbhe8RLKSo1rPweB8VVhesmV+6wUIX4dlLpf1UCOl06hLKZiHZwLCd m4yoYCg+EyBdz0KBV53xLBMq5O7eekCui4XQff1yqYNUWOkcuFZ5lIV8OvmU RKyp8P7RQo32Nxaq+zw7nWBDhR0dhon7Bdho9deuXH57KmRh8S6mkmzktqri eLQDFRbFetQPybPRs39vbfjlRAX3XZJ/HHeyEZ9u0HDYMSrMe9S5RexjI6dD TmmECxWw9Ece1/TZqPTUHtvAE1QY6UryvGnARgv/yYhg7lRoXwz2umvIRta3 l7q8PalQqXnCJ8+IjR4WT1+b9uLx9zLze2zCRiaDJX/G/KkQ3L0h4JU5G91U 383tDOb5wgdNwZN2bKQwaf2xKIEKaXor4lROslFy+/6qo0lUGNh5Zdz1FBt9 fayRKJxChXVbf+5K82aj9hBxnbNpVEiRYpAX/dnIZ9VQ6u4cKsQzSWYDQWxU pn3c4nU1FcIfZq6KvMpGmsn+dVOfqeDJr5w2UMJG+nvjM2V200D1vcmjSJyn z7/9v/iHaRC+SmmTaxAHfe++RQ6Ko8PmiW/6dsscdF/II8xRGYOWKm03XxMC /fX+R3dwKwaSEudlzpoSyOfNwHd7NQz8gsrGgswIpHXV9D9bTQzEd212iDIn 0Ltl1QjLfRi4vVhpnmFNoJ+L32IMbTD4Uzu+87UjgY5xb6Soh2Fg2BgjuNmb QM2HTW3KL2GQLtvYpuhDIMXqJTHVyxhQI+ajVX0JxD5/4bbKFQxu7D+zoO1P oAT8yB35JAymmh1Z1mcJVEvfcm9DLgbhSOVDeCiBZC3Gne/mYdC3xTPzShiB YkvTN0oXYKAS+8Ah/iKBbHxXPJAsxaDbaC0p9T8CUchzuWLVGMi0L7SVRhJo 3dTLQoEODF519FSMXCPQbbHo6PouDHRW2mUQ8QQS2W/mEvgeg+cWA5FiiQQS uD+0ZqwPg4ruERuzJAJd6crGkgcx2CrmrOt5g0CL855vYASDQtvxzVHJBPrq wAkvH8cgd2CSXXOTQOdj65w8JjCQk/L80H+LQHPPojXXTWOQ5URGzNsE8ps0 W/3uCwbSd33KhNMI9EVUjBJFwcBOMjTcN5VAbvrDrbvoGPQK7nIPSSHQx9MP smkMDKx/sI1jrhNooFPV/jAHA/PPAaLZMbz65zlqK75i8KZXlSjh1ftOsV6o cR4D0zbayAueHijmYKPSIgYmJV55pAsEeqbnpfJTiAF6F1x38XkS6ObTnN8P ZRmgJmjt7G9EoFUTXmOOmxk8fyVsEGZAoHgR9efC8gxQxTrl4/YRKNK/wS9Y hQHKvcZzD7QIFKAwOmimxYB/7+lF98kTyPKueBnzIAPEt6sV6fITaEV03BG9 YAbMlkhMCcdzUC0X/4VCGZAdlZhQFsVBPn4uj8wvMcDKaUnD6iIHddjvnHOK ZEAJHxaZ7MdB8YqTMecTGOB/AsmsseIgoXf7nhRlM4Ahcf6olDgHCawj+MXb GcCM7CHJ3ef1g3KPKrLUHPxwSGzaVclCIQ+qbkm1z0HbyfVPvlQyUcv2pFWS vDmqoHHUeraOgfaM/NObHsQE0c0kzXRev6+OenxHOpQ3l9eYrjMuY6DC3i7Z jeFMqONoTeRlM1DShRU7tlxlgmWN2HnXKAZyrLnqsCOLN5f1O+4MGjMQXT/6 gVUrEz5aao8jEoY8Z8VO9rQxoVGvouV8J4Y+peQq2b5hQra6QuHmVgyRJpoq D79jgo/Y2rORVRh6cWWx1XmICX/755b2pGMoqv2/WV8aE3Y6F8o/c8aQpHWI xlVxHBJ9JU/nkuko//VaUX1JHLhNAz5PP9GRlt5TBncdDo5Saadah+jIThUr PSWDgxYSPzHTTkfJKz0UjJVxmN0oZqdcREdCb6w28OnjYEdaqVPpTUcZ+vT5 egMcGhW7tFpO0JHii/jhC4CD0uWEHX1OdGRUgNKmzXD4pSK0jTClo+gYXVFk j0NFDL+sjjIdif0cYlxyxGH9WNuGg3J0lHs+6J3mUR5fjdh1x6TpqNH9SUKe Kw4nxv+KhQvR0Y/9CnxXfHFYqb203EShoYSa1ind0zhcvtG0RJqgIentbi2s ABwo0xG/JkdoqLjwV07JORxs9+j/YJNoSFv2XoR7EA5tN399Xe6gofY7OsfX h+Ig8UY5nFVPQ46rh/b2XsTBZqtc7aESGgpaEPtuEIlDOy6isSqWhpYvVAzP R+Pwx17gtN85GrpNt3hRGYvDvppfRR2uNFQ5dvWCXCLO85XYpjhdGmLULjB+ p+FQtLJLdHGOisI1st7VZOBAO9Ni4fKRilYVaz8+m4WDVG/ttbpOKtqacd7n cw4OSRlFv0PyqcgrmDLVWIrDNfk4JvMoFU3sGBi+3IyDs75Bz2QbBT1iSkYL Ihw4NLv28CoK8ip32nrrNU+PjFOv1uVREEP5Q3h+F89H4omPrSIp6Memqc1v B3B4mzd47aUuBUmK4P7SVN59Cfob3KqYReY04aVna1hA77nz1CCTjKrzQJni wYJwd3pqjv8Mcq/aI7n5LwuSyldLhVt+RLEJBXETFWw4HedokSvRh55im3PE ef8Ygq9OVPjBK5T0MMFzyo4DErJp5p+WG5CPI0vlmQMHPHcHxD31bUByzc3V ts4ckPf+96fTrnqUnHqi66YXB/I7E8n572rR6T3ZXJHLvPi6qpCL7CqkGC9t KVzKASNLSs4rh2z0d1/Umg9lHGh7YnN9JSMLjbNmh0qfcIBP/GWIU2wmSnOu cTd/zsMlohmf3FPRsrpjaEIzDwc+nLimFY4mBlPzBIc5ELtt+wlOSDI0JP70 Hh7lxb1c44+apULm/pNqRR95eKBjbFIkHQ6VaNaaTPGw6Pyy6UQWNIb3vo9j 8PKN1dSSIB+yduimOuA8PhIXa76EFkAwOfeIAofHf7rtwP6yQlC1CZxum+fx j3ZxZEuUgBD/SHHaT17cpnjC4mApzLzcH+C5yNNnE+FXcPkxNAcU7dT6wzuP sZ+7+LQM7m0R/b68zNv/6nrkEXI5/A8YAMAT "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.0351635530326506`, 1.103395847381893}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.0351635530326506`, 1.103395847381893}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVV3k4ld0XNZVCQuqL9GUsJClUJNuUKUOoSEjGkspUnwyhkKgIKZHMIUUR Mh0JFdc8lDJ13eG97nvvfW+pJOV3f3+dZz377POsvc5z9l5HweuCo68AHx+f BT8f3/9Xa19ssI1x1DD2pJx42FgpEjKVDZqW0QG+xVcrHr8vQdqP7ufWyJgB 313nP+PNxehQ74cXD2WOQOz7dByKCpGzz8+WdBkf4POXyvpnJhdN7rxueksm DPgUP265vTUJ5a+3T0yWiQe+PM+l44l3IW5VzbYbMpnQdsVwhb9mHbgcL6gi uMUQW3xxrsu2F0SX49ws/q0C+UtN96q2fQAVBzb2JqUW5FvoV95FT4NsjIW+ f0EtePZZnJ4vmAaJp/kpIvW1kDb92EG+axoWVzlpOpBrQYhfR8pAeAYG2upD p/a9hECleUqG/QxEaMX9XaC+hMOnw5JNZ2agb620tKZRPUh8DRst5CfDmwPn fAeP1kPlonJ3wzoyNJztqgs7Ww9mgqOtfSpkKHobfrwpqx7CpXXLFq3IEB4z mWfJqgdiz/cIx3QyKHJK1bwfNMBA5EV5AaVZ+K9PD+7Pv4LMFZfOnjKjgLjm S+r7VY3Apyfoa3KUAsW3tG7+lmuE+MA0DyU/CgzabBv3ONgIScMVDtTrFNje Ix2qktUIsQXTe8/0UGD6Laf0xd4mCD9gJRTsSIVL287aUg41ARE09sfBmwpi 12nf1ns2QVCx98/dYVTQM580upzEw6JX5ubvUiGjo/sTjDeBz/iLgfBxKqgr m8cFs5oAEzPqPj5HhbZrr7cV8TeDj1HvG/3fVGCZNIStVG8Gl8f0uiU5GsQX am/aZ9gMM5/Cqid30EBWoOr1Gcdm8BQXqGg1pEH1KfXTOX7NQDFOLXpkTwOL 1yXivRHNcP/OXJKUOw2m5BVe/r3dDHIVHifN/WgQFpt7QquoGarbh3QjLtCg ADLKMnqagfStkfwljga/W2JNXOVaYNWxFIPnpTSoajxxid7SAkmyGoQ9QYN/ aiWn+PkRhBWdc751jQ5uN38foWxAMOF1ICDxFh0Kfag9XRoI9imuiY65RweN 9a9epbggWMivLAx+QgeTS55311cjiM1jso4O02FPrnNp5s42uJ99Jv5fJQxO eZS6l021QXWq7/OqdgzqyKakfoN2mI90Fx3in4P2gIebjuMdUBwl/iEkDIfv Ww+sfXruLViexPV/NLNB4NcTiU0q3eDye9zVJ4eATb0m32BnN1hSljsE8wnQ KRgf9dHrBoNelZ1FxQT4WgnnPLPtBsVHwYLkpwS8y/ZSMbnUDXMmqytPthGQ qi+jf+ZtN0Qk7/vjSiWgTLxa7vZgN4SEevgvMghoI5svv/jcDX5u8YPZbAK+ Jod1LHG6wVpzoOTjTwKOfe63S9vYAxuG/O2OiXBBLirRu/5MD1TI3HvksJML uoc3m0+E9kCuQMtqrjYX7JRrVfmv9EAakxyato8LMaQvLOv0Hghr0bTsN+YC We5A+FRjDxie6iJsjnDhNzHsKtjZA5rWuCvuwgXpzoADqv09oKwt1ZnizgXz c/cFQmZ7YOUKj+xuPy6Ut3y7uUKMBENl340tL3Oh/U7yBfUNJOi6s6mSHs2F T74KjvbyJGiIMN5w/SoXxMTt/8nWIUGeza25zhQuqJCpv1oMSZCuW3PEN40L hnVRE2RLElz9d7xV6C4XgjwqCjTcSRBIKGeY5nHhxm7jeAd/EniMW/8hF3Kh cOVHv0vBJLBrD/K/+pgLjZ/OW+VEkiAzTzJ8ooQLw89WaLQlkOBToKuIYDEX 8Ku54tRUEmzdX5SrxssXctbmrn5AgoDVuObhfC7sWfasc3pGgoWSaKeHuVyw sW27erCBBGx7oT29D7jgnbPFfm87Cci/kjf+uc+FtL1TdNkxEgzY3p904/Fl XDghQ/5DgtLvL/zlbnMhd+ZoVBCvLx4+iEXmxHCBv93a5BbeC88ojsXZXlwg xev0dan3g5eS6ve7qlzYksb8Vc4egPv3+IueVxDA/Dk9Nao1BCPc71/0dAko nmvqFr89DG0Ju127z3Lg/D17pYCMYSh2Fj5K9ufAXrPZyM77w5CmNmG/6M2B 7ociO6KKhuFYb8JBdTcOcA8fT2U0DAMmPa6VbMMBw/ofTh2zw7ChOEbYegcH xq/tmrysNwIB7aTa92w2FGp16o4ajoBdZkHVlzk2BE663NYyGwEtv0sVv2hs 4NsbC3S7EVhaLZ+vNs2GrXN9BUd8RiDTITTlRj8bwg4H+u1MHYG6GRkvq2o2 iG9+zKFQRkBi2W/t+2A2GB27NjnLGIGtZR3nlc+zIST1ZA+ZPQIGDop9MQFs GOPf+HhmYQS8iiZv7vFmQx4tyWNCbBSaLY6IFB9hw8AWX5vPkqMwRDw/s3yY 916PG+t/2jAKWPba9662bPDr+bX+o/woSOHd1yXN2aBZHdA7rDMKPmnGK2L2 ssGTYd40pDcKEXqPfD5psyFdUal80HAUkslLb3S12NBxYjlrwHQUylJcle5o sOFH5uf4fstRaNRpuIqrskG1rz6kz3YUSJPryRYqbHAVzvTsdRyFmcRQ4yIF Ntw0CrIjOY+C9LRQucdGNrRetjHocRsFVc/xY06r2UC8UFXvPjUKBl+eClku skARF9r43m8UHL2uvjBgsiDRo+VbVxCPn8928a29LLA11XzSHj8KA6ejOxfS WHAlSiT79Y1RIDMcQllxLKh+SUtsuz0KCwFbFcghLJBWfeTVen8U5M/1R/Uc YcGEmIRsY+UoBAUr6ORtZEHgGDfp+cgoSER0Fprm43DzzEu/fOUxOJKyJvZ2 FRPmjJ4miaqPAZ719tiBR0yw2FhScWnnGNwsjNuB32aCwNtMto3+GLS/+v7J 6jwTLiuHXfplPwYa2KTuih1M8JvenegYOQZ8B58xIyvmwPhodYnQ0BhU/7Vz PlPCgB9GTyinYz6ASEiaplkOHcJ2d9RuePMRlkIcNt8izcL0s46UQYVPoLF9 LrnNZRp+B4zkqEV8hoHyoMoJww+w3Vj4r1/TBCz03dknIzgAFoUK/s//mQJs RFaQqGmH/zafVPziNg2xIx51D9aWgwZ+VPSD7QzwqQxGXKh7jNatJVZ1LM4A oetntLTtDRJCOVVKuV/A5XL6DaXYfnRWp2l89SEyLAVKk/oLPqAnVl75rT/I oFEtuM6pbRp9Z8pK0LJmIWm3Zk9M+Sx66WQhmMnzCV91/grUdNBR0qGGBDkL CnywOKa4aoSO3EzVVpVYUaDb9Zmx+ywdCWiLrqmzo0BBrEessACG7KT6N3x0 oYATqfXPCcAQNnBMXe4cBVq9YxaEGjEka+fnUHyXAtfT+djHqhiIdfDDsMZ9 CoSXuKypbGWgtgOWx14+oIB7Q7UGfx8D+e1QP9H1iAJ7pjzPPsEZqEaM7YOV U4Cj9hpbVptDNj0XwzVaKXD4ddxsWfEcirFMeFRLo4A8ITC+mM1EQx6n3bQY FLghbfVEoJyJlC8ekqlkUoC7LzVapIGJugskM4oICjTGbVKUHWMi6d8PE9MX KXBonc5ZPSkclT2tOxckToWze3z//JeMo8U32eq4BBX6XJ/0x2TjyPZTFN1/ HRU0Y7gF18tw9HWl6amTG6nw9220+b0uHBl49h+xU6RC4vGs1DoBFhqQwvZr 7KFCVdRbhe8RLKSo1rPweB8VVhesmV+6wUIX4dlLpf1UCOl06hLKZiHZwLCd m4yoYCg+EyBdz0KBV53xLBMq5O7eekCui4XQff1yqYNUWOkcuFZ5lIV8OvmU RKyp8P7RQo32Nxaq+zw7nWBDhR0dhon7Bdho9deuXH57KmRh8S6mkmzktqri eLQDFRbFetQPybPRs39vbfjlRAX3XZJ/HHeyEZ9u0HDYMSrMe9S5RexjI6dD TmmECxWw9Ece1/TZqPTUHtvAE1QY6UryvGnARgv/yYhg7lRoXwz2umvIRta3 l7q8PalQqXnCJ8+IjR4WT1+b9uLx9zLze2zCRiaDJX/G/KkQ3L0h4JU5G91U 383tDOb5wgdNwZN2bKQwaf2xKIEKaXor4lROslFy+/6qo0lUGNh5Zdz1FBt9 fayRKJxChXVbf+5K82aj9hBxnbNpVEiRYpAX/dnIZ9VQ6u4cKsQzSWYDQWxU pn3c4nU1FcIfZq6KvMpGmsn+dVOfqeDJr5w2UMJG+nvjM2V200D1vcmjSJyn z7/9v/iHaRC+SmmTaxAHfe++RQ6Ko8PmiW/6dsscdF/II8xRGYOWKm03XxMC /fX+R3dwKwaSEudlzpoSyOfNwHd7NQz8gsrGgswIpHXV9D9bTQzEd212iDIn 0Ltl1QjLfRi4vVhpnmFNoJ+L32IMbTD4Uzu+87UjgY5xb6Soh2Fg2BgjuNmb QM2HTW3KL2GQLtvYpuhDIMXqJTHVyxhQI+ajVX0JxD5/4bbKFQxu7D+zoO1P oAT8yB35JAymmh1Z1mcJVEvfcm9DLgbhSOVDeCiBZC3Gne/mYdC3xTPzShiB YkvTN0oXYKAS+8Ah/iKBbHxXPJAsxaDbaC0p9T8CUchzuWLVGMi0L7SVRhJo 3dTLQoEODF519FSMXCPQbbHo6PouDHRW2mUQ8QQS2W/mEvgeg+cWA5FiiQQS uD+0ZqwPg4ruERuzJAJd6crGkgcx2CrmrOt5g0CL855vYASDQtvxzVHJBPrq wAkvH8cgd2CSXXOTQOdj65w8JjCQk/L80H+LQHPPojXXTWOQ5URGzNsE8ps0 W/3uCwbSd33KhNMI9EVUjBJFwcBOMjTcN5VAbvrDrbvoGPQK7nIPSSHQx9MP smkMDKx/sI1jrhNooFPV/jAHA/PPAaLZMbz65zlqK75i8KZXlSjh1ftOsV6o cR4D0zbayAueHijmYKPSIgYmJV55pAsEeqbnpfJTiAF6F1x38XkS6ObTnN8P ZRmgJmjt7G9EoFUTXmOOmxk8fyVsEGZAoHgR9efC8gxQxTrl4/YRKNK/wS9Y hQHKvcZzD7QIFKAwOmimxYB/7+lF98kTyPKueBnzIAPEt6sV6fITaEV03BG9 YAbMlkhMCcdzUC0X/4VCGZAdlZhQFsVBPn4uj8wvMcDKaUnD6iIHddjvnHOK ZEAJHxaZ7MdB8YqTMecTGOB/AsmsseIgoXf7nhRlM4Ahcf6olDgHCawj+MXb GcCM7CHJ3ef1g3KPKrLUHPxwSGzaVclCIQ+qbkm1z0HbyfVPvlQyUcv2pFWS vDmqoHHUeraOgfaM/NObHsQE0c0kzXRev6+OenxHOpQ3l9eYrjMuY6DC3i7Z jeFMqONoTeRlM1DShRU7tlxlgmWN2HnXKAZyrLnqsCOLN5f1O+4MGjMQXT/6 gVUrEz5aao8jEoY8Z8VO9rQxoVGvouV8J4Y+peQq2b5hQra6QuHmVgyRJpoq D79jgo/Y2rORVRh6cWWx1XmICX/755b2pGMoqv2/WV8aE3Y6F8o/c8aQpHWI xlVxHBJ9JU/nkuko//VaUX1JHLhNAz5PP9GRlt5TBncdDo5Saadah+jIThUr PSWDgxYSPzHTTkfJKz0UjJVxmN0oZqdcREdCb6w28OnjYEdaqVPpTUcZ+vT5 egMcGhW7tFpO0JHii/jhC4CD0uWEHX1OdGRUgNKmzXD4pSK0jTClo+gYXVFk j0NFDL+sjjIdif0cYlxyxGH9WNuGg3J0lHs+6J3mUR5fjdh1x6TpqNH9SUKe Kw4nxv+KhQvR0Y/9CnxXfHFYqb203EShoYSa1ind0zhcvtG0RJqgIentbi2s ABwo0xG/JkdoqLjwV07JORxs9+j/YJNoSFv2XoR7EA5tN399Xe6gofY7OsfX h+Ig8UY5nFVPQ46rh/b2XsTBZqtc7aESGgpaEPtuEIlDOy6isSqWhpYvVAzP R+Pwx17gtN85GrpNt3hRGYvDvppfRR2uNFQ5dvWCXCLO85XYpjhdGmLULjB+ p+FQtLJLdHGOisI1st7VZOBAO9Ni4fKRilYVaz8+m4WDVG/ttbpOKtqacd7n cw4OSRlFv0PyqcgrmDLVWIrDNfk4JvMoFU3sGBi+3IyDs75Bz2QbBT1iSkYL Ihw4NLv28CoK8ip32nrrNU+PjFOv1uVREEP5Q3h+F89H4omPrSIp6Memqc1v B3B4mzd47aUuBUmK4P7SVN59Cfob3KqYReY04aVna1hA77nz1CCTjKrzQJni wYJwd3pqjv8Mcq/aI7n5LwuSyldLhVt+RLEJBXETFWw4HedokSvRh55im3PE ef8Ygq9OVPjBK5T0MMFzyo4DErJp5p+WG5CPI0vlmQMHPHcHxD31bUByzc3V ts4ckPf+96fTrnqUnHqi66YXB/I7E8n572rR6T3ZXJHLvPi6qpCL7CqkGC9t KVzKASNLSs4rh2z0d1/Umg9lHGh7YnN9JSMLjbNmh0qfcIBP/GWIU2wmSnOu cTd/zsMlohmf3FPRsrpjaEIzDwc+nLimFY4mBlPzBIc5ELtt+wlOSDI0JP70 Hh7lxb1c44+apULm/pNqRR95eKBjbFIkHQ6VaNaaTPGw6Pyy6UQWNIb3vo9j 8PKN1dSSIB+yduimOuA8PhIXa76EFkAwOfeIAofHf7rtwP6yQlC1CZxum+fx j3ZxZEuUgBD/SHHaT17cpnjC4mApzLzcH+C5yNNnE+FXcPkxNAcU7dT6wzuP sZ+7+LQM7m0R/b68zNv/6nrkEXI5/A8YAMAT "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.0351635530326506`, 1.103395847381893}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Directive[ RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ RGBColor[0.455, 0.7, 0.21], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.578, 0.51, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.4, 0.64, 1.], AbsoluteThickness[2]], Directive[ RGBColor[1., 0.75, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.8, 0.4, 0.76], AbsoluteThickness[2]], Directive[ RGBColor[0.637, 0.65, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.948122934926648*^9, {3.9481233417433777`*^9, 3.948123354503605*^9}, { 3.948123427863299*^9, 3.948123447354506*^9}, 3.948124131040556*^9, { 3.948124313488406*^9, 3.948124335665526*^9}, {3.94812436689406*^9, 3.948124386845297*^9}, {3.948125441564465*^9, 3.9481254695737877`*^9}}, CellLabel-> "Out[579]=",ExpressionUUID->"0de6ebc1-d180-400d-a3ab-43318b41fb18"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"testini2", "=", RowBox[{"RandomVariate", "[", RowBox[{ RowBox[{"NormalDistribution", "[", "]"}], ",", "100"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.948117958635509*^9, 3.948117961737759*^9}, 3.948118009196693*^9, {3.9481184224530888`*^9, 3.948118457550139*^9}, { 3.948118865567238*^9, 3.948118865622703*^9}, {3.948121884827036*^9, 3.948121884922701*^9}, {3.9481228385695353`*^9, 3.9481228386651783`*^9}, { 3.948124146120387*^9, 3.94812414629488*^9}, {3.9481254767329683`*^9, 3.948125476932557*^9}}, CellLabel-> "In[580]:=",ExpressionUUID->"b30c963b-73c6-45e4-8851-ebca8a51734b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Norm", "[", RowBox[{"Total", "[", RowBox[{"Transpose", "[", RowBox[{ RowBox[{"dCost", "[", RowBox[{ RowBox[{"edgeBasis", "[", "100", "]"}], ",", "testdat"}], "]"}], "@@", RowBox[{"(", RowBox[{"testresult2", "=", RowBox[{ RowBox[{"gradientDescent", "[", RowBox[{ RowBox[{"edgeBasis", "[", "100", "]"}], ",", "testdat", ",", "1000000"}], "]"}], "@@", "testini2"}]}], ")"}]}], "]"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.948116443805812*^9, 3.948116595874456*^9}, 3.94811663448494*^9, {3.948116675111467*^9, 3.94811669012147*^9}, { 3.9481170279593077`*^9, 3.948117034948435*^9}, {3.948117139185307*^9, 3.948117139416718*^9}, {3.948117619301654*^9, 3.948117644869664*^9}, { 3.948117701129861*^9, 3.948117725424323*^9}, 3.9481177976042557`*^9, { 3.948117949234351*^9, 3.948118005251853*^9}, {3.9481181222490892`*^9, 3.948118131658963*^9}, {3.948118183420438*^9, 3.948118183730976*^9}, { 3.948118290031867*^9, 3.948118300008397*^9}, {3.948118391012185*^9, 3.9481183956216516`*^9}, {3.9481184306853952`*^9, 3.948118480496229*^9}, { 3.9481187959571867`*^9, 3.948118869886958*^9}, {3.948118944962851*^9, 3.94811896683502*^9}, {3.948119010941477*^9, 3.948119011052844*^9}, { 3.948120502251251*^9, 3.9481205305715523`*^9}, {3.9481205627655373`*^9, 3.948120562876808*^9}, {3.948120655117876*^9, 3.948120660817029*^9}, { 3.948121887483335*^9, 3.948121890418994*^9}, {3.948122565903281*^9, 3.948122573199029*^9}, {3.9481226327618637`*^9, 3.948122635273507*^9}, { 3.948122909142078*^9, 3.948122913716877*^9}, {3.948122958087236*^9, 3.948122958214641*^9}, {3.948122997594208*^9, 3.9481229977202806`*^9}, { 3.948123053867231*^9, 3.948123054116344*^9}, {3.948123366064897*^9, 3.948123374087646*^9}, {3.948123451324266*^9, 3.94812345771636*^9}, { 3.9481241406010933`*^9, 3.9481241723601103`*^9}, 3.948124401049839*^9, { 3.9481244637884493`*^9, 3.948124463859868*^9}, {3.948124558697804*^9, 3.948124559407857*^9}, {3.948125492478352*^9, 3.948125496453656*^9}, 3.9481255732812*^9}, CellLabel-> "In[585]:=",ExpressionUUID->"836b3548-7e17-45c1-b28e-0607b57c13a5"], Cell[BoxData["0.025435047426857774`"], "Output", CellChangeTimes->{ 3.948116920781104*^9, {3.948117036764943*^9, 3.948117051224715*^9}, { 3.948117143594776*^9, 3.948117150513681*^9}, 3.94811718447971*^9, 3.9481172182141438`*^9, {3.948117638498147*^9, 3.9481177376918983`*^9}, { 3.948117798579523*^9, 3.948117841103928*^9}, {3.948117941742052*^9, 3.94811801037414*^9}, {3.9481181194825706`*^9, 3.948118132143605*^9}, 3.948118184196604*^9, {3.9481182858143787`*^9, 3.948118292728421*^9}, 3.948118322966217*^9, {3.948118392460451*^9, 3.948118404573513*^9}, { 3.948118446107132*^9, 3.9481184873970633`*^9}, {3.948118789974741*^9, 3.948118876322757*^9}, {3.9481189372969913`*^9, 3.9481189777874928`*^9}, 3.948119026920826*^9, 3.948120164039448*^9, 3.94812041284212*^9, { 3.9481205240286617`*^9, 3.948120540191484*^9}, 3.948120580966222*^9, 3.9481207063893833`*^9, 3.94812189239913*^9, 3.9481219796615143`*^9, 3.948122604105332*^9, 3.948122923828226*^9, 3.948122985996348*^9, 3.9481230427774963`*^9, 3.948123149426978*^9, {3.948123365026877*^9, 3.948123374739566*^9}, {3.948123452106146*^9, 3.948123459450842*^9}, { 3.9481241393603086`*^9, 3.948124175152656*^9}, {3.948124393225073*^9, 3.948124419346307*^9}, 3.948124543741746*^9, 3.948124585994644*^9, 3.948125491254188*^9, 3.94812555805612*^9, 3.948126067766728*^9}, CellLabel-> "Out[585]=",ExpressionUUID->"d015d061-dada-4c76-9547-7fb223c133b4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"ListPlot", "[", "testdat", "]"}], ",", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", RowBox[{"2", "\[Pi]", " ", "x"}], "]"}], ",", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"trialFunction", "[", RowBox[{"edgeBasis", "[", "100", "]"}], "]"}], "@@", "testresult2"}], ")"}], "[", "x", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9481229432143373`*^9, 3.948122951894258*^9}, { 3.9481241612173653`*^9, 3.9481241612958612`*^9}, {3.9481255641290007`*^9, 3.9481255647764606`*^9}}, CellLabel-> "In[586]:=",ExpressionUUID->"a6c9f209-5969-490c-8928-610839cf2732"], Cell[BoxData[ GraphicsBox[{{{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[0.24, 0.6, 0.8], PointSize[0.009166666666666668], AbsoluteThickness[2], PointBox[CompressedData[" 1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v /77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete 8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1 4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2 ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE 10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6 2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2 ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE 4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9 0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf tOB/IhAvzw== "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v /77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete 8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1 4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2 ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE 10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6 2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2 ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE 4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9 0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf tOB/IhAvzw== "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v /77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete 8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1 4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2 ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE 10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6 2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2 ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE 4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9 0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf tOB/IhAvzw== "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.009166666666666668], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[ {RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwUWXc8lu8XpiQhSRJSIZUkqZQWl5WIRJSZlIZEFF+JBiqphAopIyEk2dk8 9t578y5eMl5SIen3/P56P9fnrOuc+9zPOffnlbjkcObKMjY2tl2cbGz//z15 hdlcNHpWeSij0nTcKYfgUBd1HBRRwNDozyffN+cQ+z+EhKWLaEBFQiptrDqb 0KnvTAsXMUKRrwf36JZswvjy74LXIpdRZH04j1GbSfTvear+UsQZ4oJfxAa3 ZhCR6097Pxd5jKJhMSI67ivhXv+27FzuY6g0B2Tz/Eskzj0ZWrbV/Ak8mvlr v9gmErw/bz3MC/MGWwc/67vqF8K1LdB1fMszsA3wH7FjxRMGb3ps9bb7oWiM v8HuVAwhq7P1s2ilHzzGA4Z4c6IJruV2I8PX/FE0yf8jUSqauJCzlEoYBUBl hl944s9HYv3OADmT4Ffw+ClR1mP0gVj2JONU4fArsP2WGBWVjSBYQ112Uoqv 4fFbgs98eThRGyLxhdVJYnZJk97U90T27PGac9Jv4MEpeX/js3dErL7taL4r iVdKRplbhRCBiX5cW6vfgI1PsjJU8S3hyZW+45lIIDzWSo738gUTMide+aQ5 krihbc32+kCi5YnDaG9lINjm1tX5Bb4m3MtOnVyxJQhswVKLnLEvCKnlsl/k XEh8QMKKJelF1Kly85rUkzjxqE86bhH/eTDtPKWCwVaUsvj+2jFU/I2Ra2sh sfb4GtvRR+D9EXxgi+87sDWx5z9li0dIv5v6t6UIiH9aKXSLk4CqmGnMwNkP sDLco7ggX4QxM8UVXF8/QEVWyP4opQibx+9af90diYB+WleBagkcrh/cxtYX iRSVhykly8ohcDk5/tOhKDRxZl6oe1yDq482mx65HAX+wbCg1QdqkRf1clWj fxSGsh7V6jFqcZlyw3ZuOAoe1w0Um4/X45ultKxOUDTEr7qsvLG8CdwP3vYN FkUju+V61AvzJliGc750Ho8GS/m8UmJ6Ezj76BPh6jGo2qDhNGHdDLM/hhH7 HGKg/1iRjy+/GcmipXqV72PgyJL5LCfYAo4j+/6ZV8TA6trQRbHzLTAx/ZjM mo6BCq9ifOvbFkz1GnFHiX5CgGhqe2xDC7wtua4Yqn9ClfSu5W4rWpFu7SCa GfgJjse3WIo7tYLvptITd8VYmDxYKWiv14Zyr24zzvtxiGR1PuRc0YF9iWs5 xbgSUFTuwOHu1I1quXKrevkEOL7tfvffl25YpbrmPTBNgPx19T2OtG68zBx0 pCQkgMm7weyKYQ+YRV97Y099gY9hYfLp/b2IaNdO3fsmEQEUXnOpH304YPKX h5aXCOl0F9bmXf2o60m5GkhPRNXjoSci1v2YH9wg9vvAVwhLZ6TwtfbDaIzh nd/1FSoO5pzzaQP4bveOYs+ehCaV8tAfYwPwmtI9tkUmCQECe/ZOSg4iZTZ9 2tM9CdKZyyxorwdx4s413f0xSSh6ajfdXzOIgXnROHpdElJkb6jbsQ/B+V4D e/DPJIStF/e7vmkIPP88LU5sTkbXb7bxYPkhhFw3tpTVTEb2jM9/N44NQapN 1mrtzWRYTfD/g9YQlD93WvcWJKOPKi4wemEIOZ+Dv2XJpWCxXuXQUf8hTBiO 5+s0pGA82uPx4MQQzsa/rXVanQYFfbZN0l8oCDvvpXtVIg2Batrt8lkUUAXs 600OpEHj59JV/1IKHO6rNSqdT0OMme1z3T4Knp2ZaFn5NQ1W21SbK1ZTUbCo 1hOqmw7evEnLPEcqthlMMktfZEBwWNst5iANog9PHLn2MQMKmWMOazRo4P8a +YI7KwPMf9R1PAY0LHAZyhlQM9Bl47lL4zoNTUVZTgOHviH+SKFZ5jsa3OQ9 l+YY33BvQDHn/QINDpY9p8P+fMOcwMrjWZx0XPbd/xFrM3H5REdTqwAdp5kM de9jmbBKcWby7qJDKvLks3VvMqHilbrhoTkdIg3RPZnxmSjK9IgOvUYH3+Li LrPCTEh/P70n24mOeePkhsjRTIgbTWpOv6Bj8gmXuMa/TMT4FLSsDqGDnn7x 1ohgFhbzfS1lYujopuSWPJfJwuNp8zHNFDoa1ggKyqlkgWv7LhfrfDpKleyv NJ/NQp2teLxXOR3ZNyoynW9kwSKZY3tgPR3Rla6mecFZiDxUL5HVT4frw/4I rYkscOhYivz9S4fkVOxO6/fZaHLw4HqmzMCGTWzunCnZMMm47P1ekwFeHdO6 z+XZ4JjX4kjUY+B3LI8Di5WNY15r2RotGRhvu1z0hjMHXRU/7w9dZYC6rHCt olgObHh6/kzfZKDO0jHj/okcZAdG/RZ8yECJb/UKifM5kO32/m/7UwayciWN y27noGrTjR+K/gwkMt3jr/nkwPXS6VvabxmIEmqf547IgWDc/imzDwy81ZDT SUrPQdj3DfZ2cQz43n4aZlBN+pNfHLufzIBX5NDE7EAOjF5Sv/2Xw8CdhsMI mc3BrB1h+7yBAT65b4xqrlywNm2bP0hlIOalvO8fsVyUNTx/SvvJQLPujm7L 47lokj8Xc2zTMHbVCjptC85FzOx4/+SNYQxWTsWmKebB556ogeGqEbjsuHGK rpMHi90eg//ERsD7dPjHeqs8OA8w7BPlR3BYs1/lrk8eTFRSn68wGcGbspoe dOdBg0OrLCt2BDJSmp63Jkj87euZy7kjKHpUvCOaPR/SV9dR+BtGMKGW7cwp kw+xqoG/13+O4HHU/o2HlPMhfFfDV2gVE6LLkouvnyGxTIJoqRgTKRdlbEKv 5oO/d81nB3kmThR/4qt3y0dfzTL6vBITA+IS35b88pGdqcE/rs6Es0eYuXx0 PunX+9iANhMf8Sb+TW0+DrlxB5WcZeJPgYeamVgBAnYKaL6wZyI519xlpKAA 0j4S8WLhTGiKdoqJtBRA3Nm6jS+aib67Z0pPDheAeeETG/tnJlYd1uZP4iuE r+JOU0YGE9ZZBxOcLxRidlieO6mOiQWhNP1Yp0Jyntw+GNnCRIDL7t+dTwsR WJhx6XUXEwUHpDSOphRCNvhQngudCaOgD2N2ZYVg83IbsRljYmxW9FVEF+nP Pn+dOYsJD6NgxabxQtSZLuHULyY2ZKwdYGcn8Pi4ih0WmbDw/WNEFyLA9fKz V/x3JqIuM2orZAmEbTseWtvExMixRrXPagTECofSJ78xIbs+J+eFCYGmc/fq 1oYyoeZiFbQ+hQB/zphcxB4mDoYZxwbuKULi/cofmeT5mvrUUZ4cKYKRkDVv j9II7jmrbrpzvAhDSUtSfyVHUKy7K9DUvAi8QwfOqU8MQ/fvkufmp6S+Wkx2 o+cwLlrGno8fKMLss4zw2lQGHp/c+O7daBH6+u0iMkIZiD0Y0PZ8lsR7t30I f0LePz43HXvuYgR0B0U6mDLgQpw6vO9gMWx23olex87Auy8lzltVi6F7f0/M 4hgd+W8VUwR1iyHbPBLDaKOD3VFix++LxRC/axKbFU+Hr/hPwfyXxciuOvzZ XJ+OJF5b/a8hxcgXm/mscYSO5rmBFxHRxfB1TEjYLUWHUHPVMs+cYjgLb0z8 95uGwwVKyrfLimFn15rIpNBg8TntrnVjMTSKXnxtrqXho2cY6zijGGI2i0nR H2gos18rq8gqBkd+RrLvMxqGTb2vSf8hMb99yn9ONKzS/BMlwlmCPuttqZbn aZDd5zjAvbYETVn9qSdO0KC3mSGyuLEEQ4E5eh7kPLjFbXZ2YnsJXGWD3QuP 0hD4qyFgYG8J9Mtuxy+q0JBJVa9rPFaCcfPT7Uc0aejQ8px+eaIEs8+ZT610 aPiVVCike6YEXLmeR7z1aVB0P3yx6loJxIUzPjSb0ZC9bs+votclMGoTtrVx oKHrrt3Gh+ElsFqeJubnTMPc4GcVpfgSWOzTaUy/S8OhRKkXOQUl8Ai4r/Dv EQ05GqLiaUySvy51KSiEhp4E4+OOP0qQ7e6emhdOziv+IFu5JVKeIHiZEkXD kf413xLWlWKI60S17FcazNRP9dhsLsW44pD7mTRyfn1+/m/7zlLMXr0r55pF Q+5/K05GK5dCrPzLm9Ji0n+vmsNF7VLwzmpojlaQ/lU9ArcYlUJ+68AcXx05 P+MLcvotS6Fy5s4XhWYajvL9GQi9XgqTiaODH3vI83M+xGHmXIq51/9qHEZp uNfz307hh6VIOVSaqTRHQ34syykwkIz/6KRf93o6+njl3p35UIqQnXxucWR/ LN6+UcifUArdxuYr/+2nQwnDXC+JUjwWNVVaa0BHYWdv+JOxUhxKvTau5UvH gJJIqfrPUvK+7eoSCqVjKfock52tDM6Lk6X0z3QoOzbve7C+DEUnXEI9Kukg uCorXVTKoDXw+GT2MgaGbnJMKOiUYeiR1kHvtQywtasK/DhbhsCdvJJG4gyo fMy3cLhRBqbzm/kpJQasVi547nYpg6uoMaNAlwEPe8W47x5lkC4SbX5hzkDR 4bTpa8FkfJ6o+B13Sf8fpoS2fywDf+qVwJ/k/GLj3H2M/qUMKed2epQGMyBu Z3sxKrMMfTt2SReT91e1Jc7bqrgMXUn5sS2tDFw6xPiyua4MZQf0ttHJeeMV Idnc10Hi/MHonxuGUWIbvtF0nMyvZtlHYYthpI/euGH5qwyzJ71/DboPI8bm SJ41WzkO1a7SjQsdxpOrnWY3BcuRXcv/+0DvMLQurX3/6Fg5quo2nzI0G0Gj 6RPhJN9y0BuOzL80Ib/PWvbrl++ugKOZ1ep1d8ZQX3n0CpdiBQRvXn8ZFz6G Qk3ub6tVK7DoeXv1sbIxfNCIMxI+W0He48err6z9jksqlDe771dAZS5+ddaX 72AqnhUwqa+AVvD0avOhcXRnbr10vpP0l7DwcopzAjUHZlIvUSqQX7Cc7/Hu CXzZ729g/7MC0oz1fF/dJnBzT3WA16ZK6Coc4fsnOImf25XWfLWvhLxE3b7q HVNQpqpVPnetBMf7qAuXtabgHa710OZRJdoE7vr+s5mCkKDR1NZ3lbjMsX34 QMIUDrLfaHxfVomKH4SugRALD/Idn7o2VkJGfhctYjsLFXdccK6nEn52wXfH D7JgPOmZvJZVCUuGXexTYxZce0P8fTZWYa5DhK0whIWi4IgTV7dXwWrdk2Ce zyxwnYn5p763ChWnWbKmOSy8q0p2+KdZBZ+qCtPZbhaoj77t6DeoAotjH0t1 jAUZ5A3mWlThnGq4t/8CC7nfKk673K6CaK5TuszGaSy7VbfS6H4VHv8a0Hbd NY2Tsi3EXp8qjO07OVR+dBqvRzrvrHlThfj/mJuuaE+jN6p/z0R4FRIId+9S 3WlIWdJGauKrELlqzZSE/jTsREY/xKdXIcQwytjDcBqL/rNrLleT/EaqpJXM pqGhs1Cp2lYFr70Wr0LPT8OXk81jy2AVXN2n5uetprHpPg+rZ7YKN9cI1WZe m4ayrWSTgXg1Tipa28v/Nw3vbdI+e3ZVQ83zV7uf6zQahnarrD5YDY3aZ8oT 7tOwND6cUqVTDdkLKWsSvKbxUEM/AHeqIfb0b+rWgGlU/TurtcmrGrzNAaJe b6bBn2fO9se3GmwbpR4NBU8jcu81x8yoakwknTQKD58Gc9xOOvBrNehz/fl/ IqchH3976FZ2NYbVbm0zi5mGq7VryOnSagz4cvhlx02jaPMD/d0N1WjoePtL 6Ms0uHoecfF0V6NMfNeF/5KmoR/0rIhJq0ZHy3R/Lakfou/vWjFZjVHTxX25 ZDwKT5B8zHw1loY4feJJfjKV75meHDVYZrO2P/jZNG57RUZeWFODzVMb9z15 SJ7f/Bf+jdtqcOSvfN/FG9PYWK/2A3tq8PRZ7p0/F6eh8LG7/fLhGhSu11gX ZDKNK9orQ5NO1cBMzvhk1XGyHu8ubVNzqYHNhfvZcuJkfPv5ldc8ahDzndOo Smia/F4HjL14XgPmnYCpi6unITtWkNweUQOXgOjtQWQ/+R8ROXK9sgZexdWB f9pYiOdLEfNrrkHVKUP5oFqyf6ma/9J6Sf49fbVyJSzMPHcuW5yqweuZqWWX klngucATJ7FQg7YHdyP+fGJBan/UM02OWgjwLD8SFMaC0srDdjf4anHprW+7 3BsWzvU26gUI1yJ2q9CtqmcsOCRf3ftNshbU5A+8lzxY8Hn0d12PbC36njln yLmzEGkc+GvpYC0yj21Ma3BlIWfXru6tqrVwmypOvunCQsu/4jwtnVpoRNl8 5XNmYazVJML+bC3Ez675knSLBbF73tZZ12tRkWsRO2nHwgH9TZp9TrUItF8e 42fLgp5UhjT7g1pYiSd8lLNh4WEdZeLk61rMPfkddtOavI9iSq4DubVQMHj9 ZtKUhT+sVrPl5WR+HIdf+ZH3XbDcVkm6sRZDmYN+cmdZ0LQPWXabVgtfsd3P b+qz8Lngh+8K3jpUjVR6TGqyUPLquYOMUB1839984KfBQs8ViTOnxetgcWr9 PTk1Fnj5Tm94p1AHtvRLd24qsbCNypgvUK5D05VV//EdZUE5814fVasOCcIp t5MOseBomfBR9nwd1B78tZ/cz8KzfaqPDa7VQWBvzA2/vSxEcXZddblVh2Ha yetye8jvR89N7VD3OvSkdGd5KbLQmrRCtuhJHVQWno3LqbAw7hXGx/Cvw3v1 IxK9WixwGO+fXvW+Dj98x84+NWDh4D+rTMOkOmRs0SEGL7Gge6rI63h2Hawk yzStbrBgHbrltGJJHbi3KTUMObEQoDgwItpRBzOZPf2UxyyMOpiLUP+S8gPr /tBiWQgbOnvP8VQ9zE72HmSS3zv2kpNqL8frwf36hdx/ztMQ5k/ge/irHnv6 5AM0709DznJVryNbAyy3d0xv8J6G2UKlk5FgAz7nin/LfTuNjH3HP2081oCz tG9H2fKmcTUaXAkvGhCjMKT1gn0G96Yj2kKDGlD84EmCBfcM3mAp8uWHBvyo kuGVWzeDot78w7fSG3Dk/H+NTVIz6Ngpxmld0AC7ONG9UbtnMH7HvcWosgHP ponXTgdnICJ45Mah3gZQn3CfE9Kagfyld4oyjAbwNSVnjejPQDNlbrnYVAOO ip4VyTGdgcWScdPqeZL/5QW355dmcFs3K+zfskY8SPrQZ35jBj7vha5P8zbC bYVnNHFrBh+Y/x2gCTXihYvqd+Z/M8g82M7eLt6I+BH2/QJuM6h7rNBQIdOI DJMSt6MPZnBkTe2yVwcacWLQR5/wmkH8u4uK5iqNmLxyerv60xk8SvKLnDrb iE1Ofc0nA0j9LuZtYc9GeL/8JW0WRepfehhHfdGIHYIFS/2xMxCaWN+XGNwI 4v2jtotfZjDNrn5cNbER43H8HtczSP1d4RtsOxtxpkSm07WC1M/cr6tAbcSs 1nTiYs0MHqvUeCyNN+J5Y5aXR+MMUhL+OGuzN6GoT0POp2sGI1Oa/kmcTbC0 5uHg7Z/B5gOvP6/jbcLUaHO3P2UGLwjpgX6hJkj9tnzydmwGJRzOc2piTSi8 v81849QM5rQJgXiJJlhwjMt/+DGDPf7cu1fvaML88zTOrXMzuNp29sRt2SZ8 PfrwhcLCDMJFPl7s3NsEx1PHMuxI3GY57n5MsQnSF+b7YkisNuqVwqnWhGQv J7n1f2ZwV66h5sYJUj9Q3vgUiVOcRBhNuk04HDvx8AmJNy8li4QaNyGv+lrz TxLPC/R77bEn+fFbOHcskv1gIh0eeLsJdyVFwvn+knzCnbLm7zRBQ6GjXJPE bTu4x0u9mlBmrL8hi8QpxxTPmoQ0oTpCI/ftElkfTy+HgvAmvE5hpzWSeHNl /TPJ6CbolhTycP2bga/B5cLxr01oZhw670ri0uDkLoN0Uv/3zycpJF7oXZjJ zG6C/qr0JCaJba6+2uFZ2oQ22d1spmw/8OFLn+pwFamvPCb9isQdrB0WOg1N MNKPM6gm8eqDTi4prU2I8/5nP/RzBhruhQHru5vAK3t+U8zoDNyLVn1xG2iC V3Nu3TXy/NJWnC0fpDVh3EX43q7mGWwJ+D7/ebIJVcWtPWnZMyi8+PBz2g8y /5isrVpfZ2C5f51p3lwTSrxD7fo/ziCs40h23bJmFOtYL618MQPhTc9dpoSa kd8+I3H+/AyyJjdtn9vYDPXsDtsZgxmcK0ptZ5NoRvb73PSnmjMIsu5WENjV jLQLXsfT9sxAIEH6hwKa8XV07fWVy2aQ6p4fpaTRDLm6n6lhv8h5fkr/jKZ2 MxKTuhf2fp+GP+tOqrEhae/00deijfzelPBctDJpxr5zT9qnq8h95c0H/uvn m5F06PrmpwXT4FWsdHC71oyUv/IpqbHT+MJlvuWRXTNkhwTnNUPJfaxnsuHF rWZ8KplT7fOfxugXrweBLs24Gie3d5z8fvncF5ILd2+G1hofuqTnNHacTuj/ 5NEMmTuUt6bkPlQhrvwy6UkzVg0e0Qkg96cVZVfGCf9mlCdNpP69Po2YoPnQ qsBmfBY6cUXhMrmfXXup0/yuGR4PIoVvWE7Di/tbAjW6GUp6hg+7zkxjSZ/j +opssp4T2brp5H441x/FODnUjFjZxyM25H7wNvlgkCGjGa8C+99/WDmNg541 GhZjJN/Fg3od7NP4T2om2n62GZvrRjPUf5Hz79cTQ5f5ZixTULdxY7GQUSmy /OFSM4ZCwzamkt/zGVvVSwFcLQi9cdpr8yALr461r323ugUPWuMPnCX3XXm+ 68UfBVpgfXTZ6ItWFhoHFx0TNrRALdo8rKSehZupAeLpYi0YUzXcyapiYfUj qaY8iRboF9w52lfGQqJR9sOy7S2oOhR2qqqIhe+/Bwfa5VsQsodxKzKbhcxr /iUnD7ZAVJvVp5DBgkencixxtAURl/6cqCb3F6GscPvPmi0IC1q7eYacR2ou 5ov3LFqQ9kepRj2IjDfMPTR9sQX71msf6ApgoetsbunVay3IljOKtPMl+R0Q eaF/uwUFF21dgh6x8H62Q0TKpwV1lcGSI+T+ceWy99+Qly3QpHx86W5P5tt2 gLL6TQuaFhLn1lwn3xPpgfG/w1vQsbu04ZAVWZ+tGr520S0wP9FwuN6cBYs3 Pxwo8S0YsuqOuUjuG9O3zyjWppP4zZTbcz0W8qnsG1VyWnDz6wJj80kWvM+k LmUUtmCiYoVB+nEWDEqsqDvLWnDfrHehlJznYvv4KyKqW8BaS1Po0GVh5CPx eV1jC8yqx24yyX0lba3DS582Mh+PmfgFIxa0puuNbg+24N0U+6Yt51lYd/H+ oRF6C9jjVhnvvcjCQJOsmMVYC65Yrn2lfoUF55QXtOM/W3CkXnyFDZnvBwft 2yI8raAkYCLlPgu2g3Nn/fhboXHpxI5STxYUTscfXi7UihSR0xfbn7BQI7eS fUK8FT4+lu3zL1n4NVHmX3SwFbJX7xeoRbBQfN7Z6cCxVrzb9OS3URQLvvVb jRNUW8l3uu/ea+T5SX712hyo24o29bBPL5JYmBDbt2zVmVYc/BM9GJ7GQrYv hXHfuBWxaV9EUjJZ8FoMqJ6xaAWfbbphSS4Lp+xUvl671Ir/JPJethWyINw3 FdB3rRWToa07tUhM1fngbGDfCmH54OxF8v32NU/PpOJ2K7TKTE6kfiPff7uW jh51bcVjk40dV1JZUA/9uiXlfivSxvsvi35lgY/n/PJtj1rR4xH5oyGehZix vBo+v1Yc+7xt7aFIsp/ent5q+6YVys2huWzk/qyoQXMvDyHx/NrL1W/J+oRz 774X3QoV7aVMM3+yH/RN/UezSTzaYXH/Abnf/R0f0Sgk8dpTnJpuLDxO8FCJ LG2F+uHSZD5yXxbmiJ8+10DGe5a8LJI8H+WsX4ZltFao7fSJL7Eg36eXnydu GW2FqsGSwQsTcr/m37zCfZLEd53/GJL9EFaQer7jRyvwcSxGjOyXK7bHM/fO k/bVVnoMHRbkNnTzvVxqheZ0x++vJ1iYK7W7xlzeBhWRUx9d1Mn915GtSH1V G06olp4EyPPbFCj8ga8NvhdsTe+S7+lzNTtuLaxrw4q4rMMvZVnYciev+qxI G1wmOUQ/SpL92UR145Vqg839Dz1VfCx0P9rbf/dwG0IOfs6Sb5hClHz5gXbl NviUq7ua5E7Brt/ET16jDV5GA4c8YqfApuiBEb02WN5el9v4YArbxxo+Gl1u g2zS/fybe6bgrG93dY9/GzK3nSlODJgE36a4KTq9Daz1r7Yut5+AyrlH/bTR NnAn9N9mWUzgtv+FWupkG2SUZUr6dSfQwS4cNzTXhudXS62yZScQMexj2cfb Dtmsn+H24+OQS7Gtb1Voh5+JmXDXjXGcUpf7UvK4HW1r30nFW3/Hg3vc74qf tWPukqBs15nvSPk27F3k1w56uv9+LrXvEJT+cKkwpB2zZ73VbMS/o4+XXzQ3 sR3D75yspPvHYNcx7ZPa1g4OSb2w+HNj8L3+7WqkVAfsdrS1T5waxZjKVx8e mQ6YPPp9CcdGcUL4U4LLng7oDoqyAmRGsawycFL3SAcOvb3IrbByFHelnF3m T3dgknNK2a2IiauD+7zPuHcgeHhVPOd+JsoyZeILPDoQoLb7gIkEE5J+kjXS 3h3widAv+byGif5jAnz/Ajpge+5tn+74CIzeTwd9ie0g502a91zsCFTPpnzi aOmAxutdqnxbRxAhG1/p0NmBuUK3uQCBESwujxzt6etA4vfq5HXLRpCd5r87 daQDwsdtNotQhiHH7/Dt/F9S/3fMn60fhuE7crWzalknQqRm02L9hjFWaDm/ n6sTRgbqtjsfDOOTvZ4S97pOZCRQuuTOD0Osdnd5pnQnXM5vzjy8cRhuUdtG JOQ6If/c3j6fexiddzeterm/E6zMfCksMMh34Ppdc4c6EU/j6SseZeC19OpT 1sqdsOA3f6PRzQDrH4dDg3onuJQSTlZWMaDXuRhwWJuMF+QyuaWEQe4Zs2kx ep0Y8nN7fKKYgVXe421rjDrB7fNA1KGIgavn6b/cTMn4nl4pwQQDZQp9wsOW nbjp5q1ZWMiAB63WIv96J6rs/G6vLmDgl8oXus3DTngbRNR8yWEgP+Z76J3H nShrLK6lZDPgxSVr6P2sE79OMeo2kJivKbE4+k0nTE7KNj7KZGD7haSIgbhO HFPPbTVPZ2C8ZPLsRGIn7Ir7216lMZC2fc/qxdROhIG9ozKVAeXJZHeR/E5w HNPq2p/CwLn7qSZGTZ0YUOjo4/nKgBhleo11eyd40+f7VRMZoGrsq7zV0wmN vZsG73xhID7+9gOPwU7cS1YZ+prAwE3e9AP+dLI+uy9TaJ/J+jr+GA8fJfl+ eUoVIfFC6/6YxMlORMRXPq6MY6BI0dk870cn9Bedz8rHMuAdmiFQM9eJZfqS 29/FMKD7b7a6628nmqIbf7FHMyBgfcBzZFkXvH/fq7T9yECETOYUx+ousH3o tDkWwcC3nKw6SHSBNeH7ZfAtA26b5h7pbe9CvuqRe1rBDKh4Hjp6flcXHING dFMDGajTyvnsdqALfcfUJr1eMUDvzPX+pk3iF7/lt79gIOHoH6UyvS48H4xh 93/GgOOHoz9bDLugtf9My++nDCxezbdmne8i3+GJTtWPGeT+VKCy63YXsnde yrR7wECP6dLvw3e6cPn+mqft9xiILFBO1rrXBfnmfGNld7I/JB5eNfYk40nZ SsfdZUD2CbHpqncXYlw3zK9xZWCG+a/N+UUXrtaVVbu6MJCtq+L7KKALouK3 31OcGXiQ4qH+OqgLVRKC2pSbDGgIFi9Evu9Cgh7lUKgNA9yu7GnJH7oQ6J4k ffYSA029qtcLY7rgF+8uvMaCAYvoks7epC6oLROa8zrNgPO+sgyh0i6MfzuZ ZXuQ5KcgHvmqqgt1ydX2EXsYMDl47wVvQxdKPmtJtUgzcPSIwqVl3V1wDdd8 dXgjA8vUYtZMTnaB44naDS42BmbV2f7YzHZh8kGxxLF5OhjHLYZp8yRfV5Uu hxk6qrQFC7o5uhFsp3y8k06Hv8Fj23LRbkgbHdkSW02Hh+HQWRXxbgjr5bR3 l9Bx++wx1bxt3Zg5cch3dT4dl41DZA/u6kaFapaa6jc6zpnObkiV70bK0YPz zkl0aJnrL5c92I3AA9+S4+PoOHw+cTL2aDf4Zr/5RQTTIXOBq0dCtRuxXAMy Rk/oELt4uTxMsxvymzgrVznTwWddlLJBtxuFe+WsiUt0sF0RC3tt0A0VzXP/ nA3ooNm03fax6MZlh1jFITk6Ehw1xJ1vdyOmWDM+c5SGsNuRPFN3unGo46aG XRcNL50Xf12/342iseAhiUoaHF0z6i/4dIO5bkT4ZQwNih5S7joR3ZC6+vSZ 9QUapL08rlZEdyPNLXmbiB4Noo/7DFQ/k/H9O4sbjtGw9DRQWjGjG+eydywc FqWB9Yy1Li2nG+N1p4OnuGigvND9J0t0w5lyZ9+n31SU+XN0SNZ0I4K7ypa/ nYrMV1bF4Y1kvbewOCtKqYh/k58o3E7y2y8c7Z5Gxfsg4ZA3PWQ8LRXs/UjF i7fOj/iGumFzcOrtnDsV99413XzG6MZm62/+XAZU3AyVNeP43o0uf/enwtup OPOBLr/wk7QfXXnnUBMFGh9VxP770w1BoYabWp8oOBAdtpLF1oMhtcCrJm4U CMcZDTB4eqAfJn7OVYqCwaSyF80SPVA7ffhAtusQmiY4xvft6MHi7rjTAXpD KJI9rhso24MW3vW2NlJDiEwo5zVW7EFRIEVpb+QgLsVWvOzT7QHruf7aGb0B nGFwTiqd6YGvlqxm1EI/1KVO6H0w7gEXJ5f7mdh+SEVV8l261AMpT4Ke9rcP w+FV/iN3eqB1Ry7bKbEXHX1cLK37PWA7wD2x1aQXlRu19RO8emDSMx79Z2Uv ss2epfD49MDCWfb8z9IexL+r5rd/2QNXPjuhqYc9sA2qeTUT1QNHF9s/7Q7d mPCte/O3vgdNmtfKo0+T391a3lnL1h6UDcU+COfpRAP3KaOirh50uQ0rvq3s QJJPveAjWg+YSVcSnqMDjo8bgrjmezArdNn/1p52WJXy/bq+ROabEq1143sb DJadPle7vBfiOjT2K3Ft2OfRKOTH1wvhh5ecTba0QZJYc2dqXS/kRaJ2n+lt xbql0536Ir2QTqcM67xtBYdSgGLaZhKfkog8btiKWfemt+ukeqEyYmWKNa2g 5/LPOe/sRYq/qebdkRa0z+ubdMiR/n3nV1/ta0HFoVfZigq9iPR5136muQWZ d5qF3x3uBevx4XBUtCA2c+3dBeVeOHp2X5bNa8Hbnwbd5hq96Lp/V1YkpQWu Ti3vNp/uRZFLTt7MuxbYpAksPDQi83EyfTTo1wLT6TNmFNNexDvMn6x7RL5T HFpFYy6T/mwO93yyb8Ef27bQnW4kf7OcORPVFhgdPP9K7mEvrA7//LNcsQWJ 7MPe+x/3wkZ4778k2RZYhvy+peTXi4CO+BUrhFtQXC6qZRBF5msYIpA62QzR V9FK5+JI+31t6y3ozbhtIbvfnOwLj7X8Iit7miH1Q2nzlUySb+PTLefLm3G/ sGKdbR6ZT1KpJFdeMzqenV7lUNQLNr9/29JTmiF3tmvJqZzMx/7oTsvYZjwV vzjrWtMLfd07sqvCyHf399HR+4290FInDqd6N+NQ1u1Br7ZemGi9WpC80Yyx U49rfAdI+zMH7nEqNOOUe1xk5Ewvhq7cf1hf3oR1HRO6VaJ9EN+4kTerpRF2 H13U6rf0YUiKePk+tBFldv8UW6T6UCRnvebB5Ua4LF+7tU+uDylqXwSO/2pA t7zC/JRaH1Rsj4q0ijRg32L+5OyJPvA7D77PpNbjeeVx+rwuiR88Env/pR7H LI0blxuT/l/VbrmoVI+gnUNlXBZ9aAp1+KjBWY/JWZvc1RdJ/5/WbZVurMOH F26fNtzog1WO+fYpqzrMnVseKuZI4tJ/cS0766Av6Rsg8V8fIute1fcN1eLz hKD3djeSj8eaYi7/WizLCXff9bAPHgovMxSUanFluMgAb/rAWv7Yi/6zGrtU Vy5dzSP1o29t1rhWiZSELzu6ikg+d/oFffkqoSCob6BdQdZHV5un7VsFjo2E xOxq7gPbT/E5a44K6L2U0WEN9yFAs6n50ccytPxqcL44Tso3Hquq1SqDsZVT RMs0KZ+KK1zHKoXV/vzpjEXSX8jDL///350eZrVx+7J+pNh9//idUYLrnCuO v13ZD3FV45D9L0sw6fD5JtfqfjiuL/VzVyjB7e5TIXcF+tE0KvektLcYv9Rm isc29GNotvSP9rNiuCcGfzff1A8Ph7Xpp68Ug03o6Pp6SdLfmKXtWdViPH44 qKwsTepfTpQw31QMrtFHNsm7+xEwON9lNV+El2ekX4vv74eV2YmAq+1FCN52 i7FMuR+s09SlWy+LkHMrcJ/vddK/Ttht9BZCufeQxd+b/WBTVaScfFOIEo3+ JzedSfnBltPndApRs2F7t/5D0p8E1277vAL0FWQ9XB/UD5XfTiPvQ/NhtcPi s/f7fhSN852LNcwHI4Ct9fcH0h/1c1kqTz5sF2IWbT6R+p0a+wtK8zBprb29 J4HMp37wY5V7Hm7XT5zWSelHZIkbf9v+PPw++Ppu/jfSPnv9w8HvubgXeTB6 dx7J52vKxFh0Lti4e+siikh/FS8HDsTn4rHTw19rKkj9yoNBP2tzsap/q7hn LVmfykGdb1O5EEixc7LuIPlX781RUMyD1LklEelx0r6u/c3+ijyciJK4lrph ACotm7T30vOhEMK3vUJsAB6H9o6+WlEAcb8/9B4JUv5B49nM9gIs3G2/xCE7 gCK7G9Xp1wsw4lAiIbKX1G99cF3wRQHariQP7T44ALYjr1f9l1iArwbPLI1V SPuVOdoHpwrw/oTLJrvjpL193WgwfyG8laz7PE4OYKht8NnvvYVw2q8fGnSa 1D/6Y6eJYSGsdiqZJRgNwOojZ022cyFObZERIUzJeFyitiLBhTiyfkNXqyUZ z2E3t1tWIbbzcLxlWpPYpxCM0UKsY58++9eG9Kd30ZACAmy/+wUFbpL2ghzX +oMIjI/XtG53InFPrFv3dwIVXTEG+vdJ/f2/mpg6RbibYnIq+hUZnzg6N/S7 CIMXijS0cwfg2lmh2Xy6BHVnvy63JAYQcCREv9GtBNk670tul5H64dfN6j+V 4LWis0pYwwAcrXlvVv8pwfE10semqCSeMggqjivFvhXr/yxnkvHPbP1AtJRi 8x/2XOGJAYR8m40v+FuKueFeRbXfpNz9bX6OYRkYfVW/zi2S8gGbiqwH5H1t +fbtBvsgHFWPNH37XIbCqihnD85BBMTw9KS3leFLof/+IJ5BRM7PKr1iliEk 497MZ/5BiBN3Jjtmy/A44Xpq4fpBND1eiBBjL4dlsPoe5pZBePCzscWLlGPt zd8yRxUGyT7nKSk8WY47my5IUiwGUWQkoTmeWI5L+vLn+i6S9v0FGrPZ5dB7 xP688+ogWFfN1BfLyrF9NHq63pHkc/eNCm9/OdoymEW5jweRErHiqOzqChSN 5Mx+ezYIeemowwoiFfgi+kI61W8QWqnKh45tq4CXx+6AuJBBZJfeOaCrVIGb 6UulUeGD4D8lqGCkXQHT4cbf4VGD0O9I2WdxtgIaIh93vYsj871wau/lixWQ 1719ITCR5Msc3WNnXwGxh+pv/FMH0fVu97MnMhVYmSZY+TyTrMdBva8ne8sx sCFLzrOI5HfT/2fbsXL40v78tW8bxNDgWu/Rf6Vguj0JO7FI+i8RihPwLsbY uV02H9mGkGKpWNt5sBhWrHXLtiwn97YF46mwkSLobGUcEOUaQsD+d4o7tIsg +expOL8AucdpKwbcES5Ek1Gd3d9tpJxPtaVaKgey42d5Ok8NQfzTYrBnZTKy jXSJ5/qk/qrTX419kqBeoOakbDiEIYePpbu1v8LMb0/vJ5Mh8r5osrprEvBM ftUXZ+sheDT5a+9r+IRh5/yTAndJPHd8rvzzW9zuT1sqdydx6ZjU7V1B+Hv8 c9rdByQ+qdW94cdrCG4IFqU8GgKb+rYL4nIvoZ7jMJbsR+J94Y7L791B5F/J 56diSFxoGXRU8ikhe1VEmT2OxDaCUH/wgshqWDOT8ZnEa2uYJ3v8iYYPi6Zi yWQ9UkU379YOJP6qduz8nkPKV3rfOsYeTvgk1PVH5JP8e600VfZ8IATXlb46 Q5B8usNXRyVFErL05PmcsiFYJblSP/VFEdm6sV/tK0ksMlwX9yOaUP8WdlGi htR/ZJj1mfsT0bDpzfr2OrJ+k0Ufv0jEEmbez6p9Gkn9JvaCI79jieHJh/eP tZDx9h+9/Iojjrhl7LKX1UbaBzvzMNfGET7S1u+Me0j5+RHTINk4IrPm2PXt DNJ+rO7X1MU4Yt0aFlfZAumfM0T+U10c0VLw/Kn2XzKfvK15G7rjiNd22zgb /5Hn45h8/DkjjhCoMVvew0GBSl+FmcMSqe/60/PCSgrEX51hULjjidc7AtgY q0h8YsDBaEM8IfCk/O8UHwVDqT8fH5aPJ1r2W937by2FrK/nmsRjpD51YWFh HYk3rX6/WTueOPMq6K6HEAVWrSFSr87GE2tV5OdWiFBQ5COVvPxSPNE0WePy YiMFHkoph11uxhMB4Vd+8m8m5T+OljHd4gl9XTbnYHESx1fqmT+NJ/j/vJ/Z uJXkK5LP/96YtP984NbHbaT/XglXK5J/gEnT1HZpCiIjng5u/xRHrMlcMbF3 N+lfyjApfSaW4LvlOHJCkeS3d0yn/uUngnfkeJ+TDql/QvgpW1kUURc0ZDZ/ isyX58FkhW0U4avh3v1An5TX086+XBtF8ESldDw7S/ozTJYSvfCR4D6/sfnD BRIX+j6+NvuBqOHJPL3tEulfw8RwVvUD8TxXvyHhMolrtkp6+kcQq4S9a79d J/U7con3MuFEVYX4yaN2pPy8t98O1zDC57+8qqKbZH4Ug/MZ5aGEltS5E5q3 SPnVTbKq60IJrlZWea0TKZ9gLtRbvSeqPF9oGLiQ8n+mT8z1Iwgf+e2lHa5k vbx1mpXqPhIr/cyLKPdJ+VufyfOCcQSndkXu76ek3MxT8HRLCsFBhCZvDaOg 6e4fPf9LeUTPMQ2twQgKAorD9Mab8onk3PGh9x8pYHEp62mjkDDLVBIQiKOA nD2x7H5FROrXQWe2tP/Xf1lsnm0p4b3LZ3V+BgVdD1q3jUmUERaf5WPvZFGQ LRnzSbi7jOD65Nk5mU/mb3v8038nKogBSRnHBIICGz6hbTFLFUR6ZAvX1RIK +NOGY1q+VRI+m90/SpRT4HM2S4rdvoqwDNt6pL+S5Gc/G/97XzWhIFrXElJD +hfw21KzpYZYFeJ8w6ie9Je1IziMt5bIeFMeVttCARe7+SPV4TqC58W1fzn9 FPjWDCWV6zYR2Xe/lAX/oEDM8sSzNWxthN9vw/NnflEQJh9Y5urSRlj/t/hz 9TwFc8so/yjjbWT/nNrxZImCtjg3l4zuduKKzdQzp1VUVE1/tTZN7yQEjPef 1t9ChcLYgbAGu17ihkJe9yodKtS/bymx9aIQRU3tidmnqLD9pMu3ppBCrLdn PbymT8WzC3fN0ucpBPFp2/bys1QQrS0zfxyphKCayryTCRWdL/8pRyZSiesD ZnWS5lT8OSH7QoNJJdZtCLjtYUXF9vwnW19eoBE26QnH91hToeuS5rA3lEYU nC4XHrhChY38YF57B40QGB/87mtDhdMYD5ebAJ245rNQePQGFX4xh4w269GJ fKn1r8fsqdjq4jun7E4n1hbvufLOkQpmZlC/zDs6cfX8yUNaTlQU/o4oEcqi E3nzl3l+/0dF0KH4uGXtdII/+OHAJ1cqrt5N9Z2coRNX9r1PNXKnYltu7q0e fgax5kajcZoHFfVH64+m6TII677DMfYvqBDCTOPFMgbBQ/Ap0SOp+Hj82FxR +jBhZb6T/000FS7ex/sTm4eJb7/VaaqxVByv1CsJmRomLsjfffbhCxVDWhd9 HXeNEBl1byz0kqjIeGZ7y0J7hFh1PWnP3xQqPGuczmldGyHSP9LazTKpkNX1 FhePHiG4lJfiV+VQMevrv4K3eIQ43yN8LzuPiqb6kLHfAyNEmsv+09cKqfjE F9VIWxwhVq7TkxQqpiLl5MDtEF4mYZFs87OslIrnVJ01XoJMIlXnUZVTBRWO bjlfbogxCfPH2Teba6nYlxBIV5ZlEiniraoeDWS+ass8pRWYxIqCCcE9zVSM dTtsEjjGJJJ/Sub5dlDxbZXOOYYOk1h+7eVKLQoVStfZq17cYBJftC9FFv6i QkP65peuBCahICuhjHkqOKSPsR1JYxKFfEO9xB8qGndwnw3NYRJNrec3FLPR oL4jdul8FZMwzRT7prqcBt4dzoZEI5OghvSeKVlBQ/l2tXjxTiYxe97Ur5Sb BtXtAwY0BpO4ryIsq7GahqltibEaE0yCc2tnddkaGvK3uf35NMskAlYEXzsu QMMZkyYb3QUmIcI0WlEhSIPezzCBI0wmEVWzLlpzAw2mr6/n7+hgErJfW1Qq RWgw2XPw6voyJqF8W/9e1WYaDK435rA+MIlKozWi2hI0XOQMsx54yST0FRuy qreS/qJtVte5M4lLizo/aqRpuNLPfjHOmEk89T5hW7+PBgsDBS7LNWS+75VN WjRpcDj87lztgxHC9P7fn2e0abDpuMKWYzdCUC/kv2nVoeG2076EWLMRYlbq SGObPg13v9b+9Tw4QogkH9DsNCP1JZZiDk0OE5dKZRX6btLgr+J7Jfj4MPH9 0/dmi1s07D4/ec9j9zDh7JPg0O9EQ8Vd/UDb9cPE01PSXwZcaeBOFyxVZjCI xM6tkhQvGny3hYuPPGYQP7+L8g8H05DEndSrWEYnAsNHKsPe0aC5o+KQSAKd 2H8646FhGA3t6gNBC/504lbaqamijzSw3efTLzAn79dl0bg7MTQEv9v+NUKV TiSvH7GUi6NhR6Yyt8cOOjHh6tEQmkiD8dTNMrUfNMJX5pT3mWQahnmeSkh1 04hdfSLKq9JocJX+8GAFQSNqXg7/JDJoWHc8q3c4hkZcR/pXlywaoi82Hqp6 TiO4ph9e2Z1Lw5LggSaPuzQiLkp3Ez2fBobVKZevNjSCsWLY16CEhpS5+yWc J2jE46w0Da5yMl+NYJv9B2nE1usPFwsraXAJSOKz2kYjLtYJ28nW03BEetAs ZzmN6H+to7Oyi4ZKY5UfN4qoRPuW1FUFEzSMZS6Taj5MJZyb7xc7sWhoWbax 5q80+b17dPKuzA8a0vT2O8oIUwmDYRrz7RwN94at8x/9ohCstymRen9osNx3 71IKg0L4a983WbFEg9qDQK7+NgpRnyhUdXs5HRxC5UYH0ymEnSXt4U5OOmYv 9i9ciqIQPPwpikNcdHR9/Rnp/4pCJBTfmwrmoSNBKDbz5GsKoe2kHXeKj471 DhadaXEUgikldIFjLR0PKwXmRAsoxNMOqlDeOjooW6qFH7VQiPLD97ylRejI bzpgZviXQlz+rqU8uJGOfTvH3fIEqMTy8PW/gjbT8dozKnQrmZ8qW/KV5VJ0 3Ni3pv/HGSpRUEHRGJCjgz+QeSEwnkp8MzyxPFCDDmPj0CvthjTCRyf7idgJ Osr0+Fc0X6MRFuo7uT5p03FU80lMnTuNWLafZ3WmHh0iBxxopdE0ol3mnr+y AR3esnQvIotGxEtOrK00pGNiq6lkXi2N0BNoFOoyoaNEQP1iGtk/Etwq76zM 6djLnc2WtJJOzLKnbhw9T8ffR88NoyXoRNW8RMQtKzrqxGODhLToROj0a/GF S2Q9Coo7n92kEzdHl0d7XaFDxqxf5G8gnVCjOG/jsaGD+WvO3DGPTjCbzsmI 2dOhJi8/dI6LQeRVVSbGONAxUqcjWSPHIPyKDu3ZfZuOkOvXLiudZRAKKaIK ynfoYEVFMLdGMQhP/wElK086ktevnmYdHSZE9a4axATRse3PKPsLhxFi4nhn q2wIHW1vV2gsBY0QRUpa5769p+OxgoT3rfwR4upuGfOKD6Tc3oTbZBWTOLwt tF8vio633M66tXuYBO8mXqvOGDrk4/z9lM8xiXTeycvMz3R8HKoQ2BbNJLw5 Low4JtKhf59qFFLNJMwWG6/PJ9GxWnQpmIfFJHbPqox7ptIh+P2oc9SyUYJt PPUmdwYddr1bxKa5R4lWmuT060yy32qXl2HdKBHb+8ZpYw4du/NHbvhtHCV0 a/9zlS2kYyEsOW+X7CixpXR4IaOIDquXb6zdFEaJmVzj+0qldKTdv8NTfWyU eJdw2Euvio6bljC/emqUGH7294VjCx1DWxoXIm+OEg+1nnzIGKZjIGrysFDq KNFiaWMhP0qHi/iff0dyRgmp/3REEr/TMRe+suJC8ShR83Htm2gWHSveiZ/5 3DxKiGXPnt7yg44HQruFG7pHCYeGTt7Qn3RsCDw8MEMZJQT/hHu/XqBjp/8Z 22Mzo8TVtZ7qfH/pyOa9IH9xYZTI2XGZ7fk/Og49v/HrybIxglf5RMGKZQyU rXTNT+AeIyyNZNw8ORiQ8dN9xk/iFNvVin85GWjYu1ydwTlGLPdk/XBdxcCJ 9pzFnOVjRPzXTHtHPgZMxXY4Wv8dJRZK38mM8zPQQfTvPETGO9Vzb+TaOgau WQfSeH+T9eJUv3hBmAHPBHbjTNYoccyq0UhPkoGYQ31Kq+ijRJMA86jsQQZG jV7xJNeMEpI7a+fiDjFwb+5E+aPKUeI/JH3bepSBNWFLD0zKRglRO+c9G1UY WEW7McNeOErYeRmPB6sx8M5bMrEjd5QgQo58FjjOgKxM95UvWaPE5XK2rdwn GdC6pdltRNY/s5c2+ESXgVLBv693Jo0Sq2YqwthPM6Cena67lDBKWHAlmN43 IPMxt+VsjRslkja/FJo3ZMDon3hRXAzZTwccW53PMeA/GR4aETtKGOoYBrBM GLAeM9atJ/3FXjx4ys6cAbnhtX//ZI4Sc3dEuJnnGVik1H6VIUaJk36LFdZW DNT2P7E0JfMLjxl8NHiJgcRurPFpHCXUmj/97bjGgEpzuiNjcJScJ/umy2+R +RWF7o9kGyMk+k92RT9hYM+HGznr1caI5yVHk8/6kPUeik78dXKMmImT9V75 goF4ib4PnYZjRMltPoUbAQxsj9H1fndljJAx+ce96Q0DNxmP77rdHCPeKLEo DUEMRG0vsDO/M0Zc5mrx3xfKgNTn3Yabno0RdRMlV+nh5HmPXdFcejVGHGhN VwqOZCB2V8ThwfdjRER2jKBWNAMUuw7ZougxgjMi6Pv8JwbEk/jEPyaOETcf eZd8iWdA7G7hrlfZY0SnzZ13578wINpdMH29cYxQ0bNxXJPEwNrDBVlqw2R/ 7Tc9UZzCwHxI/v2Nf8cIfpGTm53SGWDM5anPrvtO3F068lMqk4Eek7xV9TLf iZPVYtE+eQxUCOcGPTD5Tny3HFo6XcFAYEjWV0r6d0Lu+bXMgV6ST0haf5zt OBHsYPIyYIA8j9+p0R6e48Q/I+3LahQGZo1Tr5uGjBNNW3YJxA4z/lexdcdT /b1xSSkZmUkiijJTKTNPSSWpKC0rqy0iyrciMw0t2WmIVEISkeKxQkP2yMq6 +34+l2uVjN/n9+fzOp/zPO91OOePC0NLcsZEqrjok0+eOzdM5TU+S8xLhcC8 Xn+1qfl0SIgZX91CI9DYIDxm6Xo6mBtFOhaE8bDVbemmx/p02NMSzPn1iIcX 7ma3rTCgg6/P5ctT73mYSWtXWGNKh8uvzyVsHeShUoxOyqYddGgW1WQfVx1C weHWrAP2dOr/k+fn0YtD+D1Do/pOKB3kKz+uM5UaxlOtJackI+iwJUH89dCy YRQStBOJjaTDaU/3FS/UhtHsaNCe5Cg6lMiISYgbDWOOcFNTRhwdnI+7cH8f G8YYj6u91Rl0sN7OdS58OYx69yVDd2fRwSzqjvGCnGGs/ZS+su4tHbSbdOWO FA7jfOmGE615dNBy9amdqBnGgDI1YrCEDsKB4yYG7GF0VKr7O6eJDt/yBJZ+ 0Oaj+FLf/E8tdOjTXt9QuJGPZdKyPv7tdBhMc7/5yYyP6gsdmMxuOszGVP0t teFj+9yZ1Oe9dFgg9uddxVE+3pp5dsxxgA4iERpnqtz4yBuht9YxKTz+UR3f /fj4nLwZfZNDB32iOPpnIB/tWNp7t5F02HacZ9VwnY/zB+sWTg/RYX/3irnN 9/hY2OP75cMIHVpD/wXtiefjmV+yIefHKf5MVaGfiXxc3lxoqvmXDgV7rG7u TeZj6NeZ949n6PBcPvHhvhQ+6lemeB+ewwCloFL5+lQ+MkostCSFGHB9gPHY Jp2P1nm3nocvZMCp7E2vbN/wUfap3IOzMgzQs2j+fCCfj6/8dL2MNBlQ4y1B P/yVj/beDRoj2gzQbdl0tv07H8XO+NEy1zIg3dh56MhPPvoeK3JcsZHqPy9r 8mgTH1fZO8l3GDCAPNN8raOFj612As0PjRlwuv6fkEM7H02sduwW3sIA20dW Eo7dfCQtWPPLzBlQKeAb0/Wbj88gqvzydgrPicSlTv183G+8NkjfkgH80XG3 1C4+Cm1sNCKtGHB1RUNrCdX/w1r/sZd7GCBi/caqg8JzWlP+nasNA+IuRZSM VfPxp7LzmpaDDHjx0yhdu4iPwQpzBu8eYYDxpLSC5Xs+bpBNe2rpwIByNfKO eyYfE0TYcp9dGNB59bl/0hM+uo35z0s9y4B/mou2Lwjj49i3O/3nQxhwJLJr YGA3H7sWtZyaCmNAbE/LBr/tfCy3VuRFXmfAz411YULAx/s/M/49uc2AnYNl K9XW8/GiBD9E8y4D7pt8upCvxUcnG6MFH+4zoCo6r2K7Gh8tHgTf3fqQAQLs LOlWJT5qNlbL1MYywGjrS/cT8nxcLC3x6EgCAwITnr0fl+TjxIFDKoNJDDgr cbVAch4fe2Iev/R+zAAn4R3p9yeGsbJlUOffU4rvrESsBJV/519zdmpkMGCg x8BmUd4wWijsqs3LZEBD6xy4lT6MWg73D2x5y4Dcn991FiYO458uJZfDeQyI Kjm2SDhoGKN7Tf6LKGGA9pPIKkHLYaxi+L/pa2TARac208nOIcxcU7zuXAsD zhxM0frv5xA+PC1U+KeNAUf3nFX4UzqELpzoSoluKp+bZyfGXgzhDu0Oq0e/ GSC88SvdL2EIdc6pNKj3U/nRftgycmsIJ8m33ZsZlD6Kq98Pew9h79oJ968s BuTJDKecdxvC6vNmbDsuA5wNLuxTPjSE2e8izveSVB40p9fG7h7CGP6P8bPD lL+KkYsXbR3CteMsiaR/DHjEyI7ulxtCOYN1cWozDLDsMLxwRHQIpy4FKL4T YIJQbfmBn3OG8Nvf+Ro185gw5JGl4feLhx7TK83HJZgQOTmlszKChwlCzn77 VzFhTC15U0gXiTPuSzY2qDNBxrsYW6tJ9KioH9unwQTrwh5L7fck6oVuu7RH lwlxVioObTdJjOubMvihx4TGh+aD2v4kTm358MdqAxMGu9zPhbqQWDO75rKl IRMsvdOv6RiQqHus37jamAnBhdULwlRJjCl59G/7Ziakz2E9aBcjcXL5wc+V wIQYPb6yvAiJLoHigdvMmTAlkH93pTiJVV3Vm8stmHCq4dK0rhSJ2qYhM1t2 MqEzxdjTWI7EicmRa2bWTCg3L91lq0Sio33WluK9TFCRDit0pOaVfzwxx9SW Cc8Htq8+pU7i3YBfoUaHmBAa/l3omi6J6uMlEfouTNhZ1YqZZiQeGr55W9OP CbiL2LjgGImfbbZZv77IBB2FnDRpdxJVc6ZE1/zHhGi2r7TySRJJL++7akFM 8Lr9Z2ijN4l2P9fsSwtmQq/Dp2NbL5BYpNMvsTKMCS7aQT+tL5EYwbV7sOIG E4xr52a6XyORvVt8/9NbTEh7XKXgHUaizZtqKaU7TBD3unnzciSJH0RCmpLv MSHczPpPxG0SFc8YxyyLZsL7mU0fJx6Q1N/TEbukGCZ8muq/+ySJROaaLNml 8Uy4P3nXY3sqiXkM5Xi5ZCbcGqdLPMwjUWHnr8OxT5gQNRpNMyomMTg9Wl4m hQn3+Gafer+QaH18XpJkOhNukHEndNtIHOxnJ4vmMMGGvqP4618SpXvynwtW UnlpTT8jADy8KxoYWFDFhAzH4HY3Sx6KmFgc8fzKhPUDR3d8seWhYEKjWOtP JpwYElW95cHDoKpE5q0GJghfot/jnuPh5KhLBTQzIXEap/de4iHflhfw+hcT fopc+CV9i4dewR8OOHcxwfOB9c6LD3nIzg7Ulf7NhJkl6vntyTw80W2xsKaP CfFPZlVN0nnYt0h08OogEzzu8Dq+vuSho3FTyToGEz54tIddSOJh+6mkRDqL CcqmZdrL7/Cw/suafTY8Ks/s6KDzvjy0HuVpzOMzYUf5ldUKx3lYo1ogVDTK hKBEj/qKwzzEa9uLVk4ywcpyk+qSzTzMNnJTmxBiQd6LX1+KhXkYlfXo32MF FuS4rBBb9JjEBV1urfuXs2Ch4cIPefdIDBfRfCe8ggVeEnxn51ASr5wsPOGj xgLdkoqcd1SexmOvbVVfw4K7sZlHHexJ9K3codipyYIez1jBeXtIPKPS0mCh x4Iny07aHVlPIn1fcubf9SyQGNk3PUeNRLcg98jsjSw48s0w/c0SEnsyNd3c DVlgZDEnvpc6T0c7h03lTVhQI5O24rwwic0LPy6p3cyCg7QdGbOzBNoYBvND trCgI5+14d4fAi1jxV9xtrNg5tDandksAisrWkKfWbIganVj/eZ+Arfwk50O 7maB3B8/+9oOAg32aUmjDQvME4vOcb8T1H3EMijagfq+c3uMZjaB8wJD7Ix8 WDB1zLEv3Ze67w1z/+IFFrhIP/TKP0ugx4kjT3dcZEFz1dd/FR7UvH1r2Qeu sKBUx0Cu7xCBfpVJ9zoCWaDXdy6Vt4/AVUbzN7oGsyA7Jk1vxpLA5iyfDkYo hceys1jUnMBw1e5rXhEsiPsnuXuZCYH68ZZqY5EsEHxr2a6hT+DgorxvV26x IOTsmU2+GwiMCVY+L3iHmjeoLnfZgECLsVuyN++xgOE0MBZC7R89PV4kEc0C gbanLTeBwLQeV5e4GBYo2jjmP9hGoFCN4ZvURMpf8xa/lN0UP9M0G81kiv+n B3avKbwe7yTGc55Q/fX36r87QPFLom8pSWXBP/XqkVIHAsPOxbS2Z7EgcdFH 315KD0HpoTni5Sz41px8XjmKwNxIh5cxlSwY3XPUZvV9At2mqqyXVbNAq1pW b20MgeW0x/FrfrDg0Me7PLNkAn3tF25++5MFV9fvrtvxjEDVOr/+jQ0sKHwj /HZvGoGhhbt1trWyYPJxsJdzJoHrdQoav7azQGnJ5r0ncgjsT1ENsOlkgc39 vzpeeQRGy91d3tbNgkHcU6SSS6D57b/lTr0Uv/O19w5S/vJnPU4N9rNAU2XP 8ZsZBD73qxc7S6P4NvwwLk4ncI7zyyMBbBaIbPhBW/WUwJxGqZkZLgteDez+ dOQRgS47g1IjeCzYFvP9flQ8gaV6B8noURaEjn0zGb1HYPDcueFZM1R+Cr4+ qAgmUOC189t+KTZMm1ZvdnMjsIrb5vVUlg2JOmrFFs4ERunZ6jrKs2GHUpjp ansClxRuy2pZzoZbs2YmXFsCu/599oxewQb1oeSin3sovLBJe99KNnzonTR6 t4tA3eo1b2rWsGGy7IPhxa2U/yLPz0RoseFhrkzhkc0EFu1dpmmuy4YNqb4G JkYUvugY1oweG54NBUZepNa3t4q9/rSBDTPDucqZVB5FFCJPBWxig8cIo6Bv J4H1TgJrNhqx4ceoos0Sar4jjZ+ebcaGqInrwaGHKb80PE+c3cqGjj+f5Asd CWR60tTWWLDBYnIoh3Al8MJoW1rKLjbITNv3HfEk8Nbc4ucxdmy4L7jWfG0I gR9VIp9cPkPxFWub20X5EXRcwNngHBv44qLJkpS/Fq//Wz7qzYb9i7fq78yn 8Oh5Jp/zZ4Oq9BuPXCQwzo/moBnAhnCZ3ilGJYWv0HkZ4zIb6LKyscu/Ufim 2jpSA9lgvsRK50AdhQ9sk1yC2fBa/tqXG80EZod9O7o8jA1qWQfrrtVT57d6 29KOCDYkPTjn21BNve8WFbfH3WCD3MUI2ZXUvNm9mxIO3GbDE/vHhX4fCJRz Xha3I44Nedwpi08PKb9SYg7OTWSDSYMMU/Q25RdNTLb0EbWer33bOZSg7mMC MUYpbHgf5Ngwx4fid5X2QDuTDbWLPztZ7qX0L3W2ZWWzYdtYk0DSdorv3PbF 6e/Y8O0XJ5VjSqDD7W/3lAvY0Pt8GfuuFnV+kt7ekSpnA1P/ysWWBQQWTCVF lleyIf9OTtI+AQKnnK+H+FazIZhOK/k6wUXzMp8rqt/YYAjLBrbxuBi50sm/ 8QcblBJshEvoXPwRYekdWseG5qEILcMeLkoxN5xe38iGtF2f9uW2cPGwlbJ7 fzMb9sq9sFtAvY+TM0WcotsovQ63DFemc7FPfPyQeQcbaAnz7oVEclHdp8+G 38WG3R0btc1OcTFnY6HF/n5q3THuRIEGF7+UHNeWItig5Xa483UmB0VUbNXL eWxwT40MOHGHgzZhpit8+ZRegwWyK7042LFTWqZxgg1nT8rbJK/lIFlf+u+B IAeyPH9V3s1lo/zAsu+S8hyQveSQfaGQhU7bhb+UKXDgYuHt3XqJLHz+kl/i s5wDX/5+YnL/Y6G259fcBlUOBFxVXHnChIVbxy4mPdDhQPPDMFuTWiaeEW48 LbmNAzPlBsf3CzLx7eli97LtHKixzN45xmTg6PdXTj6WHMj7uUozoY6B1+5f s23Yw4HjHZK87mQGxizVMXpwhAMtw5yA0wYM/HVFfsNWBw50XXJzEFVioFLP XJ1hJw6UT7dvfivEwFfPO1bY/v93NAurBMca6FisdWOBpBcHFqg8iwr2pOOm 5iW10ec54D4QFNVmR8ecqy8fyFzgQMcLpyjdzXTUUDM4FOdP8TllGhWhRsfn tVUK8gEcGNBcFtUlRkfFi4d+J17mgNNyY9nhWRrGKtFTlwVyANX356+javFq /1OPr3HAUO/MQd8ZGt7wnqejHMqBdKPQsdxpGs6Rjx1+Fs4BpW1JsSNTNLxc uuqDaiQHrlvnbtSn6nOSFqAexQH7Y/3++ZM03P8+1FYnjgOj4ebjBRM0/O4g Jfc2gQP779rH/RmnoYXQ8w69Rxz4Ee+7yYiqDQ6Wues/40BSxvOLRaM0VJyY 9TfJ4IBlveDE52Eaxj29Z1ycyYF3vxTip4doKGGpPGv2lgMKA+sNzKhaMNHs hnkepceY2yUkacgwDkzaVUL1W1YxUcahocuA6LHvpRyYXNUZL0jVHbeTV+6p oPDqjhhsY9PwgL428+cXDtQbLGoPY9HwR9enTJsaDvVeXBlQyaThjojdPo3f OJBpZSI/j6pRp3OjXS0HMkZSe4Ko2rD1zGRLHQdOD+7lZlH9coMmSw43cmB9 y9+/XVwaaq2+FfarmQOzX9KERXk0TKtbaunQxoHiD/tkTSh+8SuMGpy7OLA3 4YVe4hgNr5ZfGjhO54CVg+3Jg5QfY2eEXzGYlP7WU37hAnT0ko73PM2h8mT6 MvS9IB1dPT6MeQ5xwE9p+rGkMB13zB8T9puk8tT3qrlWgo6l2eE/xqY4YN14 oH9Kko5Gh2UeXJrlgEzFDE9Lho7arzYoXBHiwts0u0W35OkoaeWrHSrOhbyT AuY7VOj4rExikbEkF5Z+eHk+bSUd9YyyWMPSXLgutO+poDodMceq5rUcFxr3 j9e6rKHj3jXMdNelXLBPeTxVoknH7qcREUsVufCMZ6G1XIeOnktWejQocUHI jHv0ylo6/rtban5ThQumGYsOKWvR8dZ8Z5Wtq7iQwFjkvI7qvzTo3+wfdS5M rBI9sY3C82osoSdHgwsH3ES9DirSsXqw6dGKtVyQ7BYN+k+KjkIVu+QEjLkQ 1Cj2pIzS76ExY7TAlAtNEuLpTX9pqJob3uQNXNizRzybRuVtSwre/23Bhfpq 8ZKFVD4Cr21chPu4cKhYose2jYaiE42si/u58HJSgu7eSMNkr/M1uge5IGa4 mPSvpWGR05uIJ/ZcqMhdPJNYQcNxExWBoONc0HglqdT/loYR70t6Np7iQhpN Un00g4YyWo7FxBkujKtK6c5Pp/Lw/O+jF+e4sNVFapN8Cg03KMRfdjrPhdTH UmaayTQsf6B/VPYCF9rSlzRzE6jztbDRoNafC9ZaazzD4mnYF+wtFxHAhaK3 hkIKcTQ8/0d0zPQKF5bo70rOiaHhrHdG02ggF24UHtXf+ZCGdxk7czODubBg 85kf3Q9omNka6q14nQvt229PidyjISvvD+vffS5EH651PH6ThgHacTXvH3KB 19k9+i+ShgvSNrw8G8eFoy5kVPR1Gqo/9PLofMSFw6clijGMhm4+gz1F6VwY uWy7XCGIhsPMkGLf11zwnHXNz7lKw2AX5WTNTC70hfnu2XmFhk/32R9NeseF x1EPA/0CaNT9ZsJgfx4X1kumyS66RMMSs1g5kQIuXI3Ny0rxp2GXTn3Tf5+5 4PukpfunL7WfIxk4F7lw90GMf6APNf/1AfU7ZVyoCz8gpn2ewncytk6ukgvz AqRedHhR/Fa1BTyr4oKDdcqH/aco/v3yqppfuSA4YdOU70Lp98z++/vvFJ4U gSH5o5Sfy3qWV9dzYXb8mMbvXZTfv5SrbZooP1MkdpibU3mJdz3f0ULxt0a3 F8Y0FJKmlRMdXMhMUUo+q0VDSRHuSRkaF5ysu8X/iNKwuVpH8gmDC9ITUVoO 82iYEOFdtJpN5SfF1LJkehCV5oyImvC4ID/xKCScHETtP3/fuf7lQmmK/eji +kHk5Zs4cP5xwdlaRNKvZhBzLwQK+c9wQW7io05b6SAa8QQO35hLUPOWnnz8 bhB30IWnssUIEJpo+6XxcBAXpu16YbiYgJaUyPGo24P4w/X23nIpAi5aG0gP hQ3ifeXaid2yBIWPvvbA1UE80C2e0rKEAA6HF6NyfhDlHtlYHVMgYL7TpX+N Bwax40j0CFORgJHaGddwg0F0aZbdMaVCgEaO2FrGzACuij7Mi1hFgJJKbGxC /wAy9iUmSKwmwDRacWpX1QB6fVfkqGoTsMNP62vmnQG8Ur7y/q5NBPgY7nL3 VRxAs+DjRk2GBNx4Xf91pcAACpq97Hc0IeC5whG9loF+vPFRc+P5LQRkTp2Y NnjTj3E56zrirAjoKA2Pnzbqx6NeF8JW7CFgYJ3oTPbyflTUztfO2EcA6/lD D5c5/Zj60vBasR0BghHP11XU9GHOE1g16EzA4V2l328c7sORyyPCrq4EnMi2 elVj0oebDr/kdLsTECrdEr5gRR8GbHCosz9BzQ845mop1IefJCTet50ioKKb tfkGsxdnOOVxdmcJuGW0q3S8sRe31Fy83HCOgKM7M4pHynuxKrhn63dfAvTd PQuJ5724wClazdKfAHmf2nx2dC/uNtqx8MslAoaDdN8zQnuxfjirvuQqAb1J Q1l9br3Y6RZ4LPc6Ad6Nfqktqr2oBOu2rb1JgE1vy7NGqV50WUZTz7xNwBZy 05M6wV6kN1mTL+4TMCnNX/fwy28cslAMTEwiYE3YpOKV7b9xg0q9i9xjAhSe fl7ir/YbL06HWTx8SkB9UZCU97zf+C+fs+hOGtWPL7jA/UsPzl/9KSk4m4An rotGrLb34K653kHTOQT4BdYSFmo9GPVb1e3yewJ0E+8xzeb14M9Prdsn8glo zLMdMKR1o2TCLQ2/QgI+1Ev3rP/SjXZ+ZmLDRQTEcVvatV90Y5wNf+hcMQG5 Wld7793uxl/a6c1sJGBvWaV8alg3Ki60LzxZTkDlITHbD1e68RhNLHmwkgA9 7sGbXy904/Oysmuu1QS8CnlS1nW2G1df1tjp8IOA8My16+c6duN6zp+Wva0E JAvul7Yx7Ub/6syP39sJ0ExI2u2u342FqS6PLTsJyNMZCLuo3Y2bHWs8zHsJ uHzEbzRZsRsta+NHNrKpPGbHtbCmutDp7SbJ5TMEJNh3xocVd+EH+z/i9QIk nJD57z92XheKzy8SDZtLgvZPOQfbzC48+e6KyKb5JORF5pkWpnZhqePmBawF JFzful9J+VEXyi+YnZe8iITF/3izEdFd6PO+dO4+cZLS704f92YXfnMOnSMo ScIZ+TQpTlAXqopYzOZJk1B0Uqtu3KcLL+fPmz4pR4J5Qe5tweNd2ORSPamw lISY+caW4ke6MLzAajxYiYTzLyzL1My6kO5hS1hrkJDQf/y9nUgXmi2W5sxq keC4nvB2me7E+E/NzFxdEu6H+Gl7DnWipdSRQXl9EgxXhL0Ia+3EDHTuHDQj YdDpWXzu804UPLviV/xWEoyzVtuVxHaig1x/q5UFCblT2Yu/3ehE0XPHG3N2 keDxqPhmn1cneil4fr1qR0J9e8eVxSadWPVFp3rtYWr/GjdDRd1OVPbhVfYf JcH6Emt0tUonBii+K491JKGj6vy7DTKdWF/tW2p5jAQLuT/nQLgT11zQL/nn SkLJ8Wuauyc7MERp/FO2BwnNxXHXi+o6sONrwUfXkyTI6/YoY0oHrvf/r0Dm DAlBT9Q+VlzowFsrTPKrPUnqfXpuf832Dhz4PpV72ZuE+dfyOD+WdGCManB2 rx8JQi7blFo//cKJuusvMq+RYKbiGsac+wttrlimHgul+D54pUi0tOMrdZEU qQgSuHOG8odftqN94J3kgFskXO0PYk7ubsfPmjEPLWIpv9OS94jFtKFM68EH E/EkRMsM0iVPtOG5kCX3MpJI+BCuFSxn2IZK7Um3Fj+j9h8vylXuasXgiJSQ rgwS5Fa3L1m/qhXFLglbuWaRoDd9rXfX3xZMOnVOiv6WylvT6teuP1tQ3b6p 40wulceMOp//Ulvw/W6jVF4eCTbBl4wfBLTgls1Pz/oVkLBq7/RY1aoW/KE7 T//vRxJUK5Lrsa4Z6ZINlYJIgmhWZ8Q7tWb0nWtwJ7KMhB2qV1wy6ptwdjT5 oGgl1S9ewST1ShPKt5+iy34lYX/I0aGYhkbc/URggUYThfdgm31AYAO23ztR n9VCgum3ixt91jSgR8iPhPXtJBwBucVnmuoxyCNBw7SbhL0aB784aNRjjqbe 7n0Mys/JF8eCMmpRruDYXf9/JERZPV4oal+Dqa++HJqcJsFOv6tk+m016iVp KV8T4EGC0jI/3rxq/Hz7AWPuXB6sWWiv0edQhbsCJ97emMcDG35CT+O7L9jq 5RQgtoAHOVfFO7eKfUE3l4ot0SI8+PMtdkoiuhKvbrvX8EiCB56n0yDzUQUu 3DiWuEKKB1cLtFwvr6jAOHUHtxcyPFgg/D7U8kU5vl24eiR7KQ/0XpR9Gcwu w/66EpnylVT/iuJ443DELObyR+LWPHj24mXNzPIcvPE4wqVnLw96rR1e02Wz 0WM/oZZty4P7NifL6nhvUPHz55w9h3mweP+14ZTUl3jrnkNVlBsPXMZTHRJk nuGpTYnDIv/xQGAoeUD9kSdacAQKOq5QtUCp6krPLyXKz05dzQii6oeLGs/f 94TWhYbCVuFUvZBQEfSOgO3drYo37/FgyyuXmROCiaAaLmMpnE7huZjkufRH BswYXhVre0V9/3mn5sXYTPhFDDSmv6H0ExxjNDpnw/3D7512vONB+3CRyEhB Dsxq7r8Q8ZnSv/nZa8/Y99DVcO/J3CYeBCR6Mo7ZfITC6xPuTS08KJVS31ci XAQxJsc0Utup/bd+f1DEItj9QjfPvIfiH7j/+i+dz1AUUPs1hMWDmmOGagcW IcTpbLxny+XBjbbhqHflCD79yXYqPGr91cFJ4c2lsMba83fpKA/0VSTcToyW gtCc5rT7Ezw40s2JlbUpg958kzMukzzIS6z5WvmmDD6fSV2rN03l49CL6QvC 5RCvvGhsdpb6Xip03Ur3cvgf8Xkl3Q== "]]}, Annotation[#, "Charting`Private`Tag#2"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwUWXc8lu8XpiQhSRJSIZUkqZQWl5WIRJSZlIZEFF+JBiqphAopIyEk2dk8 9t578y5eMl5SIen3/P56P9fnrOuc+9zPOffnlbjkcObKMjY2tl2cbGz//z15 hdlcNHpWeSij0nTcKYfgUBd1HBRRwNDozyffN+cQ+z+EhKWLaEBFQiptrDqb 0KnvTAsXMUKRrwf36JZswvjy74LXIpdRZH04j1GbSfTvear+UsQZ4oJfxAa3 ZhCR6097Pxd5jKJhMSI67ivhXv+27FzuY6g0B2Tz/Eskzj0ZWrbV/Ak8mvlr v9gmErw/bz3MC/MGWwc/67vqF8K1LdB1fMszsA3wH7FjxRMGb3ps9bb7oWiM v8HuVAwhq7P1s2ilHzzGA4Z4c6IJruV2I8PX/FE0yf8jUSqauJCzlEoYBUBl hl944s9HYv3OADmT4Ffw+ClR1mP0gVj2JONU4fArsP2WGBWVjSBYQ112Uoqv 4fFbgs98eThRGyLxhdVJYnZJk97U90T27PGac9Jv4MEpeX/js3dErL7taL4r iVdKRplbhRCBiX5cW6vfgI1PsjJU8S3hyZW+45lIIDzWSo738gUTMide+aQ5 krihbc32+kCi5YnDaG9lINjm1tX5Bb4m3MtOnVyxJQhswVKLnLEvCKnlsl/k XEh8QMKKJelF1Kly85rUkzjxqE86bhH/eTDtPKWCwVaUsvj+2jFU/I2Ra2sh sfb4GtvRR+D9EXxgi+87sDWx5z9li0dIv5v6t6UIiH9aKXSLk4CqmGnMwNkP sDLco7ggX4QxM8UVXF8/QEVWyP4opQibx+9af90diYB+WleBagkcrh/cxtYX iRSVhykly8ohcDk5/tOhKDRxZl6oe1yDq482mx65HAX+wbCg1QdqkRf1clWj fxSGsh7V6jFqcZlyw3ZuOAoe1w0Um4/X45ultKxOUDTEr7qsvLG8CdwP3vYN FkUju+V61AvzJliGc750Ho8GS/m8UmJ6Ezj76BPh6jGo2qDhNGHdDLM/hhH7 HGKg/1iRjy+/GcmipXqV72PgyJL5LCfYAo4j+/6ZV8TA6trQRbHzLTAx/ZjM mo6BCq9ifOvbFkz1GnFHiX5CgGhqe2xDC7wtua4Yqn9ClfSu5W4rWpFu7SCa GfgJjse3WIo7tYLvptITd8VYmDxYKWiv14Zyr24zzvtxiGR1PuRc0YF9iWs5 xbgSUFTuwOHu1I1quXKrevkEOL7tfvffl25YpbrmPTBNgPx19T2OtG68zBx0 pCQkgMm7weyKYQ+YRV97Y099gY9hYfLp/b2IaNdO3fsmEQEUXnOpH304YPKX h5aXCOl0F9bmXf2o60m5GkhPRNXjoSci1v2YH9wg9vvAVwhLZ6TwtfbDaIzh nd/1FSoO5pzzaQP4bveOYs+ehCaV8tAfYwPwmtI9tkUmCQECe/ZOSg4iZTZ9 2tM9CdKZyyxorwdx4s413f0xSSh6ajfdXzOIgXnROHpdElJkb6jbsQ/B+V4D e/DPJIStF/e7vmkIPP88LU5sTkbXb7bxYPkhhFw3tpTVTEb2jM9/N44NQapN 1mrtzWRYTfD/g9YQlD93WvcWJKOPKi4wemEIOZ+Dv2XJpWCxXuXQUf8hTBiO 5+s0pGA82uPx4MQQzsa/rXVanQYFfbZN0l8oCDvvpXtVIg2Batrt8lkUUAXs 600OpEHj59JV/1IKHO6rNSqdT0OMme1z3T4Knp2ZaFn5NQ1W21SbK1ZTUbCo 1hOqmw7evEnLPEcqthlMMktfZEBwWNst5iANog9PHLn2MQMKmWMOazRo4P8a +YI7KwPMf9R1PAY0LHAZyhlQM9Bl47lL4zoNTUVZTgOHviH+SKFZ5jsa3OQ9 l+YY33BvQDHn/QINDpY9p8P+fMOcwMrjWZx0XPbd/xFrM3H5REdTqwAdp5kM de9jmbBKcWby7qJDKvLks3VvMqHilbrhoTkdIg3RPZnxmSjK9IgOvUYH3+Li LrPCTEh/P70n24mOeePkhsjRTIgbTWpOv6Bj8gmXuMa/TMT4FLSsDqGDnn7x 1ohgFhbzfS1lYujopuSWPJfJwuNp8zHNFDoa1ggKyqlkgWv7LhfrfDpKleyv NJ/NQp2teLxXOR3ZNyoynW9kwSKZY3tgPR3Rla6mecFZiDxUL5HVT4frw/4I rYkscOhYivz9S4fkVOxO6/fZaHLw4HqmzMCGTWzunCnZMMm47P1ekwFeHdO6 z+XZ4JjX4kjUY+B3LI8Di5WNY15r2RotGRhvu1z0hjMHXRU/7w9dZYC6rHCt olgObHh6/kzfZKDO0jHj/okcZAdG/RZ8yECJb/UKifM5kO32/m/7UwayciWN y27noGrTjR+K/gwkMt3jr/nkwPXS6VvabxmIEmqf547IgWDc/imzDwy81ZDT SUrPQdj3DfZ2cQz43n4aZlBN+pNfHLufzIBX5NDE7EAOjF5Sv/2Xw8CdhsMI mc3BrB1h+7yBAT65b4xqrlywNm2bP0hlIOalvO8fsVyUNTx/SvvJQLPujm7L 47lokj8Xc2zTMHbVCjptC85FzOx4/+SNYQxWTsWmKebB556ogeGqEbjsuHGK rpMHi90eg//ERsD7dPjHeqs8OA8w7BPlR3BYs1/lrk8eTFRSn68wGcGbspoe dOdBg0OrLCt2BDJSmp63Jkj87euZy7kjKHpUvCOaPR/SV9dR+BtGMKGW7cwp kw+xqoG/13+O4HHU/o2HlPMhfFfDV2gVE6LLkouvnyGxTIJoqRgTKRdlbEKv 5oO/d81nB3kmThR/4qt3y0dfzTL6vBITA+IS35b88pGdqcE/rs6Es0eYuXx0 PunX+9iANhMf8Sb+TW0+DrlxB5WcZeJPgYeamVgBAnYKaL6wZyI519xlpKAA 0j4S8WLhTGiKdoqJtBRA3Nm6jS+aib67Z0pPDheAeeETG/tnJlYd1uZP4iuE r+JOU0YGE9ZZBxOcLxRidlieO6mOiQWhNP1Yp0Jyntw+GNnCRIDL7t+dTwsR WJhx6XUXEwUHpDSOphRCNvhQngudCaOgD2N2ZYVg83IbsRljYmxW9FVEF+nP Pn+dOYsJD6NgxabxQtSZLuHULyY2ZKwdYGcn8Pi4ih0WmbDw/WNEFyLA9fKz V/x3JqIuM2orZAmEbTseWtvExMixRrXPagTECofSJ78xIbs+J+eFCYGmc/fq 1oYyoeZiFbQ+hQB/zphcxB4mDoYZxwbuKULi/cofmeT5mvrUUZ4cKYKRkDVv j9II7jmrbrpzvAhDSUtSfyVHUKy7K9DUvAi8QwfOqU8MQ/fvkufmp6S+Wkx2 o+cwLlrGno8fKMLss4zw2lQGHp/c+O7daBH6+u0iMkIZiD0Y0PZ8lsR7t30I f0LePz43HXvuYgR0B0U6mDLgQpw6vO9gMWx23olex87Auy8lzltVi6F7f0/M 4hgd+W8VUwR1iyHbPBLDaKOD3VFix++LxRC/axKbFU+Hr/hPwfyXxciuOvzZ XJ+OJF5b/a8hxcgXm/mscYSO5rmBFxHRxfB1TEjYLUWHUHPVMs+cYjgLb0z8 95uGwwVKyrfLimFn15rIpNBg8TntrnVjMTSKXnxtrqXho2cY6zijGGI2i0nR H2gos18rq8gqBkd+RrLvMxqGTb2vSf8hMb99yn9ONKzS/BMlwlmCPuttqZbn aZDd5zjAvbYETVn9qSdO0KC3mSGyuLEEQ4E5eh7kPLjFbXZ2YnsJXGWD3QuP 0hD4qyFgYG8J9Mtuxy+q0JBJVa9rPFaCcfPT7Uc0aejQ8px+eaIEs8+ZT610 aPiVVCike6YEXLmeR7z1aVB0P3yx6loJxIUzPjSb0ZC9bs+votclMGoTtrVx oKHrrt3Gh+ElsFqeJubnTMPc4GcVpfgSWOzTaUy/S8OhRKkXOQUl8Ai4r/Dv EQ05GqLiaUySvy51KSiEhp4E4+OOP0qQ7e6emhdOziv+IFu5JVKeIHiZEkXD kf413xLWlWKI60S17FcazNRP9dhsLsW44pD7mTRyfn1+/m/7zlLMXr0r55pF Q+5/K05GK5dCrPzLm9Ji0n+vmsNF7VLwzmpojlaQ/lU9ArcYlUJ+68AcXx05 P+MLcvotS6Fy5s4XhWYajvL9GQi9XgqTiaODH3vI83M+xGHmXIq51/9qHEZp uNfz307hh6VIOVSaqTRHQ34syykwkIz/6KRf93o6+njl3p35UIqQnXxucWR/ LN6+UcifUArdxuYr/+2nQwnDXC+JUjwWNVVaa0BHYWdv+JOxUhxKvTau5UvH gJJIqfrPUvK+7eoSCqVjKfock52tDM6Lk6X0z3QoOzbve7C+DEUnXEI9Kukg uCorXVTKoDXw+GT2MgaGbnJMKOiUYeiR1kHvtQywtasK/DhbhsCdvJJG4gyo fMy3cLhRBqbzm/kpJQasVi547nYpg6uoMaNAlwEPe8W47x5lkC4SbX5hzkDR 4bTpa8FkfJ6o+B13Sf8fpoS2fywDf+qVwJ/k/GLj3H2M/qUMKed2epQGMyBu Z3sxKrMMfTt2SReT91e1Jc7bqrgMXUn5sS2tDFw6xPiyua4MZQf0ttHJeeMV Idnc10Hi/MHonxuGUWIbvtF0nMyvZtlHYYthpI/euGH5qwyzJ71/DboPI8bm SJ41WzkO1a7SjQsdxpOrnWY3BcuRXcv/+0DvMLQurX3/6Fg5quo2nzI0G0Gj 6RPhJN9y0BuOzL80Ib/PWvbrl++ugKOZ1ep1d8ZQX3n0CpdiBQRvXn8ZFz6G Qk3ub6tVK7DoeXv1sbIxfNCIMxI+W0He48err6z9jksqlDe771dAZS5+ddaX 72AqnhUwqa+AVvD0avOhcXRnbr10vpP0l7DwcopzAjUHZlIvUSqQX7Cc7/Hu CXzZ729g/7MC0oz1fF/dJnBzT3WA16ZK6Coc4fsnOImf25XWfLWvhLxE3b7q HVNQpqpVPnetBMf7qAuXtabgHa710OZRJdoE7vr+s5mCkKDR1NZ3lbjMsX34 QMIUDrLfaHxfVomKH4SugRALD/Idn7o2VkJGfhctYjsLFXdccK6nEn52wXfH D7JgPOmZvJZVCUuGXexTYxZce0P8fTZWYa5DhK0whIWi4IgTV7dXwWrdk2Ce zyxwnYn5p763ChWnWbKmOSy8q0p2+KdZBZ+qCtPZbhaoj77t6DeoAotjH0t1 jAUZ5A3mWlThnGq4t/8CC7nfKk673K6CaK5TuszGaSy7VbfS6H4VHv8a0Hbd NY2Tsi3EXp8qjO07OVR+dBqvRzrvrHlThfj/mJuuaE+jN6p/z0R4FRIId+9S 3WlIWdJGauKrELlqzZSE/jTsREY/xKdXIcQwytjDcBqL/rNrLleT/EaqpJXM pqGhs1Cp2lYFr70Wr0LPT8OXk81jy2AVXN2n5uetprHpPg+rZ7YKN9cI1WZe m4ayrWSTgXg1Tipa28v/Nw3vbdI+e3ZVQ83zV7uf6zQahnarrD5YDY3aZ8oT 7tOwND6cUqVTDdkLKWsSvKbxUEM/AHeqIfb0b+rWgGlU/TurtcmrGrzNAaJe b6bBn2fO9se3GmwbpR4NBU8jcu81x8yoakwknTQKD58Gc9xOOvBrNehz/fl/ IqchH3976FZ2NYbVbm0zi5mGq7VryOnSagz4cvhlx02jaPMD/d0N1WjoePtL 6Ms0uHoecfF0V6NMfNeF/5KmoR/0rIhJq0ZHy3R/Lakfou/vWjFZjVHTxX25 ZDwKT5B8zHw1loY4feJJfjKV75meHDVYZrO2P/jZNG57RUZeWFODzVMb9z15 SJ7f/Bf+jdtqcOSvfN/FG9PYWK/2A3tq8PRZ7p0/F6eh8LG7/fLhGhSu11gX ZDKNK9orQ5NO1cBMzvhk1XGyHu8ubVNzqYHNhfvZcuJkfPv5ldc8ahDzndOo Smia/F4HjL14XgPmnYCpi6unITtWkNweUQOXgOjtQWQ/+R8ROXK9sgZexdWB f9pYiOdLEfNrrkHVKUP5oFqyf6ma/9J6Sf49fbVyJSzMPHcuW5yqweuZqWWX klngucATJ7FQg7YHdyP+fGJBan/UM02OWgjwLD8SFMaC0srDdjf4anHprW+7 3BsWzvU26gUI1yJ2q9CtqmcsOCRf3ftNshbU5A+8lzxY8Hn0d12PbC36njln yLmzEGkc+GvpYC0yj21Ma3BlIWfXru6tqrVwmypOvunCQsu/4jwtnVpoRNl8 5XNmYazVJML+bC3Ez675knSLBbF73tZZ12tRkWsRO2nHwgH9TZp9TrUItF8e 42fLgp5UhjT7g1pYiSd8lLNh4WEdZeLk61rMPfkddtOavI9iSq4DubVQMHj9 ZtKUhT+sVrPl5WR+HIdf+ZH3XbDcVkm6sRZDmYN+cmdZ0LQPWXabVgtfsd3P b+qz8Lngh+8K3jpUjVR6TGqyUPLquYOMUB1839984KfBQs8ViTOnxetgcWr9 PTk1Fnj5Tm94p1AHtvRLd24qsbCNypgvUK5D05VV//EdZUE5814fVasOCcIp t5MOseBomfBR9nwd1B78tZ/cz8KzfaqPDa7VQWBvzA2/vSxEcXZddblVh2Ha yetye8jvR89N7VD3OvSkdGd5KbLQmrRCtuhJHVQWno3LqbAw7hXGx/Cvw3v1 IxK9WixwGO+fXvW+Dj98x84+NWDh4D+rTMOkOmRs0SEGL7Gge6rI63h2Hawk yzStbrBgHbrltGJJHbi3KTUMObEQoDgwItpRBzOZPf2UxyyMOpiLUP+S8gPr /tBiWQgbOnvP8VQ9zE72HmSS3zv2kpNqL8frwf36hdx/ztMQ5k/ge/irHnv6 5AM0709DznJVryNbAyy3d0xv8J6G2UKlk5FgAz7nin/LfTuNjH3HP2081oCz tG9H2fKmcTUaXAkvGhCjMKT1gn0G96Yj2kKDGlD84EmCBfcM3mAp8uWHBvyo kuGVWzeDot78w7fSG3Dk/H+NTVIz6Ngpxmld0AC7ONG9UbtnMH7HvcWosgHP ponXTgdnICJ45Mah3gZQn3CfE9Kagfyld4oyjAbwNSVnjejPQDNlbrnYVAOO ip4VyTGdgcWScdPqeZL/5QW355dmcFs3K+zfskY8SPrQZ35jBj7vha5P8zbC bYVnNHFrBh+Y/x2gCTXihYvqd+Z/M8g82M7eLt6I+BH2/QJuM6h7rNBQIdOI DJMSt6MPZnBkTe2yVwcacWLQR5/wmkH8u4uK5iqNmLxyerv60xk8SvKLnDrb iE1Ofc0nA0j9LuZtYc9GeL/8JW0WRepfehhHfdGIHYIFS/2xMxCaWN+XGNwI 4v2jtotfZjDNrn5cNbER43H8HtczSP1d4RtsOxtxpkSm07WC1M/cr6tAbcSs 1nTiYs0MHqvUeCyNN+J5Y5aXR+MMUhL+OGuzN6GoT0POp2sGI1Oa/kmcTbC0 5uHg7Z/B5gOvP6/jbcLUaHO3P2UGLwjpgX6hJkj9tnzydmwGJRzOc2piTSi8 v81849QM5rQJgXiJJlhwjMt/+DGDPf7cu1fvaML88zTOrXMzuNp29sRt2SZ8 PfrwhcLCDMJFPl7s3NsEx1PHMuxI3GY57n5MsQnSF+b7YkisNuqVwqnWhGQv J7n1f2ZwV66h5sYJUj9Q3vgUiVOcRBhNuk04HDvx8AmJNy8li4QaNyGv+lrz TxLPC/R77bEn+fFbOHcskv1gIh0eeLsJdyVFwvn+knzCnbLm7zRBQ6GjXJPE bTu4x0u9mlBmrL8hi8QpxxTPmoQ0oTpCI/ftElkfTy+HgvAmvE5hpzWSeHNl /TPJ6CbolhTycP2bga/B5cLxr01oZhw670ri0uDkLoN0Uv/3zycpJF7oXZjJ zG6C/qr0JCaJba6+2uFZ2oQ22d1spmw/8OFLn+pwFamvPCb9isQdrB0WOg1N MNKPM6gm8eqDTi4prU2I8/5nP/RzBhruhQHru5vAK3t+U8zoDNyLVn1xG2iC V3Nu3TXy/NJWnC0fpDVh3EX43q7mGWwJ+D7/ebIJVcWtPWnZMyi8+PBz2g8y /5isrVpfZ2C5f51p3lwTSrxD7fo/ziCs40h23bJmFOtYL618MQPhTc9dpoSa kd8+I3H+/AyyJjdtn9vYDPXsDtsZgxmcK0ptZ5NoRvb73PSnmjMIsu5WENjV jLQLXsfT9sxAIEH6hwKa8XV07fWVy2aQ6p4fpaTRDLm6n6lhv8h5fkr/jKZ2 MxKTuhf2fp+GP+tOqrEhae/00deijfzelPBctDJpxr5zT9qnq8h95c0H/uvn m5F06PrmpwXT4FWsdHC71oyUv/IpqbHT+MJlvuWRXTNkhwTnNUPJfaxnsuHF rWZ8KplT7fOfxugXrweBLs24Gie3d5z8fvncF5ILd2+G1hofuqTnNHacTuj/ 5NEMmTuUt6bkPlQhrvwy6UkzVg0e0Qkg96cVZVfGCf9mlCdNpP69Po2YoPnQ qsBmfBY6cUXhMrmfXXup0/yuGR4PIoVvWE7Di/tbAjW6GUp6hg+7zkxjSZ/j +opssp4T2brp5H441x/FODnUjFjZxyM25H7wNvlgkCGjGa8C+99/WDmNg541 GhZjJN/Fg3od7NP4T2om2n62GZvrRjPUf5Hz79cTQ5f5ZixTULdxY7GQUSmy /OFSM4ZCwzamkt/zGVvVSwFcLQi9cdpr8yALr461r323ugUPWuMPnCX3XXm+ 68UfBVpgfXTZ6ItWFhoHFx0TNrRALdo8rKSehZupAeLpYi0YUzXcyapiYfUj qaY8iRboF9w52lfGQqJR9sOy7S2oOhR2qqqIhe+/Bwfa5VsQsodxKzKbhcxr /iUnD7ZAVJvVp5DBgkencixxtAURl/6cqCb3F6GscPvPmi0IC1q7eYacR2ou 5ov3LFqQ9kepRj2IjDfMPTR9sQX71msf6ApgoetsbunVay3IljOKtPMl+R0Q eaF/uwUFF21dgh6x8H62Q0TKpwV1lcGSI+T+ceWy99+Qly3QpHx86W5P5tt2 gLL6TQuaFhLn1lwn3xPpgfG/w1vQsbu04ZAVWZ+tGr520S0wP9FwuN6cBYs3 Pxwo8S0YsuqOuUjuG9O3zyjWppP4zZTbcz0W8qnsG1VyWnDz6wJj80kWvM+k LmUUtmCiYoVB+nEWDEqsqDvLWnDfrHehlJznYvv4KyKqW8BaS1Po0GVh5CPx eV1jC8yqx24yyX0lba3DS582Mh+PmfgFIxa0puuNbg+24N0U+6Yt51lYd/H+ oRF6C9jjVhnvvcjCQJOsmMVYC65Yrn2lfoUF55QXtOM/W3CkXnyFDZnvBwft 2yI8raAkYCLlPgu2g3Nn/fhboXHpxI5STxYUTscfXi7UihSR0xfbn7BQI7eS fUK8FT4+lu3zL1n4NVHmX3SwFbJX7xeoRbBQfN7Z6cCxVrzb9OS3URQLvvVb jRNUW8l3uu/ea+T5SX712hyo24o29bBPL5JYmBDbt2zVmVYc/BM9GJ7GQrYv hXHfuBWxaV9EUjJZ8FoMqJ6xaAWfbbphSS4Lp+xUvl671Ir/JPJethWyINw3 FdB3rRWToa07tUhM1fngbGDfCmH54OxF8v32NU/PpOJ2K7TKTE6kfiPff7uW jh51bcVjk40dV1JZUA/9uiXlfivSxvsvi35lgY/n/PJtj1rR4xH5oyGehZix vBo+v1Yc+7xt7aFIsp/ent5q+6YVys2huWzk/qyoQXMvDyHx/NrL1W/J+oRz 774X3QoV7aVMM3+yH/RN/UezSTzaYXH/Abnf/R0f0Sgk8dpTnJpuLDxO8FCJ LG2F+uHSZD5yXxbmiJ8+10DGe5a8LJI8H+WsX4ZltFao7fSJL7Eg36eXnydu GW2FqsGSwQsTcr/m37zCfZLEd53/GJL9EFaQer7jRyvwcSxGjOyXK7bHM/fO k/bVVnoMHRbkNnTzvVxqheZ0x++vJ1iYK7W7xlzeBhWRUx9d1Mn915GtSH1V G06olp4EyPPbFCj8ga8NvhdsTe+S7+lzNTtuLaxrw4q4rMMvZVnYciev+qxI G1wmOUQ/SpL92UR145Vqg839Dz1VfCx0P9rbf/dwG0IOfs6Sb5hClHz5gXbl NviUq7ua5E7Brt/ET16jDV5GA4c8YqfApuiBEb02WN5el9v4YArbxxo+Gl1u g2zS/fybe6bgrG93dY9/GzK3nSlODJgE36a4KTq9Daz1r7Yut5+AyrlH/bTR NnAn9N9mWUzgtv+FWupkG2SUZUr6dSfQwS4cNzTXhudXS62yZScQMexj2cfb Dtmsn+H24+OQS7Gtb1Voh5+JmXDXjXGcUpf7UvK4HW1r30nFW3/Hg3vc74qf tWPukqBs15nvSPk27F3k1w56uv9+LrXvEJT+cKkwpB2zZ73VbMS/o4+XXzQ3 sR3D75yspPvHYNcx7ZPa1g4OSb2w+HNj8L3+7WqkVAfsdrS1T5waxZjKVx8e mQ6YPPp9CcdGcUL4U4LLng7oDoqyAmRGsawycFL3SAcOvb3IrbByFHelnF3m T3dgknNK2a2IiauD+7zPuHcgeHhVPOd+JsoyZeILPDoQoLb7gIkEE5J+kjXS 3h3widAv+byGif5jAnz/Ajpge+5tn+74CIzeTwd9ie0g502a91zsCFTPpnzi aOmAxutdqnxbRxAhG1/p0NmBuUK3uQCBESwujxzt6etA4vfq5HXLRpCd5r87 daQDwsdtNotQhiHH7/Dt/F9S/3fMn60fhuE7crWzalknQqRm02L9hjFWaDm/ n6sTRgbqtjsfDOOTvZ4S97pOZCRQuuTOD0Osdnd5pnQnXM5vzjy8cRhuUdtG JOQ6If/c3j6fexiddzeterm/E6zMfCksMMh34Ppdc4c6EU/j6SseZeC19OpT 1sqdsOA3f6PRzQDrH4dDg3onuJQSTlZWMaDXuRhwWJuMF+QyuaWEQe4Zs2kx ep0Y8nN7fKKYgVXe421rjDrB7fNA1KGIgavn6b/cTMn4nl4pwQQDZQp9wsOW nbjp5q1ZWMiAB63WIv96J6rs/G6vLmDgl8oXus3DTngbRNR8yWEgP+Z76J3H nShrLK6lZDPgxSVr6P2sE79OMeo2kJivKbE4+k0nTE7KNj7KZGD7haSIgbhO HFPPbTVPZ2C8ZPLsRGIn7Ir7216lMZC2fc/qxdROhIG9ozKVAeXJZHeR/E5w HNPq2p/CwLn7qSZGTZ0YUOjo4/nKgBhleo11eyd40+f7VRMZoGrsq7zV0wmN vZsG73xhID7+9gOPwU7cS1YZ+prAwE3e9AP+dLI+uy9TaJ/J+jr+GA8fJfl+ eUoVIfFC6/6YxMlORMRXPq6MY6BI0dk870cn9Bedz8rHMuAdmiFQM9eJZfqS 29/FMKD7b7a6628nmqIbf7FHMyBgfcBzZFkXvH/fq7T9yECETOYUx+ousH3o tDkWwcC3nKw6SHSBNeH7ZfAtA26b5h7pbe9CvuqRe1rBDKh4Hjp6flcXHING dFMDGajTyvnsdqALfcfUJr1eMUDvzPX+pk3iF7/lt79gIOHoH6UyvS48H4xh 93/GgOOHoz9bDLugtf9My++nDCxezbdmne8i3+GJTtWPGeT+VKCy63YXsnde yrR7wECP6dLvw3e6cPn+mqft9xiILFBO1rrXBfnmfGNld7I/JB5eNfYk40nZ SsfdZUD2CbHpqncXYlw3zK9xZWCG+a/N+UUXrtaVVbu6MJCtq+L7KKALouK3 31OcGXiQ4qH+OqgLVRKC2pSbDGgIFi9Evu9Cgh7lUKgNA9yu7GnJH7oQ6J4k ffYSA029qtcLY7rgF+8uvMaCAYvoks7epC6oLROa8zrNgPO+sgyh0i6MfzuZ ZXuQ5KcgHvmqqgt1ydX2EXsYMDl47wVvQxdKPmtJtUgzcPSIwqVl3V1wDdd8 dXgjA8vUYtZMTnaB44naDS42BmbV2f7YzHZh8kGxxLF5OhjHLYZp8yRfV5Uu hxk6qrQFC7o5uhFsp3y8k06Hv8Fj23LRbkgbHdkSW02Hh+HQWRXxbgjr5bR3 l9Bx++wx1bxt3Zg5cch3dT4dl41DZA/u6kaFapaa6jc6zpnObkiV70bK0YPz zkl0aJnrL5c92I3AA9+S4+PoOHw+cTL2aDf4Zr/5RQTTIXOBq0dCtRuxXAMy Rk/oELt4uTxMsxvymzgrVznTwWddlLJBtxuFe+WsiUt0sF0RC3tt0A0VzXP/ nA3ooNm03fax6MZlh1jFITk6Ehw1xJ1vdyOmWDM+c5SGsNuRPFN3unGo46aG XRcNL50Xf12/342iseAhiUoaHF0z6i/4dIO5bkT4ZQwNih5S7joR3ZC6+vSZ 9QUapL08rlZEdyPNLXmbiB4Noo/7DFQ/k/H9O4sbjtGw9DRQWjGjG+eydywc FqWB9Yy1Li2nG+N1p4OnuGigvND9J0t0w5lyZ9+n31SU+XN0SNZ0I4K7ypa/ nYrMV1bF4Y1kvbewOCtKqYh/k58o3E7y2y8c7Z5Gxfsg4ZA3PWQ8LRXs/UjF i7fOj/iGumFzcOrtnDsV99413XzG6MZm62/+XAZU3AyVNeP43o0uf/enwtup OPOBLr/wk7QfXXnnUBMFGh9VxP770w1BoYabWp8oOBAdtpLF1oMhtcCrJm4U CMcZDTB4eqAfJn7OVYqCwaSyF80SPVA7ffhAtusQmiY4xvft6MHi7rjTAXpD KJI9rhso24MW3vW2NlJDiEwo5zVW7EFRIEVpb+QgLsVWvOzT7QHruf7aGb0B nGFwTiqd6YGvlqxm1EI/1KVO6H0w7gEXJ5f7mdh+SEVV8l261AMpT4Ke9rcP w+FV/iN3eqB1Ry7bKbEXHX1cLK37PWA7wD2x1aQXlRu19RO8emDSMx79Z2Uv ss2epfD49MDCWfb8z9IexL+r5rd/2QNXPjuhqYc9sA2qeTUT1QNHF9s/7Q7d mPCte/O3vgdNmtfKo0+T391a3lnL1h6UDcU+COfpRAP3KaOirh50uQ0rvq3s QJJPveAjWg+YSVcSnqMDjo8bgrjmezArdNn/1p52WJXy/bq+ROabEq1143sb DJadPle7vBfiOjT2K3Ft2OfRKOTH1wvhh5ecTba0QZJYc2dqXS/kRaJ2n+lt xbql0536Ir2QTqcM67xtBYdSgGLaZhKfkog8btiKWfemt+ukeqEyYmWKNa2g 5/LPOe/sRYq/qebdkRa0z+ubdMiR/n3nV1/ta0HFoVfZigq9iPR5136muQWZ d5qF3x3uBevx4XBUtCA2c+3dBeVeOHp2X5bNa8Hbnwbd5hq96Lp/V1YkpQWu Ti3vNp/uRZFLTt7MuxbYpAksPDQi83EyfTTo1wLT6TNmFNNexDvMn6x7RL5T HFpFYy6T/mwO93yyb8Ef27bQnW4kf7OcORPVFhgdPP9K7mEvrA7//LNcsQWJ 7MPe+x/3wkZ4778k2RZYhvy+peTXi4CO+BUrhFtQXC6qZRBF5msYIpA62QzR V9FK5+JI+31t6y3ozbhtIbvfnOwLj7X8Iit7miH1Q2nzlUySb+PTLefLm3G/ sGKdbR6ZT1KpJFdeMzqenV7lUNQLNr9/29JTmiF3tmvJqZzMx/7oTsvYZjwV vzjrWtMLfd07sqvCyHf399HR+4290FInDqd6N+NQ1u1Br7ZemGi9WpC80Yyx U49rfAdI+zMH7nEqNOOUe1xk5Ewvhq7cf1hf3oR1HRO6VaJ9EN+4kTerpRF2 H13U6rf0YUiKePk+tBFldv8UW6T6UCRnvebB5Ua4LF+7tU+uDylqXwSO/2pA t7zC/JRaH1Rsj4q0ijRg32L+5OyJPvA7D77PpNbjeeVx+rwuiR88Env/pR7H LI0blxuT/l/VbrmoVI+gnUNlXBZ9aAp1+KjBWY/JWZvc1RdJ/5/WbZVurMOH F26fNtzog1WO+fYpqzrMnVseKuZI4tJ/cS0766Av6Rsg8V8fIute1fcN1eLz hKD3djeSj8eaYi7/WizLCXff9bAPHgovMxSUanFluMgAb/rAWv7Yi/6zGrtU Vy5dzSP1o29t1rhWiZSELzu6ikg+d/oFffkqoSCob6BdQdZHV5un7VsFjo2E xOxq7gPbT/E5a44K6L2U0WEN9yFAs6n50ccytPxqcL44Tso3Hquq1SqDsZVT RMs0KZ+KK1zHKoXV/vzpjEXSX8jDL///350eZrVx+7J+pNh9//idUYLrnCuO v13ZD3FV45D9L0sw6fD5JtfqfjiuL/VzVyjB7e5TIXcF+tE0KvektLcYv9Rm isc29GNotvSP9rNiuCcGfzff1A8Ph7Xpp68Ug03o6Pp6SdLfmKXtWdViPH44 qKwsTepfTpQw31QMrtFHNsm7+xEwON9lNV+El2ekX4vv74eV2YmAq+1FCN52 i7FMuR+s09SlWy+LkHMrcJ/vddK/Ttht9BZCufeQxd+b/WBTVaScfFOIEo3+ JzedSfnBltPndApRs2F7t/5D0p8E1277vAL0FWQ9XB/UD5XfTiPvQ/NhtcPi s/f7fhSN852LNcwHI4Ct9fcH0h/1c1kqTz5sF2IWbT6R+p0a+wtK8zBprb29 J4HMp37wY5V7Hm7XT5zWSelHZIkbf9v+PPw++Ppu/jfSPnv9w8HvubgXeTB6 dx7J52vKxFh0Lti4e+siikh/FS8HDsTn4rHTw19rKkj9yoNBP2tzsap/q7hn LVmfykGdb1O5EEixc7LuIPlX781RUMyD1LklEelx0r6u/c3+ijyciJK4lrph ACotm7T30vOhEMK3vUJsAB6H9o6+WlEAcb8/9B4JUv5B49nM9gIs3G2/xCE7 gCK7G9Xp1wsw4lAiIbKX1G99cF3wRQHariQP7T44ALYjr1f9l1iArwbPLI1V SPuVOdoHpwrw/oTLJrvjpL193WgwfyG8laz7PE4OYKht8NnvvYVw2q8fGnSa 1D/6Y6eJYSGsdiqZJRgNwOojZ022cyFObZERIUzJeFyitiLBhTiyfkNXqyUZ z2E3t1tWIbbzcLxlWpPYpxCM0UKsY58++9eG9Kd30ZACAmy/+wUFbpL2ghzX +oMIjI/XtG53InFPrFv3dwIVXTEG+vdJ/f2/mpg6RbibYnIq+hUZnzg6N/S7 CIMXijS0cwfg2lmh2Xy6BHVnvy63JAYQcCREv9GtBNk670tul5H64dfN6j+V 4LWis0pYwwAcrXlvVv8pwfE10semqCSeMggqjivFvhXr/yxnkvHPbP1AtJRi 8x/2XOGJAYR8m40v+FuKueFeRbXfpNz9bX6OYRkYfVW/zi2S8gGbiqwH5H1t +fbtBvsgHFWPNH37XIbCqihnD85BBMTw9KS3leFLof/+IJ5BRM7PKr1iliEk 497MZ/5BiBN3Jjtmy/A44Xpq4fpBND1eiBBjL4dlsPoe5pZBePCzscWLlGPt zd8yRxUGyT7nKSk8WY47my5IUiwGUWQkoTmeWI5L+vLn+i6S9v0FGrPZ5dB7 xP688+ogWFfN1BfLyrF9NHq63pHkc/eNCm9/OdoymEW5jweRErHiqOzqChSN 5Mx+ezYIeemowwoiFfgi+kI61W8QWqnKh45tq4CXx+6AuJBBZJfeOaCrVIGb 6UulUeGD4D8lqGCkXQHT4cbf4VGD0O9I2WdxtgIaIh93vYsj871wau/lixWQ 1719ITCR5Msc3WNnXwGxh+pv/FMH0fVu97MnMhVYmSZY+TyTrMdBva8ne8sx sCFLzrOI5HfT/2fbsXL40v78tW8bxNDgWu/Rf6Vguj0JO7FI+i8RihPwLsbY uV02H9mGkGKpWNt5sBhWrHXLtiwn97YF46mwkSLobGUcEOUaQsD+d4o7tIsg +expOL8AucdpKwbcES5Ek1Gd3d9tpJxPtaVaKgey42d5Ok8NQfzTYrBnZTKy jXSJ5/qk/qrTX419kqBeoOakbDiEIYePpbu1v8LMb0/vJ5Mh8r5osrprEvBM ftUXZ+sheDT5a+9r+IRh5/yTAndJPHd8rvzzW9zuT1sqdydx6ZjU7V1B+Hv8 c9rdByQ+qdW94cdrCG4IFqU8GgKb+rYL4nIvoZ7jMJbsR+J94Y7L791B5F/J 56diSFxoGXRU8ikhe1VEmT2OxDaCUH/wgshqWDOT8ZnEa2uYJ3v8iYYPi6Zi yWQ9UkU379YOJP6qduz8nkPKV3rfOsYeTvgk1PVH5JP8e600VfZ8IATXlb46 Q5B8usNXRyVFErL05PmcsiFYJblSP/VFEdm6sV/tK0ksMlwX9yOaUP8WdlGi htR/ZJj1mfsT0bDpzfr2OrJ+k0Ufv0jEEmbez6p9Gkn9JvaCI79jieHJh/eP tZDx9h+9/Iojjrhl7LKX1UbaBzvzMNfGET7S1u+Me0j5+RHTINk4IrPm2PXt DNJ+rO7X1MU4Yt0aFlfZAumfM0T+U10c0VLw/Kn2XzKfvK15G7rjiNd22zgb /5Hn45h8/DkjjhCoMVvew0GBSl+FmcMSqe/60/PCSgrEX51hULjjidc7AtgY q0h8YsDBaEM8IfCk/O8UHwVDqT8fH5aPJ1r2W937by2FrK/nmsRjpD51YWFh HYk3rX6/WTueOPMq6K6HEAVWrSFSr87GE2tV5OdWiFBQ5COVvPxSPNE0WePy YiMFHkoph11uxhMB4Vd+8m8m5T+OljHd4gl9XTbnYHESx1fqmT+NJ/j/vJ/Z uJXkK5LP/96YtP984NbHbaT/XglXK5J/gEnT1HZpCiIjng5u/xRHrMlcMbF3 N+lfyjApfSaW4LvlOHJCkeS3d0yn/uUngnfkeJ+TDql/QvgpW1kUURc0ZDZ/ isyX58FkhW0U4avh3v1An5TX086+XBtF8ESldDw7S/ozTJYSvfCR4D6/sfnD BRIX+j6+NvuBqOHJPL3tEulfw8RwVvUD8TxXvyHhMolrtkp6+kcQq4S9a79d J/U7con3MuFEVYX4yaN2pPy8t98O1zDC57+8qqKbZH4Ug/MZ5aGEltS5E5q3 SPnVTbKq60IJrlZWea0TKZ9gLtRbvSeqPF9oGLiQ8n+mT8z1Iwgf+e2lHa5k vbx1mpXqPhIr/cyLKPdJ+VufyfOCcQSndkXu76ek3MxT8HRLCsFBhCZvDaOg 6e4fPf9LeUTPMQ2twQgKAorD9Mab8onk3PGh9x8pYHEp62mjkDDLVBIQiKOA nD2x7H5FROrXQWe2tP/Xf1lsnm0p4b3LZ3V+BgVdD1q3jUmUERaf5WPvZFGQ LRnzSbi7jOD65Nk5mU/mb3v8038nKogBSRnHBIICGz6hbTFLFUR6ZAvX1RIK +NOGY1q+VRI+m90/SpRT4HM2S4rdvoqwDNt6pL+S5Gc/G/97XzWhIFrXElJD +hfw21KzpYZYFeJ8w6ie9Je1IziMt5bIeFMeVttCARe7+SPV4TqC58W1fzn9 FPjWDCWV6zYR2Xe/lAX/oEDM8sSzNWxthN9vw/NnflEQJh9Y5urSRlj/t/hz 9TwFc8so/yjjbWT/nNrxZImCtjg3l4zuduKKzdQzp1VUVE1/tTZN7yQEjPef 1t9ChcLYgbAGu17ihkJe9yodKtS/bymx9aIQRU3tidmnqLD9pMu3ppBCrLdn PbymT8WzC3fN0ucpBPFp2/bys1QQrS0zfxyphKCayryTCRWdL/8pRyZSiesD ZnWS5lT8OSH7QoNJJdZtCLjtYUXF9vwnW19eoBE26QnH91hToeuS5rA3lEYU nC4XHrhChY38YF57B40QGB/87mtDhdMYD5ebAJ245rNQePQGFX4xh4w269GJ fKn1r8fsqdjq4jun7E4n1hbvufLOkQpmZlC/zDs6cfX8yUNaTlQU/o4oEcqi E3nzl3l+/0dF0KH4uGXtdII/+OHAJ1cqrt5N9Z2coRNX9r1PNXKnYltu7q0e fgax5kajcZoHFfVH64+m6TII677DMfYvqBDCTOPFMgbBQ/Ap0SOp+Hj82FxR +jBhZb6T/000FS7ex/sTm4eJb7/VaaqxVByv1CsJmRomLsjfffbhCxVDWhd9 HXeNEBl1byz0kqjIeGZ7y0J7hFh1PWnP3xQqPGuczmldGyHSP9LazTKpkNX1 FhePHiG4lJfiV+VQMevrv4K3eIQ43yN8LzuPiqb6kLHfAyNEmsv+09cKqfjE F9VIWxwhVq7TkxQqpiLl5MDtEF4mYZFs87OslIrnVJ01XoJMIlXnUZVTBRWO bjlfbogxCfPH2Teba6nYlxBIV5ZlEiniraoeDWS+ass8pRWYxIqCCcE9zVSM dTtsEjjGJJJ/Sub5dlDxbZXOOYYOk1h+7eVKLQoVStfZq17cYBJftC9FFv6i QkP65peuBCahICuhjHkqOKSPsR1JYxKFfEO9xB8qGndwnw3NYRJNrec3FLPR oL4jdul8FZMwzRT7prqcBt4dzoZEI5OghvSeKVlBQ/l2tXjxTiYxe97Ur5Sb BtXtAwY0BpO4ryIsq7GahqltibEaE0yCc2tnddkaGvK3uf35NMskAlYEXzsu QMMZkyYb3QUmIcI0WlEhSIPezzCBI0wmEVWzLlpzAw2mr6/n7+hgErJfW1Qq RWgw2XPw6voyJqF8W/9e1WYaDK435rA+MIlKozWi2hI0XOQMsx54yST0FRuy qreS/qJtVte5M4lLizo/aqRpuNLPfjHOmEk89T5hW7+PBgsDBS7LNWS+75VN WjRpcDj87lztgxHC9P7fn2e0abDpuMKWYzdCUC/kv2nVoeG2076EWLMRYlbq SGObPg13v9b+9Tw4QogkH9DsNCP1JZZiDk0OE5dKZRX6btLgr+J7Jfj4MPH9 0/dmi1s07D4/ec9j9zDh7JPg0O9EQ8Vd/UDb9cPE01PSXwZcaeBOFyxVZjCI xM6tkhQvGny3hYuPPGYQP7+L8g8H05DEndSrWEYnAsNHKsPe0aC5o+KQSAKd 2H8646FhGA3t6gNBC/504lbaqamijzSw3efTLzAn79dl0bg7MTQEv9v+NUKV TiSvH7GUi6NhR6Yyt8cOOjHh6tEQmkiD8dTNMrUfNMJX5pT3mWQahnmeSkh1 04hdfSLKq9JocJX+8GAFQSNqXg7/JDJoWHc8q3c4hkZcR/pXlywaoi82Hqp6 TiO4ph9e2Z1Lw5LggSaPuzQiLkp3Ez2fBobVKZevNjSCsWLY16CEhpS5+yWc J2jE46w0Da5yMl+NYJv9B2nE1usPFwsraXAJSOKz2kYjLtYJ28nW03BEetAs ZzmN6H+to7Oyi4ZKY5UfN4qoRPuW1FUFEzSMZS6Taj5MJZyb7xc7sWhoWbax 5q80+b17dPKuzA8a0vT2O8oIUwmDYRrz7RwN94at8x/9ohCstymRen9osNx3 71IKg0L4a983WbFEg9qDQK7+NgpRnyhUdXs5HRxC5UYH0ymEnSXt4U5OOmYv 9i9ciqIQPPwpikNcdHR9/Rnp/4pCJBTfmwrmoSNBKDbz5GsKoe2kHXeKj471 DhadaXEUgikldIFjLR0PKwXmRAsoxNMOqlDeOjooW6qFH7VQiPLD97ylRejI bzpgZviXQlz+rqU8uJGOfTvH3fIEqMTy8PW/gjbT8dozKnQrmZ8qW/KV5VJ0 3Ni3pv/HGSpRUEHRGJCjgz+QeSEwnkp8MzyxPFCDDmPj0CvthjTCRyf7idgJ Osr0+Fc0X6MRFuo7uT5p03FU80lMnTuNWLafZ3WmHh0iBxxopdE0ol3mnr+y AR3esnQvIotGxEtOrK00pGNiq6lkXi2N0BNoFOoyoaNEQP1iGtk/Etwq76zM 6djLnc2WtJJOzLKnbhw9T8ffR88NoyXoRNW8RMQtKzrqxGODhLToROj0a/GF S2Q9Coo7n92kEzdHl0d7XaFDxqxf5G8gnVCjOG/jsaGD+WvO3DGPTjCbzsmI 2dOhJi8/dI6LQeRVVSbGONAxUqcjWSPHIPyKDu3ZfZuOkOvXLiudZRAKKaIK ynfoYEVFMLdGMQhP/wElK086ktevnmYdHSZE9a4axATRse3PKPsLhxFi4nhn q2wIHW1vV2gsBY0QRUpa5769p+OxgoT3rfwR4upuGfOKD6Tc3oTbZBWTOLwt tF8vio633M66tXuYBO8mXqvOGDrk4/z9lM8xiXTeycvMz3R8HKoQ2BbNJLw5 Low4JtKhf59qFFLNJMwWG6/PJ9GxWnQpmIfFJHbPqox7ptIh+P2oc9SyUYJt PPUmdwYddr1bxKa5R4lWmuT060yy32qXl2HdKBHb+8ZpYw4du/NHbvhtHCV0 a/9zlS2kYyEsOW+X7CixpXR4IaOIDquXb6zdFEaJmVzj+0qldKTdv8NTfWyU eJdw2Euvio6bljC/emqUGH7294VjCx1DWxoXIm+OEg+1nnzIGKZjIGrysFDq KNFiaWMhP0qHi/iff0dyRgmp/3REEr/TMRe+suJC8ShR83Htm2gWHSveiZ/5 3DxKiGXPnt7yg44HQruFG7pHCYeGTt7Qn3RsCDw8MEMZJQT/hHu/XqBjp/8Z 22Mzo8TVtZ7qfH/pyOa9IH9xYZTI2XGZ7fk/Og49v/HrybIxglf5RMGKZQyU rXTNT+AeIyyNZNw8ORiQ8dN9xk/iFNvVin85GWjYu1ydwTlGLPdk/XBdxcCJ 9pzFnOVjRPzXTHtHPgZMxXY4Wv8dJRZK38mM8zPQQfTvPETGO9Vzb+TaOgau WQfSeH+T9eJUv3hBmAHPBHbjTNYoccyq0UhPkoGYQ31Kq+ijRJMA86jsQQZG jV7xJNeMEpI7a+fiDjFwb+5E+aPKUeI/JH3bepSBNWFLD0zKRglRO+c9G1UY WEW7McNeOErYeRmPB6sx8M5bMrEjd5QgQo58FjjOgKxM95UvWaPE5XK2rdwn GdC6pdltRNY/s5c2+ESXgVLBv693Jo0Sq2YqwthPM6Cena67lDBKWHAlmN43 IPMxt+VsjRslkja/FJo3ZMDon3hRXAzZTwccW53PMeA/GR4aETtKGOoYBrBM GLAeM9atJ/3FXjx4ys6cAbnhtX//ZI4Sc3dEuJnnGVik1H6VIUaJk36LFdZW DNT2P7E0JfMLjxl8NHiJgcRurPFpHCXUmj/97bjGgEpzuiNjcJScJ/umy2+R +RWF7o9kGyMk+k92RT9hYM+HGznr1caI5yVHk8/6kPUeik78dXKMmImT9V75 goF4ib4PnYZjRMltPoUbAQxsj9H1fndljJAx+ce96Q0DNxmP77rdHCPeKLEo DUEMRG0vsDO/M0Zc5mrx3xfKgNTn3Yabno0RdRMlV+nh5HmPXdFcejVGHGhN VwqOZCB2V8ThwfdjRER2jKBWNAMUuw7ZougxgjMi6Pv8JwbEk/jEPyaOETcf eZd8iWdA7G7hrlfZY0SnzZ13578wINpdMH29cYxQ0bNxXJPEwNrDBVlqw2R/ 7Tc9UZzCwHxI/v2Nf8cIfpGTm53SGWDM5anPrvtO3F068lMqk4Eek7xV9TLf iZPVYtE+eQxUCOcGPTD5Tny3HFo6XcFAYEjWV0r6d0Lu+bXMgV6ST0haf5zt OBHsYPIyYIA8j9+p0R6e48Q/I+3LahQGZo1Tr5uGjBNNW3YJxA4z/lexdcdT /b1xSSkZmUkiijJTKTNPSSWpKC0rqy0iyrciMw0t2WmIVEISkeKxQkP2yMq6 +34+l2uVjN/n9+fzOp/zPO91OOePC0NLcsZEqrjok0+eOzdM5TU+S8xLhcC8 Xn+1qfl0SIgZX91CI9DYIDxm6Xo6mBtFOhaE8bDVbemmx/p02NMSzPn1iIcX 7ma3rTCgg6/P5ctT73mYSWtXWGNKh8uvzyVsHeShUoxOyqYddGgW1WQfVx1C weHWrAP2dOr/k+fn0YtD+D1Do/pOKB3kKz+uM5UaxlOtJackI+iwJUH89dCy YRQStBOJjaTDaU/3FS/UhtHsaNCe5Cg6lMiISYgbDWOOcFNTRhwdnI+7cH8f G8YYj6u91Rl0sN7OdS58OYx69yVDd2fRwSzqjvGCnGGs/ZS+su4tHbSbdOWO FA7jfOmGE615dNBy9amdqBnGgDI1YrCEDsKB4yYG7GF0VKr7O6eJDt/yBJZ+ 0Oaj+FLf/E8tdOjTXt9QuJGPZdKyPv7tdBhMc7/5yYyP6gsdmMxuOszGVP0t teFj+9yZ1Oe9dFgg9uddxVE+3pp5dsxxgA4iERpnqtz4yBuht9YxKTz+UR3f /fj4nLwZfZNDB32iOPpnIB/tWNp7t5F02HacZ9VwnY/zB+sWTg/RYX/3irnN 9/hY2OP75cMIHVpD/wXtiefjmV+yIefHKf5MVaGfiXxc3lxoqvmXDgV7rG7u TeZj6NeZ949n6PBcPvHhvhQ+6lemeB+ewwCloFL5+lQ+MkostCSFGHB9gPHY Jp2P1nm3nocvZMCp7E2vbN/wUfap3IOzMgzQs2j+fCCfj6/8dL2MNBlQ4y1B P/yVj/beDRoj2gzQbdl0tv07H8XO+NEy1zIg3dh56MhPPvoeK3JcsZHqPy9r 8mgTH1fZO8l3GDCAPNN8raOFj612As0PjRlwuv6fkEM7H02sduwW3sIA20dW Eo7dfCQtWPPLzBlQKeAb0/Wbj88gqvzydgrPicSlTv183G+8NkjfkgH80XG3 1C4+Cm1sNCKtGHB1RUNrCdX/w1r/sZd7GCBi/caqg8JzWlP+nasNA+IuRZSM VfPxp7LzmpaDDHjx0yhdu4iPwQpzBu8eYYDxpLSC5Xs+bpBNe2rpwIByNfKO eyYfE0TYcp9dGNB59bl/0hM+uo35z0s9y4B/mou2Lwjj49i3O/3nQxhwJLJr YGA3H7sWtZyaCmNAbE/LBr/tfCy3VuRFXmfAz411YULAx/s/M/49uc2AnYNl K9XW8/GiBD9E8y4D7pt8upCvxUcnG6MFH+4zoCo6r2K7Gh8tHgTf3fqQAQLs LOlWJT5qNlbL1MYywGjrS/cT8nxcLC3x6EgCAwITnr0fl+TjxIFDKoNJDDgr cbVAch4fe2Iev/R+zAAn4R3p9yeGsbJlUOffU4rvrESsBJV/519zdmpkMGCg x8BmUd4wWijsqs3LZEBD6xy4lT6MWg73D2x5y4Dcn991FiYO458uJZfDeQyI Kjm2SDhoGKN7Tf6LKGGA9pPIKkHLYaxi+L/pa2TARac208nOIcxcU7zuXAsD zhxM0frv5xA+PC1U+KeNAUf3nFX4UzqELpzoSoluKp+bZyfGXgzhDu0Oq0e/ GSC88SvdL2EIdc6pNKj3U/nRftgycmsIJ8m33ZsZlD6Kq98Pew9h79oJ968s BuTJDKecdxvC6vNmbDsuA5wNLuxTPjSE2e8izveSVB40p9fG7h7CGP6P8bPD lL+KkYsXbR3CteMsiaR/DHjEyI7ulxtCOYN1cWozDLDsMLxwRHQIpy4FKL4T YIJQbfmBn3OG8Nvf+Ro185gw5JGl4feLhx7TK83HJZgQOTmlszKChwlCzn77 VzFhTC15U0gXiTPuSzY2qDNBxrsYW6tJ9KioH9unwQTrwh5L7fck6oVuu7RH lwlxVioObTdJjOubMvihx4TGh+aD2v4kTm358MdqAxMGu9zPhbqQWDO75rKl IRMsvdOv6RiQqHus37jamAnBhdULwlRJjCl59G/7Ziakz2E9aBcjcXL5wc+V wIQYPb6yvAiJLoHigdvMmTAlkH93pTiJVV3Vm8stmHCq4dK0rhSJ2qYhM1t2 MqEzxdjTWI7EicmRa2bWTCg3L91lq0Sio33WluK9TFCRDit0pOaVfzwxx9SW Cc8Htq8+pU7i3YBfoUaHmBAa/l3omi6J6uMlEfouTNhZ1YqZZiQeGr55W9OP CbiL2LjgGImfbbZZv77IBB2FnDRpdxJVc6ZE1/zHhGi2r7TySRJJL++7akFM 8Lr9Z2ijN4l2P9fsSwtmQq/Dp2NbL5BYpNMvsTKMCS7aQT+tL5EYwbV7sOIG E4xr52a6XyORvVt8/9NbTEh7XKXgHUaizZtqKaU7TBD3unnzciSJH0RCmpLv MSHczPpPxG0SFc8YxyyLZsL7mU0fJx6Q1N/TEbukGCZ8muq/+ySJROaaLNml 8Uy4P3nXY3sqiXkM5Xi5ZCbcGqdLPMwjUWHnr8OxT5gQNRpNMyomMTg9Wl4m hQn3+Gafer+QaH18XpJkOhNukHEndNtIHOxnJ4vmMMGGvqP4618SpXvynwtW UnlpTT8jADy8KxoYWFDFhAzH4HY3Sx6KmFgc8fzKhPUDR3d8seWhYEKjWOtP JpwYElW95cHDoKpE5q0GJghfot/jnuPh5KhLBTQzIXEap/de4iHflhfw+hcT fopc+CV9i4dewR8OOHcxwfOB9c6LD3nIzg7Ulf7NhJkl6vntyTw80W2xsKaP CfFPZlVN0nnYt0h08OogEzzu8Dq+vuSho3FTyToGEz54tIddSOJh+6mkRDqL CcqmZdrL7/Cw/suafTY8Ks/s6KDzvjy0HuVpzOMzYUf5ldUKx3lYo1ogVDTK hKBEj/qKwzzEa9uLVk4ywcpyk+qSzTzMNnJTmxBiQd6LX1+KhXkYlfXo32MF FuS4rBBb9JjEBV1urfuXs2Ch4cIPefdIDBfRfCe8ggVeEnxn51ASr5wsPOGj xgLdkoqcd1SexmOvbVVfw4K7sZlHHexJ9K3codipyYIez1jBeXtIPKPS0mCh x4Iny07aHVlPIn1fcubf9SyQGNk3PUeNRLcg98jsjSw48s0w/c0SEnsyNd3c DVlgZDEnvpc6T0c7h03lTVhQI5O24rwwic0LPy6p3cyCg7QdGbOzBNoYBvND trCgI5+14d4fAi1jxV9xtrNg5tDandksAisrWkKfWbIganVj/eZ+Arfwk50O 7maB3B8/+9oOAg32aUmjDQvME4vOcb8T1H3EMijagfq+c3uMZjaB8wJD7Ix8 WDB1zLEv3Ze67w1z/+IFFrhIP/TKP0ugx4kjT3dcZEFz1dd/FR7UvH1r2Qeu sKBUx0Cu7xCBfpVJ9zoCWaDXdy6Vt4/AVUbzN7oGsyA7Jk1vxpLA5iyfDkYo hceys1jUnMBw1e5rXhEsiPsnuXuZCYH68ZZqY5EsEHxr2a6hT+DgorxvV26x IOTsmU2+GwiMCVY+L3iHmjeoLnfZgECLsVuyN++xgOE0MBZC7R89PV4kEc0C gbanLTeBwLQeV5e4GBYo2jjmP9hGoFCN4ZvURMpf8xa/lN0UP9M0G81kiv+n B3avKbwe7yTGc55Q/fX36r87QPFLom8pSWXBP/XqkVIHAsPOxbS2Z7EgcdFH 315KD0HpoTni5Sz41px8XjmKwNxIh5cxlSwY3XPUZvV9At2mqqyXVbNAq1pW b20MgeW0x/FrfrDg0Me7PLNkAn3tF25++5MFV9fvrtvxjEDVOr/+jQ0sKHwj /HZvGoGhhbt1trWyYPJxsJdzJoHrdQoav7azQGnJ5r0ncgjsT1ENsOlkgc39 vzpeeQRGy91d3tbNgkHcU6SSS6D57b/lTr0Uv/O19w5S/vJnPU4N9rNAU2XP 8ZsZBD73qxc7S6P4NvwwLk4ncI7zyyMBbBaIbPhBW/WUwJxGqZkZLgteDez+ dOQRgS47g1IjeCzYFvP9flQ8gaV6B8noURaEjn0zGb1HYPDcueFZM1R+Cr4+ qAgmUOC189t+KTZMm1ZvdnMjsIrb5vVUlg2JOmrFFs4ERunZ6jrKs2GHUpjp ansClxRuy2pZzoZbs2YmXFsCu/599oxewQb1oeSin3sovLBJe99KNnzonTR6 t4tA3eo1b2rWsGGy7IPhxa2U/yLPz0RoseFhrkzhkc0EFu1dpmmuy4YNqb4G JkYUvugY1oweG54NBUZepNa3t4q9/rSBDTPDucqZVB5FFCJPBWxig8cIo6Bv J4H1TgJrNhqx4ceoos0Sar4jjZ+ebcaGqInrwaGHKb80PE+c3cqGjj+f5Asd CWR60tTWWLDBYnIoh3Al8MJoW1rKLjbITNv3HfEk8Nbc4ucxdmy4L7jWfG0I gR9VIp9cPkPxFWub20X5EXRcwNngHBv44qLJkpS/Fq//Wz7qzYb9i7fq78yn 8Oh5Jp/zZ4Oq9BuPXCQwzo/moBnAhnCZ3ilGJYWv0HkZ4zIb6LKyscu/Ufim 2jpSA9lgvsRK50AdhQ9sk1yC2fBa/tqXG80EZod9O7o8jA1qWQfrrtVT57d6 29KOCDYkPTjn21BNve8WFbfH3WCD3MUI2ZXUvNm9mxIO3GbDE/vHhX4fCJRz Xha3I44Nedwpi08PKb9SYg7OTWSDSYMMU/Q25RdNTLb0EbWer33bOZSg7mMC MUYpbHgf5Ngwx4fid5X2QDuTDbWLPztZ7qX0L3W2ZWWzYdtYk0DSdorv3PbF 6e/Y8O0XJ5VjSqDD7W/3lAvY0Pt8GfuuFnV+kt7ekSpnA1P/ysWWBQQWTCVF lleyIf9OTtI+AQKnnK+H+FazIZhOK/k6wUXzMp8rqt/YYAjLBrbxuBi50sm/ 8QcblBJshEvoXPwRYekdWseG5qEILcMeLkoxN5xe38iGtF2f9uW2cPGwlbJ7 fzMb9sq9sFtAvY+TM0WcotsovQ63DFemc7FPfPyQeQcbaAnz7oVEclHdp8+G 38WG3R0btc1OcTFnY6HF/n5q3THuRIEGF7+UHNeWItig5Xa483UmB0VUbNXL eWxwT40MOHGHgzZhpit8+ZRegwWyK7042LFTWqZxgg1nT8rbJK/lIFlf+u+B IAeyPH9V3s1lo/zAsu+S8hyQveSQfaGQhU7bhb+UKXDgYuHt3XqJLHz+kl/i s5wDX/5+YnL/Y6G259fcBlUOBFxVXHnChIVbxy4mPdDhQPPDMFuTWiaeEW48 LbmNAzPlBsf3CzLx7eli97LtHKixzN45xmTg6PdXTj6WHMj7uUozoY6B1+5f s23Yw4HjHZK87mQGxizVMXpwhAMtw5yA0wYM/HVFfsNWBw50XXJzEFVioFLP XJ1hJw6UT7dvfivEwFfPO1bY/v93NAurBMca6FisdWOBpBcHFqg8iwr2pOOm 5iW10ec54D4QFNVmR8ecqy8fyFzgQMcLpyjdzXTUUDM4FOdP8TllGhWhRsfn tVUK8gEcGNBcFtUlRkfFi4d+J17mgNNyY9nhWRrGKtFTlwVyANX356+javFq /1OPr3HAUO/MQd8ZGt7wnqejHMqBdKPQsdxpGs6Rjx1+Fs4BpW1JsSNTNLxc uuqDaiQHrlvnbtSn6nOSFqAexQH7Y/3++ZM03P8+1FYnjgOj4ebjBRM0/O4g Jfc2gQP779rH/RmnoYXQ8w69Rxz4Ee+7yYiqDQ6Wues/40BSxvOLRaM0VJyY 9TfJ4IBlveDE52Eaxj29Z1ycyYF3vxTip4doKGGpPGv2lgMKA+sNzKhaMNHs hnkepceY2yUkacgwDkzaVUL1W1YxUcahocuA6LHvpRyYXNUZL0jVHbeTV+6p oPDqjhhsY9PwgL428+cXDtQbLGoPY9HwR9enTJsaDvVeXBlQyaThjojdPo3f OJBpZSI/j6pRp3OjXS0HMkZSe4Ko2rD1zGRLHQdOD+7lZlH9coMmSw43cmB9 y9+/XVwaaq2+FfarmQOzX9KERXk0TKtbaunQxoHiD/tkTSh+8SuMGpy7OLA3 4YVe4hgNr5ZfGjhO54CVg+3Jg5QfY2eEXzGYlP7WU37hAnT0ko73PM2h8mT6 MvS9IB1dPT6MeQ5xwE9p+rGkMB13zB8T9puk8tT3qrlWgo6l2eE/xqY4YN14 oH9Kko5Gh2UeXJrlgEzFDE9Lho7arzYoXBHiwts0u0W35OkoaeWrHSrOhbyT AuY7VOj4rExikbEkF5Z+eHk+bSUd9YyyWMPSXLgutO+poDodMceq5rUcFxr3 j9e6rKHj3jXMdNelXLBPeTxVoknH7qcREUsVufCMZ6G1XIeOnktWejQocUHI jHv0ylo6/rtban5ThQumGYsOKWvR8dZ8Z5Wtq7iQwFjkvI7qvzTo3+wfdS5M rBI9sY3C82osoSdHgwsH3ES9DirSsXqw6dGKtVyQ7BYN+k+KjkIVu+QEjLkQ 1Cj2pIzS76ExY7TAlAtNEuLpTX9pqJob3uQNXNizRzybRuVtSwre/23Bhfpq 8ZKFVD4Cr21chPu4cKhYose2jYaiE42si/u58HJSgu7eSMNkr/M1uge5IGa4 mPSvpWGR05uIJ/ZcqMhdPJNYQcNxExWBoONc0HglqdT/loYR70t6Np7iQhpN Un00g4YyWo7FxBkujKtK6c5Pp/Lw/O+jF+e4sNVFapN8Cg03KMRfdjrPhdTH UmaayTQsf6B/VPYCF9rSlzRzE6jztbDRoNafC9ZaazzD4mnYF+wtFxHAhaK3 hkIKcTQ8/0d0zPQKF5bo70rOiaHhrHdG02ggF24UHtXf+ZCGdxk7czODubBg 85kf3Q9omNka6q14nQvt229PidyjISvvD+vffS5EH651PH6ThgHacTXvH3KB 19k9+i+ShgvSNrw8G8eFoy5kVPR1Gqo/9PLofMSFw6clijGMhm4+gz1F6VwY uWy7XCGIhsPMkGLf11zwnHXNz7lKw2AX5WTNTC70hfnu2XmFhk/32R9NeseF x1EPA/0CaNT9ZsJgfx4X1kumyS66RMMSs1g5kQIuXI3Ny0rxp2GXTn3Tf5+5 4PukpfunL7WfIxk4F7lw90GMf6APNf/1AfU7ZVyoCz8gpn2ewncytk6ukgvz AqRedHhR/Fa1BTyr4oKDdcqH/aco/v3yqppfuSA4YdOU70Lp98z++/vvFJ4U gSH5o5Sfy3qWV9dzYXb8mMbvXZTfv5SrbZooP1MkdpibU3mJdz3f0ULxt0a3 F8Y0FJKmlRMdXMhMUUo+q0VDSRHuSRkaF5ysu8X/iNKwuVpH8gmDC9ITUVoO 82iYEOFdtJpN5SfF1LJkehCV5oyImvC4ID/xKCScHETtP3/fuf7lQmmK/eji +kHk5Zs4cP5xwdlaRNKvZhBzLwQK+c9wQW7io05b6SAa8QQO35hLUPOWnnz8 bhB30IWnssUIEJpo+6XxcBAXpu16YbiYgJaUyPGo24P4w/X23nIpAi5aG0gP hQ3ifeXaid2yBIWPvvbA1UE80C2e0rKEAA6HF6NyfhDlHtlYHVMgYL7TpX+N Bwax40j0CFORgJHaGddwg0F0aZbdMaVCgEaO2FrGzACuij7Mi1hFgJJKbGxC /wAy9iUmSKwmwDRacWpX1QB6fVfkqGoTsMNP62vmnQG8Ur7y/q5NBPgY7nL3 VRxAs+DjRk2GBNx4Xf91pcAACpq97Hc0IeC5whG9loF+vPFRc+P5LQRkTp2Y NnjTj3E56zrirAjoKA2Pnzbqx6NeF8JW7CFgYJ3oTPbyflTUztfO2EcA6/lD D5c5/Zj60vBasR0BghHP11XU9GHOE1g16EzA4V2l328c7sORyyPCrq4EnMi2 elVj0oebDr/kdLsTECrdEr5gRR8GbHCosz9BzQ845mop1IefJCTet50ioKKb tfkGsxdnOOVxdmcJuGW0q3S8sRe31Fy83HCOgKM7M4pHynuxKrhn63dfAvTd PQuJ5724wClazdKfAHmf2nx2dC/uNtqx8MslAoaDdN8zQnuxfjirvuQqAb1J Q1l9br3Y6RZ4LPc6Ad6Nfqktqr2oBOu2rb1JgE1vy7NGqV50WUZTz7xNwBZy 05M6wV6kN1mTL+4TMCnNX/fwy28cslAMTEwiYE3YpOKV7b9xg0q9i9xjAhSe fl7ir/YbL06HWTx8SkB9UZCU97zf+C+fs+hOGtWPL7jA/UsPzl/9KSk4m4An rotGrLb34K653kHTOQT4BdYSFmo9GPVb1e3yewJ0E+8xzeb14M9Prdsn8glo zLMdMKR1o2TCLQ2/QgI+1Ev3rP/SjXZ+ZmLDRQTEcVvatV90Y5wNf+hcMQG5 Wld7793uxl/a6c1sJGBvWaV8alg3Ki60LzxZTkDlITHbD1e68RhNLHmwkgA9 7sGbXy904/Oysmuu1QS8CnlS1nW2G1df1tjp8IOA8My16+c6duN6zp+Wva0E JAvul7Yx7Ub/6syP39sJ0ExI2u2u342FqS6PLTsJyNMZCLuo3Y2bHWs8zHsJ uHzEbzRZsRsta+NHNrKpPGbHtbCmutDp7SbJ5TMEJNh3xocVd+EH+z/i9QIk nJD57z92XheKzy8SDZtLgvZPOQfbzC48+e6KyKb5JORF5pkWpnZhqePmBawF JFzful9J+VEXyi+YnZe8iITF/3izEdFd6PO+dO4+cZLS704f92YXfnMOnSMo ScIZ+TQpTlAXqopYzOZJk1B0Uqtu3KcLL+fPmz4pR4J5Qe5tweNd2ORSPamw lISY+caW4ke6MLzAajxYiYTzLyzL1My6kO5hS1hrkJDQf/y9nUgXmi2W5sxq keC4nvB2me7E+E/NzFxdEu6H+Gl7DnWipdSRQXl9EgxXhL0Ia+3EDHTuHDQj YdDpWXzu804UPLviV/xWEoyzVtuVxHaig1x/q5UFCblT2Yu/3ehE0XPHG3N2 keDxqPhmn1cneil4fr1qR0J9e8eVxSadWPVFp3rtYWr/GjdDRd1OVPbhVfYf JcH6Emt0tUonBii+K491JKGj6vy7DTKdWF/tW2p5jAQLuT/nQLgT11zQL/nn SkLJ8Wuauyc7MERp/FO2BwnNxXHXi+o6sONrwUfXkyTI6/YoY0oHrvf/r0Dm DAlBT9Q+VlzowFsrTPKrPUnqfXpuf832Dhz4PpV72ZuE+dfyOD+WdGCManB2 rx8JQi7blFo//cKJuusvMq+RYKbiGsac+wttrlimHgul+D54pUi0tOMrdZEU qQgSuHOG8odftqN94J3kgFskXO0PYk7ubsfPmjEPLWIpv9OS94jFtKFM68EH E/EkRMsM0iVPtOG5kCX3MpJI+BCuFSxn2IZK7Um3Fj+j9h8vylXuasXgiJSQ rgwS5Fa3L1m/qhXFLglbuWaRoDd9rXfX3xZMOnVOiv6WylvT6teuP1tQ3b6p 40wulceMOp//Ulvw/W6jVF4eCTbBl4wfBLTgls1Pz/oVkLBq7/RY1aoW/KE7 T//vRxJUK5Lrsa4Z6ZINlYJIgmhWZ8Q7tWb0nWtwJ7KMhB2qV1wy6ptwdjT5 oGgl1S9ewST1ShPKt5+iy34lYX/I0aGYhkbc/URggUYThfdgm31AYAO23ztR n9VCgum3ixt91jSgR8iPhPXtJBwBucVnmuoxyCNBw7SbhL0aB784aNRjjqbe 7n0Mys/JF8eCMmpRruDYXf9/JERZPV4oal+Dqa++HJqcJsFOv6tk+m016iVp KV8T4EGC0jI/3rxq/Hz7AWPuXB6sWWiv0edQhbsCJ97emMcDG35CT+O7L9jq 5RQgtoAHOVfFO7eKfUE3l4ot0SI8+PMtdkoiuhKvbrvX8EiCB56n0yDzUQUu 3DiWuEKKB1cLtFwvr6jAOHUHtxcyPFgg/D7U8kU5vl24eiR7KQ/0XpR9Gcwu w/66EpnylVT/iuJ443DELObyR+LWPHj24mXNzPIcvPE4wqVnLw96rR1e02Wz 0WM/oZZty4P7NifL6nhvUPHz55w9h3mweP+14ZTUl3jrnkNVlBsPXMZTHRJk nuGpTYnDIv/xQGAoeUD9kSdacAQKOq5QtUCp6krPLyXKz05dzQii6oeLGs/f 94TWhYbCVuFUvZBQEfSOgO3drYo37/FgyyuXmROCiaAaLmMpnE7huZjkufRH BswYXhVre0V9/3mn5sXYTPhFDDSmv6H0ExxjNDpnw/3D7512vONB+3CRyEhB Dsxq7r8Q8ZnSv/nZa8/Y99DVcO/J3CYeBCR6Mo7ZfITC6xPuTS08KJVS31ci XAQxJsc0Utup/bd+f1DEItj9QjfPvIfiH7j/+i+dz1AUUPs1hMWDmmOGagcW IcTpbLxny+XBjbbhqHflCD79yXYqPGr91cFJ4c2lsMba83fpKA/0VSTcToyW gtCc5rT7Ezw40s2JlbUpg958kzMukzzIS6z5WvmmDD6fSV2rN03l49CL6QvC 5RCvvGhsdpb6Xip03Ur3cvgf8Xkl3Q== "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.180264568325935, 1.1876919927208478`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.180264568325935, 1.1876919927208478`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwUWXc8lu8XpiQhSRJSIZUkqZQWl5WIRJSZlIZEFF+JBiqphAopIyEk2dk8 9t578y5eMl5SIen3/P56P9fnrOuc+9zPOffnlbjkcObKMjY2tl2cbGz//z15 hdlcNHpWeSij0nTcKYfgUBd1HBRRwNDozyffN+cQ+z+EhKWLaEBFQiptrDqb 0KnvTAsXMUKRrwf36JZswvjy74LXIpdRZH04j1GbSfTvear+UsQZ4oJfxAa3 ZhCR6097Pxd5jKJhMSI67ivhXv+27FzuY6g0B2Tz/Eskzj0ZWrbV/Ak8mvlr v9gmErw/bz3MC/MGWwc/67vqF8K1LdB1fMszsA3wH7FjxRMGb3ps9bb7oWiM v8HuVAwhq7P1s2ilHzzGA4Z4c6IJruV2I8PX/FE0yf8jUSqauJCzlEoYBUBl hl944s9HYv3OADmT4Ffw+ClR1mP0gVj2JONU4fArsP2WGBWVjSBYQ112Uoqv 4fFbgs98eThRGyLxhdVJYnZJk97U90T27PGac9Jv4MEpeX/js3dErL7taL4r iVdKRplbhRCBiX5cW6vfgI1PsjJU8S3hyZW+45lIIDzWSo738gUTMide+aQ5 krihbc32+kCi5YnDaG9lINjm1tX5Bb4m3MtOnVyxJQhswVKLnLEvCKnlsl/k XEh8QMKKJelF1Kly85rUkzjxqE86bhH/eTDtPKWCwVaUsvj+2jFU/I2Ra2sh sfb4GtvRR+D9EXxgi+87sDWx5z9li0dIv5v6t6UIiH9aKXSLk4CqmGnMwNkP sDLco7ggX4QxM8UVXF8/QEVWyP4opQibx+9af90diYB+WleBagkcrh/cxtYX iRSVhykly8ohcDk5/tOhKDRxZl6oe1yDq482mx65HAX+wbCg1QdqkRf1clWj fxSGsh7V6jFqcZlyw3ZuOAoe1w0Um4/X45ultKxOUDTEr7qsvLG8CdwP3vYN FkUju+V61AvzJliGc750Ho8GS/m8UmJ6Ezj76BPh6jGo2qDhNGHdDLM/hhH7 HGKg/1iRjy+/GcmipXqV72PgyJL5LCfYAo4j+/6ZV8TA6trQRbHzLTAx/ZjM mo6BCq9ifOvbFkz1GnFHiX5CgGhqe2xDC7wtua4Yqn9ClfSu5W4rWpFu7SCa GfgJjse3WIo7tYLvptITd8VYmDxYKWiv14Zyr24zzvtxiGR1PuRc0YF9iWs5 xbgSUFTuwOHu1I1quXKrevkEOL7tfvffl25YpbrmPTBNgPx19T2OtG68zBx0 pCQkgMm7weyKYQ+YRV97Y099gY9hYfLp/b2IaNdO3fsmEQEUXnOpH304YPKX h5aXCOl0F9bmXf2o60m5GkhPRNXjoSci1v2YH9wg9vvAVwhLZ6TwtfbDaIzh nd/1FSoO5pzzaQP4bveOYs+ehCaV8tAfYwPwmtI9tkUmCQECe/ZOSg4iZTZ9 2tM9CdKZyyxorwdx4s413f0xSSh6ajfdXzOIgXnROHpdElJkb6jbsQ/B+V4D e/DPJIStF/e7vmkIPP88LU5sTkbXb7bxYPkhhFw3tpTVTEb2jM9/N44NQapN 1mrtzWRYTfD/g9YQlD93WvcWJKOPKi4wemEIOZ+Dv2XJpWCxXuXQUf8hTBiO 5+s0pGA82uPx4MQQzsa/rXVanQYFfbZN0l8oCDvvpXtVIg2Batrt8lkUUAXs 600OpEHj59JV/1IKHO6rNSqdT0OMme1z3T4Knp2ZaFn5NQ1W21SbK1ZTUbCo 1hOqmw7evEnLPEcqthlMMktfZEBwWNst5iANog9PHLn2MQMKmWMOazRo4P8a +YI7KwPMf9R1PAY0LHAZyhlQM9Bl47lL4zoNTUVZTgOHviH+SKFZ5jsa3OQ9 l+YY33BvQDHn/QINDpY9p8P+fMOcwMrjWZx0XPbd/xFrM3H5REdTqwAdp5kM de9jmbBKcWby7qJDKvLks3VvMqHilbrhoTkdIg3RPZnxmSjK9IgOvUYH3+Li LrPCTEh/P70n24mOeePkhsjRTIgbTWpOv6Bj8gmXuMa/TMT4FLSsDqGDnn7x 1ohgFhbzfS1lYujopuSWPJfJwuNp8zHNFDoa1ggKyqlkgWv7LhfrfDpKleyv NJ/NQp2teLxXOR3ZNyoynW9kwSKZY3tgPR3Rla6mecFZiDxUL5HVT4frw/4I rYkscOhYivz9S4fkVOxO6/fZaHLw4HqmzMCGTWzunCnZMMm47P1ekwFeHdO6 z+XZ4JjX4kjUY+B3LI8Di5WNY15r2RotGRhvu1z0hjMHXRU/7w9dZYC6rHCt olgObHh6/kzfZKDO0jHj/okcZAdG/RZ8yECJb/UKifM5kO32/m/7UwayciWN y27noGrTjR+K/gwkMt3jr/nkwPXS6VvabxmIEmqf547IgWDc/imzDwy81ZDT SUrPQdj3DfZ2cQz43n4aZlBN+pNfHLufzIBX5NDE7EAOjF5Sv/2Xw8CdhsMI mc3BrB1h+7yBAT65b4xqrlywNm2bP0hlIOalvO8fsVyUNTx/SvvJQLPujm7L 47lokj8Xc2zTMHbVCjptC85FzOx4/+SNYQxWTsWmKebB556ogeGqEbjsuHGK rpMHi90eg//ERsD7dPjHeqs8OA8w7BPlR3BYs1/lrk8eTFRSn68wGcGbspoe dOdBg0OrLCt2BDJSmp63Jkj87euZy7kjKHpUvCOaPR/SV9dR+BtGMKGW7cwp kw+xqoG/13+O4HHU/o2HlPMhfFfDV2gVE6LLkouvnyGxTIJoqRgTKRdlbEKv 5oO/d81nB3kmThR/4qt3y0dfzTL6vBITA+IS35b88pGdqcE/rs6Es0eYuXx0 PunX+9iANhMf8Sb+TW0+DrlxB5WcZeJPgYeamVgBAnYKaL6wZyI519xlpKAA 0j4S8WLhTGiKdoqJtBRA3Nm6jS+aib67Z0pPDheAeeETG/tnJlYd1uZP4iuE r+JOU0YGE9ZZBxOcLxRidlieO6mOiQWhNP1Yp0Jyntw+GNnCRIDL7t+dTwsR WJhx6XUXEwUHpDSOphRCNvhQngudCaOgD2N2ZYVg83IbsRljYmxW9FVEF+nP Pn+dOYsJD6NgxabxQtSZLuHULyY2ZKwdYGcn8Pi4ih0WmbDw/WNEFyLA9fKz V/x3JqIuM2orZAmEbTseWtvExMixRrXPagTECofSJ78xIbs+J+eFCYGmc/fq 1oYyoeZiFbQ+hQB/zphcxB4mDoYZxwbuKULi/cofmeT5mvrUUZ4cKYKRkDVv j9II7jmrbrpzvAhDSUtSfyVHUKy7K9DUvAi8QwfOqU8MQ/fvkufmp6S+Wkx2 o+cwLlrGno8fKMLss4zw2lQGHp/c+O7daBH6+u0iMkIZiD0Y0PZ8lsR7t30I f0LePz43HXvuYgR0B0U6mDLgQpw6vO9gMWx23olex87Auy8lzltVi6F7f0/M 4hgd+W8VUwR1iyHbPBLDaKOD3VFix++LxRC/axKbFU+Hr/hPwfyXxciuOvzZ XJ+OJF5b/a8hxcgXm/mscYSO5rmBFxHRxfB1TEjYLUWHUHPVMs+cYjgLb0z8 95uGwwVKyrfLimFn15rIpNBg8TntrnVjMTSKXnxtrqXho2cY6zijGGI2i0nR H2gos18rq8gqBkd+RrLvMxqGTb2vSf8hMb99yn9ONKzS/BMlwlmCPuttqZbn aZDd5zjAvbYETVn9qSdO0KC3mSGyuLEEQ4E5eh7kPLjFbXZ2YnsJXGWD3QuP 0hD4qyFgYG8J9Mtuxy+q0JBJVa9rPFaCcfPT7Uc0aejQ8px+eaIEs8+ZT610 aPiVVCike6YEXLmeR7z1aVB0P3yx6loJxIUzPjSb0ZC9bs+votclMGoTtrVx oKHrrt3Gh+ElsFqeJubnTMPc4GcVpfgSWOzTaUy/S8OhRKkXOQUl8Ai4r/Dv EQ05GqLiaUySvy51KSiEhp4E4+OOP0qQ7e6emhdOziv+IFu5JVKeIHiZEkXD kf413xLWlWKI60S17FcazNRP9dhsLsW44pD7mTRyfn1+/m/7zlLMXr0r55pF Q+5/K05GK5dCrPzLm9Ji0n+vmsNF7VLwzmpojlaQ/lU9ArcYlUJ+68AcXx05 P+MLcvotS6Fy5s4XhWYajvL9GQi9XgqTiaODH3vI83M+xGHmXIq51/9qHEZp uNfz307hh6VIOVSaqTRHQ34syykwkIz/6KRf93o6+njl3p35UIqQnXxucWR/ LN6+UcifUArdxuYr/+2nQwnDXC+JUjwWNVVaa0BHYWdv+JOxUhxKvTau5UvH gJJIqfrPUvK+7eoSCqVjKfock52tDM6Lk6X0z3QoOzbve7C+DEUnXEI9Kukg uCorXVTKoDXw+GT2MgaGbnJMKOiUYeiR1kHvtQywtasK/DhbhsCdvJJG4gyo fMy3cLhRBqbzm/kpJQasVi547nYpg6uoMaNAlwEPe8W47x5lkC4SbX5hzkDR 4bTpa8FkfJ6o+B13Sf8fpoS2fywDf+qVwJ/k/GLj3H2M/qUMKed2epQGMyBu Z3sxKrMMfTt2SReT91e1Jc7bqrgMXUn5sS2tDFw6xPiyua4MZQf0ttHJeeMV Idnc10Hi/MHonxuGUWIbvtF0nMyvZtlHYYthpI/euGH5qwyzJ71/DboPI8bm SJ41WzkO1a7SjQsdxpOrnWY3BcuRXcv/+0DvMLQurX3/6Fg5quo2nzI0G0Gj 6RPhJN9y0BuOzL80Ib/PWvbrl++ugKOZ1ep1d8ZQX3n0CpdiBQRvXn8ZFz6G Qk3ub6tVK7DoeXv1sbIxfNCIMxI+W0He48err6z9jksqlDe771dAZS5+ddaX 72AqnhUwqa+AVvD0avOhcXRnbr10vpP0l7DwcopzAjUHZlIvUSqQX7Cc7/Hu CXzZ729g/7MC0oz1fF/dJnBzT3WA16ZK6Coc4fsnOImf25XWfLWvhLxE3b7q HVNQpqpVPnetBMf7qAuXtabgHa710OZRJdoE7vr+s5mCkKDR1NZ3lbjMsX34 QMIUDrLfaHxfVomKH4SugRALD/Idn7o2VkJGfhctYjsLFXdccK6nEn52wXfH D7JgPOmZvJZVCUuGXexTYxZce0P8fTZWYa5DhK0whIWi4IgTV7dXwWrdk2Ce zyxwnYn5p763ChWnWbKmOSy8q0p2+KdZBZ+qCtPZbhaoj77t6DeoAotjH0t1 jAUZ5A3mWlThnGq4t/8CC7nfKk673K6CaK5TuszGaSy7VbfS6H4VHv8a0Hbd NY2Tsi3EXp8qjO07OVR+dBqvRzrvrHlThfj/mJuuaE+jN6p/z0R4FRIId+9S 3WlIWdJGauKrELlqzZSE/jTsREY/xKdXIcQwytjDcBqL/rNrLleT/EaqpJXM pqGhs1Cp2lYFr70Wr0LPT8OXk81jy2AVXN2n5uetprHpPg+rZ7YKN9cI1WZe m4ayrWSTgXg1Tipa28v/Nw3vbdI+e3ZVQ83zV7uf6zQahnarrD5YDY3aZ8oT 7tOwND6cUqVTDdkLKWsSvKbxUEM/AHeqIfb0b+rWgGlU/TurtcmrGrzNAaJe b6bBn2fO9se3GmwbpR4NBU8jcu81x8yoakwknTQKD58Gc9xOOvBrNehz/fl/ IqchH3976FZ2NYbVbm0zi5mGq7VryOnSagz4cvhlx02jaPMD/d0N1WjoePtL 6Ms0uHoecfF0V6NMfNeF/5KmoR/0rIhJq0ZHy3R/Lakfou/vWjFZjVHTxX25 ZDwKT5B8zHw1loY4feJJfjKV75meHDVYZrO2P/jZNG57RUZeWFODzVMb9z15 SJ7f/Bf+jdtqcOSvfN/FG9PYWK/2A3tq8PRZ7p0/F6eh8LG7/fLhGhSu11gX ZDKNK9orQ5NO1cBMzvhk1XGyHu8ubVNzqYHNhfvZcuJkfPv5ldc8ahDzndOo Smia/F4HjL14XgPmnYCpi6unITtWkNweUQOXgOjtQWQ/+R8ROXK9sgZexdWB f9pYiOdLEfNrrkHVKUP5oFqyf6ma/9J6Sf49fbVyJSzMPHcuW5yqweuZqWWX klngucATJ7FQg7YHdyP+fGJBan/UM02OWgjwLD8SFMaC0srDdjf4anHprW+7 3BsWzvU26gUI1yJ2q9CtqmcsOCRf3ftNshbU5A+8lzxY8Hn0d12PbC36njln yLmzEGkc+GvpYC0yj21Ma3BlIWfXru6tqrVwmypOvunCQsu/4jwtnVpoRNl8 5XNmYazVJML+bC3Ez675knSLBbF73tZZ12tRkWsRO2nHwgH9TZp9TrUItF8e 42fLgp5UhjT7g1pYiSd8lLNh4WEdZeLk61rMPfkddtOavI9iSq4DubVQMHj9 ZtKUhT+sVrPl5WR+HIdf+ZH3XbDcVkm6sRZDmYN+cmdZ0LQPWXabVgtfsd3P b+qz8Lngh+8K3jpUjVR6TGqyUPLquYOMUB1839984KfBQs8ViTOnxetgcWr9 PTk1Fnj5Tm94p1AHtvRLd24qsbCNypgvUK5D05VV//EdZUE5814fVasOCcIp t5MOseBomfBR9nwd1B78tZ/cz8KzfaqPDa7VQWBvzA2/vSxEcXZddblVh2Ha yetye8jvR89N7VD3OvSkdGd5KbLQmrRCtuhJHVQWno3LqbAw7hXGx/Cvw3v1 IxK9WixwGO+fXvW+Dj98x84+NWDh4D+rTMOkOmRs0SEGL7Gge6rI63h2Hawk yzStbrBgHbrltGJJHbi3KTUMObEQoDgwItpRBzOZPf2UxyyMOpiLUP+S8gPr /tBiWQgbOnvP8VQ9zE72HmSS3zv2kpNqL8frwf36hdx/ztMQ5k/ge/irHnv6 5AM0709DznJVryNbAyy3d0xv8J6G2UKlk5FgAz7nin/LfTuNjH3HP2081oCz tG9H2fKmcTUaXAkvGhCjMKT1gn0G96Yj2kKDGlD84EmCBfcM3mAp8uWHBvyo kuGVWzeDot78w7fSG3Dk/H+NTVIz6Ngpxmld0AC7ONG9UbtnMH7HvcWosgHP ponXTgdnICJ45Mah3gZQn3CfE9Kagfyld4oyjAbwNSVnjejPQDNlbrnYVAOO ip4VyTGdgcWScdPqeZL/5QW355dmcFs3K+zfskY8SPrQZ35jBj7vha5P8zbC bYVnNHFrBh+Y/x2gCTXihYvqd+Z/M8g82M7eLt6I+BH2/QJuM6h7rNBQIdOI DJMSt6MPZnBkTe2yVwcacWLQR5/wmkH8u4uK5iqNmLxyerv60xk8SvKLnDrb iE1Ofc0nA0j9LuZtYc9GeL/8JW0WRepfehhHfdGIHYIFS/2xMxCaWN+XGNwI 4v2jtotfZjDNrn5cNbER43H8HtczSP1d4RtsOxtxpkSm07WC1M/cr6tAbcSs 1nTiYs0MHqvUeCyNN+J5Y5aXR+MMUhL+OGuzN6GoT0POp2sGI1Oa/kmcTbC0 5uHg7Z/B5gOvP6/jbcLUaHO3P2UGLwjpgX6hJkj9tnzydmwGJRzOc2piTSi8 v81849QM5rQJgXiJJlhwjMt/+DGDPf7cu1fvaML88zTOrXMzuNp29sRt2SZ8 PfrwhcLCDMJFPl7s3NsEx1PHMuxI3GY57n5MsQnSF+b7YkisNuqVwqnWhGQv J7n1f2ZwV66h5sYJUj9Q3vgUiVOcRBhNuk04HDvx8AmJNy8li4QaNyGv+lrz TxLPC/R77bEn+fFbOHcskv1gIh0eeLsJdyVFwvn+knzCnbLm7zRBQ6GjXJPE bTu4x0u9mlBmrL8hi8QpxxTPmoQ0oTpCI/ftElkfTy+HgvAmvE5hpzWSeHNl /TPJ6CbolhTycP2bga/B5cLxr01oZhw670ri0uDkLoN0Uv/3zycpJF7oXZjJ zG6C/qr0JCaJba6+2uFZ2oQ22d1spmw/8OFLn+pwFamvPCb9isQdrB0WOg1N MNKPM6gm8eqDTi4prU2I8/5nP/RzBhruhQHru5vAK3t+U8zoDNyLVn1xG2iC V3Nu3TXy/NJWnC0fpDVh3EX43q7mGWwJ+D7/ebIJVcWtPWnZMyi8+PBz2g8y /5isrVpfZ2C5f51p3lwTSrxD7fo/ziCs40h23bJmFOtYL618MQPhTc9dpoSa kd8+I3H+/AyyJjdtn9vYDPXsDtsZgxmcK0ptZ5NoRvb73PSnmjMIsu5WENjV jLQLXsfT9sxAIEH6hwKa8XV07fWVy2aQ6p4fpaTRDLm6n6lhv8h5fkr/jKZ2 MxKTuhf2fp+GP+tOqrEhae/00deijfzelPBctDJpxr5zT9qnq8h95c0H/uvn m5F06PrmpwXT4FWsdHC71oyUv/IpqbHT+MJlvuWRXTNkhwTnNUPJfaxnsuHF rWZ8KplT7fOfxugXrweBLs24Gie3d5z8fvncF5ILd2+G1hofuqTnNHacTuj/ 5NEMmTuUt6bkPlQhrvwy6UkzVg0e0Qkg96cVZVfGCf9mlCdNpP69Po2YoPnQ qsBmfBY6cUXhMrmfXXup0/yuGR4PIoVvWE7Di/tbAjW6GUp6hg+7zkxjSZ/j +opssp4T2brp5H441x/FODnUjFjZxyM25H7wNvlgkCGjGa8C+99/WDmNg541 GhZjJN/Fg3od7NP4T2om2n62GZvrRjPUf5Hz79cTQ5f5ZixTULdxY7GQUSmy /OFSM4ZCwzamkt/zGVvVSwFcLQi9cdpr8yALr461r323ugUPWuMPnCX3XXm+ 68UfBVpgfXTZ6ItWFhoHFx0TNrRALdo8rKSehZupAeLpYi0YUzXcyapiYfUj qaY8iRboF9w52lfGQqJR9sOy7S2oOhR2qqqIhe+/Bwfa5VsQsodxKzKbhcxr /iUnD7ZAVJvVp5DBgkencixxtAURl/6cqCb3F6GscPvPmi0IC1q7eYacR2ou 5ov3LFqQ9kepRj2IjDfMPTR9sQX71msf6ApgoetsbunVay3IljOKtPMl+R0Q eaF/uwUFF21dgh6x8H62Q0TKpwV1lcGSI+T+ceWy99+Qly3QpHx86W5P5tt2 gLL6TQuaFhLn1lwn3xPpgfG/w1vQsbu04ZAVWZ+tGr520S0wP9FwuN6cBYs3 Pxwo8S0YsuqOuUjuG9O3zyjWppP4zZTbcz0W8qnsG1VyWnDz6wJj80kWvM+k LmUUtmCiYoVB+nEWDEqsqDvLWnDfrHehlJznYvv4KyKqW8BaS1Po0GVh5CPx eV1jC8yqx24yyX0lba3DS582Mh+PmfgFIxa0puuNbg+24N0U+6Yt51lYd/H+ oRF6C9jjVhnvvcjCQJOsmMVYC65Yrn2lfoUF55QXtOM/W3CkXnyFDZnvBwft 2yI8raAkYCLlPgu2g3Nn/fhboXHpxI5STxYUTscfXi7UihSR0xfbn7BQI7eS fUK8FT4+lu3zL1n4NVHmX3SwFbJX7xeoRbBQfN7Z6cCxVrzb9OS3URQLvvVb jRNUW8l3uu/ea+T5SX712hyo24o29bBPL5JYmBDbt2zVmVYc/BM9GJ7GQrYv hXHfuBWxaV9EUjJZ8FoMqJ6xaAWfbbphSS4Lp+xUvl671Ir/JPJethWyINw3 FdB3rRWToa07tUhM1fngbGDfCmH54OxF8v32NU/PpOJ2K7TKTE6kfiPff7uW jh51bcVjk40dV1JZUA/9uiXlfivSxvsvi35lgY/n/PJtj1rR4xH5oyGehZix vBo+v1Yc+7xt7aFIsp/ent5q+6YVys2huWzk/qyoQXMvDyHx/NrL1W/J+oRz 774X3QoV7aVMM3+yH/RN/UezSTzaYXH/Abnf/R0f0Sgk8dpTnJpuLDxO8FCJ LG2F+uHSZD5yXxbmiJ8+10DGe5a8LJI8H+WsX4ZltFao7fSJL7Eg36eXnydu GW2FqsGSwQsTcr/m37zCfZLEd53/GJL9EFaQer7jRyvwcSxGjOyXK7bHM/fO k/bVVnoMHRbkNnTzvVxqheZ0x++vJ1iYK7W7xlzeBhWRUx9d1Mn915GtSH1V G06olp4EyPPbFCj8ga8NvhdsTe+S7+lzNTtuLaxrw4q4rMMvZVnYciev+qxI G1wmOUQ/SpL92UR145Vqg839Dz1VfCx0P9rbf/dwG0IOfs6Sb5hClHz5gXbl NviUq7ua5E7Brt/ET16jDV5GA4c8YqfApuiBEb02WN5el9v4YArbxxo+Gl1u g2zS/fybe6bgrG93dY9/GzK3nSlODJgE36a4KTq9Daz1r7Yut5+AyrlH/bTR NnAn9N9mWUzgtv+FWupkG2SUZUr6dSfQwS4cNzTXhudXS62yZScQMexj2cfb Dtmsn+H24+OQS7Gtb1Voh5+JmXDXjXGcUpf7UvK4HW1r30nFW3/Hg3vc74qf tWPukqBs15nvSPk27F3k1w56uv9+LrXvEJT+cKkwpB2zZ73VbMS/o4+XXzQ3 sR3D75yspPvHYNcx7ZPa1g4OSb2w+HNj8L3+7WqkVAfsdrS1T5waxZjKVx8e mQ6YPPp9CcdGcUL4U4LLng7oDoqyAmRGsawycFL3SAcOvb3IrbByFHelnF3m T3dgknNK2a2IiauD+7zPuHcgeHhVPOd+JsoyZeILPDoQoLb7gIkEE5J+kjXS 3h3widAv+byGif5jAnz/Ajpge+5tn+74CIzeTwd9ie0g502a91zsCFTPpnzi aOmAxutdqnxbRxAhG1/p0NmBuUK3uQCBESwujxzt6etA4vfq5HXLRpCd5r87 daQDwsdtNotQhiHH7/Dt/F9S/3fMn60fhuE7crWzalknQqRm02L9hjFWaDm/ n6sTRgbqtjsfDOOTvZ4S97pOZCRQuuTOD0Osdnd5pnQnXM5vzjy8cRhuUdtG JOQ6If/c3j6fexiddzeterm/E6zMfCksMMh34Ppdc4c6EU/j6SseZeC19OpT 1sqdsOA3f6PRzQDrH4dDg3onuJQSTlZWMaDXuRhwWJuMF+QyuaWEQe4Zs2kx ep0Y8nN7fKKYgVXe421rjDrB7fNA1KGIgavn6b/cTMn4nl4pwQQDZQp9wsOW nbjp5q1ZWMiAB63WIv96J6rs/G6vLmDgl8oXus3DTngbRNR8yWEgP+Z76J3H nShrLK6lZDPgxSVr6P2sE79OMeo2kJivKbE4+k0nTE7KNj7KZGD7haSIgbhO HFPPbTVPZ2C8ZPLsRGIn7Ir7216lMZC2fc/qxdROhIG9ozKVAeXJZHeR/E5w HNPq2p/CwLn7qSZGTZ0YUOjo4/nKgBhleo11eyd40+f7VRMZoGrsq7zV0wmN vZsG73xhID7+9gOPwU7cS1YZ+prAwE3e9AP+dLI+uy9TaJ/J+jr+GA8fJfl+ eUoVIfFC6/6YxMlORMRXPq6MY6BI0dk870cn9Bedz8rHMuAdmiFQM9eJZfqS 29/FMKD7b7a6628nmqIbf7FHMyBgfcBzZFkXvH/fq7T9yECETOYUx+ousH3o tDkWwcC3nKw6SHSBNeH7ZfAtA26b5h7pbe9CvuqRe1rBDKh4Hjp6flcXHING dFMDGajTyvnsdqALfcfUJr1eMUDvzPX+pk3iF7/lt79gIOHoH6UyvS48H4xh 93/GgOOHoz9bDLugtf9My++nDCxezbdmne8i3+GJTtWPGeT+VKCy63YXsnde yrR7wECP6dLvw3e6cPn+mqft9xiILFBO1rrXBfnmfGNld7I/JB5eNfYk40nZ SsfdZUD2CbHpqncXYlw3zK9xZWCG+a/N+UUXrtaVVbu6MJCtq+L7KKALouK3 31OcGXiQ4qH+OqgLVRKC2pSbDGgIFi9Evu9Cgh7lUKgNA9yu7GnJH7oQ6J4k ffYSA029qtcLY7rgF+8uvMaCAYvoks7epC6oLROa8zrNgPO+sgyh0i6MfzuZ ZXuQ5KcgHvmqqgt1ydX2EXsYMDl47wVvQxdKPmtJtUgzcPSIwqVl3V1wDdd8 dXgjA8vUYtZMTnaB44naDS42BmbV2f7YzHZh8kGxxLF5OhjHLYZp8yRfV5Uu hxk6qrQFC7o5uhFsp3y8k06Hv8Fj23LRbkgbHdkSW02Hh+HQWRXxbgjr5bR3 l9Bx++wx1bxt3Zg5cch3dT4dl41DZA/u6kaFapaa6jc6zpnObkiV70bK0YPz zkl0aJnrL5c92I3AA9+S4+PoOHw+cTL2aDf4Zr/5RQTTIXOBq0dCtRuxXAMy Rk/oELt4uTxMsxvymzgrVznTwWddlLJBtxuFe+WsiUt0sF0RC3tt0A0VzXP/ nA3ooNm03fax6MZlh1jFITk6Ehw1xJ1vdyOmWDM+c5SGsNuRPFN3unGo46aG XRcNL50Xf12/342iseAhiUoaHF0z6i/4dIO5bkT4ZQwNih5S7joR3ZC6+vSZ 9QUapL08rlZEdyPNLXmbiB4Noo/7DFQ/k/H9O4sbjtGw9DRQWjGjG+eydywc FqWB9Yy1Li2nG+N1p4OnuGigvND9J0t0w5lyZ9+n31SU+XN0SNZ0I4K7ypa/ nYrMV1bF4Y1kvbewOCtKqYh/k58o3E7y2y8c7Z5Gxfsg4ZA3PWQ8LRXs/UjF i7fOj/iGumFzcOrtnDsV99413XzG6MZm62/+XAZU3AyVNeP43o0uf/enwtup OPOBLr/wk7QfXXnnUBMFGh9VxP770w1BoYabWp8oOBAdtpLF1oMhtcCrJm4U CMcZDTB4eqAfJn7OVYqCwaSyF80SPVA7ffhAtusQmiY4xvft6MHi7rjTAXpD KJI9rhso24MW3vW2NlJDiEwo5zVW7EFRIEVpb+QgLsVWvOzT7QHruf7aGb0B nGFwTiqd6YGvlqxm1EI/1KVO6H0w7gEXJ5f7mdh+SEVV8l261AMpT4Ke9rcP w+FV/iN3eqB1Ry7bKbEXHX1cLK37PWA7wD2x1aQXlRu19RO8emDSMx79Z2Uv ss2epfD49MDCWfb8z9IexL+r5rd/2QNXPjuhqYc9sA2qeTUT1QNHF9s/7Q7d mPCte/O3vgdNmtfKo0+T391a3lnL1h6UDcU+COfpRAP3KaOirh50uQ0rvq3s QJJPveAjWg+YSVcSnqMDjo8bgrjmezArdNn/1p52WJXy/bq+ROabEq1143sb DJadPle7vBfiOjT2K3Ft2OfRKOTH1wvhh5ecTba0QZJYc2dqXS/kRaJ2n+lt xbql0536Ir2QTqcM67xtBYdSgGLaZhKfkog8btiKWfemt+ukeqEyYmWKNa2g 5/LPOe/sRYq/qebdkRa0z+ubdMiR/n3nV1/ta0HFoVfZigq9iPR5136muQWZ d5qF3x3uBevx4XBUtCA2c+3dBeVeOHp2X5bNa8Hbnwbd5hq96Lp/V1YkpQWu Ti3vNp/uRZFLTt7MuxbYpAksPDQi83EyfTTo1wLT6TNmFNNexDvMn6x7RL5T HFpFYy6T/mwO93yyb8Ef27bQnW4kf7OcORPVFhgdPP9K7mEvrA7//LNcsQWJ 7MPe+x/3wkZ4778k2RZYhvy+peTXi4CO+BUrhFtQXC6qZRBF5msYIpA62QzR V9FK5+JI+31t6y3ozbhtIbvfnOwLj7X8Iit7miH1Q2nzlUySb+PTLefLm3G/ sGKdbR6ZT1KpJFdeMzqenV7lUNQLNr9/29JTmiF3tmvJqZzMx/7oTsvYZjwV vzjrWtMLfd07sqvCyHf399HR+4290FInDqd6N+NQ1u1Br7ZemGi9WpC80Yyx U49rfAdI+zMH7nEqNOOUe1xk5Ewvhq7cf1hf3oR1HRO6VaJ9EN+4kTerpRF2 H13U6rf0YUiKePk+tBFldv8UW6T6UCRnvebB5Ua4LF+7tU+uDylqXwSO/2pA t7zC/JRaH1Rsj4q0ijRg32L+5OyJPvA7D77PpNbjeeVx+rwuiR88Env/pR7H LI0blxuT/l/VbrmoVI+gnUNlXBZ9aAp1+KjBWY/JWZvc1RdJ/5/WbZVurMOH F26fNtzog1WO+fYpqzrMnVseKuZI4tJ/cS0766Av6Rsg8V8fIute1fcN1eLz hKD3djeSj8eaYi7/WizLCXff9bAPHgovMxSUanFluMgAb/rAWv7Yi/6zGrtU Vy5dzSP1o29t1rhWiZSELzu6ikg+d/oFffkqoSCob6BdQdZHV5un7VsFjo2E xOxq7gPbT/E5a44K6L2U0WEN9yFAs6n50ccytPxqcL44Tso3Hquq1SqDsZVT RMs0KZ+KK1zHKoXV/vzpjEXSX8jDL///350eZrVx+7J+pNh9//idUYLrnCuO v13ZD3FV45D9L0sw6fD5JtfqfjiuL/VzVyjB7e5TIXcF+tE0KvektLcYv9Rm isc29GNotvSP9rNiuCcGfzff1A8Ph7Xpp68Ug03o6Pp6SdLfmKXtWdViPH44 qKwsTepfTpQw31QMrtFHNsm7+xEwON9lNV+El2ekX4vv74eV2YmAq+1FCN52 i7FMuR+s09SlWy+LkHMrcJ/vddK/Ttht9BZCufeQxd+b/WBTVaScfFOIEo3+ JzedSfnBltPndApRs2F7t/5D0p8E1277vAL0FWQ9XB/UD5XfTiPvQ/NhtcPi s/f7fhSN852LNcwHI4Ct9fcH0h/1c1kqTz5sF2IWbT6R+p0a+wtK8zBprb29 J4HMp37wY5V7Hm7XT5zWSelHZIkbf9v+PPw++Ppu/jfSPnv9w8HvubgXeTB6 dx7J52vKxFh0Lti4e+siikh/FS8HDsTn4rHTw19rKkj9yoNBP2tzsap/q7hn LVmfykGdb1O5EEixc7LuIPlX781RUMyD1LklEelx0r6u/c3+ijyciJK4lrph ACotm7T30vOhEMK3vUJsAB6H9o6+WlEAcb8/9B4JUv5B49nM9gIs3G2/xCE7 gCK7G9Xp1wsw4lAiIbKX1G99cF3wRQHariQP7T44ALYjr1f9l1iArwbPLI1V SPuVOdoHpwrw/oTLJrvjpL193WgwfyG8laz7PE4OYKht8NnvvYVw2q8fGnSa 1D/6Y6eJYSGsdiqZJRgNwOojZ022cyFObZERIUzJeFyitiLBhTiyfkNXqyUZ z2E3t1tWIbbzcLxlWpPYpxCM0UKsY58++9eG9Kd30ZACAmy/+wUFbpL2ghzX +oMIjI/XtG53InFPrFv3dwIVXTEG+vdJ/f2/mpg6RbibYnIq+hUZnzg6N/S7 CIMXijS0cwfg2lmh2Xy6BHVnvy63JAYQcCREv9GtBNk670tul5H64dfN6j+V 4LWis0pYwwAcrXlvVv8pwfE10semqCSeMggqjivFvhXr/yxnkvHPbP1AtJRi 8x/2XOGJAYR8m40v+FuKueFeRbXfpNz9bX6OYRkYfVW/zi2S8gGbiqwH5H1t +fbtBvsgHFWPNH37XIbCqihnD85BBMTw9KS3leFLof/+IJ5BRM7PKr1iliEk 497MZ/5BiBN3Jjtmy/A44Xpq4fpBND1eiBBjL4dlsPoe5pZBePCzscWLlGPt zd8yRxUGyT7nKSk8WY47my5IUiwGUWQkoTmeWI5L+vLn+i6S9v0FGrPZ5dB7 xP688+ogWFfN1BfLyrF9NHq63pHkc/eNCm9/OdoymEW5jweRErHiqOzqChSN 5Mx+ezYIeemowwoiFfgi+kI61W8QWqnKh45tq4CXx+6AuJBBZJfeOaCrVIGb 6UulUeGD4D8lqGCkXQHT4cbf4VGD0O9I2WdxtgIaIh93vYsj871wau/lixWQ 1719ITCR5Msc3WNnXwGxh+pv/FMH0fVu97MnMhVYmSZY+TyTrMdBva8ne8sx sCFLzrOI5HfT/2fbsXL40v78tW8bxNDgWu/Rf6Vguj0JO7FI+i8RihPwLsbY uV02H9mGkGKpWNt5sBhWrHXLtiwn97YF46mwkSLobGUcEOUaQsD+d4o7tIsg +expOL8AucdpKwbcES5Ek1Gd3d9tpJxPtaVaKgey42d5Ok8NQfzTYrBnZTKy jXSJ5/qk/qrTX419kqBeoOakbDiEIYePpbu1v8LMb0/vJ5Mh8r5osrprEvBM ftUXZ+sheDT5a+9r+IRh5/yTAndJPHd8rvzzW9zuT1sqdydx6ZjU7V1B+Hv8 c9rdByQ+qdW94cdrCG4IFqU8GgKb+rYL4nIvoZ7jMJbsR+J94Y7L791B5F/J 56diSFxoGXRU8ikhe1VEmT2OxDaCUH/wgshqWDOT8ZnEa2uYJ3v8iYYPi6Zi yWQ9UkU379YOJP6qduz8nkPKV3rfOsYeTvgk1PVH5JP8e600VfZ8IATXlb46 Q5B8usNXRyVFErL05PmcsiFYJblSP/VFEdm6sV/tK0ksMlwX9yOaUP8WdlGi htR/ZJj1mfsT0bDpzfr2OrJ+k0Ufv0jEEmbez6p9Gkn9JvaCI79jieHJh/eP tZDx9h+9/Iojjrhl7LKX1UbaBzvzMNfGET7S1u+Me0j5+RHTINk4IrPm2PXt DNJ+rO7X1MU4Yt0aFlfZAumfM0T+U10c0VLw/Kn2XzKfvK15G7rjiNd22zgb /5Hn45h8/DkjjhCoMVvew0GBSl+FmcMSqe/60/PCSgrEX51hULjjidc7AtgY q0h8YsDBaEM8IfCk/O8UHwVDqT8fH5aPJ1r2W937by2FrK/nmsRjpD51YWFh HYk3rX6/WTueOPMq6K6HEAVWrSFSr87GE2tV5OdWiFBQ5COVvPxSPNE0WePy YiMFHkoph11uxhMB4Vd+8m8m5T+OljHd4gl9XTbnYHESx1fqmT+NJ/j/vJ/Z uJXkK5LP/96YtP984NbHbaT/XglXK5J/gEnT1HZpCiIjng5u/xRHrMlcMbF3 N+lfyjApfSaW4LvlOHJCkeS3d0yn/uUngnfkeJ+TDql/QvgpW1kUURc0ZDZ/ isyX58FkhW0U4avh3v1An5TX086+XBtF8ESldDw7S/ozTJYSvfCR4D6/sfnD BRIX+j6+NvuBqOHJPL3tEulfw8RwVvUD8TxXvyHhMolrtkp6+kcQq4S9a79d J/U7con3MuFEVYX4yaN2pPy8t98O1zDC57+8qqKbZH4Ug/MZ5aGEltS5E5q3 SPnVTbKq60IJrlZWea0TKZ9gLtRbvSeqPF9oGLiQ8n+mT8z1Iwgf+e2lHa5k vbx1mpXqPhIr/cyLKPdJ+VufyfOCcQSndkXu76ek3MxT8HRLCsFBhCZvDaOg 6e4fPf9LeUTPMQ2twQgKAorD9Mab8onk3PGh9x8pYHEp62mjkDDLVBIQiKOA nD2x7H5FROrXQWe2tP/Xf1lsnm0p4b3LZ3V+BgVdD1q3jUmUERaf5WPvZFGQ LRnzSbi7jOD65Nk5mU/mb3v8038nKogBSRnHBIICGz6hbTFLFUR6ZAvX1RIK +NOGY1q+VRI+m90/SpRT4HM2S4rdvoqwDNt6pL+S5Gc/G/97XzWhIFrXElJD +hfw21KzpYZYFeJ8w6ie9Je1IziMt5bIeFMeVttCARe7+SPV4TqC58W1fzn9 FPjWDCWV6zYR2Xe/lAX/oEDM8sSzNWxthN9vw/NnflEQJh9Y5urSRlj/t/hz 9TwFc8so/yjjbWT/nNrxZImCtjg3l4zuduKKzdQzp1VUVE1/tTZN7yQEjPef 1t9ChcLYgbAGu17ihkJe9yodKtS/bymx9aIQRU3tidmnqLD9pMu3ppBCrLdn PbymT8WzC3fN0ucpBPFp2/bys1QQrS0zfxyphKCayryTCRWdL/8pRyZSiesD ZnWS5lT8OSH7QoNJJdZtCLjtYUXF9vwnW19eoBE26QnH91hToeuS5rA3lEYU nC4XHrhChY38YF57B40QGB/87mtDhdMYD5ebAJ245rNQePQGFX4xh4w269GJ fKn1r8fsqdjq4jun7E4n1hbvufLOkQpmZlC/zDs6cfX8yUNaTlQU/o4oEcqi E3nzl3l+/0dF0KH4uGXtdII/+OHAJ1cqrt5N9Z2coRNX9r1PNXKnYltu7q0e fgax5kajcZoHFfVH64+m6TII677DMfYvqBDCTOPFMgbBQ/Ap0SOp+Hj82FxR +jBhZb6T/000FS7ex/sTm4eJb7/VaaqxVByv1CsJmRomLsjfffbhCxVDWhd9 HXeNEBl1byz0kqjIeGZ7y0J7hFh1PWnP3xQqPGuczmldGyHSP9LazTKpkNX1 FhePHiG4lJfiV+VQMevrv4K3eIQ43yN8LzuPiqb6kLHfAyNEmsv+09cKqfjE F9VIWxwhVq7TkxQqpiLl5MDtEF4mYZFs87OslIrnVJ01XoJMIlXnUZVTBRWO bjlfbogxCfPH2Teba6nYlxBIV5ZlEiniraoeDWS+ass8pRWYxIqCCcE9zVSM dTtsEjjGJJJ/Sub5dlDxbZXOOYYOk1h+7eVKLQoVStfZq17cYBJftC9FFv6i QkP65peuBCahICuhjHkqOKSPsR1JYxKFfEO9xB8qGndwnw3NYRJNrec3FLPR oL4jdul8FZMwzRT7prqcBt4dzoZEI5OghvSeKVlBQ/l2tXjxTiYxe97Ur5Sb BtXtAwY0BpO4ryIsq7GahqltibEaE0yCc2tnddkaGvK3uf35NMskAlYEXzsu QMMZkyYb3QUmIcI0WlEhSIPezzCBI0wmEVWzLlpzAw2mr6/n7+hgErJfW1Qq RWgw2XPw6voyJqF8W/9e1WYaDK435rA+MIlKozWi2hI0XOQMsx54yST0FRuy qreS/qJtVte5M4lLizo/aqRpuNLPfjHOmEk89T5hW7+PBgsDBS7LNWS+75VN WjRpcDj87lztgxHC9P7fn2e0abDpuMKWYzdCUC/kv2nVoeG2076EWLMRYlbq SGObPg13v9b+9Tw4QogkH9DsNCP1JZZiDk0OE5dKZRX6btLgr+J7Jfj4MPH9 0/dmi1s07D4/ec9j9zDh7JPg0O9EQ8Vd/UDb9cPE01PSXwZcaeBOFyxVZjCI xM6tkhQvGny3hYuPPGYQP7+L8g8H05DEndSrWEYnAsNHKsPe0aC5o+KQSAKd 2H8646FhGA3t6gNBC/504lbaqamijzSw3efTLzAn79dl0bg7MTQEv9v+NUKV TiSvH7GUi6NhR6Yyt8cOOjHh6tEQmkiD8dTNMrUfNMJX5pT3mWQahnmeSkh1 04hdfSLKq9JocJX+8GAFQSNqXg7/JDJoWHc8q3c4hkZcR/pXlywaoi82Hqp6 TiO4ph9e2Z1Lw5LggSaPuzQiLkp3Ez2fBobVKZevNjSCsWLY16CEhpS5+yWc J2jE46w0Da5yMl+NYJv9B2nE1usPFwsraXAJSOKz2kYjLtYJ28nW03BEetAs ZzmN6H+to7Oyi4ZKY5UfN4qoRPuW1FUFEzSMZS6Taj5MJZyb7xc7sWhoWbax 5q80+b17dPKuzA8a0vT2O8oIUwmDYRrz7RwN94at8x/9ohCstymRen9osNx3 71IKg0L4a983WbFEg9qDQK7+NgpRnyhUdXs5HRxC5UYH0ymEnSXt4U5OOmYv 9i9ciqIQPPwpikNcdHR9/Rnp/4pCJBTfmwrmoSNBKDbz5GsKoe2kHXeKj471 DhadaXEUgikldIFjLR0PKwXmRAsoxNMOqlDeOjooW6qFH7VQiPLD97ylRejI bzpgZviXQlz+rqU8uJGOfTvH3fIEqMTy8PW/gjbT8dozKnQrmZ8qW/KV5VJ0 3Ni3pv/HGSpRUEHRGJCjgz+QeSEwnkp8MzyxPFCDDmPj0CvthjTCRyf7idgJ Osr0+Fc0X6MRFuo7uT5p03FU80lMnTuNWLafZ3WmHh0iBxxopdE0ol3mnr+y AR3esnQvIotGxEtOrK00pGNiq6lkXi2N0BNoFOoyoaNEQP1iGtk/Etwq76zM 6djLnc2WtJJOzLKnbhw9T8ffR88NoyXoRNW8RMQtKzrqxGODhLToROj0a/GF S2Q9Coo7n92kEzdHl0d7XaFDxqxf5G8gnVCjOG/jsaGD+WvO3DGPTjCbzsmI 2dOhJi8/dI6LQeRVVSbGONAxUqcjWSPHIPyKDu3ZfZuOkOvXLiudZRAKKaIK ynfoYEVFMLdGMQhP/wElK086ktevnmYdHSZE9a4axATRse3PKPsLhxFi4nhn q2wIHW1vV2gsBY0QRUpa5769p+OxgoT3rfwR4upuGfOKD6Tc3oTbZBWTOLwt tF8vio633M66tXuYBO8mXqvOGDrk4/z9lM8xiXTeycvMz3R8HKoQ2BbNJLw5 Low4JtKhf59qFFLNJMwWG6/PJ9GxWnQpmIfFJHbPqox7ptIh+P2oc9SyUYJt PPUmdwYddr1bxKa5R4lWmuT060yy32qXl2HdKBHb+8ZpYw4du/NHbvhtHCV0 a/9zlS2kYyEsOW+X7CixpXR4IaOIDquXb6zdFEaJmVzj+0qldKTdv8NTfWyU eJdw2Euvio6bljC/emqUGH7294VjCx1DWxoXIm+OEg+1nnzIGKZjIGrysFDq KNFiaWMhP0qHi/iff0dyRgmp/3REEr/TMRe+suJC8ShR83Htm2gWHSveiZ/5 3DxKiGXPnt7yg44HQruFG7pHCYeGTt7Qn3RsCDw8MEMZJQT/hHu/XqBjp/8Z 22Mzo8TVtZ7qfH/pyOa9IH9xYZTI2XGZ7fk/Og49v/HrybIxglf5RMGKZQyU rXTNT+AeIyyNZNw8ORiQ8dN9xk/iFNvVin85GWjYu1ydwTlGLPdk/XBdxcCJ 9pzFnOVjRPzXTHtHPgZMxXY4Wv8dJRZK38mM8zPQQfTvPETGO9Vzb+TaOgau WQfSeH+T9eJUv3hBmAHPBHbjTNYoccyq0UhPkoGYQ31Kq+ijRJMA86jsQQZG jV7xJNeMEpI7a+fiDjFwb+5E+aPKUeI/JH3bepSBNWFLD0zKRglRO+c9G1UY WEW7McNeOErYeRmPB6sx8M5bMrEjd5QgQo58FjjOgKxM95UvWaPE5XK2rdwn GdC6pdltRNY/s5c2+ESXgVLBv693Jo0Sq2YqwthPM6Cena67lDBKWHAlmN43 IPMxt+VsjRslkja/FJo3ZMDon3hRXAzZTwccW53PMeA/GR4aETtKGOoYBrBM GLAeM9atJ/3FXjx4ys6cAbnhtX//ZI4Sc3dEuJnnGVik1H6VIUaJk36LFdZW DNT2P7E0JfMLjxl8NHiJgcRurPFpHCXUmj/97bjGgEpzuiNjcJScJ/umy2+R +RWF7o9kGyMk+k92RT9hYM+HGznr1caI5yVHk8/6kPUeik78dXKMmImT9V75 goF4ib4PnYZjRMltPoUbAQxsj9H1fndljJAx+ce96Q0DNxmP77rdHCPeKLEo DUEMRG0vsDO/M0Zc5mrx3xfKgNTn3Yabno0RdRMlV+nh5HmPXdFcejVGHGhN VwqOZCB2V8ThwfdjRER2jKBWNAMUuw7ZougxgjMi6Pv8JwbEk/jEPyaOETcf eZd8iWdA7G7hrlfZY0SnzZ13578wINpdMH29cYxQ0bNxXJPEwNrDBVlqw2R/ 7Tc9UZzCwHxI/v2Nf8cIfpGTm53SGWDM5anPrvtO3F068lMqk4Eek7xV9TLf iZPVYtE+eQxUCOcGPTD5Tny3HFo6XcFAYEjWV0r6d0Lu+bXMgV6ST0haf5zt OBHsYPIyYIA8j9+p0R6e48Q/I+3LahQGZo1Tr5uGjBNNW3YJxA4z/lexdcdT /b1xSSkZmUkiijJTKTNPSSWpKC0rqy0iyrciMw0t2WmIVEISkeKxQkP2yMq6 +34+l2uVjN/n9+fzOp/zPO91OOePC0NLcsZEqrjok0+eOzdM5TU+S8xLhcC8 Xn+1qfl0SIgZX91CI9DYIDxm6Xo6mBtFOhaE8bDVbemmx/p02NMSzPn1iIcX 7ma3rTCgg6/P5ctT73mYSWtXWGNKh8uvzyVsHeShUoxOyqYddGgW1WQfVx1C weHWrAP2dOr/k+fn0YtD+D1Do/pOKB3kKz+uM5UaxlOtJackI+iwJUH89dCy YRQStBOJjaTDaU/3FS/UhtHsaNCe5Cg6lMiISYgbDWOOcFNTRhwdnI+7cH8f G8YYj6u91Rl0sN7OdS58OYx69yVDd2fRwSzqjvGCnGGs/ZS+su4tHbSbdOWO FA7jfOmGE615dNBy9amdqBnGgDI1YrCEDsKB4yYG7GF0VKr7O6eJDt/yBJZ+ 0Oaj+FLf/E8tdOjTXt9QuJGPZdKyPv7tdBhMc7/5yYyP6gsdmMxuOszGVP0t teFj+9yZ1Oe9dFgg9uddxVE+3pp5dsxxgA4iERpnqtz4yBuht9YxKTz+UR3f /fj4nLwZfZNDB32iOPpnIB/tWNp7t5F02HacZ9VwnY/zB+sWTg/RYX/3irnN 9/hY2OP75cMIHVpD/wXtiefjmV+yIefHKf5MVaGfiXxc3lxoqvmXDgV7rG7u TeZj6NeZ949n6PBcPvHhvhQ+6lemeB+ewwCloFL5+lQ+MkostCSFGHB9gPHY Jp2P1nm3nocvZMCp7E2vbN/wUfap3IOzMgzQs2j+fCCfj6/8dL2MNBlQ4y1B P/yVj/beDRoj2gzQbdl0tv07H8XO+NEy1zIg3dh56MhPPvoeK3JcsZHqPy9r 8mgTH1fZO8l3GDCAPNN8raOFj612As0PjRlwuv6fkEM7H02sduwW3sIA20dW Eo7dfCQtWPPLzBlQKeAb0/Wbj88gqvzydgrPicSlTv183G+8NkjfkgH80XG3 1C4+Cm1sNCKtGHB1RUNrCdX/w1r/sZd7GCBi/caqg8JzWlP+nasNA+IuRZSM VfPxp7LzmpaDDHjx0yhdu4iPwQpzBu8eYYDxpLSC5Xs+bpBNe2rpwIByNfKO eyYfE0TYcp9dGNB59bl/0hM+uo35z0s9y4B/mou2Lwjj49i3O/3nQxhwJLJr YGA3H7sWtZyaCmNAbE/LBr/tfCy3VuRFXmfAz411YULAx/s/M/49uc2AnYNl K9XW8/GiBD9E8y4D7pt8upCvxUcnG6MFH+4zoCo6r2K7Gh8tHgTf3fqQAQLs LOlWJT5qNlbL1MYywGjrS/cT8nxcLC3x6EgCAwITnr0fl+TjxIFDKoNJDDgr cbVAch4fe2Iev/R+zAAn4R3p9yeGsbJlUOffU4rvrESsBJV/519zdmpkMGCg x8BmUd4wWijsqs3LZEBD6xy4lT6MWg73D2x5y4Dcn991FiYO458uJZfDeQyI Kjm2SDhoGKN7Tf6LKGGA9pPIKkHLYaxi+L/pa2TARac208nOIcxcU7zuXAsD zhxM0frv5xA+PC1U+KeNAUf3nFX4UzqELpzoSoluKp+bZyfGXgzhDu0Oq0e/ GSC88SvdL2EIdc6pNKj3U/nRftgycmsIJ8m33ZsZlD6Kq98Pew9h79oJ968s BuTJDKecdxvC6vNmbDsuA5wNLuxTPjSE2e8izveSVB40p9fG7h7CGP6P8bPD lL+KkYsXbR3CteMsiaR/DHjEyI7ulxtCOYN1cWozDLDsMLxwRHQIpy4FKL4T YIJQbfmBn3OG8Nvf+Ro185gw5JGl4feLhx7TK83HJZgQOTmlszKChwlCzn77 VzFhTC15U0gXiTPuSzY2qDNBxrsYW6tJ9KioH9unwQTrwh5L7fck6oVuu7RH lwlxVioObTdJjOubMvihx4TGh+aD2v4kTm358MdqAxMGu9zPhbqQWDO75rKl IRMsvdOv6RiQqHus37jamAnBhdULwlRJjCl59G/7Ziakz2E9aBcjcXL5wc+V wIQYPb6yvAiJLoHigdvMmTAlkH93pTiJVV3Vm8stmHCq4dK0rhSJ2qYhM1t2 MqEzxdjTWI7EicmRa2bWTCg3L91lq0Sio33WluK9TFCRDit0pOaVfzwxx9SW Cc8Htq8+pU7i3YBfoUaHmBAa/l3omi6J6uMlEfouTNhZ1YqZZiQeGr55W9OP CbiL2LjgGImfbbZZv77IBB2FnDRpdxJVc6ZE1/zHhGi2r7TySRJJL++7akFM 8Lr9Z2ijN4l2P9fsSwtmQq/Dp2NbL5BYpNMvsTKMCS7aQT+tL5EYwbV7sOIG E4xr52a6XyORvVt8/9NbTEh7XKXgHUaizZtqKaU7TBD3unnzciSJH0RCmpLv MSHczPpPxG0SFc8YxyyLZsL7mU0fJx6Q1N/TEbukGCZ8muq/+ySJROaaLNml 8Uy4P3nXY3sqiXkM5Xi5ZCbcGqdLPMwjUWHnr8OxT5gQNRpNMyomMTg9Wl4m hQn3+Gafer+QaH18XpJkOhNukHEndNtIHOxnJ4vmMMGGvqP4618SpXvynwtW UnlpTT8jADy8KxoYWFDFhAzH4HY3Sx6KmFgc8fzKhPUDR3d8seWhYEKjWOtP JpwYElW95cHDoKpE5q0GJghfot/jnuPh5KhLBTQzIXEap/de4iHflhfw+hcT fopc+CV9i4dewR8OOHcxwfOB9c6LD3nIzg7Ulf7NhJkl6vntyTw80W2xsKaP CfFPZlVN0nnYt0h08OogEzzu8Dq+vuSho3FTyToGEz54tIddSOJh+6mkRDqL CcqmZdrL7/Cw/suafTY8Ks/s6KDzvjy0HuVpzOMzYUf5ldUKx3lYo1ogVDTK hKBEj/qKwzzEa9uLVk4ywcpyk+qSzTzMNnJTmxBiQd6LX1+KhXkYlfXo32MF FuS4rBBb9JjEBV1urfuXs2Ch4cIPefdIDBfRfCe8ggVeEnxn51ASr5wsPOGj xgLdkoqcd1SexmOvbVVfw4K7sZlHHexJ9K3codipyYIez1jBeXtIPKPS0mCh x4Iny07aHVlPIn1fcubf9SyQGNk3PUeNRLcg98jsjSw48s0w/c0SEnsyNd3c DVlgZDEnvpc6T0c7h03lTVhQI5O24rwwic0LPy6p3cyCg7QdGbOzBNoYBvND trCgI5+14d4fAi1jxV9xtrNg5tDandksAisrWkKfWbIganVj/eZ+Arfwk50O 7maB3B8/+9oOAg32aUmjDQvME4vOcb8T1H3EMijagfq+c3uMZjaB8wJD7Ix8 WDB1zLEv3Ze67w1z/+IFFrhIP/TKP0ugx4kjT3dcZEFz1dd/FR7UvH1r2Qeu sKBUx0Cu7xCBfpVJ9zoCWaDXdy6Vt4/AVUbzN7oGsyA7Jk1vxpLA5iyfDkYo hceys1jUnMBw1e5rXhEsiPsnuXuZCYH68ZZqY5EsEHxr2a6hT+DgorxvV26x IOTsmU2+GwiMCVY+L3iHmjeoLnfZgECLsVuyN++xgOE0MBZC7R89PV4kEc0C gbanLTeBwLQeV5e4GBYo2jjmP9hGoFCN4ZvURMpf8xa/lN0UP9M0G81kiv+n B3avKbwe7yTGc55Q/fX36r87QPFLom8pSWXBP/XqkVIHAsPOxbS2Z7EgcdFH 315KD0HpoTni5Sz41px8XjmKwNxIh5cxlSwY3XPUZvV9At2mqqyXVbNAq1pW b20MgeW0x/FrfrDg0Me7PLNkAn3tF25++5MFV9fvrtvxjEDVOr/+jQ0sKHwj /HZvGoGhhbt1trWyYPJxsJdzJoHrdQoav7azQGnJ5r0ncgjsT1ENsOlkgc39 vzpeeQRGy91d3tbNgkHcU6SSS6D57b/lTr0Uv/O19w5S/vJnPU4N9rNAU2XP 8ZsZBD73qxc7S6P4NvwwLk4ncI7zyyMBbBaIbPhBW/WUwJxGqZkZLgteDez+ dOQRgS47g1IjeCzYFvP9flQ8gaV6B8noURaEjn0zGb1HYPDcueFZM1R+Cr4+ qAgmUOC189t+KTZMm1ZvdnMjsIrb5vVUlg2JOmrFFs4ERunZ6jrKs2GHUpjp ansClxRuy2pZzoZbs2YmXFsCu/599oxewQb1oeSin3sovLBJe99KNnzonTR6 t4tA3eo1b2rWsGGy7IPhxa2U/yLPz0RoseFhrkzhkc0EFu1dpmmuy4YNqb4G JkYUvugY1oweG54NBUZepNa3t4q9/rSBDTPDucqZVB5FFCJPBWxig8cIo6Bv J4H1TgJrNhqx4ceoos0Sar4jjZ+ebcaGqInrwaGHKb80PE+c3cqGjj+f5Asd CWR60tTWWLDBYnIoh3Al8MJoW1rKLjbITNv3HfEk8Nbc4ucxdmy4L7jWfG0I gR9VIp9cPkPxFWub20X5EXRcwNngHBv44qLJkpS/Fq//Wz7qzYb9i7fq78yn 8Oh5Jp/zZ4Oq9BuPXCQwzo/moBnAhnCZ3ilGJYWv0HkZ4zIb6LKyscu/Ufim 2jpSA9lgvsRK50AdhQ9sk1yC2fBa/tqXG80EZod9O7o8jA1qWQfrrtVT57d6 29KOCDYkPTjn21BNve8WFbfH3WCD3MUI2ZXUvNm9mxIO3GbDE/vHhX4fCJRz Xha3I44Nedwpi08PKb9SYg7OTWSDSYMMU/Q25RdNTLb0EbWer33bOZSg7mMC MUYpbHgf5Ngwx4fid5X2QDuTDbWLPztZ7qX0L3W2ZWWzYdtYk0DSdorv3PbF 6e/Y8O0XJ5VjSqDD7W/3lAvY0Pt8GfuuFnV+kt7ekSpnA1P/ysWWBQQWTCVF lleyIf9OTtI+AQKnnK+H+FazIZhOK/k6wUXzMp8rqt/YYAjLBrbxuBi50sm/ 8QcblBJshEvoXPwRYekdWseG5qEILcMeLkoxN5xe38iGtF2f9uW2cPGwlbJ7 fzMb9sq9sFtAvY+TM0WcotsovQ63DFemc7FPfPyQeQcbaAnz7oVEclHdp8+G 38WG3R0btc1OcTFnY6HF/n5q3THuRIEGF7+UHNeWItig5Xa483UmB0VUbNXL eWxwT40MOHGHgzZhpit8+ZRegwWyK7042LFTWqZxgg1nT8rbJK/lIFlf+u+B IAeyPH9V3s1lo/zAsu+S8hyQveSQfaGQhU7bhb+UKXDgYuHt3XqJLHz+kl/i s5wDX/5+YnL/Y6G259fcBlUOBFxVXHnChIVbxy4mPdDhQPPDMFuTWiaeEW48 LbmNAzPlBsf3CzLx7eli97LtHKixzN45xmTg6PdXTj6WHMj7uUozoY6B1+5f s23Yw4HjHZK87mQGxizVMXpwhAMtw5yA0wYM/HVFfsNWBw50XXJzEFVioFLP XJ1hJw6UT7dvfivEwFfPO1bY/v93NAurBMca6FisdWOBpBcHFqg8iwr2pOOm 5iW10ec54D4QFNVmR8ecqy8fyFzgQMcLpyjdzXTUUDM4FOdP8TllGhWhRsfn tVUK8gEcGNBcFtUlRkfFi4d+J17mgNNyY9nhWRrGKtFTlwVyANX356+javFq /1OPr3HAUO/MQd8ZGt7wnqejHMqBdKPQsdxpGs6Rjx1+Fs4BpW1JsSNTNLxc uuqDaiQHrlvnbtSn6nOSFqAexQH7Y/3++ZM03P8+1FYnjgOj4ebjBRM0/O4g Jfc2gQP779rH/RmnoYXQ8w69Rxz4Ee+7yYiqDQ6Wues/40BSxvOLRaM0VJyY 9TfJ4IBlveDE52Eaxj29Z1ycyYF3vxTip4doKGGpPGv2lgMKA+sNzKhaMNHs hnkepceY2yUkacgwDkzaVUL1W1YxUcahocuA6LHvpRyYXNUZL0jVHbeTV+6p oPDqjhhsY9PwgL428+cXDtQbLGoPY9HwR9enTJsaDvVeXBlQyaThjojdPo3f OJBpZSI/j6pRp3OjXS0HMkZSe4Ko2rD1zGRLHQdOD+7lZlH9coMmSw43cmB9 y9+/XVwaaq2+FfarmQOzX9KERXk0TKtbaunQxoHiD/tkTSh+8SuMGpy7OLA3 4YVe4hgNr5ZfGjhO54CVg+3Jg5QfY2eEXzGYlP7WU37hAnT0ko73PM2h8mT6 MvS9IB1dPT6MeQ5xwE9p+rGkMB13zB8T9puk8tT3qrlWgo6l2eE/xqY4YN14 oH9Kko5Gh2UeXJrlgEzFDE9Lho7arzYoXBHiwts0u0W35OkoaeWrHSrOhbyT AuY7VOj4rExikbEkF5Z+eHk+bSUd9YyyWMPSXLgutO+poDodMceq5rUcFxr3 j9e6rKHj3jXMdNelXLBPeTxVoknH7qcREUsVufCMZ6G1XIeOnktWejQocUHI jHv0ylo6/rtban5ThQumGYsOKWvR8dZ8Z5Wtq7iQwFjkvI7qvzTo3+wfdS5M rBI9sY3C82osoSdHgwsH3ES9DirSsXqw6dGKtVyQ7BYN+k+KjkIVu+QEjLkQ 1Cj2pIzS76ExY7TAlAtNEuLpTX9pqJob3uQNXNizRzybRuVtSwre/23Bhfpq 8ZKFVD4Cr21chPu4cKhYose2jYaiE42si/u58HJSgu7eSMNkr/M1uge5IGa4 mPSvpWGR05uIJ/ZcqMhdPJNYQcNxExWBoONc0HglqdT/loYR70t6Np7iQhpN Un00g4YyWo7FxBkujKtK6c5Pp/Lw/O+jF+e4sNVFapN8Cg03KMRfdjrPhdTH UmaayTQsf6B/VPYCF9rSlzRzE6jztbDRoNafC9ZaazzD4mnYF+wtFxHAhaK3 hkIKcTQ8/0d0zPQKF5bo70rOiaHhrHdG02ggF24UHtXf+ZCGdxk7czODubBg 85kf3Q9omNka6q14nQvt229PidyjISvvD+vffS5EH651PH6ThgHacTXvH3KB 19k9+i+ShgvSNrw8G8eFoy5kVPR1Gqo/9PLofMSFw6clijGMhm4+gz1F6VwY uWy7XCGIhsPMkGLf11zwnHXNz7lKw2AX5WTNTC70hfnu2XmFhk/32R9NeseF x1EPA/0CaNT9ZsJgfx4X1kumyS66RMMSs1g5kQIuXI3Ny0rxp2GXTn3Tf5+5 4PukpfunL7WfIxk4F7lw90GMf6APNf/1AfU7ZVyoCz8gpn2ewncytk6ukgvz AqRedHhR/Fa1BTyr4oKDdcqH/aco/v3yqppfuSA4YdOU70Lp98z++/vvFJ4U gSH5o5Sfy3qWV9dzYXb8mMbvXZTfv5SrbZooP1MkdpibU3mJdz3f0ULxt0a3 F8Y0FJKmlRMdXMhMUUo+q0VDSRHuSRkaF5ysu8X/iNKwuVpH8gmDC9ITUVoO 82iYEOFdtJpN5SfF1LJkehCV5oyImvC4ID/xKCScHETtP3/fuf7lQmmK/eji +kHk5Zs4cP5xwdlaRNKvZhBzLwQK+c9wQW7io05b6SAa8QQO35hLUPOWnnz8 bhB30IWnssUIEJpo+6XxcBAXpu16YbiYgJaUyPGo24P4w/X23nIpAi5aG0gP hQ3ifeXaid2yBIWPvvbA1UE80C2e0rKEAA6HF6NyfhDlHtlYHVMgYL7TpX+N Bwax40j0CFORgJHaGddwg0F0aZbdMaVCgEaO2FrGzACuij7Mi1hFgJJKbGxC /wAy9iUmSKwmwDRacWpX1QB6fVfkqGoTsMNP62vmnQG8Ur7y/q5NBPgY7nL3 VRxAs+DjRk2GBNx4Xf91pcAACpq97Hc0IeC5whG9loF+vPFRc+P5LQRkTp2Y NnjTj3E56zrirAjoKA2Pnzbqx6NeF8JW7CFgYJ3oTPbyflTUztfO2EcA6/lD D5c5/Zj60vBasR0BghHP11XU9GHOE1g16EzA4V2l328c7sORyyPCrq4EnMi2 elVj0oebDr/kdLsTECrdEr5gRR8GbHCosz9BzQ845mop1IefJCTet50ioKKb tfkGsxdnOOVxdmcJuGW0q3S8sRe31Fy83HCOgKM7M4pHynuxKrhn63dfAvTd PQuJ5724wClazdKfAHmf2nx2dC/uNtqx8MslAoaDdN8zQnuxfjirvuQqAb1J Q1l9br3Y6RZ4LPc6Ad6Nfqktqr2oBOu2rb1JgE1vy7NGqV50WUZTz7xNwBZy 05M6wV6kN1mTL+4TMCnNX/fwy28cslAMTEwiYE3YpOKV7b9xg0q9i9xjAhSe fl7ir/YbL06HWTx8SkB9UZCU97zf+C+fs+hOGtWPL7jA/UsPzl/9KSk4m4An rotGrLb34K653kHTOQT4BdYSFmo9GPVb1e3yewJ0E+8xzeb14M9Prdsn8glo zLMdMKR1o2TCLQ2/QgI+1Ev3rP/SjXZ+ZmLDRQTEcVvatV90Y5wNf+hcMQG5 Wld7793uxl/a6c1sJGBvWaV8alg3Ki60LzxZTkDlITHbD1e68RhNLHmwkgA9 7sGbXy904/Oysmuu1QS8CnlS1nW2G1df1tjp8IOA8My16+c6duN6zp+Wva0E JAvul7Yx7Ub/6syP39sJ0ExI2u2u342FqS6PLTsJyNMZCLuo3Y2bHWs8zHsJ uHzEbzRZsRsta+NHNrKpPGbHtbCmutDp7SbJ5TMEJNh3xocVd+EH+z/i9QIk nJD57z92XheKzy8SDZtLgvZPOQfbzC48+e6KyKb5JORF5pkWpnZhqePmBawF JFzful9J+VEXyi+YnZe8iITF/3izEdFd6PO+dO4+cZLS704f92YXfnMOnSMo ScIZ+TQpTlAXqopYzOZJk1B0Uqtu3KcLL+fPmz4pR4J5Qe5tweNd2ORSPamw lISY+caW4ke6MLzAajxYiYTzLyzL1My6kO5hS1hrkJDQf/y9nUgXmi2W5sxq keC4nvB2me7E+E/NzFxdEu6H+Gl7DnWipdSRQXl9EgxXhL0Ia+3EDHTuHDQj YdDpWXzu804UPLviV/xWEoyzVtuVxHaig1x/q5UFCblT2Yu/3ehE0XPHG3N2 keDxqPhmn1cneil4fr1qR0J9e8eVxSadWPVFp3rtYWr/GjdDRd1OVPbhVfYf JcH6Emt0tUonBii+K491JKGj6vy7DTKdWF/tW2p5jAQLuT/nQLgT11zQL/nn SkLJ8Wuauyc7MERp/FO2BwnNxXHXi+o6sONrwUfXkyTI6/YoY0oHrvf/r0Dm DAlBT9Q+VlzowFsrTPKrPUnqfXpuf832Dhz4PpV72ZuE+dfyOD+WdGCManB2 rx8JQi7blFo//cKJuusvMq+RYKbiGsac+wttrlimHgul+D54pUi0tOMrdZEU qQgSuHOG8odftqN94J3kgFskXO0PYk7ubsfPmjEPLWIpv9OS94jFtKFM68EH E/EkRMsM0iVPtOG5kCX3MpJI+BCuFSxn2IZK7Um3Fj+j9h8vylXuasXgiJSQ rgwS5Fa3L1m/qhXFLglbuWaRoDd9rXfX3xZMOnVOiv6WylvT6teuP1tQ3b6p 40wulceMOp//Ulvw/W6jVF4eCTbBl4wfBLTgls1Pz/oVkLBq7/RY1aoW/KE7 T//vRxJUK5Lrsa4Z6ZINlYJIgmhWZ8Q7tWb0nWtwJ7KMhB2qV1wy6ptwdjT5 oGgl1S9ewST1ShPKt5+iy34lYX/I0aGYhkbc/URggUYThfdgm31AYAO23ztR n9VCgum3ixt91jSgR8iPhPXtJBwBucVnmuoxyCNBw7SbhL0aB784aNRjjqbe 7n0Mys/JF8eCMmpRruDYXf9/JERZPV4oal+Dqa++HJqcJsFOv6tk+m016iVp KV8T4EGC0jI/3rxq/Hz7AWPuXB6sWWiv0edQhbsCJ97emMcDG35CT+O7L9jq 5RQgtoAHOVfFO7eKfUE3l4ot0SI8+PMtdkoiuhKvbrvX8EiCB56n0yDzUQUu 3DiWuEKKB1cLtFwvr6jAOHUHtxcyPFgg/D7U8kU5vl24eiR7KQ/0XpR9Gcwu w/66EpnylVT/iuJ443DELObyR+LWPHj24mXNzPIcvPE4wqVnLw96rR1e02Wz 0WM/oZZty4P7NifL6nhvUPHz55w9h3mweP+14ZTUl3jrnkNVlBsPXMZTHRJk nuGpTYnDIv/xQGAoeUD9kSdacAQKOq5QtUCp6krPLyXKz05dzQii6oeLGs/f 94TWhYbCVuFUvZBQEfSOgO3drYo37/FgyyuXmROCiaAaLmMpnE7huZjkufRH BswYXhVre0V9/3mn5sXYTPhFDDSmv6H0ExxjNDpnw/3D7512vONB+3CRyEhB Dsxq7r8Q8ZnSv/nZa8/Y99DVcO/J3CYeBCR6Mo7ZfITC6xPuTS08KJVS31ci XAQxJsc0Utup/bd+f1DEItj9QjfPvIfiH7j/+i+dz1AUUPs1hMWDmmOGagcW IcTpbLxny+XBjbbhqHflCD79yXYqPGr91cFJ4c2lsMba83fpKA/0VSTcToyW gtCc5rT7Ezw40s2JlbUpg958kzMukzzIS6z5WvmmDD6fSV2rN03l49CL6QvC 5RCvvGhsdpb6Xip03Ur3cvgf8Xkl3Q== "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.180264568325935, 1.1876919927208478`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Directive[ RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ RGBColor[0.455, 0.7, 0.21], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.578, 0.51, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.4, 0.64, 1.], AbsoluteThickness[2]], Directive[ RGBColor[1., 0.75, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.8, 0.4, 0.76], AbsoluteThickness[2]], Directive[ RGBColor[0.637, 0.65, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.948122948802953*^9, 3.9481229523201313`*^9}, 3.948122991046713*^9, 3.948123043040886*^9, 3.9481231497813797`*^9, { 3.9481233707957773`*^9, 3.9481233755350027`*^9}, {3.9481234527552223`*^9, 3.948123460843011*^9}, {3.9481241432934504`*^9, 3.948124176404828*^9}, { 3.948124394456109*^9, 3.948124419764196*^9}, 3.948124553867531*^9, { 3.948125561445524*^9, 3.9481255658787527`*^9}, 3.948126068714563*^9}, CellLabel-> "Out[586]=",ExpressionUUID->"521a4e94-9194-4b92-8425-fea48cd77c67"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"testini3", "=", RowBox[{"0", RowBox[{"RandomVariate", "[", RowBox[{ RowBox[{"NormalDistribution", "[", "]"}], ",", "100"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.948117958635509*^9, 3.948117961737759*^9}, 3.948118009196693*^9, {3.9481184224530888`*^9, 3.948118457550139*^9}, { 3.948118865567238*^9, 3.948118865622703*^9}, {3.948120671985375*^9, 3.948120674553061*^9}, {3.948121770190486*^9, 3.948121770270083*^9}, { 3.948121909348001*^9, 3.948121909579666*^9}, 3.948123161335349*^9, 3.948123403489081*^9, 3.948123730710327*^9, {3.9481242216662607`*^9, 3.948124242659664*^9}, {3.948124610153791*^9, 3.9481246102495747`*^9}, { 3.9481247696566477`*^9, 3.948124769703936*^9}}, CellLabel-> "In[587]:=",ExpressionUUID->"bed33f4f-46a0-47eb-8dc2-b968bd2f29f2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Norm", "[", RowBox[{"Total", "[", RowBox[{"Transpose", "[", RowBox[{ RowBox[{"dCost", "[", RowBox[{ RowBox[{"edgeBasis", "[", "1000", "]"}], ",", "testdat"}], "]"}], "@@", RowBox[{"(", RowBox[{"testresult3", "=", RowBox[{ RowBox[{"gradientDescent", "[", RowBox[{ RowBox[{"edgeBasis", "[", "1000", "]"}], ",", "testdat", ",", "10000"}], "]"}], "@@", "testini3"}]}], ")"}]}], "]"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.948116443805812*^9, 3.948116595874456*^9}, 3.94811663448494*^9, {3.948116675111467*^9, 3.94811669012147*^9}, { 3.9481170279593077`*^9, 3.948117034948435*^9}, {3.948117139185307*^9, 3.948117139416718*^9}, {3.948117619301654*^9, 3.948117644869664*^9}, { 3.948117701129861*^9, 3.948117725424323*^9}, 3.9481177976042557`*^9, { 3.948117949234351*^9, 3.948118005251853*^9}, {3.9481181222490892`*^9, 3.948118131658963*^9}, {3.948118183420438*^9, 3.948118183730976*^9}, { 3.948118290031867*^9, 3.948118300008397*^9}, {3.948118391012185*^9, 3.9481183956216516`*^9}, {3.9481184306853952`*^9, 3.948118480496229*^9}, { 3.9481187959571867`*^9, 3.948118869886958*^9}, {3.948118944962851*^9, 3.94811896683502*^9}, {3.948119010941477*^9, 3.948119011052844*^9}, { 3.948120502251251*^9, 3.9481205305715523`*^9}, {3.9481205627655373`*^9, 3.948120562876808*^9}, {3.948120655117876*^9, 3.9481206875217953`*^9}, { 3.948120734940549*^9, 3.948120735011962*^9}, {3.948121549534327*^9, 3.9481215880145884`*^9}, {3.948121688668117*^9, 3.948121689443036*^9}, { 3.948121772639497*^9, 3.948121793399719*^9}, {3.948121906717914*^9, 3.948121917803709*^9}, {3.948122065722803*^9, 3.9481220657861853`*^9}, { 3.94812220460056*^9, 3.9481222048319683`*^9}, {3.948122583297418*^9, 3.948122628001231*^9}, 3.948123178952187*^9, {3.9481232109706783`*^9, 3.948123211097036*^9}, {3.9481233858889837`*^9, 3.948123387480199*^9}, { 3.948123468637094*^9, 3.948123492652911*^9}, {3.948124607930203*^9, 3.948124614361999*^9}, {3.9481247097842627`*^9, 3.948124713278831*^9}, { 3.948124745287875*^9, 3.9481248469399137`*^9}, {3.9481249215669003`*^9, 3.948124921622423*^9}, {3.948126083625267*^9, 3.948126093733265*^9}}, CellLabel-> "In[588]:=",ExpressionUUID->"68019ef8-0ad0-4736-bcd3-369769400c1d"], Cell[BoxData["$Aborted"], "Output", CellChangeTimes->{ 3.948116920781104*^9, {3.948117036764943*^9, 3.948117051224715*^9}, { 3.948117143594776*^9, 3.948117150513681*^9}, 3.94811718447971*^9, 3.9481172182141438`*^9, {3.948117638498147*^9, 3.9481177376918983`*^9}, { 3.948117798579523*^9, 3.948117841103928*^9}, {3.948117941742052*^9, 3.94811801037414*^9}, {3.9481181194825706`*^9, 3.948118132143605*^9}, 3.948118184196604*^9, {3.9481182858143787`*^9, 3.948118292728421*^9}, 3.948118322966217*^9, {3.948118392460451*^9, 3.948118404573513*^9}, { 3.948118446107132*^9, 3.9481184873970633`*^9}, {3.948118789974741*^9, 3.948118876322757*^9}, {3.9481189372969913`*^9, 3.9481189777874928`*^9}, 3.948119026920826*^9, 3.948120164039448*^9, 3.94812041284212*^9, { 3.9481205240286617`*^9, 3.948120540191484*^9}, 3.948120580966222*^9, 3.948120724047164*^9, 3.948120766860879*^9, {3.948121555151058*^9, 3.948121571333715*^9}, 3.9481216223770313`*^9, 3.948121726277417*^9, { 3.948121782452505*^9, 3.948121806304799*^9}, 3.948122032073092*^9, 3.948122149666922*^9, 3.9481223738481283`*^9, {3.948122613421915*^9, 3.948122632674111*^9}, {3.9481231704519444`*^9, 3.948123198900226*^9}, 3.948123246439061*^9, {3.948123392638522*^9, 3.948123409259997*^9}, { 3.948123472343184*^9, 3.94812349749905*^9}, 3.948123736651988*^9, { 3.9481242119162483`*^9, 3.94812425173217*^9}, 3.948124617989807*^9, { 3.9481247089443493`*^9, 3.9481247114935417`*^9}, {3.948124743284782*^9, 3.948124840856414*^9}, 3.9481248844425898`*^9, 3.948124995080082*^9, 3.9481267161072083`*^9}, CellLabel-> "Out[588]=",ExpressionUUID->"e79c5a28-1937-4270-9088-db58dd375331"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"ListPlot", "[", "testdat", "]"}], ",", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", RowBox[{"2", "\[Pi]", " ", "x"}], "]"}], ",", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"trialFunction", "[", RowBox[{"edgeBasis", "[", "1000", "]"}], "]"}], "@@", "testresult3"}], ")"}], "[", "x", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.948122980215281*^9, 3.9481229873595943`*^9}, 3.948124625338462*^9, 3.948124797346903*^9, 3.948126096350622*^9},ExpressionUUID->"ed7e7612-8de4-4ef5-bc3b-\ f2cf49b64d0e"], Cell[BoxData[ GraphicsBox[{{{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[0.24, 0.6, 0.8], PointSize[0.011000000000000001`], AbsoluteThickness[2], PointBox[CompressedData[" 1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz 7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74 eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU 1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9 xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1 nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB 9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7 W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2 lJGQGy0j/wAEu7KH "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz 7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74 eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU 1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9 xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1 nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB 9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7 W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2 lJGQGy0j/wAEu7KH "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz 7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74 eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU 1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9 xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1 nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB 9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7 W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2 lJGQGy0j/wAEu7KH "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[ {RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwUmnk0lV8XxymVSlJpIGVImiSVosIXIZVKpRKSSorKlEQTSlJUEoWQkFnm eXiueZ7n2b3uiGvKL5T0Pu9fd33WPmc/+7vPOXufs9aVvG597uYCHh6ewUU8 PP//PXGT3UjhXFClvFFrzzgTSfAdFbXpF1GAWsq2Yp1XkcT+r/5BqSKaoPQI JnYVRBIna9tTgkX0wbO7131+dxRxyWw630fEDDx1Tge1BaKJ3j2vjr4VsQfP mlS/1ooYwvfrBspWowfgORzoeosnljixMla5IMgBLjdc780qxhIZozUHxsSd oJZ6RmtTVCzxLmH19rMyz8BzYWTK7GUcobUpIoJzyxmUZ80Dv/LiiGdlgUKF +i6gRObUeEzFEQoHZd9e/uQKyi+PiPgb8cTKUfvqrYrP4SJh4636JZ4Y+p6/ dLL9OXh0Lj1paIonSq8s1ilwfAE1W9Xb15clEKFrz7i/EXGDWsBW/Sn1BOJx 7eeSizlucPG+bYD7CcTFlwMLthi9hJroxMmUEwnEXpUd6mN/XoIS5oStUgmE wH+2zrlB7lCTXbDffzaeYMXn5L9SeQWX9DcyyxvjiSKzhXPn+0hWXiP6LDqe cGzxdRwRfw3KKWles0vxxHmv3owsymvwdMRPtcnFE3KaMv+5XXsDiukB9vHF 8QQ9NdN2U7gneO5r1+9JjyPOfuyyPC3zDmqfbgf/WR1HyJ7cEiNa/g4U8Qlv q6FYgn/hXRbz1nuoRTu5UQtjiavZ88mEvjfUct7cKbeJJdbu8JYz+PQBlL74 Qx/rYogFL9NOFTA/QO3Wgd2LI2OI8YGOu9KKPlAbz5dwehpDVPtLxo23+8CF t37JVdkYImtKq+ri9o9Qe3PpT+PCGCJSz5KT5/gRLmsGRjW7ownf+Hf8Wyo/ gifkNi0zJZpw5U/d9lrEFzwyE60730QTO4998EixIflN/ycFk2ii6aU1p7vc F2rP6o3+LoomHpecOrFI3A8uAXeC7A5FEdILZePkHPyglrakl3U3kqhRXyZg UEva68I3XQn9TjxwYd91lf4EChsmTc0RRNnfCLmWpk/k+jv25x0OJ6yVX7z/ u+MzeA4JS+yzCiM2PL42LuP6GZQLSaZR374RFjObUpz2+IPyhk39wB9KCPz8 dEDcKwA8I8kVtfEBRPreB590BgPgIjl0PGuNP2Fic37a9nAgeC5JVYc9+kQk cldml7BJLvGpfajzkTjH9lC21Aoiv8eKOFrxmvgjcyv4YxDJYZeiNnxyJyJu as3n/SR5WUUM98YL4j8aL2VlWDB4Gs5e2fPPiQiRHJA4NEty6L7rnYH3CW3T AtfreiHgGZCpW3zPkhgLCaJ5RpGs15iYrmNE+Pc+Opo+T7LLsQM9DzYS6mKX I/oufAVPxIkqv+ZbGDJUXMSfQDLlfQ5rwhGbR5xuJOwOBY9GSoqQ62tYWxzc ytNDslux3PeKAKw2S4z+rhQGF5mau9YjMTB/sfnyYbMwqN13WnL/bRxyw94u rX9P2gtkwhzkEmBGvWM5wwyDRAJlWFUpCekm22VP+oXDRWujpPajVCx79rmn nxIOtRHb0fITaTAJXvzWfiQcpj4Vucc3piMl74HK0g0RUFMSf109nI7FPXRu 8NEImPY9uHgqLwOGf86H7LOOwIBbzZZ6r0wkihafLg8kx+/aMqF3JQt8h/f9 Myoj7SoOEhvtsmFw+Vvi+ARpf6flR5TlYKxbf1mY6HdQtrdubeTLg7sJ/83z R78jtMgsg6aRj9Qb1qIZvt9hOv2ifRFBQNBK5eVjxUio7aEKRBoVofR5p+Hi p1GgfBI/M3K+HPviVy0W448Fz9zcmnWRDaiUKzWtlY9Fh1VJ+JbZBpgmO+Y+ uxwLR6rn/r26jXib0W9DjY3FQJnoed3JRrApCd2Rp+JA+aDk81y1GSGtx5P3 foyH/zZ7obG2Vhww+Lt8MDceaoFHQud2tKGmK8nclx6PDSsWyi972obZ/vVi 0wcScHvyw5mtW9qhP8Rwz+tIgEF+4jsj6w4M3w2g3uP9ASH5h5stijrwfExX WXznDySFqf5wWNuJpKnUCdfHPyDhUVv7IbcTxx7e0t0f8QP8f3yvfBXsQt+s aBS9hhx/z5gbf60L9k/qeD/99wMGA1ue5qR1Yfk/V+NjmxPh4bO+oG22C/4W l0xktRMRWu/7yHtfN6RbZE1XWSWCf8VqxRN3uqEa036jOz8R3q8EkvJ7upEd 8yk9Uy4J3k94wyKIHnDPj+SdrEuCi/nwS7uXfVBY2q6iSktCQ/htDdmCPjwq KCyQ/5UEeSpjnvGrD0t2fKas3ZyMUKOBh5dv90NyXr2k/14yDKKHFEK3DuB2 qqxWk2syxrV3rPmrPoAft9eXlfglw5dxa+KyyQCONI+Ux+Qno0eKkbDm8wCe e7TrBDUmw75wi5dN6gAqVIoq3zGSscH0umVt/QAEf8afcJ1NRvR8qM7OkQFc iP5cfX9FCvSD+2Ve8VMRdOW5rrkkybxZCiGSVNBW36s1OJACncAKzrkDVFg/ 1ahXuZIChRrO+TxjKl6f4zYtSUgBn7zs9vdxVOTPaXR90U1F/HRSg8JxGvhS dhu9M01FkHfhS44xDSdubehxsU+F946mwyE2NLQ3cntvBqXCxuhnxBJ/GiYi /al7RlJhQBxw6mLSsPXsKLvYMw097jmSLm6DEHU+dvjWtzRkTVy1HAgYhFBC qOeyzDQoLGrlDiQMYlH3bE9CTRrulv14IEEM4jf/ebmztDT4vvL4e7VhEA2U zPt9SulQ8hoTM1lLxyN51/kZRjrS/PKNDL/SYW3SdSboTzoGLn4eDEiiw8xr /zesyoDYBts7nYV0nGEzjrorZ+BRoPRjAzod0qEnXq/5mIHtXz0DL+5gQKQu vCsjOgMGpjelPh1mQHBubpdhQQbcJRHbepKB2UuJdaGcDFSET2brWzEw+pJf QvNfBvhu1qj7OjNAT71myxLOxGGZyMpmbwY6qTlFb3Zm4i7L+eyaMAbqVgoL y6llwif6cue5VAaKVe7dbLyQiSded8a1CxnIulOWYX8nE479FXWr6hgIL3e8 nPuJtL984RnFYsDRuTdEh5sJ38YZvmZRJqTGInfcCMwCxWJweocrE+s38Txe nJSFjDy1tqm3TAicvFwTU0raV4akEYFMTEcutx4fz8JQuoHthTQmakxs0p4e y0Ybb92QC4uJIq/KRZJXsjGiv6vy5BQTmTlSl0rIOjYf5RG1jpeFsHWts8tC SPupo2bxoix81pQ7+SOVtIeGajzcxoKX3augs5XZEJz6K6GhwMLz0AHuVF82 7Lq50cfUWHhYdwj+U9koeW5TUHWMBUG5dEYlfw5mVHyf1p5mIeKtvNcfsRxo zGYqN1xgoVF3W6eJVg5arP/ltN5gYVe18P2tn3IwZ/wuc8CZhf7yscgUxVzo KcYn/cpkwWHbnVP0k7lImqy3ni1gQeAV8+da01yMJ/yUmytl4ZB2r5qTRy7e SB9J4G1h4WNJVRc6c1GwqipGYJyFndLarrbcXAjWcm+vnGaB8qJwWzhvHnQ9 Vm1fPc8CVyPLfvHOPAzMG0SuF2DDLWz/RiXVPGzPeXJTdA0bogsSCy3O5eHd g1DpTaJsJF3befuLeR5y5EsGxSXZOFb4XbD2UR4M7u87fmgbG30Skunz7/Lg KO5bvVeWDXuXICP58Dz4VP93audeNr7hY/TH6jzkbck+t/EIG3/yXTQMxfKh 0QLjv6fZSMwxcmDl52P1gVPWhQ5saIu2i4k05UOW+mMi+zEbPU7nik8w86H8 Vsg+xYWNpYeOC/0QLMATRrNj+Bs2bmQejLW/WoA+P8PnL0PY+L0uRS/yfgHZ j/P4noWz4e2we7r9VQEkRje9cohmI/+AtOaRpAKc06Z63kphQ9/v69DdkgJY TmoImmayMTQl+iGkowCOIRHeBnlsuOh/UmwYKUD8icVrzhaysT5tVR8vL4G0 X7f8jpexYez1R5++jsCknJPw1xo2wswY1WWyBCSc/2SYNrMhuzY729OAgL44 z9zgABsaDqZ+a5MIDF1d6j70h42DQZciffdQ0DewMXB6LweXPWqoLw9TsGxv iHK2EgdP7NU3PdSiQN5Vov8ROCjU3eV72YgCQ8mt0vO6HOj+nXfd/IqCpmty P/huc2DFuZ+/0oeCmeQkvTIrDj60smd4gikQW7D/56sHHKQVXlGYjKJA+Vy6 3/EnHLQlNFkPplCgH6aotPwFB7MBx+Ja8imwmczuqnnNgZh7HrO0goIgDeWn 77w5ULXbK5XZTIFUoUx7rR8H10wir0T3UZDU8/bKtgAO3E5sDAjgULBzZmrQ JYiDyIPeLW+mKPixxtiy6ysHI4KPTt5bVoi0Ezsfvo3kwIE4dWjfwUL4Z5V5 /0zlICCuyH6LeiG2t+xefyqTg7zPiknCuoWIGPMNjszhgNdGctv0tUKEytyI vVzIgZfEf8J5bwvh7fuvmKjj4IeApV6CfyE2J5mfEGnioHGmzzMknLRX1zbY tXKwrrFigWs2yQuCerf2cHAoX0XVrqQQQpsXmjn3c2Ack+J0o74Qnw5ZDnXQ OPjmGjSuxSjEMxulaU8OByX3VskqjhdindfXp4wRDpiX3W9t/1MIj6jFfBjn YKn2nzCRxUUQLr73xv8nB7L7bPqWrSqCd1+L0OQvDk5vZojMbSyCgwTf20cz HNguM7zAlSmCWU12yaNJDnx/1Xn37S2CrKP13CPSfwbtaE29chHmtmxVeMwk 10vHdeLtsSLYt/FZfR7g4NePgnW654rQ40GPSu3iQPHxoWsVt4pQxQ3fOELm I2vNnl8UnyJEZ0otvELms8Pp7kbn4CLMWCxQcUrmYKY/Rk0lmoxHjObgF8eB Ury0Z3Z+EXRdvw3VkuuVrSkqkcIugsRJiSZVDw66Yi9p2fwk9fz9t9zoOQe/ hfws5eaLIJTUr/WQ3E+He1emx64pxrjw1+xEGw4Mj57qur25GKblz35WW3Lw KObNP5kdxShwMtnNNuMg58GiE+Gqxcjo2/RN4jLpv1vD+trxYgh9+NulfJ70 r+7iK65fjJCjvcKXT3EgGp2f3WtSjJn/8k4/OMbBEcE/fV8sijG076VrLHk+ jO2V+AztiyEQohv9+AB5froe7NjgXAy9pcL1urvI/RQ5ft/Xtxhp/WFiY+s4 6BGQCzj3tRi0E5ZHKQIczNndKRCKLcaGjL2WHxZwoAIm/1uiGN5elMz9o2wU tHcHvxwqxvVDfeccS9kg+MvLHdRKIPVR5DWvPRsDVnxchZMl0J0fSGyyYIOn VX31zwslcLOIbgu/yobatzxj6zsl+AVFae2TbJgu+e2626EEMnHzJ9ark/Xm nmLUsEsJjNeV2bIPskE5lDJx61MJOkb0iTdSpP+vY+tkvpVAwECMabSB9L94 tzI9rgRqxYMCuwXZkLhreS0so4R8L2+44ryIDfWmKHfTwhLU+GVdSf7LQpFl 8MbLIyUYX6dk6tTHQirnzh2TXyUQrkPM3nayf90+nHuDpxRKL49NcupZeGne bmglXIonPy+6GRayoHN9VeAL5VLwNTyIPhJB9iNqP8dDuxTSr55O/Awi+4/p j0Pv9EphqvrycLwf2b9MTnb6m5UiKN63RuwVC/WXX2744VWKDa9Tx/9akP2p 4/zt1E+l0FPLPZRxnYWkS1JZWaGlMJsuem5lxILPBeJScVopkm42CffrsvCi 5W1URUEpGsS6rnzWYsH+vPF0bUUpfjVTI8+osnDx7Oynjp5S7NOYUKLsYeFY Qzmzl1mKi7Mzro7bWVA68+ng4DipJ4mnWl6She11Zu7s36VoOZtZOS3Cgsip /W1cvjKE8njL00heVsMr81OwDI8Sb3+uIfn3iYYHMxvKoGeiPp9Bco/OvbUL d5dhJHey2pPk2vIjN/kVy1BjWb3PgeQC7WXpK9TL4C0SEWBK8lfNKP0NF8qg +/DCrQMkX1ejftz9tAzR+7IW9G9g4TyROLjvVRnuUr0tKknWVH22X+lDGfS9 LRpSSd6qvLFZ43sZZriiIR4ksxUvrDaoLYNBzNND+0juzNhy/Up7GWQNLoaK kVx1YDL5OrUMPEv2LFlCctz+92fv/VeGSLOBlu71LASlXPlm968Mz9dkHykj 2Wuv7MTDpeXQLvoQlkSy1Z5K7+ebyjEiftTmJclXf3weeLWtHA11G9utSdbb bS7/dm854p9OqRiSrB6v4OJzpBxPZGsjNEnet2thw2etchh2f1++h+QtsY3i wWfK0XJnarBIigXhHaHWYZfLoRcoZPxFjoX/ZFRWJtwrh/K0jq6uNguqNI3y N47lsK896Sd9ngX3YB3n2y/KkRJ+um/uKgvrhPXHtgSUQ1NP3ybBiYWDvHfq A0vKoRZz1VcwgYVneTavHOvL4e98vZeZzULZQwdc7CLjv3BThihj4dKoa+Kq 8XLoLriTZT3AgmO3/3uPjRUwNXLoaSDvQ5RPIcfMZSoQtNdpa4wEG/znIv4d 3VuBviVPrFx3sxFQkWj9T5scn+bKs+8YG7QX6dt6z1Yg/o3b8WX6bOxEbn+O cQXYpq98aKZs5KSXnXGwq4DxirfSHx+xscC2Zon+0wpEDr6/d+cVGydkm4i9 HhWYzPbJOOrLhg+r/eHKjxXweBGblRbGRndY7x5ucAXUdN1a1Mj7irTJIKsq ugICa03Ga6rZuCvC+RqdWoGKXkWBy+R9Y+791Eqzygrcth4+aruUA82Tv8vV WyogrVR69e8msn8u5nER7yfj4/n6+PU+DjY9XT7eNVWBuz7nUr8Zkf3eUqrh rEQl7NKzpZoSOHDW1PPGw0qE/XnFu//cEBbMxglt3FoFDy2mUf+XYWys1fiJ PVWY1Hx/Ry5xGArfOlvNDlVBW1Pp8dOiYdw8vuTLj1NV4Dv6JnAjZxgVAde3 ajhU4a6aXOelgyN4f1jksEV5FQ4fcbjY0DCCaMEksXeNVfA9LG4uTh8Bhab9 L6W7CrRDFQ+spkcw+ca+ZG6sCtFKon4Cm7lYfnV5lOTvKswpFkcY7eVCen/Y a22+ahgo3k2L1eTiYnf9ae8N1RA4WNCsc4cL60TzvelS1bA5cGvw8zMumee/ a7pkqyE2FyLj946L0Eu+v+YPViMr9H3YxSAusnft6tyiTvrTctm8IZYLsSfu NzItqlHSriG4mcrFAb1N2j33q6H/ZP+b/lEuTkunbed9Vg22hPTib3NcONdQ uSd8qiFtuWh+y4ZR0MRUHPtyquE2V87dcWYUf8abDReWVmP7tyyLYeNRCJda qmyvJ/1rxTDiLUehfc9/gd1gNSbfvend4z6KmPyfXosEanBX8lTtgfxRFH14 Y71zXQ3mSlWOT1eNouum5LkzEjUItJQrzeoYhYDgmfUBCjXkO29l/pGpUWyl MWbzVcn5BjyH/vKOQTXjSQ9NpwYL/o6nFawcg41J7DfZKzXQ0G6KV981htf7 1N3O3qrB0FDR9oWHxhC2uMPcwbYG9u9TI0q0x5DTZXX8y+MaPDeVYP05Pobm H4tkKS9rIDC+IrhHdwwjz4MEGe9r4O3851z+mTHwXdo/sTSQtK/k8IecG8PB f6YZ53/UYINcif1VgzHonqI818qqge9rj/i9RmO48UX8jGJRDYQYuvSFJmPw VuxjibbVYOBL6/noG2PgWBuJ0P7WwGUpa9+E1Rh4CnIYzUtqMWYWZ1lsO4Z1 AqIppatqcYpiHeZnPwaN6I4TMVtrof5wZtXhR2MIGrjwxOZULWj0pRPPX44h RS5d5/qlWhio1W2/4DGGiifCa/Wv1SL9i4/pNs8x/LehOUHxQS0Cz21sqPYe g8CtfY92ONfid0L/kpCPY5BK/6C98XUtLJdGwObTGE6f1eufD6rFFopsonDQ GMy+JsaNR9YibuMEkxkyhsdcQUdaUi3WPEzfnP1tDD5HrDRbcmrh2uR00TNi DNGva4XKSmph+0u8wpq0F7TL9mbW1WJTWHA2nfTXstUrJqajFu2nNsZd9h8D b9EJjbcjtVD7vu7d0fdj2CAUK+j8qxZTer7OWW/GIGeytNuGpw7xc6tsd7uP wfB3+X198jKwSX+F/vqnY0jbp/V9o3Id+hbwiQ5bjsE8HPyxnnV4Zjrx3Ydc 7ycTIS1f/OqgKWD9eYnGGD6SL+m3X+swmjni8URlDJTuvEO2qXUwXMm+Y64w BhHhw3eUuusgXtC397DUGGrcFOrKdtaj7/baerWZURxeWb3gw4F6XH3J5nya GEV0wDVFI7V6TH7L5eMOjeLFj3ehYxfqsbb72uGAXnJ8B9tug2s9LE/9+D5R RI7fFbzesr0e3L3HnoS9HYUG53nSYo0GZL1d/zlBZhROcnVVd441QHH/y/YG iVEk3RdhNOg2ILxjcv2U6Cg2zyeKfLnUgC9b6vwPrxzF7Ore53vuNcAt2y2w fJqLJGXFCwb+DbjAmAimVnDBcn1unR/cgJo3V/v4irnYXF77Wiq8AUflazdv z+fC66xZwUhCA/Y9jv5qlcxF8afEjrOpDYiXWDfwIY6L392/JzOyGiBX9kIi /TsXt80/bHMtboD4qqvf/gRw8TWuR51Z0YCvGTXUzb5ctI1vMz5Z14DVxoel NMj6tOLgfYek5gaI7qcn677hQvNxgffazgbE2v4588Gdi8eUpXGP+hqglrR6 tPU5FymLLpT2DzagbXSHl6gzF+Lew7Mxow34fcegIvwhFwXXnGNSfjagkGGl v92eC5P9ay7nzjTA5erLgXgbLoLaDmfVLGgE3/mUmXQLLjZseuMwtq4RCocF dlQYcZE5uklmZmMjBlOl0nUNyHpLSW7lkWxEyu5D6o36XPjd6FRYvasRqpLm l7tOcbE6dvtPBTTiND/l9Qi4SH6cF6ai2Yitz9vW2ipzoXdK75z28Ub0/Rn5 9p8SF+/HHyZfOt+Im2MiOfNkfZcrWn7N1KARchby2i/kuKj7+FXI4koj/tC0 m5bs4kJAsdz60a1GOLfdHxKS5iKO30j8xd1GKOu9cfCT4OJE12idp20jVlWF LhDdxAUn7vkzX4dGjKg7mRzfQPaDp+vkgh83YnHFjQXlq7jYdia297tLI7af Ph2puZyLMgnVtz9eNuJEi9KJIj4uFpXcHCHeN8JrYIVPPtmfIvxmv1T4NiLe fObAkYkRaN56e7IxoBEVI7TOrKERPF+WHksLb8TvmUzJtN4RzOvxWSzKaoTb quvJscUjCJby3yCY34jIz7oXtuePQHlqV8W6okaUbFKc/Z4xgsefz2/bXtOI yR0C6t9iRjDTG8Y4MdAIe42Mhs/vR/A58aDfeUYj/CpC7deSGT7oWqVpPNSI gtOeGz4+H8ED6cnwe1ONmDI0NX33YATCv16ed5htxEbqCT4B6xGklYssdJ4n 1/fWgejXt8l+a6l+3Zu/Cbb3l427GY3gg3LrqoAVTQiYnfq44MII5AUtCr+t bkKKc7+iy+kR1PfP2cSub0Lpoqruv8dGYJXsLZEq1gS7imbluCMjWPFCuiFX sgn7E35Nd+8cQbx+lnOJTBMGP4ikCoiOYHi6v69VvgnmRld3WM0MI+PW+6IT B5sgsN7M5wBzGC7tqpHEkSZkN93+M9c8jHWZwfditJvAe8Ku1pO8f2g4GM09 MW5CmNJL2xjzYQROtYlIezShZG1cNr1lCDoTtfp2/U2Qt7hhIuHDwZprT5VY 9CZccB2283/EQV+DrJjxUBM+Bdx/JXSDA/skz0Gt/5rAX/UiiUeBg6/Wx+1E ljejZWfEAmorG7+4Je8pB5sRNkKP/CbCRsRQbpXgu2Z82pq8sriOCavPZ7ZY fmxGq2hlwOd8JhQ1Bx+X+jeDT4i65W48E1XBy3Y/CW/Gh99CSmvfMDGhd/k9 J6sZT+ptTG9pMZHzd4SlWdCMqBKPoSMKTLjFuqiFFjdjJDvUXmgLExv4oicu 1jXjXESDRzYPE6qZv86XDDZDyUk+eXkeA/xmb+LFOc2wt9I5MhDLQJPQ5kWP R5sRe8O0NC2AgZuWWhl7Z5shfdq788pDBuTWdwq+nW+G8dHoG/vMGZgpvnuL vbAF75Qo3MUXGCiy4aEcXdqCht0dD7uPMuC1yXfDV8EW2E+f9+k5yMDFqm22 v9e04MthSanhnQyIP8ytvCDSgrKno8mzmxlIaaA9EpBugSzf68Z1SxjofLG3 1+lQC8aECoTOttMRJl96oFW1BRv0PUOvVtNxt9fgnbxmC3Q/G8hbEXTwKLqA dboFIZt+nvGMokNmqO6bvlkLru/c/r70IR32enfN97xvQdNRnxWHN9AhuClq jE5vQcGQ0fPt5wahdvFF7yCnBYExFLqx9iDs3l+tpo22wOf21mMfDg+ijXdD 1MBMCxyYo8t/Sw0ihOlh0iPQCgmaq1/1TxoaxG/qdq9qhfA35vQ/Fg0LLqsf 7lrXCj7Tk4YKPTSYV8+u7ZBoBaNXWDy4hAa5JMvaZoVW+HdGRVv50WDK0c5t OtSKl/4Cy8Nf0+AjtSWmUbUV1pds77U/peGXb7dbvU4rDFoP71Mzp5Hv1Uy7 ulOtUPf96mtvSIPhEl/T2nOt2HOebzr6NA1eajanay614sKSvrE0TRoKnHSV q41bMfDTX/67Mg3jKdt3Vl1rxZOB87Z+CjRIjfBtqDRvxcpawZSXsjS4m+T/ LLNpxdFIt/3mYjScOioXV+TWimgDm4Pb5qh49mRZQOHrVihr7Xq4foqKpHSm O+VdK+r2MjOXjFAhvP3r9QJ/Uv9y40Psbip6BIREc+JbcTn/mHJMLhWC2iNL spNbwRu74GlAKhVqzhX/ZWa0wvtTfv7rOCoiJlwa0ymtKLDeD8svVNxtm/BI bmmFqJS4xq7HVISsrHNI6mzFD8Gu5xvvU9GgE2uW2NcKnT++xcvvUKGQe10t gd2KZy3LtEYMqTCfUpWL55L6Cktf9pyjwn/3RrG4yVbEJbiU1Zygosp8emns dCsOBh5Zkq9BxdzX5unouVZUbh54fAdUyHUmMqJ429D2wfbESU0qTFd7NUcu bkMX30KRXcepKHHTTIwQagPP8NaMIdK/l0W6eah0G+Qz74xbmFMxpJbgsXxn G656Lz6bSsZ3bMP3WIc9bQi0+JY8Z0PFgnLfUd3DbVgq1m73ntTnJG3vMHum DWwXjf/SvKlo+3PH3+xCGyQNey/M+5H6mm/k1Bu2wXS/Y8YxMj/jrufnv99s Qycj4WHXd1Jv/z73c4/bkHBC5Pe/HDK+jJ3R+S5tmNySZnicQoXUO6mq7e5t WPf3dK5PKRUuN0VHPnq2Qa+Ns7Gniope5dWC/7zb8CHR7cnWBioOCy+Tt/zU hjwP8V6rVjJ/w7znWr+0YfZajkpWFxW/imbvq31rw2GfQ6/FaFToB074xUW2 oTDCvPTHTypSbDmZ6+LboJP5kVd9EQ0rj1M7XZPbUFNJUWleR0PVdMMmg7w2 1I+KZkwfokH9QtJ3vqY2UJXqI9VcaAiRjS63bm/DzZNztKYPNMwtDOV09bRh 4soO8ZvhNGSlvN+dzGrD9PMXn1+XkedLyDr9yt82LK9V9GgSGIRY9e7SjO3t 2HEt1MIsYBC/1OLot53bsfYfVe/iAB15EcNfHrq14+TfY1+Kpuh4zi973v11 O9z/JDDkljIg2BBfGP6xHYtmnB4t2ceAzNUfIX1R7aCPr4rIesHASNHoBW58 OxTGHo5K+5P1TGbPirnkdlzn9ip9iGdAdTTxsUheO/o4MbUWrWQ9fJpsoN/Q Tr5j1adFtzEhRp1YeaO1HbzUKPVXR5igae4rt+1qx7H+FV4/zzARHW33zKW/ HS9677ddNSP7h0Dqgff0dqR0d0rUODKhYPNzJJjTjl+duKP0lonfzfsj4kfb 8TvX6ebpECYoivZGuT/bsVV5HOkJTLh/SVtdNdOOQ3nmomJk/9H9N1XZ8bcd hsq9U89rmFh944Ara0EH7PLO13O6mQjZmTHGt6IDmXlqbpm/mUjPzqyBZAe2 54uOnlNi4dGmmRenZTpwVOVDRfYxFtRclY5c2dWBG/lLwiUusVCjkx3z6EAH IvKnLo0+YIHenuOefrwDwgV1ha9TWYg98kel5HQHdqlqBY0XsWDz9ch/Tec7 oFeQ63CpiYU587wb41c64FUQvWvrBIu8n+Sr7bLrAB/x3I8ix0bX5fnpQw/J eDBrvU2VjdB81USdJx1QIaxPvDvFhrmks/kl1w5cBlP6P2M2ZF8Sm8zdO/CM MP5ndJeNSfa/FnvPDrxDc2fRYzaydNW8Xnh3II84nrbDk41nSS5Hffw64HDz 7m1bLzY0hQt/hwZ24OxcXF0nycsceVMSv3ZA7uOwgsZbNhq61S0KIjqwdueu L7EkG4cXtXf/6EDNpdhbj9+xYb+vJG1dcQc0UqN5NnmT8SlIhH6o6ECWhavE O5INDj7xFKjrgLyEodo/ko8cVri+oLMDi98ud6F+YGOBRsTK0dEOsm5Z/fv+ kY2pozx/bk91AJuOia/3ZYOhZcwcnO1AbrM4PEiuOC6c38nXCR+1xmeWfmy8 P+tmWSraCQNRhXm5z2y4nB+4oCbRiZoGgc2hJNtdUFbP3doJlVcMlVX+bJhd 8pc9uKsT8SoFV56TfPHy1Ppk+U5ITH16+pNkHSO9hbIHO+EXax1sFsDGoSvx o5FHOlFpUNGu78HGzqv8XZLqnej77qPa7sCG2DWz0iDtTvyZNP5++SYbgjco Set1OyGgtk2g5zwbPDfFgnzOdkL87YSdiQYbg7db7DyMO3Fum7vaDXE2Ym00 JeztOkExSuy+28lCkF3o8rGHnWiOdtIYK2fhrf3cL4unnRj672iMbQa5nxzT aq96dGKVd4eDw0cWFF2kH58M6cTdEt7VLqdY2P7cxbwsvBMvVtU4LlBmQdSt 56x6TCdCTD71u+1kYf6V73bFtE7Uz+xMeL2EhZL3fG1SVZ2Q362v87GQiYwP poXB9Z3Ao82Ja5PI8/oxL35DayculrPX+pPnL9Bvg//Hrk44Cqc+ESXPp+dn +xeCA51Q/qqq3G3DxJOABqvXDFJf/JsD7mfJ8/1F1pBvuBNXs9vk9u5j4txX uvzv/zrh0mwl+eonA5rf1MQe/CF5IEd0XwsDB8KDlozzdOErd7FwbxoDG6L0 +xjLu5Cx5Ovi/Q4M9P8o8WyU7MLUkfrhvhk6Grh8I/u2dcFBPWlsYxcdFFkt XV9Z0q794adBLh2hsaUClxS70Hv2/J+mp3Rcjyx726PbhYJb7cvKF9DBDK54 z3rYBdeP/TsSyfrK9ar5+Le2CzaF4XkS3QPoqxaYMmnugj51fsY5cwB1y07p Uzq6cJrX8ED/xwH88KgVfjHYBXl1oR/BugOwcavz45/tQovrrOqBJ/0wLRb8 ZTHfBUphYuZPhX6cXXDmYvXCbqTxmsuncPuwz6V+3TvBbji4NknuudoHKWLl w7E13bhY6BHIXd+HNfNn2vVEuiHLizXxDb2YetzweY10N2Zc4vh2aPSCniM0 Y7+jG6Ojq1785O1F66yeQZtcN+Ym34QyK3qQ8bBxQ8Chbuz886S75mIPHO83 BWw+0w2v5dfOBth1449ly5cdj7rhK7tDZV9sJ/QPXvkg59yNLFCOz9qT54SX 6b7fjfR/7tJFCjph4j9tq/KuG/ucXlqfbu1AYamoztmwbrBLqd8seTog+iFc 5WJUN6Q6HX/srW6HnbHsfqP4buiMrMyd8WuH9E+VzTczuhG0WrXFfVc7nhaU rbHM7QZla+vAqV/kveT1maXWlG7QlO5yhQvbIHehY/5+aTcEdRf+7ib7+iuJ a1OOVd1Quxq4OPxiGwaGOZyn9d0wFhJOS9ndBqVMu/7nLd2wOrv3VtLyNgyd cqvy6iP1Nt+pjStvxanHUaGhk6S+9oGAMLRiTRtXt0K0B8sGqvZ572nB3W8O GrXiPZCQZDPermhByd1/ik3SPVC7vijAc7gZDgtXbemR64EOHf/co5rRKa8w O6bRg3fstOqn4s3YN5c3OnWsB747mp49/tuEN+Va9FndHsRbju116m6Cssml +oWXevBjZIe//ecm+O0YKOE37kHd7mMn7R40YXTqds6Kaz3IszKbtz7fhK+e j76vv9ODtvEQszsrmzBzceEXMZseMPfmrbfgNkJPystb8kEPItW6b/C1NCKG K+wu86gHLlcSnrEKGrEgO/jxLuce6D1yDqiKaYSRm4ytvFsPdn4+m5ZAvuPT ziSaH3jdg/nULfXezo24yaScxcceULjlfJcuNGKX+pJ589weeLQYdFvHNyAp Nm5bB6UHMzYNzZ5+DVAQ1jt7vKwH2it0aqKeNUCZ5R+xq7EHUtqK+f16DTj9 dufJcWYPTK13qX4dqkfTrzr7ayM94IsW3dOeV49LpvdDmiZIvQNLJVa+ryfv gXkTaXPk+HNsXuf99aAHmW6UWdALMc/2yYxF9bBYvEjr85JedBSXDY6212HU OsaKf0Uv4ufSW2Ri62DXecrfaXUvbA58LzV5UodfGpOFQ+t7oaMksaNSrw6P 4z8NG23qBVuNv+n9gTrwrDuytlaqFzXHxx9dFK2Dm3O/qur2Xhif69iy6V8t +c61ZSxQ7YX3A8dyRZ9aZNv67vOy6IVLbpbgvawaqHYrGf+1Iv2XhGbuD65B kWbvSyv7Xmyv9TD97VqDqvUynXrOvfDvM0h5dbIGPfmZzmv9epHFO3shrK8a ptuMY9wDe6G0jDp/u7gaDG+e5umvvRBYUxm1J7oaozeOy3TFkvqkA2bzbKth V8s9czKpFwa7XcNeXKzG9EEfp7z0XvActDh54kg1noQeDN+d24sk1bNTQhLV 4FnWXRNCIccr8nVXr6iG233nXyvLetFilH1H6V8VlvZukXCtJvW5WM1FjFdh ddLd+zfaekGp7Nj0rLkK0hfnRbaP9ELZOMFUPqAKx8IkbyWTdUnB9SLTV7oK Cv6CMmVifVB2N5ifWVcFiXd/6F2SfZDwNFx3ZWkVfju1XueT7YOSn4n21tFK JJx9bXJJrQ9pMeaR6ZmVCDzmsOmuVh88ftwuEImthLvKjR6XE33wTrVsexpU ifv79b74nemDS9bdUeq7SpjuUDGM1e8DJd9qsbZrJU6J7xQhLpNcZLM59n4l Dq9d39Fs0oeScruDguaVkFnO95l9ow9uIn8eHb5QiTW8Exf+3u5DVlKzWaJK JXime4VXW/VBXif+tLRMJUZGqppl7vfBv99NKUCwEmUdEWf1nvZBV/CgwIv+ CjglGZwK/9CH6Dv+qRddK9B/laJ5PKcPZjJXFsyXlKPmQsJCE6IPSfkHRuwS ypF1MrDIroTM1wXBNpZfOXwU7dWC6vpQ84KIaTQvh9bK7cpjtD6oUSXPfucv x75Fa/8sZJP+HX8fFp0ow+Y/vDkbyD4hLNQs/b6zDMsnRh13T/ZBNipOkK+o DDPMbkWNaTJfqm4zjrFlYPRU/Lo414fxVmMa16cMTU3p6Xd4+6F570DN9cdl KKgIs3dZ3I8gPsGM9htliCt4v99veT9ChSZWft9RBv+0J5MxQiS3ef1cRS+F W6xFcsHafrCDtrc/CymFyaeje9ji/VDaYRpisKYUq6ymdx4h+1qQer2swN9i PNx0VYpq3A8vu4Tj9xsKcV1P/mLPtX6IuZyYUPEqxOkXvG/azfuh+5blz69T CBlO+EStTT+EoiXZwQQFLWlsSo5bP/hzd634cIUAhZU9lf66H/6tN41lWgsQ J+q5Pfkd2VfHv8bl6hbguctu7yj/fnRsFT7BPJIPq9T54rDgftxWOx3wODUP l5n108Fh/fAw8mAL7cqDpsi3XQFRpD6HIsXIsFzI69pd9Y3vx4z3nPsR0VyI OR/9+D6Z9D+x7Sz/uRwsSREuf5PRD70Zicg+52z0rc+Uc6X0o2HRGj3P7kx4 Df75e6+FzIfUdDjdJw3sRy+Djs2R9tRnn+UWxmPo4q7b33gGIFRoo95tEkvG vWaB+MIBeNddH36VE42TWxgHRPkHMD6kDartd0i9fhUstHoAplqb67YVBqNB v+bu360D4Fk7a/Gx/w5kRy4sbz9F3jNOmCf4Pf1OZOnrEm/0SNba8mNqeRRx NF/jvur5ASSpDfw4HxhNGL7b0/3dYAChBwyTVmXGEa/ll8bZ3xiAklBUp/ZM EiEc8M9kuzk5/u0iQwcimQjl/bW65/YA9JabdX13TyGymmiPjloNgH+xZDff 2jRC80in3LTNADxeOBsp9KQR9eH1tNj7pB6evu4b4emEoUDZJxOHAag9Uzb+ aJlBMO3zTqx2GoDjn8Ceor2ZhF1vynzpY1KP06zx5Ewm8VcrJsXpGRkP07x0 57MswuPHV/PdrqSex7JGEbNZhPD6T6LUF2R+Vk6Ob3qQTRzNth5KfDcAeTN+ Hb4buUToX6k3pyLI+Jcf+NWgShCy5iKqvFED8A/97XkihyAy61ZOpsUMoEd0 QIgmSiHqvs5dFkscQF7i90ijTxTir3rbjuHsAZR0yjedfltIeMTW9IbkkXoj 1gQvry4khNcUfzhHDKDG6tetCv4iQpaeOJtdMgCvhXl/1d2KiCzdyIR75QOQ rgupmC8sIo6mB12TrCLj8Xf9mPuviKjb9HFtaw0Z/3UzE0eVYsLQ/XWlR/0A +LT4nwrYFxPMUeenyk0DUChzFM7xLSZsLznsHW8ZwIZjnLhb6cWEx/YbAZe6 yHwcr+oq+lVMZFQpW8gwSP+nvJScnEqINSvH+Ut+D8DsotAU41kp0ZT/5tXx vwOYkh9JMgsuJXzubl1c/28Abssr7g3mlhKrqwwXdvFR4U1xZg3MkPyy9O+Y IBXRO8e6uu3KiKb9pk8erKJCaFH1Z8MPZYQP7ffv32uoiO+P1O9MLCNWqcnP LBKhIs3XpK5tpIxoGK1y8NxIhZ71Yc8Ly8sJ7+Cb/wltpiLr+Dqdlh3lhJ4u j/0nCSrUpCf5zuuUE0J/Aic3bqHCMVhEaeBqOdEQc8D221bS39H26Qg7cr5B w5jMdipqOL6ZFi/LiZUZi7h7d1Ox4aCQ4s/YckLQ1oZ1TJGKpLrFBxf/KicE WFo9909SMfXv535Zrwqixm/AcPYUGX9k8s/xkArCS/Nx5zM9KsR0rVPTkyuI 5WFJba8vUGHmP7QP7RXEsisbG79eJf3vpe49J1VJVC3POLP1OhXy7SET6w5U Em9y9OpizajQfWqc3H2skli6wb063YLUV9kuf/NeJVFRJnHiyF0qOqz9xne4 VBIeD3IrKFZU5K09nzTqU0noSF88pm1LBU+ekE3q90qCv3m8tPo++b3rdXsc s8j5rp6aZx2oEIh8RjFpIefLyxS3OVKhv8bm1chkJbHknRGF+pQKNvfcWn75 KmLx8bKc6VdUKIVv2IvYKoKP+JK4JYiKJysibieEVBNdypo6/SFUeMx7FlcR 1URizshA4DcqQsfub2YPVBOGGSqrV0dRMdd4tEVqSw2RnNBvz5NCrsenQfhH 1RDuuzxW5KWR/l5VB6ZX1BDGMfKRDzOpiHBM/a+JU0Pwf3dtH80j5xu+iFsh W0v0Se20iSX+n987i3edqiVSQ5v4zYtIVjl/TceqlvDY/PibZCkV/HJH8m6+ ryVMgrYc7i2nwo2+ccYxq5ZQEK1p8q+iYiBgOtrpVy2x1N/+jn4tuZ6nmy8/ Uqgj0j6WBlU3USGd/Sb3cVIdsdzz1r/sXipa3s4+exZdT2Q5xZV8+kmF/5fh BRo1DcS76fNXzv2iQsrhspHGcANx48HcfytmqUjRK0/VWNZI7p9T217Ok+u1 KNzsqE4jcfP22Ov7S2nYbWNYplnSSBxmfpbaI0BD/ImKzVqDjYSQmVrukCAN N7YefKi1oIlgUtnnI1fR8PtfeL2WZBORd/XDyDVhGh51rdqurdZE+PQeerlp PQ0S6c4u2lebiFtGtE2dIjSkvud2aD9rIpQ732T4itEgu6A9cDqhiVh9af8Z PXEaWPeSa7J6mwh2SzdruRQNeZ2e804rmon8c24u5dI0mGiZyx9RaSZun25N Vt1JA11so29+UDNRoPVQePcBGtjVbkZFRi3EHYXczqUnSd5hMFTd2UpQGlrj s07R8FSYw03gbyPW3ht3vqVHw+J/ThPvFdsI4vtWmdILNKi2fJk579dGrFnv bediSup51r+4R6+dyJ01Wz79gAa3jsDLnZMdhNAn577vjjQskBAJXirXSdzc F5is/5gGh1ufBw5ZdBIr79RfSnGhwfDXx1uB/Z3EjZ5DEfc8adgr/PaBUU0X sZwQVKGH0lBxxvlD7/cewtRoh9DHcBr5HvnbsoLaQ6RPHx1Uj6QhsO/xBlWx XuKqvNPrr3E0eN1z/Bri00ukfhtsNcwg8+Fpm3DVuY8wcsuyaqymwbcifvW7 XQNE3PHroQW/aFC6Urt04QIaoSArqYpZGuyHrEasN9GIAsGBbuIPmd+HQvU9 SjSiofnK+kKeQcj7nPfNsKYRU1cuvyteNojV5Z2bLXtphKqd3pOKzYOw4Uvn 7QgZJMr1V4oelxyEhWvaoHT6IKGnWJdZuWUQ5+dTS22rB4nrcyd/Vm0fxMGZ lNfLZwaJV+7HLGv3DYJnJGkVztKJhkBVgybtQbg2x0tGLmQQl5/+/e/c8UFY 6sUv/CnCIGhX8z42nxyEcW0cA/IMYkr6cH2LHumvPDam05hBPF0ye/fC+UFs 04z1lLnPIBYPZS5ruzAI6cKYe/dfMwiRxAPa7YaDWJIbvXdFBoMI+zA1eOnK IBiK0WsMaxiErH2qa8fVQYynRf0XSWMQ6RftxC9fH0TH3qj2nzMMQvXQ3vxO s0GoVz1nqq5kEuUbxw0Nbw1iw+PXKlQxJqE3/2Omy2IQK2S9fV/sZBLXi2UV eqwGkfU2WKNCi0kMfx9uNLYdhK9qRIDleSZh7xFr3XufzNdY7LjANSbx6tT2 uD7HQew6mxVy9gmTiG/fIkV9PogI4ebfXSlM4r9hUSEmWYt8v/CncsVZhG8w qzwoYBBlbm11GXIsYv+ZNOfzQYMYvBcx5KzCImxTTo1Rvg1CU01NarURizyv olEPIwZxf4egarcFi0hcyzKRiyJr2+qeyxGOLILr6FL3JX4Q0/SHHw5+YhFe O0+5n0scxJY6rYR/ESxiV4+I6tIUcj0z11RWpLKIqrfM/4i0QbiEUukfiliE BVITHDIHkfQ6kceokUXwTzjf3J0ziOuNjsW3O1hEVJjuJnreILp+KC5e1c8i GIuYXmeLBlFlke55bYRFuGWmaPKXDkLtmH3d0p8sYouF81xB+SCypfevSpll EddqNtyVrR1EbH/SpwVL2ESvz8mTSzoG8f5C/LdwSTbRKp68NJ87CCP18EzG RTZh3/i08P44mY/N13+/vcIm1rw44bTz5yC05iRUDpqxibPMQfbnmUEoZ4YU uduyidr4dRV2C+mQ2B1Yu82LTZQeeuK+XYSOhzVjGXwVbMJsWEe1fyMd64pW pdDq2cTC4LW//DbTkZ25P4HSzibUeRJvLpSmYzLsYfgTFpvIL6Nq9snRccXp 3/upxRwi/fyxhb6adGjLrLSga3EIj5NZL8WO0eGZ+ddK+RSHMD66g//7cTqa dUbsffU5xIL9y1dknKbD5E6li+YNDtG688l71bN0RM1lugdZcohoKe6q8vN0 0N5Gek3ZcojTq+vXdRjQcT3phX+EC4eQXKYWYGpER6S6XcjcKw4xxZu8kXOF jj0Sk6fPfOAQFbOSIbamdPz2EVcsDeEQXyZ8JH5fpyNm0SnxI/EcwoqzMPz5 TdKf46MlydkcQoNqv3X5bTqkh6PGZMo5BLvh4k6xe3SENyygrKZxiNyK8vgI azr0j8pHe4xxiHcUpT277egQyrjiPT/HIRSSRBVUH9Lx4kuW6dD6IcL1fZ+K qSsd5uZWvEWnhgjR0+ZnI/zoUJ7r1LDNHiK4Wu3Nsv50/LVasotVNkRQVHQu pgfSkUVVWHOlZYgw373TqOwrHQrl7wd1xoaIQ1u/9J4Oo6PtUH51wdwQIbBJ wLQ9go7A+KFUhWXDRKrAqBk7ho5lPlpuEluHCXe+qyybeDrq+O7f/bRvmDCc q7eY/UHHu4eh+gJqw8TuKbUR12Q61CaIks96wwTPSLLVsjRyfySu+pl7fZjQ rX7gKFtAx5tIg3jduGFCvJj5O41Ch7FZbJdN/jAxmXPpqUoxqUdqjt+vfpgI iD30/HQFuT+Cv97s/TlMMF//9bRpIsf7MTdbKY8Qzjovv6Yx6TjoZv/hfe0I 0WRy21ieQ0dIzMPjBv0jhPSDkyLxw3SM1j3ilZwYIaq+rfoYPk5HuoirbYow lxD+E+zu85uO1Ylvz7YacYnohIx7NoIMCF/PFNjxi0s0rGYfkT3IwBLkb9h0 ZIyQ2lE9E6XEQHfQ08t3z4wRD/AjfcsRBn78VgnMvTFGiN6137NRjQHtjIKN hl5jhFkpz5ZlJxh4s5uy+XPvGDHzUGQZ+woDfBceN6aqjhOSvSc6wl8ycCpQ 6u2C7nHiTdGRxAseDJxeZXEqiDFOTEbJui/xZOCSR+KKg+PjRJGdoMIdbwYM HZTfWSyaIMz4m97v+8KA5bmL7xv2TBA13CJzejADNpVBZywPTxAHmlNVPoWS drXBlXxaE0RIVoSwTjgDjzJ3NASfmSAWh/gNz35nwFXOxlvRcIKweuFeFBfN QJKKzR0pswmi/fbDgCtk6+iTmvcKvjNBRO+/fKwwiYGLXJGGj48mCCGRE5vv pzLg3hQ1Ifh8gnCaP/yfdAYDZZkH1rx5PUGcqBQL98hlQOH52Ysu/hPEsMnA /JkyBjasf91zN2OCkHtzK6Ovm4E6tRm21uQE8cna4K13HwPLZNyXFc5OEP/0 j5tpUBlQXS4sq8w7STSI71odySTja91jvU9oklBaJMa5xGFgJCffO2H9JBE6 JEBZOsKAWOjJlO3ik4Rt+ui9exMMeFne+m+z3CTRFdivKT7FQPWZ/9YFHpgk NFwaNjb+YoDnwAultSqTROzNwsnnswyoia4y9NacJFafTKlUmGOAYa2/caPO JPFIPjyUOc9AYeBSFdqxSWJwre9Df14mfEoLTGJITht4sHVuMRNnN+4IUyRZ rMx8LmEpE9LafcXz2pPEy7hLzVcFmFhg+5FRSvJFh0OuxauYSCv7u12f5Onl f3veiDEhZteUaKM1SRxWdPMV2cfEeMXj/Jijk0TbdZGDwQpMzJ02+WFP8v13 P9olFJlY3ar2FSTHMzpEtyszcZS6yLVVY5LQWWWVF6fKhP4ttm0oyQzlhSZ7 1Jkw41Zdv0PyZt/d3w5qM+E5+16Tl+QcokgjR4eJb852B2rUJ4lLw5foKieZ //9f3P8qsvJwqr4uTNEgkQbJEAkhU5MMZUmSShlSGkxJJRlSqJQMEaUiP2Su NEuhVDItJEOlTCE0kHvOucO515UoxHe+P99n773etd619lr7PEfjBoOHZOno qu0EXO+68rzOfBATLCKXbbIjYNk+0bOaRoOo47ewod6BgKovQRaX9AexIS3P 22YXAbZ7OTM5GoM4Rdj+ZOc+Ak7uaU19vGAQsxV9bDucGf87N7tLzh5EU2tR 4T43AjKcypb5ig1i4M3lqz08Cajefe+l3i8hEtvDS477ETBn16m2wiYhvs/V qrsaScA9e4U5xXFC9Gqv8JKJJsCkOb5D7oIQxaY4SiTHEPDBTuzmGaZezfae 3555hdHTltY1PSrEgumtrbkpBKzbgdsqrISY5HnuR10uAWN7V2p5DQ+gQYJM 5LYnBLS9EH01mzuAjaX3l37KJ+CpTLPl8+8DOG1e8+H2IgLcGvzdJ+oH8HSV Ot1fQUCt0ZMbSRkD6Lz401/RVgLSFmpOqzIfQKlFJ16UfiZgqf7GTSdWD2DV vAUBQZ0EJFu5Ri3VHECNmfsp6iuzPyhpykXpART8Ito/UYx+D0QnkssEGNkw 8TxrgoCk+9c6KBkBrq657e8kSsIJ+HkmdJKPZIXlchkxEhQ71yrOpfloU3Q5 J2omCaUze91N6/m44Kbs9WPzSWj3WcW5ep6PDwP1/Iy1SVBa1Tm+kkvjPv9m rV86JHx/r3OzrpPG2d6BrDx9Eu57RmxwrqXxhFuJs8oaEsxTtC9G36ZRbZ+L XNdaEmboh2nKx9PY7ijS9p8JCS11re+enqPRdKvVtunmJLj8PSfd6UQj35I9 rcqCBK3E5kKfTTTegivVIZtIGNDWcBRdRaODif751dYkLIqcv0zXgEaxNS3G /K0kDNdxIV6fxpf6Qb8fbCehe/abPUI9Go9qyxUesCOhemd6wE4Gf1R21fy8 i4SL363vLNSlMVxetP/aHhIOqauUndGhcdWCuzet95NgfWykrXs5jakSHNky dxJmjtybdkubRo/fQeJ3jpFwXWqqt6Ymjb/fXe07HkFC0fpyA+OlNPbM+uw1 foGEWM/cinuqNFbbKApiLpJgEXfDZi6DEz7mjmXHkfCjM8CLq0JjsPRghPY1 Eh5Pug47MdjFznjGywQS/DRsomqUabS8Hn5tw///u243nruCwdotdfMbk0kQ CdS4lbWYxjnzpDP2pJLwLn2engSDR3buXtKfzujtvGsiiNHjW1LWA/8sEtz2 7XyTZEFjzed+3bGbJKTssY99vovGXFmdoos5JHB2225v8aLxutNJk7n3SDDY tX2u8CyNrl9EN2vlktBjvyVTL4fxR35LY1EeCVJ2mw9sf0Hj8v0JO83zSdiz Y5OGTz2Nf3oWuzsVkfB364aCR3waE3+YnomuIEHW0rhGzZSPtWTQ494Wph4N tXjybXzM0yxf4fuZiX/1skJjko//HRUr/tNBwsRK9eA9o3x05ybWSH8lIUl/ iUiKigBH+flf15MkVGoumi/jK0D9YbZ0+hhTf00BLtLTB1B27YoU9QmGP9cn yVxmAMdPnVYsFKHAJPrI+wCFAXz3d5pWvTgFTcYuxm36A+j5b6nFsDQFQznW C9L2DGCqmGuggxoFBkHKjaq5AzhxcOGaZg0KnnWYfVMpYva/afptq0XBShNX weIK5v5Hbjy1XY8C/clMGYWWAUzpHV/7wYCC0gNlqot6GH7zl3+2rqLAtKZ7 1UJiAOsnNUOsjSgwuyS/e97oAOq59ZnUmVBQxTU+IiPG9JeKjLFN6ymw2rH3 tLSUEEeVdpXVAAXF2/qO1MwTonuoVOhGCwo+qdvdDlsoxNqeuvXVlhT0TpZ3 mSgIUWddxIT5ZgoGvyyfP7xYiCOjv8LMbCiYd216jI+GEJ33PTEv30GBrldQ 5TJtIVa/Piy6zp6CjRY///bpCvHa6S+RxrspODJc4bN3jRA1hiuiV7tTUOAa 7GBlKcTdwktx2oEU2OmzlFQ8hFhmt9HmUTAFnjN3OnUfEqJqwbik5hkKTv+s TEhh+iffz/+a+nkKsm5kTp0dIETHj5q2d8MpeBEgsb4+UIglun3SSy9Q8GHb 6eALp4UYzXO8rhJLAXtyJ/tvmBA526Qcbl6m4O+XKtUXTL+2e1w3d/FVCiSL 9J2PxwjxpUREa2Y8BcrXspKXM/1d0dskSSGRgplWA7pRDI5s+OWYnkTB4Vll GRgrRErzyYJFNxj9mmJmjkULsYhUviGbSUHcfmVWQLgQ5Td/cUrOZvRT4To8 CRVi+P1Eufm3KXAgXlZSzHywOSSeLnOfggUBOzLdgoTY38fJlCygIO1i6M7t 3kKc9+1FzpQaCnILu6s0HRk9JUNDX9VSoPSgdLmmvRAlTC33+DRQEJ+Zkbxs hxCnpLbMbv9IQVDM/qMa1kI8X5tGXW6mgHXOtFWdeY+NDrm/gTZG7xMK69Ut hDhoLzj96AtTfy7dc9TWMe+x8Jc7XXsoeOxQGrLUmNHraajevO8Mn3VGv6qh EA9/tZxZ38vEt/7sDtVVQuydJdl/rp+CDRKl9iSTb2eT1ooVJAWyGoo9fmpC 7PRKTyPYFHRvCD08LC/EpreatnYCCjzOwFnxGUz8QwIt8UEKtJJviV+dYOpZ 9ZVYyRCTrwLRhPm/BxDDNpUsHaUgkHpzd2nfAD419lAfEWNDopP1xw1lA3jl ScZYljwb6tfYLzl/fABn9Hi0Oyix4bL9s8fiRwYwSkK7cLoKG3b6zjO86jKA Z48UHw5QZ0Pf3c9bM7cO4HBy2AYNTTbkVRp+XrphAE/UWCl2a7PBv+eG2+O1 A+i95HOzpQEbJubtCyxRG0DCNjPv70o21OiXTmxg7r/H+YMxT9ewIWmb4qUG pj98y9P2OGjEhhapbCWxaQO4t1u4Ts6UDRK5r/0W/xKgdbLUQ+4mNmR15687 FS9A8dAIR+MANnTdjg3sEuFjkZD3F0+yodQ8fEo6m0bPw3tuWgWz4dL3Uwl7 W5h+a6vP2XmWDRpKR/I679AYpfo1zC+aDetSN/W3WzHzq97o8Z00hu99fU52 PA+nzBsQlapmsE6H4WFVLj6L2f8gqYYNUnPlChJncdFjvNZGoY4NCn/2aOEQ B6tZWTc0P7DBpKZLQa6Og5HF23Q3trMhzPmbyLtjHBR1fbDnNIcNO0pqvml+ YqPII9f8vrkc2HHKdEfEIwpreR1+NxdwwDJhqDQrmcIrBvZ6znIcUH/0RKsk gsKFxRuffFbiwIJuZfFfeynsGSvzSVThwPyhzhPSVhTmgKGO7VIO/JNM/LF8 JYV6dZqP6zU5wDcTK/OUoHBIIsc7ejkHapzKtSKGSSzZoaBtoceBiuPBN7L6 SAxPTGJPGHDA6MLh+KB2Eje1z35UuooDRd3ZB9e8J1FCPsbrtCEHzFZ3rP2N JDa5iGiuMebA0yvSki+KSHRmDd5/asaBl+vDi1Znk8z3l8/hYxs4oJNSHDuU SCLlw1LXtGTs8Qeci2JIPDnUcff2Fg48u3lAfHUAiZenluckOXKgQHTj7lWW JL5eEpMd4s2BW2/F/6zgEHj+kIjrWl8OaC42+yD8RqDlozNKQ/6MveDgW4Wt BDYZ+GT6BnGgchlpvaKcwJRA1n7t0xxQDVdWEhYS6FzsqkCGcCC/00lYcJ9A 1fGOrjuhHDBckfD2eAaBFNinu4cz8VyqTzNIIPDphXd7lS4w+kR/eXgyjsDA uo2LuqI5UP/3yb3xSwSazCrvTInlwH3fyJzoWAIndxim7ozjQGLv7ptSMQTW JOY7zbnG4F3LM29EE3i5XXNhYwIHLjRMpqpEESjrqpBilcKBw4UPE1dGENhz O2nX1DQO2KiHxpeGEZjDmr2gMoMD5mn2VyzPE6jrK5JkfJsDahGj0bvPMvGf Y13XyeMAaWdzJiSIQIlKV3v2Uw58qVEJnhrI6DG1c879Qg50Gf0+ceUEgfvj 3sUrv+JAikq2T7Y/gSfS86/OreaA34DArfooga/G02OqaziwPTV8pYMXgeOu FyNO1HFAyVxGvO8wgRZVAWdV33FghLzdEXCIwJilLkEtH5h6il+ZK+pJ4Ido a//ITxwoW/vm3HUPAudSq46ubOHAle87bZccINBpq/LBvjYODGaar77DrGfm SbgkdjD5iX1hl+RNYK/U8G6LLg5sOantG834qxHQazfYw4Fw15uXgkMILFhT bOnQx4FPqy9V77lM4NuKQzpzaQ6c73VerZTLxL/EXqNawIEnH5rtpJ4RaHdh ncqJQQ70vLLynXxNYNfmefNbRjigd83gfm8DgfymyrHrU7jwzkRM7j6bQLmf Cu9l5LigmfR4TE+LRJdN099WyXNha5iKnMoKEnMeDFYEKHHhnHfyahljEnV8 Gp41q3Kh1jzM95c1iRt+B6df1+WCgU3R8+1+JHpPbzkqs5ELbxaVDccx9yX/ aPnBqk1cSJ+nhM8bSBx6/9AlwJqxP/t8THcriWEJYfbN27lQIGIut5wiMWmR rvH1PVy4SL4xfjeHwi9n5VZt2M8Fo161KYPyFC7+NlVX6MKF3q7od4vUKXyY 06Vif5ALjh837z9qTGH58tgZMn5cWPPi/bkZHhQati1sTDzOhfK4Qw8ijlFY cO7B9fknuWDlMdk8Gkihlvra3SlBXCgyShs/eZ7pJ4218nKnuWAsvWoZHUOh YvDu72khXJCN/f2mKp7C5MXEHYVQLvw3Xfm+C9OvpOqCvLLCuDAlxjr2bzqF sf7iusqRXDg/7YR38i0KReWShbeiuNAdnWGz4j6FIZVqL1VjuGAn/lav8TGF vjKWoHGFCyAm90vsFYUOzyPtdVO4MHNKxdnARgrf758rm5/K6B9BusxppdBS LKfLIIMLgyIy5nmdFK7dVXVw9S0u9E0eFOv/yfg7MhlkmsuFu/9mXt05SmHK zXiT8jwuaISu8hdMUihtrTxpls+FhHFn+zhxNk5JM4u1KOJC8Fj+gjdz2Eia hKZvqeCCxd9d2SuXsdH9p6Tb+0oulJwOC/+ow8auuMyl298w9v489PBeycad q3Woj2+58PxUi+U0IzZ+6CnNs6vngsTImEbOejZaRW8LaHnH8AWrzzTbyEbU 7V7j2MjUy4dX2g+t2GjU7j36+RMXXL6UfRfdzMZn50crnFq4kEZUJe1n8PJl ly98aeNCw6/aLS8YfPfTIuv9HVygRT5MSFmz8YaKcbNrDxf2KLR7VTP4XPWp n4cILiyz46zT2srG397TH5IUF9a5CISRDPabd8PnKJcLV72H7vcw+IDny98+ A1zgRU3MSdjG+Dvt9/TAUS48fD2XNWzDxsqnUR9+j3PhZ+3CdLvtbDR2mn/9 1CQTX5uibS6DdR6ukj8rxoOTfI3XLjvYKLP1hE6kFA8Ml5perbFl460q6Vkm MjxojDZpUbdjo4HxE7ZwHg+uUcYLYxiMBVvrH8nyQG2bsTPF4B2a1P0Di3jQ +cTo9hZ7Nn69GR29SJEH5+YYEbkM9lm41LN5MQ+0Tq5dLunAxrFrlRaXlvBA fkPxuz2Mv5enuS7ZoMYD9y1toUsYfRedH5v8o8GDdPsBZsqx8eHv1G8FWjzg 7JXsf2bMxrr+1gwVfR64eFtutdRlo9ibLbIiJjzwjCuSPTKfjcy38tCrdTxI /K+pQV+KjarPolr9gQc/Mnjn/kxno/ltTPhuyYM9eWo/L41RGBq2Zhba8sCt MSk/r49CyZEWdrADD+58LvAI6qEw0+94vd4u5vzXDwvM2ikscXkcnb2PB958 sXOfGigcNl0icv4QD05IB1kPFlAY/bzi2xovHmQvvD5Wkkvh/OXO5bQ3D2jl J08v3KXwbs7fjHu+PNDRbDhgk03hKvkbIS7HeeBnwJq/IJXC6uur9y44yYMS 8jfpmcDcr5ktaxuDeCDRbTaiyNzv438kf687y4OaqqYFV5l+MOmf2zoUygON F4vUNzH94hq5+VleOA8uPvRY/e8AhXntkf6KF3mgHz/k4GtLIbvoD3ssgQf/ OcslbNdm3ie6Ta1nynhglvgg6mMyiTe5MqFTkQdJfmf2ql0l0ePRTo2rVTwY 3bpNLySKRLZax+lbtTyQ6h4pP3GSxGGFb0p1TTz4uME+bL0DiTISvCPzWTxY Jy02pVWaxLY6XZlskgf9XvueRU8nMTXav2QZhweXqws8jCYJXCz6S9JUwOgT 5PImi0+gzp+/hQf+8iCv52WUVyOBghem+7ljPNhoOHuNwlsCn50MFQua4MFE /EFWYxmBxgIRp9ipNDhsnGO1Ko9AK2L6+NPZNEjmHp0+wcyfmXe33DOaQ8OD qZWvCiKZ+Xcgbkf1XBqCXWS9DjLzKkG5cWTbAhq0X/nIyTLzbOdXqdufF9Jg ONL6z5+Zd7IZdlvd5Jn9jtkzZJl52rUn8RelSENNode8MjcC3dsWWI0vocHL 55/mjF0EqiU6CaLVaKhtqFv11JZA0jYtVXoZDVOWJZo5biXQ770iV1WHhsJe DcdbQODZ6qUJWwxpmOZkF2akTaBZ+CHjViMaXIrkL39TI3CK2YM+Z1MaqmVY SVHKBMa+1l5z3JwGjw9ncpvmM++nghVdKVtpSNxw57PXJAv3+p28oLKdhrZs 3x9SoyxU1Hmhk2tLg934Wm7REAvvPDAKK3ekoePlBxFRDgsLskGt35UGI53h 5WltLPwV8mv6gQM0mK7Zq77vEwsNnR5wvx5k9DUrW6zwjoWnV+3/tO8wDYc2 K8v11LCwVFr6eYcXDafsImWykIUT3OoUx2M0zIjrcb1bxkLz+uCQZl8a+t+5 y7wqZeGFu9quO47TcEuC9aahhIW14d82vD9Bg/PWo8E9r1k4wyVR3TqIBrPL tKagmIXbjK1mvj3F2HsX0C3K4Cbhk6aKczTkbgkxX/aShd0eoW7PLjL2reMk Tjxj4WJYsVH/Eg3PYqXLowpZ6K7A0siLo+FS/X/+NwpYSLTa8O8l0LDQOrOt 7CkLBywVQ9PSaTi6+Un29McsXLWkyV02i4ZVMSvs5XNZGPzvguV/N2kYqn0x VfcRC8decGddvUvDDasKL4cHLJy2rDQ9/CkNPzZ9Wpl1h4Vbpvqf/1dAQ0r0 TlZ+DguvfFf1CHlOQ8DbjhvVt1n4sbR908gLpr7Enbd+vsVCmdTLWoHFTH1s +jFO3mShY6DZbGEJDawoz/zRbBam2A0O+JbTMN+gVMwik4VfdO63cZAGA3vH 5uQkJr8z9xUfqabB9QSdxb7CQjfW7Mz+GhqO/3fRe300C3OqqsIO1NFwrUh5 7fVQFi4L0dq8/wNTn8P2TUZ+LFzJ/fN5RzsNu8++nBJry8KgurzX7ztp8My0 /dS9mYXFd9yzrLtpuFdOZeibs3C9c72nxQ8a3k3Kr+kwYKF1441fazg0WESF HdGYy8LLj7Z1POPREHhPbnWIBAsboydL9AU0RNUWinycwkIHsyORWkM0dM3o Twv61Y8u+YYyShNMvq9af6hp68eX+/5INYnw4YhOckXAh36UmlYieWEqH9Lf 9xYsrunHI4VnJQyn8eGet96d96X9WOm8fgZ7Bh/6Zp5NPv28H+VmTIpnzuLD n4d1MeqP+zHgeeVUWyk+qFjPD2nJ6cd3rpGiU2T48OxunP/lhH5UlbCcLJrH h2z2uIJhcD+GvBD/d0SWDwl6fvW9+/ux1b1uVH4RH0JOfg+8uqEfo15tHQ5f zAfnf1WN/ZL9SHja0zZafFCViQn7785PNJszjzu5nA9au/8sh0s/8UZpG/VM jw9TMo52cvx+ovXcPf1yq/nAUbNZYWHyE3PRtbvfjOE3kvk50NSHfvI+Decc +WDtnmG1Y6IXa9/q1uk78cHwnuSvvz97UTlAUNO3l+HjhN6819CLpxULq5Od +SCrL9hmn9+LTXUnKq3dGL5A9z/jSb2oeXJ1xdgBPgwVN999GNKLEYuHS596 8qFFRLy8dE8vrgw682q+Nx8sORtUlszrxZFPF+/lhfHhofKxfb5/v2N49O2I nlw+GL00vvbmZjfOPjV964EnfBivDo1ucu3GdC/fuUQ+H1I/VZ37qtSNz7cZ 3xEU8eEHteXYSEYXEjLNNVOQD7Ff/C7nZn/BbdkiM7Ra+aBpHXBE624Hyr5y uxY0xodw9eAly/Jb8c7Dt7tH//FB56Tsv3b/VjRIX64cJiKAOVUvOy8atOKW 0JH8WHEB5DmPxBOFLXhuY3xzhrQAnJf/Pq3U0Yx9nyrmVy8VgEqh/EGZNU3o X6X21UpDAJUH3H58EmnC8WeX773XFICIunWpYtonXJCy2/CzrgAMqH0FsvUf 0dqZ70StFcCAb3i6hEYjPqGUMqRsBHDrzHu/wd4GjM2Kdv+2QwDu0i8/bPZt QE8HWv2pvQBm3L2lnfWnHs2n7+KGOjLYOC528EI9KpaVFWx3EkBBYxCxWboe /xxXC1baJ4CHHu6WWel12Kp+xZR2FkBsv8Iwz6YOn3b9Eil3Y+x/LY64IF6H l+P3117xYOJp3zVbvqIWD1u+iXM+JIDjnwZTC4Jr0eKvtr2OlwA06+PVNuvX 4l+P0e73vgJoet1gGnjrLXoZpgklzgjgdNZ674+RNWjJFXnVdZY5n9L129O0 BpVveZ3LPc/Yjz8VMfbrDbbPNJq+NUoAdhGFqZqH3uCmr+2Kl+IF8MNTvS5y czWqJJr17UkUQKdLtcMikWoct7r/QDNZAPW73b7lF1dhUUHQyvp0ARRbp/3u 0arChENfR25kCcBrg2HEyb5KPCa/qfzILUZvk1ZJiYxKVI2abz39PhOvzmy1 tZKVOGF0bnbHQyY/2xzdMi4hfqF/ttx/zOTP9Fpw/WgFFuVsSw1+yvj7lNII uF6BCU7PXawKmfU3Gt6P9lagj6TCUtki5vwXzye9SyrQuiqSYr0UgDk/Z2AR pxwntR1ORpcx+ZRTPnU5pBy7vr822oUMv55LSbVFOb5MWjKhVs3s35jxb1Si HP0mBmJr6pj4fRdGHcsow57m+Oyprf/nk75uU1aKxRdHDrZ+ZnDn9raoqFJM MnXTutPJ8PPjFpbblOK2e3pFFt+Y+pWbka37tQRLTjc2RLD/b0/ksdTEa0zR XRNvz2POR5rxrWpfY0BfpuMSAbOeem5F2LXXqGnj871y6P98f14JFr9GMdG2 uwkjjP1Ow7FlZDH+eGHq7T7KrNOBZu75xVjmfUff4J8AEqY+j0g9VYw3lGf9 npxk4pMT1jRBMf4PNnGZww== "]]}, Annotation[#, "Charting`Private`Tag#2"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwUmnk0lV8XxymVSlJpIGVImiSVosIXIZVKpRKSSorKlEQTSlJUEoWQkFnm eXiueZ7n2b3uiGvKL5T0Pu9fd33WPmc/+7vPOXufs9aVvG597uYCHh6ewUU8 PP//PXGT3UjhXFClvFFrzzgTSfAdFbXpF1GAWsq2Yp1XkcT+r/5BqSKaoPQI JnYVRBIna9tTgkX0wbO7131+dxRxyWw630fEDDx1Tge1BaKJ3j2vjr4VsQfP mlS/1ooYwvfrBspWowfgORzoeosnljixMla5IMgBLjdc780qxhIZozUHxsSd oJZ6RmtTVCzxLmH19rMyz8BzYWTK7GUcobUpIoJzyxmUZ80Dv/LiiGdlgUKF +i6gRObUeEzFEQoHZd9e/uQKyi+PiPgb8cTKUfvqrYrP4SJh4636JZ4Y+p6/ dLL9OXh0Lj1paIonSq8s1ilwfAE1W9Xb15clEKFrz7i/EXGDWsBW/Sn1BOJx 7eeSizlucPG+bYD7CcTFlwMLthi9hJroxMmUEwnEXpUd6mN/XoIS5oStUgmE wH+2zrlB7lCTXbDffzaeYMXn5L9SeQWX9DcyyxvjiSKzhXPn+0hWXiP6LDqe cGzxdRwRfw3KKWles0vxxHmv3owsymvwdMRPtcnFE3KaMv+5XXsDiukB9vHF 8QQ9NdN2U7gneO5r1+9JjyPOfuyyPC3zDmqfbgf/WR1HyJ7cEiNa/g4U8Qlv q6FYgn/hXRbz1nuoRTu5UQtjiavZ88mEvjfUct7cKbeJJdbu8JYz+PQBlL74 Qx/rYogFL9NOFTA/QO3Wgd2LI2OI8YGOu9KKPlAbz5dwehpDVPtLxo23+8CF t37JVdkYImtKq+ri9o9Qe3PpT+PCGCJSz5KT5/gRLmsGRjW7ownf+Hf8Wyo/ gifkNi0zJZpw5U/d9lrEFzwyE60730QTO4998EixIflN/ycFk2ii6aU1p7vc F2rP6o3+LoomHpecOrFI3A8uAXeC7A5FEdILZePkHPyglrakl3U3kqhRXyZg UEva68I3XQn9TjxwYd91lf4EChsmTc0RRNnfCLmWpk/k+jv25x0OJ6yVX7z/ u+MzeA4JS+yzCiM2PL42LuP6GZQLSaZR374RFjObUpz2+IPyhk39wB9KCPz8 dEDcKwA8I8kVtfEBRPreB590BgPgIjl0PGuNP2Fic37a9nAgeC5JVYc9+kQk cldml7BJLvGpfajzkTjH9lC21Aoiv8eKOFrxmvgjcyv4YxDJYZeiNnxyJyJu as3n/SR5WUUM98YL4j8aL2VlWDB4Gs5e2fPPiQiRHJA4NEty6L7rnYH3CW3T AtfreiHgGZCpW3zPkhgLCaJ5RpGs15iYrmNE+Pc+Opo+T7LLsQM9DzYS6mKX I/oufAVPxIkqv+ZbGDJUXMSfQDLlfQ5rwhGbR5xuJOwOBY9GSoqQ62tYWxzc ytNDslux3PeKAKw2S4z+rhQGF5mau9YjMTB/sfnyYbMwqN13WnL/bRxyw94u rX9P2gtkwhzkEmBGvWM5wwyDRAJlWFUpCekm22VP+oXDRWujpPajVCx79rmn nxIOtRHb0fITaTAJXvzWfiQcpj4Vucc3piMl74HK0g0RUFMSf109nI7FPXRu 8NEImPY9uHgqLwOGf86H7LOOwIBbzZZ6r0wkihafLg8kx+/aMqF3JQt8h/f9 Myoj7SoOEhvtsmFw+Vvi+ARpf6flR5TlYKxbf1mY6HdQtrdubeTLg7sJ/83z R78jtMgsg6aRj9Qb1qIZvt9hOv2ifRFBQNBK5eVjxUio7aEKRBoVofR5p+Hi p1GgfBI/M3K+HPviVy0W448Fz9zcmnWRDaiUKzWtlY9Fh1VJ+JbZBpgmO+Y+ uxwLR6rn/r26jXib0W9DjY3FQJnoed3JRrApCd2Rp+JA+aDk81y1GSGtx5P3 foyH/zZ7obG2Vhww+Lt8MDceaoFHQud2tKGmK8nclx6PDSsWyi972obZ/vVi 0wcScHvyw5mtW9qhP8Rwz+tIgEF+4jsj6w4M3w2g3uP9ASH5h5stijrwfExX WXznDySFqf5wWNuJpKnUCdfHPyDhUVv7IbcTxx7e0t0f8QP8f3yvfBXsQt+s aBS9hhx/z5gbf60L9k/qeD/99wMGA1ue5qR1Yfk/V+NjmxPh4bO+oG22C/4W l0xktRMRWu/7yHtfN6RbZE1XWSWCf8VqxRN3uqEa036jOz8R3q8EkvJ7upEd 8yk9Uy4J3k94wyKIHnDPj+SdrEuCi/nwS7uXfVBY2q6iSktCQ/htDdmCPjwq KCyQ/5UEeSpjnvGrD0t2fKas3ZyMUKOBh5dv90NyXr2k/14yDKKHFEK3DuB2 qqxWk2syxrV3rPmrPoAft9eXlfglw5dxa+KyyQCONI+Ux+Qno0eKkbDm8wCe e7TrBDUmw75wi5dN6gAqVIoq3zGSscH0umVt/QAEf8afcJ1NRvR8qM7OkQFc iP5cfX9FCvSD+2Ve8VMRdOW5rrkkybxZCiGSVNBW36s1OJACncAKzrkDVFg/ 1ahXuZIChRrO+TxjKl6f4zYtSUgBn7zs9vdxVOTPaXR90U1F/HRSg8JxGvhS dhu9M01FkHfhS44xDSdubehxsU+F946mwyE2NLQ3cntvBqXCxuhnxBJ/GiYi /al7RlJhQBxw6mLSsPXsKLvYMw097jmSLm6DEHU+dvjWtzRkTVy1HAgYhFBC qOeyzDQoLGrlDiQMYlH3bE9CTRrulv14IEEM4jf/ebmztDT4vvL4e7VhEA2U zPt9SulQ8hoTM1lLxyN51/kZRjrS/PKNDL/SYW3SdSboTzoGLn4eDEiiw8xr /zesyoDYBts7nYV0nGEzjrorZ+BRoPRjAzod0qEnXq/5mIHtXz0DL+5gQKQu vCsjOgMGpjelPh1mQHBubpdhQQbcJRHbepKB2UuJdaGcDFSET2brWzEw+pJf QvNfBvhu1qj7OjNAT71myxLOxGGZyMpmbwY6qTlFb3Zm4i7L+eyaMAbqVgoL y6llwif6cue5VAaKVe7dbLyQiSded8a1CxnIulOWYX8nE479FXWr6hgIL3e8 nPuJtL984RnFYsDRuTdEh5sJ38YZvmZRJqTGInfcCMwCxWJweocrE+s38Txe nJSFjDy1tqm3TAicvFwTU0raV4akEYFMTEcutx4fz8JQuoHthTQmakxs0p4e y0Ybb92QC4uJIq/KRZJXsjGiv6vy5BQTmTlSl0rIOjYf5RG1jpeFsHWts8tC SPupo2bxoix81pQ7+SOVtIeGajzcxoKX3augs5XZEJz6K6GhwMLz0AHuVF82 7Lq50cfUWHhYdwj+U9koeW5TUHWMBUG5dEYlfw5mVHyf1p5mIeKtvNcfsRxo zGYqN1xgoVF3W6eJVg5arP/ltN5gYVe18P2tn3IwZ/wuc8CZhf7yscgUxVzo KcYn/cpkwWHbnVP0k7lImqy3ni1gQeAV8+da01yMJ/yUmytl4ZB2r5qTRy7e SB9J4G1h4WNJVRc6c1GwqipGYJyFndLarrbcXAjWcm+vnGaB8qJwWzhvHnQ9 Vm1fPc8CVyPLfvHOPAzMG0SuF2DDLWz/RiXVPGzPeXJTdA0bogsSCy3O5eHd g1DpTaJsJF3befuLeR5y5EsGxSXZOFb4XbD2UR4M7u87fmgbG30Skunz7/Lg KO5bvVeWDXuXICP58Dz4VP93audeNr7hY/TH6jzkbck+t/EIG3/yXTQMxfKh 0QLjv6fZSMwxcmDl52P1gVPWhQ5saIu2i4k05UOW+mMi+zEbPU7nik8w86H8 Vsg+xYWNpYeOC/0QLMATRrNj+Bs2bmQejLW/WoA+P8PnL0PY+L0uRS/yfgHZ j/P4noWz4e2we7r9VQEkRje9cohmI/+AtOaRpAKc06Z63kphQ9/v69DdkgJY TmoImmayMTQl+iGkowCOIRHeBnlsuOh/UmwYKUD8icVrzhaysT5tVR8vL4G0 X7f8jpexYez1R5++jsCknJPw1xo2wswY1WWyBCSc/2SYNrMhuzY729OAgL44 z9zgABsaDqZ+a5MIDF1d6j70h42DQZciffdQ0DewMXB6LweXPWqoLw9TsGxv iHK2EgdP7NU3PdSiQN5Vov8ROCjU3eV72YgCQ8mt0vO6HOj+nXfd/IqCpmty P/huc2DFuZ+/0oeCmeQkvTIrDj60smd4gikQW7D/56sHHKQVXlGYjKJA+Vy6 3/EnHLQlNFkPplCgH6aotPwFB7MBx+Ja8imwmczuqnnNgZh7HrO0goIgDeWn 77w5ULXbK5XZTIFUoUx7rR8H10wir0T3UZDU8/bKtgAO3E5sDAjgULBzZmrQ JYiDyIPeLW+mKPixxtiy6ysHI4KPTt5bVoi0Ezsfvo3kwIE4dWjfwUL4Z5V5 /0zlICCuyH6LeiG2t+xefyqTg7zPiknCuoWIGPMNjszhgNdGctv0tUKEytyI vVzIgZfEf8J5bwvh7fuvmKjj4IeApV6CfyE2J5mfEGnioHGmzzMknLRX1zbY tXKwrrFigWs2yQuCerf2cHAoX0XVrqQQQpsXmjn3c2Ack+J0o74Qnw5ZDnXQ OPjmGjSuxSjEMxulaU8OByX3VskqjhdindfXp4wRDpiX3W9t/1MIj6jFfBjn YKn2nzCRxUUQLr73xv8nB7L7bPqWrSqCd1+L0OQvDk5vZojMbSyCgwTf20cz HNguM7zAlSmCWU12yaNJDnx/1Xn37S2CrKP13CPSfwbtaE29chHmtmxVeMwk 10vHdeLtsSLYt/FZfR7g4NePgnW654rQ40GPSu3iQPHxoWsVt4pQxQ3fOELm I2vNnl8UnyJEZ0otvELms8Pp7kbn4CLMWCxQcUrmYKY/Rk0lmoxHjObgF8eB Ury0Z3Z+EXRdvw3VkuuVrSkqkcIugsRJiSZVDw66Yi9p2fwk9fz9t9zoOQe/ hfws5eaLIJTUr/WQ3E+He1emx64pxrjw1+xEGw4Mj57qur25GKblz35WW3Lw KObNP5kdxShwMtnNNuMg58GiE+Gqxcjo2/RN4jLpv1vD+trxYgh9+NulfJ70 r+7iK65fjJCjvcKXT3EgGp2f3WtSjJn/8k4/OMbBEcE/fV8sijG076VrLHk+ jO2V+AztiyEQohv9+AB5froe7NjgXAy9pcL1urvI/RQ5ft/Xtxhp/WFiY+s4 6BGQCzj3tRi0E5ZHKQIczNndKRCKLcaGjL2WHxZwoAIm/1uiGN5elMz9o2wU tHcHvxwqxvVDfeccS9kg+MvLHdRKIPVR5DWvPRsDVnxchZMl0J0fSGyyYIOn VX31zwslcLOIbgu/yobatzxj6zsl+AVFae2TbJgu+e2626EEMnHzJ9ark/Xm nmLUsEsJjNeV2bIPskE5lDJx61MJOkb0iTdSpP+vY+tkvpVAwECMabSB9L94 tzI9rgRqxYMCuwXZkLhreS0so4R8L2+44ryIDfWmKHfTwhLU+GVdSf7LQpFl 8MbLIyUYX6dk6tTHQirnzh2TXyUQrkPM3nayf90+nHuDpxRKL49NcupZeGne bmglXIonPy+6GRayoHN9VeAL5VLwNTyIPhJB9iNqP8dDuxTSr55O/Awi+4/p j0Pv9EphqvrycLwf2b9MTnb6m5UiKN63RuwVC/WXX2744VWKDa9Tx/9akP2p 4/zt1E+l0FPLPZRxnYWkS1JZWaGlMJsuem5lxILPBeJScVopkm42CffrsvCi 5W1URUEpGsS6rnzWYsH+vPF0bUUpfjVTI8+osnDx7Oynjp5S7NOYUKLsYeFY Qzmzl1mKi7Mzro7bWVA68+ng4DipJ4mnWl6She11Zu7s36VoOZtZOS3Cgsip /W1cvjKE8njL00heVsMr81OwDI8Sb3+uIfn3iYYHMxvKoGeiPp9Bco/OvbUL d5dhJHey2pPk2vIjN/kVy1BjWb3PgeQC7WXpK9TL4C0SEWBK8lfNKP0NF8qg +/DCrQMkX1ejftz9tAzR+7IW9G9g4TyROLjvVRnuUr0tKknWVH22X+lDGfS9 LRpSSd6qvLFZ43sZZriiIR4ksxUvrDaoLYNBzNND+0juzNhy/Up7GWQNLoaK kVx1YDL5OrUMPEv2LFlCctz+92fv/VeGSLOBlu71LASlXPlm968Mz9dkHykj 2Wuv7MTDpeXQLvoQlkSy1Z5K7+ebyjEiftTmJclXf3weeLWtHA11G9utSdbb bS7/dm854p9OqRiSrB6v4OJzpBxPZGsjNEnet2thw2etchh2f1++h+QtsY3i wWfK0XJnarBIigXhHaHWYZfLoRcoZPxFjoX/ZFRWJtwrh/K0jq6uNguqNI3y N47lsK896Sd9ngX3YB3n2y/KkRJ+um/uKgvrhPXHtgSUQ1NP3ybBiYWDvHfq A0vKoRZz1VcwgYVneTavHOvL4e98vZeZzULZQwdc7CLjv3BThihj4dKoa+Kq 8XLoLriTZT3AgmO3/3uPjRUwNXLoaSDvQ5RPIcfMZSoQtNdpa4wEG/znIv4d 3VuBviVPrFx3sxFQkWj9T5scn+bKs+8YG7QX6dt6z1Yg/o3b8WX6bOxEbn+O cQXYpq98aKZs5KSXnXGwq4DxirfSHx+xscC2Zon+0wpEDr6/d+cVGydkm4i9 HhWYzPbJOOrLhg+r/eHKjxXweBGblRbGRndY7x5ucAXUdN1a1Mj7irTJIKsq ugICa03Ga6rZuCvC+RqdWoGKXkWBy+R9Y+791Eqzygrcth4+aruUA82Tv8vV WyogrVR69e8msn8u5nER7yfj4/n6+PU+DjY9XT7eNVWBuz7nUr8Zkf3eUqrh rEQl7NKzpZoSOHDW1PPGw0qE/XnFu//cEBbMxglt3FoFDy2mUf+XYWys1fiJ PVWY1Hx/Ry5xGArfOlvNDlVBW1Pp8dOiYdw8vuTLj1NV4Dv6JnAjZxgVAde3 ajhU4a6aXOelgyN4f1jksEV5FQ4fcbjY0DCCaMEksXeNVfA9LG4uTh8Bhab9 L6W7CrRDFQ+spkcw+ca+ZG6sCtFKon4Cm7lYfnV5lOTvKswpFkcY7eVCen/Y a22+ahgo3k2L1eTiYnf9ae8N1RA4WNCsc4cL60TzvelS1bA5cGvw8zMumee/ a7pkqyE2FyLj946L0Eu+v+YPViMr9H3YxSAusnft6tyiTvrTctm8IZYLsSfu NzItqlHSriG4mcrFAb1N2j33q6H/ZP+b/lEuTkunbed9Vg22hPTib3NcONdQ uSd8qiFtuWh+y4ZR0MRUHPtyquE2V87dcWYUf8abDReWVmP7tyyLYeNRCJda qmyvJ/1rxTDiLUehfc9/gd1gNSbfvend4z6KmPyfXosEanBX8lTtgfxRFH14 Y71zXQ3mSlWOT1eNouum5LkzEjUItJQrzeoYhYDgmfUBCjXkO29l/pGpUWyl MWbzVcn5BjyH/vKOQTXjSQ9NpwYL/o6nFawcg41J7DfZKzXQ0G6KV981htf7 1N3O3qrB0FDR9oWHxhC2uMPcwbYG9u9TI0q0x5DTZXX8y+MaPDeVYP05Pobm H4tkKS9rIDC+IrhHdwwjz4MEGe9r4O3851z+mTHwXdo/sTSQtK/k8IecG8PB f6YZ53/UYINcif1VgzHonqI818qqge9rj/i9RmO48UX8jGJRDYQYuvSFJmPw VuxjibbVYOBL6/noG2PgWBuJ0P7WwGUpa9+E1Rh4CnIYzUtqMWYWZ1lsO4Z1 AqIppatqcYpiHeZnPwaN6I4TMVtrof5wZtXhR2MIGrjwxOZULWj0pRPPX44h RS5d5/qlWhio1W2/4DGGiifCa/Wv1SL9i4/pNs8x/LehOUHxQS0Cz21sqPYe g8CtfY92ONfid0L/kpCPY5BK/6C98XUtLJdGwObTGE6f1eufD6rFFopsonDQ GMy+JsaNR9YibuMEkxkyhsdcQUdaUi3WPEzfnP1tDD5HrDRbcmrh2uR00TNi DNGva4XKSmph+0u8wpq0F7TL9mbW1WJTWHA2nfTXstUrJqajFu2nNsZd9h8D b9EJjbcjtVD7vu7d0fdj2CAUK+j8qxZTer7OWW/GIGeytNuGpw7xc6tsd7uP wfB3+X198jKwSX+F/vqnY0jbp/V9o3Id+hbwiQ5bjsE8HPyxnnV4Zjrx3Ydc 7ycTIS1f/OqgKWD9eYnGGD6SL+m3X+swmjni8URlDJTuvEO2qXUwXMm+Y64w BhHhw3eUuusgXtC397DUGGrcFOrKdtaj7/baerWZURxeWb3gw4F6XH3J5nya GEV0wDVFI7V6TH7L5eMOjeLFj3ehYxfqsbb72uGAXnJ8B9tug2s9LE/9+D5R RI7fFbzesr0e3L3HnoS9HYUG53nSYo0GZL1d/zlBZhROcnVVd441QHH/y/YG iVEk3RdhNOg2ILxjcv2U6Cg2zyeKfLnUgC9b6vwPrxzF7Ore53vuNcAt2y2w fJqLJGXFCwb+DbjAmAimVnDBcn1unR/cgJo3V/v4irnYXF77Wiq8AUflazdv z+fC66xZwUhCA/Y9jv5qlcxF8afEjrOpDYiXWDfwIY6L392/JzOyGiBX9kIi /TsXt80/bHMtboD4qqvf/gRw8TWuR51Z0YCvGTXUzb5ctI1vMz5Z14DVxoel NMj6tOLgfYek5gaI7qcn677hQvNxgffazgbE2v4588Gdi8eUpXGP+hqglrR6 tPU5FymLLpT2DzagbXSHl6gzF+Lew7Mxow34fcegIvwhFwXXnGNSfjagkGGl v92eC5P9ay7nzjTA5erLgXgbLoLaDmfVLGgE3/mUmXQLLjZseuMwtq4RCocF dlQYcZE5uklmZmMjBlOl0nUNyHpLSW7lkWxEyu5D6o36XPjd6FRYvasRqpLm l7tOcbE6dvtPBTTiND/l9Qi4SH6cF6ai2Yitz9vW2ipzoXdK75z28Ub0/Rn5 9p8SF+/HHyZfOt+Im2MiOfNkfZcrWn7N1KARchby2i/kuKj7+FXI4koj/tC0 m5bs4kJAsdz60a1GOLfdHxKS5iKO30j8xd1GKOu9cfCT4OJE12idp20jVlWF LhDdxAUn7vkzX4dGjKg7mRzfQPaDp+vkgh83YnHFjQXlq7jYdia297tLI7af Ph2puZyLMgnVtz9eNuJEi9KJIj4uFpXcHCHeN8JrYIVPPtmfIvxmv1T4NiLe fObAkYkRaN56e7IxoBEVI7TOrKERPF+WHksLb8TvmUzJtN4RzOvxWSzKaoTb quvJscUjCJby3yCY34jIz7oXtuePQHlqV8W6okaUbFKc/Z4xgsefz2/bXtOI yR0C6t9iRjDTG8Y4MdAIe42Mhs/vR/A58aDfeUYj/CpC7deSGT7oWqVpPNSI gtOeGz4+H8ED6cnwe1ONmDI0NX33YATCv16ed5htxEbqCT4B6xGklYssdJ4n 1/fWgejXt8l+a6l+3Zu/Cbb3l427GY3gg3LrqoAVTQiYnfq44MII5AUtCr+t bkKKc7+iy+kR1PfP2cSub0Lpoqruv8dGYJXsLZEq1gS7imbluCMjWPFCuiFX sgn7E35Nd+8cQbx+lnOJTBMGP4ikCoiOYHi6v69VvgnmRld3WM0MI+PW+6IT B5sgsN7M5wBzGC7tqpHEkSZkN93+M9c8jHWZwfditJvAe8Ku1pO8f2g4GM09 MW5CmNJL2xjzYQROtYlIezShZG1cNr1lCDoTtfp2/U2Qt7hhIuHDwZprT5VY 9CZccB2283/EQV+DrJjxUBM+Bdx/JXSDA/skz0Gt/5rAX/UiiUeBg6/Wx+1E ljejZWfEAmorG7+4Je8pB5sRNkKP/CbCRsRQbpXgu2Z82pq8sriOCavPZ7ZY fmxGq2hlwOd8JhQ1Bx+X+jeDT4i65W48E1XBy3Y/CW/Gh99CSmvfMDGhd/k9 J6sZT+ptTG9pMZHzd4SlWdCMqBKPoSMKTLjFuqiFFjdjJDvUXmgLExv4oicu 1jXjXESDRzYPE6qZv86XDDZDyUk+eXkeA/xmb+LFOc2wt9I5MhDLQJPQ5kWP R5sRe8O0NC2AgZuWWhl7Z5shfdq788pDBuTWdwq+nW+G8dHoG/vMGZgpvnuL vbAF75Qo3MUXGCiy4aEcXdqCht0dD7uPMuC1yXfDV8EW2E+f9+k5yMDFqm22 v9e04MthSanhnQyIP8ytvCDSgrKno8mzmxlIaaA9EpBugSzf68Z1SxjofLG3 1+lQC8aECoTOttMRJl96oFW1BRv0PUOvVtNxt9fgnbxmC3Q/G8hbEXTwKLqA dboFIZt+nvGMokNmqO6bvlkLru/c/r70IR32enfN97xvQdNRnxWHN9AhuClq jE5vQcGQ0fPt5wahdvFF7yCnBYExFLqx9iDs3l+tpo22wOf21mMfDg+ijXdD 1MBMCxyYo8t/Sw0ihOlh0iPQCgmaq1/1TxoaxG/qdq9qhfA35vQ/Fg0LLqsf 7lrXCj7Tk4YKPTSYV8+u7ZBoBaNXWDy4hAa5JMvaZoVW+HdGRVv50WDK0c5t OtSKl/4Cy8Nf0+AjtSWmUbUV1pds77U/peGXb7dbvU4rDFoP71Mzp5Hv1Uy7 ulOtUPf96mtvSIPhEl/T2nOt2HOebzr6NA1eajanay614sKSvrE0TRoKnHSV q41bMfDTX/67Mg3jKdt3Vl1rxZOB87Z+CjRIjfBtqDRvxcpawZSXsjS4m+T/ LLNpxdFIt/3mYjScOioXV+TWimgDm4Pb5qh49mRZQOHrVihr7Xq4foqKpHSm O+VdK+r2MjOXjFAhvP3r9QJ/Uv9y40Psbip6BIREc+JbcTn/mHJMLhWC2iNL spNbwRu74GlAKhVqzhX/ZWa0wvtTfv7rOCoiJlwa0ymtKLDeD8svVNxtm/BI bmmFqJS4xq7HVISsrHNI6mzFD8Gu5xvvU9GgE2uW2NcKnT++xcvvUKGQe10t gd2KZy3LtEYMqTCfUpWL55L6Cktf9pyjwn/3RrG4yVbEJbiU1Zygosp8emns dCsOBh5Zkq9BxdzX5unouVZUbh54fAdUyHUmMqJ429D2wfbESU0qTFd7NUcu bkMX30KRXcepKHHTTIwQagPP8NaMIdK/l0W6eah0G+Qz74xbmFMxpJbgsXxn G656Lz6bSsZ3bMP3WIc9bQi0+JY8Z0PFgnLfUd3DbVgq1m73ntTnJG3vMHum DWwXjf/SvKlo+3PH3+xCGyQNey/M+5H6mm/k1Bu2wXS/Y8YxMj/jrufnv99s Qycj4WHXd1Jv/z73c4/bkHBC5Pe/HDK+jJ3R+S5tmNySZnicQoXUO6mq7e5t WPf3dK5PKRUuN0VHPnq2Qa+Ns7Gniope5dWC/7zb8CHR7cnWBioOCy+Tt/zU hjwP8V6rVjJ/w7znWr+0YfZajkpWFxW/imbvq31rw2GfQ6/FaFToB074xUW2 oTDCvPTHTypSbDmZ6+LboJP5kVd9EQ0rj1M7XZPbUFNJUWleR0PVdMMmg7w2 1I+KZkwfokH9QtJ3vqY2UJXqI9VcaAiRjS63bm/DzZNztKYPNMwtDOV09bRh 4soO8ZvhNGSlvN+dzGrD9PMXn1+XkedLyDr9yt82LK9V9GgSGIRY9e7SjO3t 2HEt1MIsYBC/1OLot53bsfYfVe/iAB15EcNfHrq14+TfY1+Kpuh4zi973v11 O9z/JDDkljIg2BBfGP6xHYtmnB4t2ceAzNUfIX1R7aCPr4rIesHASNHoBW58 OxTGHo5K+5P1TGbPirnkdlzn9ip9iGdAdTTxsUheO/o4MbUWrWQ9fJpsoN/Q Tr5j1adFtzEhRp1YeaO1HbzUKPVXR5igae4rt+1qx7H+FV4/zzARHW33zKW/ HS9677ddNSP7h0Dqgff0dqR0d0rUODKhYPNzJJjTjl+duKP0lonfzfsj4kfb 8TvX6ebpECYoivZGuT/bsVV5HOkJTLh/SVtdNdOOQ3nmomJk/9H9N1XZ8bcd hsq9U89rmFh944Ara0EH7PLO13O6mQjZmTHGt6IDmXlqbpm/mUjPzqyBZAe2 54uOnlNi4dGmmRenZTpwVOVDRfYxFtRclY5c2dWBG/lLwiUusVCjkx3z6EAH IvKnLo0+YIHenuOefrwDwgV1ha9TWYg98kel5HQHdqlqBY0XsWDz9ch/Tec7 oFeQ63CpiYU587wb41c64FUQvWvrBIu8n+Sr7bLrAB/x3I8ix0bX5fnpQw/J eDBrvU2VjdB81USdJx1QIaxPvDvFhrmks/kl1w5cBlP6P2M2ZF8Sm8zdO/CM MP5ndJeNSfa/FnvPDrxDc2fRYzaydNW8Xnh3II84nrbDk41nSS5Hffw64HDz 7m1bLzY0hQt/hwZ24OxcXF0nycsceVMSv3ZA7uOwgsZbNhq61S0KIjqwdueu L7EkG4cXtXf/6EDNpdhbj9+xYb+vJG1dcQc0UqN5NnmT8SlIhH6o6ECWhavE O5INDj7xFKjrgLyEodo/ko8cVri+oLMDi98ud6F+YGOBRsTK0dEOsm5Z/fv+ kY2pozx/bk91AJuOia/3ZYOhZcwcnO1AbrM4PEiuOC6c38nXCR+1xmeWfmy8 P+tmWSraCQNRhXm5z2y4nB+4oCbRiZoGgc2hJNtdUFbP3doJlVcMlVX+bJhd 8pc9uKsT8SoFV56TfPHy1Ppk+U5ITH16+pNkHSO9hbIHO+EXax1sFsDGoSvx o5FHOlFpUNGu78HGzqv8XZLqnej77qPa7sCG2DWz0iDtTvyZNP5++SYbgjco Set1OyGgtk2g5zwbPDfFgnzOdkL87YSdiQYbg7db7DyMO3Fum7vaDXE2Ym00 JeztOkExSuy+28lCkF3o8rGHnWiOdtIYK2fhrf3cL4unnRj672iMbQa5nxzT aq96dGKVd4eDw0cWFF2kH58M6cTdEt7VLqdY2P7cxbwsvBMvVtU4LlBmQdSt 56x6TCdCTD71u+1kYf6V73bFtE7Uz+xMeL2EhZL3fG1SVZ2Q362v87GQiYwP poXB9Z3Ao82Ja5PI8/oxL35DayculrPX+pPnL9Bvg//Hrk44Cqc+ESXPp+dn +xeCA51Q/qqq3G3DxJOABqvXDFJf/JsD7mfJ8/1F1pBvuBNXs9vk9u5j4txX uvzv/zrh0mwl+eonA5rf1MQe/CF5IEd0XwsDB8KDlozzdOErd7FwbxoDG6L0 +xjLu5Cx5Ovi/Q4M9P8o8WyU7MLUkfrhvhk6Grh8I/u2dcFBPWlsYxcdFFkt XV9Z0q794adBLh2hsaUClxS70Hv2/J+mp3Rcjyx726PbhYJb7cvKF9DBDK54 z3rYBdeP/TsSyfrK9ar5+Le2CzaF4XkS3QPoqxaYMmnugj51fsY5cwB1y07p Uzq6cJrX8ED/xwH88KgVfjHYBXl1oR/BugOwcavz45/tQovrrOqBJ/0wLRb8 ZTHfBUphYuZPhX6cXXDmYvXCbqTxmsuncPuwz6V+3TvBbji4NknuudoHKWLl w7E13bhY6BHIXd+HNfNn2vVEuiHLizXxDb2YetzweY10N2Zc4vh2aPSCniM0 Y7+jG6Ojq1785O1F66yeQZtcN+Ym34QyK3qQ8bBxQ8Chbuz886S75mIPHO83 BWw+0w2v5dfOBth1449ly5cdj7rhK7tDZV9sJ/QPXvkg59yNLFCOz9qT54SX 6b7fjfR/7tJFCjph4j9tq/KuG/ucXlqfbu1AYamoztmwbrBLqd8seTog+iFc 5WJUN6Q6HX/srW6HnbHsfqP4buiMrMyd8WuH9E+VzTczuhG0WrXFfVc7nhaU rbHM7QZla+vAqV/kveT1maXWlG7QlO5yhQvbIHehY/5+aTcEdRf+7ib7+iuJ a1OOVd1Quxq4OPxiGwaGOZyn9d0wFhJOS9ndBqVMu/7nLd2wOrv3VtLyNgyd cqvy6iP1Nt+pjStvxanHUaGhk6S+9oGAMLRiTRtXt0K0B8sGqvZ572nB3W8O GrXiPZCQZDPermhByd1/ik3SPVC7vijAc7gZDgtXbemR64EOHf/co5rRKa8w O6bRg3fstOqn4s3YN5c3OnWsB747mp49/tuEN+Va9FndHsRbju116m6Cssml +oWXevBjZIe//ecm+O0YKOE37kHd7mMn7R40YXTqds6Kaz3IszKbtz7fhK+e j76vv9ODtvEQszsrmzBzceEXMZseMPfmrbfgNkJPystb8kEPItW6b/C1NCKG K+wu86gHLlcSnrEKGrEgO/jxLuce6D1yDqiKaYSRm4ytvFsPdn4+m5ZAvuPT ziSaH3jdg/nULfXezo24yaScxcceULjlfJcuNGKX+pJ589weeLQYdFvHNyAp Nm5bB6UHMzYNzZ5+DVAQ1jt7vKwH2it0aqKeNUCZ5R+xq7EHUtqK+f16DTj9 dufJcWYPTK13qX4dqkfTrzr7ayM94IsW3dOeV49LpvdDmiZIvQNLJVa+ryfv gXkTaXPk+HNsXuf99aAHmW6UWdALMc/2yYxF9bBYvEjr85JedBSXDY6212HU OsaKf0Uv4ufSW2Ri62DXecrfaXUvbA58LzV5UodfGpOFQ+t7oaMksaNSrw6P 4z8NG23qBVuNv+n9gTrwrDuytlaqFzXHxx9dFK2Dm3O/qur2Xhif69iy6V8t +c61ZSxQ7YX3A8dyRZ9aZNv67vOy6IVLbpbgvawaqHYrGf+1Iv2XhGbuD65B kWbvSyv7Xmyv9TD97VqDqvUynXrOvfDvM0h5dbIGPfmZzmv9epHFO3shrK8a ptuMY9wDe6G0jDp/u7gaDG+e5umvvRBYUxm1J7oaozeOy3TFkvqkA2bzbKth V8s9czKpFwa7XcNeXKzG9EEfp7z0XvActDh54kg1noQeDN+d24sk1bNTQhLV 4FnWXRNCIccr8nVXr6iG233nXyvLetFilH1H6V8VlvZukXCtJvW5WM1FjFdh ddLd+zfaekGp7Nj0rLkK0hfnRbaP9ELZOMFUPqAKx8IkbyWTdUnB9SLTV7oK Cv6CMmVifVB2N5ifWVcFiXd/6F2SfZDwNFx3ZWkVfju1XueT7YOSn4n21tFK JJx9bXJJrQ9pMeaR6ZmVCDzmsOmuVh88ftwuEImthLvKjR6XE33wTrVsexpU ifv79b74nemDS9bdUeq7SpjuUDGM1e8DJd9qsbZrJU6J7xQhLpNcZLM59n4l Dq9d39Fs0oeScruDguaVkFnO95l9ow9uIn8eHb5QiTW8Exf+3u5DVlKzWaJK JXime4VXW/VBXif+tLRMJUZGqppl7vfBv99NKUCwEmUdEWf1nvZBV/CgwIv+ CjglGZwK/9CH6Dv+qRddK9B/laJ5PKcPZjJXFsyXlKPmQsJCE6IPSfkHRuwS ypF1MrDIroTM1wXBNpZfOXwU7dWC6vpQ84KIaTQvh9bK7cpjtD6oUSXPfucv x75Fa/8sZJP+HX8fFp0ow+Y/vDkbyD4hLNQs/b6zDMsnRh13T/ZBNipOkK+o DDPMbkWNaTJfqm4zjrFlYPRU/Lo414fxVmMa16cMTU3p6Xd4+6F570DN9cdl KKgIs3dZ3I8gPsGM9htliCt4v99veT9ChSZWft9RBv+0J5MxQiS3ef1cRS+F W6xFcsHafrCDtrc/CymFyaeje9ji/VDaYRpisKYUq6ymdx4h+1qQer2swN9i PNx0VYpq3A8vu4Tj9xsKcV1P/mLPtX6IuZyYUPEqxOkXvG/azfuh+5blz69T CBlO+EStTT+EoiXZwQQFLWlsSo5bP/hzd634cIUAhZU9lf66H/6tN41lWgsQ J+q5Pfkd2VfHv8bl6hbguctu7yj/fnRsFT7BPJIPq9T54rDgftxWOx3wODUP l5n108Fh/fAw8mAL7cqDpsi3XQFRpD6HIsXIsFzI69pd9Y3vx4z3nPsR0VyI OR/9+D6Z9D+x7Sz/uRwsSREuf5PRD70Zicg+52z0rc+Uc6X0o2HRGj3P7kx4 Df75e6+FzIfUdDjdJw3sRy+Djs2R9tRnn+UWxmPo4q7b33gGIFRoo95tEkvG vWaB+MIBeNddH36VE42TWxgHRPkHMD6kDartd0i9fhUstHoAplqb67YVBqNB v+bu360D4Fk7a/Gx/w5kRy4sbz9F3jNOmCf4Pf1OZOnrEm/0SNba8mNqeRRx NF/jvur5ASSpDfw4HxhNGL7b0/3dYAChBwyTVmXGEa/ll8bZ3xiAklBUp/ZM EiEc8M9kuzk5/u0iQwcimQjl/bW65/YA9JabdX13TyGymmiPjloNgH+xZDff 2jRC80in3LTNADxeOBsp9KQR9eH1tNj7pB6evu4b4emEoUDZJxOHAag9Uzb+ aJlBMO3zTqx2GoDjn8Ceor2ZhF1vynzpY1KP06zx5Ewm8VcrJsXpGRkP07x0 57MswuPHV/PdrqSex7JGEbNZhPD6T6LUF2R+Vk6Ob3qQTRzNth5KfDcAeTN+ Hb4buUToX6k3pyLI+Jcf+NWgShCy5iKqvFED8A/97XkihyAy61ZOpsUMoEd0 QIgmSiHqvs5dFkscQF7i90ijTxTir3rbjuHsAZR0yjedfltIeMTW9IbkkXoj 1gQvry4khNcUfzhHDKDG6tetCv4iQpaeOJtdMgCvhXl/1d2KiCzdyIR75QOQ rgupmC8sIo6mB12TrCLj8Xf9mPuviKjb9HFtaw0Z/3UzE0eVYsLQ/XWlR/0A +LT4nwrYFxPMUeenyk0DUChzFM7xLSZsLznsHW8ZwIZjnLhb6cWEx/YbAZe6 yHwcr+oq+lVMZFQpW8gwSP+nvJScnEqINSvH+Ut+D8DsotAU41kp0ZT/5tXx vwOYkh9JMgsuJXzubl1c/28Abssr7g3mlhKrqwwXdvFR4U1xZg3MkPyy9O+Y IBXRO8e6uu3KiKb9pk8erKJCaFH1Z8MPZYQP7ffv32uoiO+P1O9MLCNWqcnP LBKhIs3XpK5tpIxoGK1y8NxIhZ71Yc8Ly8sJ7+Cb/wltpiLr+Dqdlh3lhJ4u j/0nCSrUpCf5zuuUE0J/Aic3bqHCMVhEaeBqOdEQc8D221bS39H26Qg7cr5B w5jMdipqOL6ZFi/LiZUZi7h7d1Ox4aCQ4s/YckLQ1oZ1TJGKpLrFBxf/KicE WFo9909SMfXv535Zrwqixm/AcPYUGX9k8s/xkArCS/Nx5zM9KsR0rVPTkyuI 5WFJba8vUGHmP7QP7RXEsisbG79eJf3vpe49J1VJVC3POLP1OhXy7SET6w5U Em9y9OpizajQfWqc3H2skli6wb063YLUV9kuf/NeJVFRJnHiyF0qOqz9xne4 VBIeD3IrKFZU5K09nzTqU0noSF88pm1LBU+ekE3q90qCv3m8tPo++b3rdXsc s8j5rp6aZx2oEIh8RjFpIefLyxS3OVKhv8bm1chkJbHknRGF+pQKNvfcWn75 KmLx8bKc6VdUKIVv2IvYKoKP+JK4JYiKJysibieEVBNdypo6/SFUeMx7FlcR 1URizshA4DcqQsfub2YPVBOGGSqrV0dRMdd4tEVqSw2RnNBvz5NCrsenQfhH 1RDuuzxW5KWR/l5VB6ZX1BDGMfKRDzOpiHBM/a+JU0Pwf3dtH80j5xu+iFsh W0v0Se20iSX+n987i3edqiVSQ5v4zYtIVjl/TceqlvDY/PibZCkV/HJH8m6+ ryVMgrYc7i2nwo2+ccYxq5ZQEK1p8q+iYiBgOtrpVy2x1N/+jn4tuZ6nmy8/ Uqgj0j6WBlU3USGd/Sb3cVIdsdzz1r/sXipa3s4+exZdT2Q5xZV8+kmF/5fh BRo1DcS76fNXzv2iQsrhspHGcANx48HcfytmqUjRK0/VWNZI7p9T217Ok+u1 KNzsqE4jcfP22Ov7S2nYbWNYplnSSBxmfpbaI0BD/ImKzVqDjYSQmVrukCAN N7YefKi1oIlgUtnnI1fR8PtfeL2WZBORd/XDyDVhGh51rdqurdZE+PQeerlp PQ0S6c4u2lebiFtGtE2dIjSkvud2aD9rIpQ732T4itEgu6A9cDqhiVh9af8Z PXEaWPeSa7J6mwh2SzdruRQNeZ2e804rmon8c24u5dI0mGiZyx9RaSZun25N Vt1JA11so29+UDNRoPVQePcBGtjVbkZFRi3EHYXczqUnSd5hMFTd2UpQGlrj s07R8FSYw03gbyPW3ht3vqVHw+J/ThPvFdsI4vtWmdILNKi2fJk579dGrFnv bediSup51r+4R6+dyJ01Wz79gAa3jsDLnZMdhNAn577vjjQskBAJXirXSdzc F5is/5gGh1ufBw5ZdBIr79RfSnGhwfDXx1uB/Z3EjZ5DEfc8adgr/PaBUU0X sZwQVKGH0lBxxvlD7/cewtRoh9DHcBr5HvnbsoLaQ6RPHx1Uj6QhsO/xBlWx XuKqvNPrr3E0eN1z/Bri00ukfhtsNcwg8+Fpm3DVuY8wcsuyaqymwbcifvW7 XQNE3PHroQW/aFC6Urt04QIaoSArqYpZGuyHrEasN9GIAsGBbuIPmd+HQvU9 SjSiofnK+kKeQcj7nPfNsKYRU1cuvyteNojV5Z2bLXtphKqd3pOKzYOw4Uvn 7QgZJMr1V4oelxyEhWvaoHT6IKGnWJdZuWUQ5+dTS22rB4nrcyd/Vm0fxMGZ lNfLZwaJV+7HLGv3DYJnJGkVztKJhkBVgybtQbg2x0tGLmQQl5/+/e/c8UFY 6sUv/CnCIGhX8z42nxyEcW0cA/IMYkr6cH2LHumvPDam05hBPF0ye/fC+UFs 04z1lLnPIBYPZS5ruzAI6cKYe/dfMwiRxAPa7YaDWJIbvXdFBoMI+zA1eOnK IBiK0WsMaxiErH2qa8fVQYynRf0XSWMQ6RftxC9fH0TH3qj2nzMMQvXQ3vxO s0GoVz1nqq5kEuUbxw0Nbw1iw+PXKlQxJqE3/2Omy2IQK2S9fV/sZBLXi2UV eqwGkfU2WKNCi0kMfx9uNLYdhK9qRIDleSZh7xFr3XufzNdY7LjANSbx6tT2 uD7HQew6mxVy9gmTiG/fIkV9PogI4ebfXSlM4r9hUSEmWYt8v/CncsVZhG8w qzwoYBBlbm11GXIsYv+ZNOfzQYMYvBcx5KzCImxTTo1Rvg1CU01NarURizyv olEPIwZxf4egarcFi0hcyzKRiyJr2+qeyxGOLILr6FL3JX4Q0/SHHw5+YhFe O0+5n0scxJY6rYR/ESxiV4+I6tIUcj0z11RWpLKIqrfM/4i0QbiEUukfiliE BVITHDIHkfQ6kceokUXwTzjf3J0ziOuNjsW3O1hEVJjuJnreILp+KC5e1c8i GIuYXmeLBlFlke55bYRFuGWmaPKXDkLtmH3d0p8sYouF81xB+SCypfevSpll EddqNtyVrR1EbH/SpwVL2ESvz8mTSzoG8f5C/LdwSTbRKp68NJ87CCP18EzG RTZh3/i08P44mY/N13+/vcIm1rw44bTz5yC05iRUDpqxibPMQfbnmUEoZ4YU uduyidr4dRV2C+mQ2B1Yu82LTZQeeuK+XYSOhzVjGXwVbMJsWEe1fyMd64pW pdDq2cTC4LW//DbTkZ25P4HSzibUeRJvLpSmYzLsYfgTFpvIL6Nq9snRccXp 3/upxRwi/fyxhb6adGjLrLSga3EIj5NZL8WO0eGZ+ddK+RSHMD66g//7cTqa dUbsffU5xIL9y1dknKbD5E6li+YNDtG688l71bN0RM1lugdZcohoKe6q8vN0 0N5Gek3ZcojTq+vXdRjQcT3phX+EC4eQXKYWYGpER6S6XcjcKw4xxZu8kXOF jj0Sk6fPfOAQFbOSIbamdPz2EVcsDeEQXyZ8JH5fpyNm0SnxI/EcwoqzMPz5 TdKf46MlydkcQoNqv3X5bTqkh6PGZMo5BLvh4k6xe3SENyygrKZxiNyK8vgI azr0j8pHe4xxiHcUpT277egQyrjiPT/HIRSSRBVUH9Lx4kuW6dD6IcL1fZ+K qSsd5uZWvEWnhgjR0+ZnI/zoUJ7r1LDNHiK4Wu3Nsv50/LVasotVNkRQVHQu pgfSkUVVWHOlZYgw373TqOwrHQrl7wd1xoaIQ1u/9J4Oo6PtUH51wdwQIbBJ wLQ9go7A+KFUhWXDRKrAqBk7ho5lPlpuEluHCXe+qyybeDrq+O7f/bRvmDCc q7eY/UHHu4eh+gJqw8TuKbUR12Q61CaIks96wwTPSLLVsjRyfySu+pl7fZjQ rX7gKFtAx5tIg3jduGFCvJj5O41Ch7FZbJdN/jAxmXPpqUoxqUdqjt+vfpgI iD30/HQFuT+Cv97s/TlMMF//9bRpIsf7MTdbKY8Qzjovv6Yx6TjoZv/hfe0I 0WRy21ieQ0dIzMPjBv0jhPSDkyLxw3SM1j3ilZwYIaq+rfoYPk5HuoirbYow lxD+E+zu85uO1Ylvz7YacYnohIx7NoIMCF/PFNjxi0s0rGYfkT3IwBLkb9h0 ZIyQ2lE9E6XEQHfQ08t3z4wRD/AjfcsRBn78VgnMvTFGiN6137NRjQHtjIKN hl5jhFkpz5ZlJxh4s5uy+XPvGDHzUGQZ+woDfBceN6aqjhOSvSc6wl8ycCpQ 6u2C7nHiTdGRxAseDJxeZXEqiDFOTEbJui/xZOCSR+KKg+PjRJGdoMIdbwYM HZTfWSyaIMz4m97v+8KA5bmL7xv2TBA13CJzejADNpVBZywPTxAHmlNVPoWS drXBlXxaE0RIVoSwTjgDjzJ3NASfmSAWh/gNz35nwFXOxlvRcIKweuFeFBfN QJKKzR0pswmi/fbDgCtk6+iTmvcKvjNBRO+/fKwwiYGLXJGGj48mCCGRE5vv pzLg3hQ1Ifh8gnCaP/yfdAYDZZkH1rx5PUGcqBQL98hlQOH52Ysu/hPEsMnA /JkyBjasf91zN2OCkHtzK6Ovm4E6tRm21uQE8cna4K13HwPLZNyXFc5OEP/0 j5tpUBlQXS4sq8w7STSI71odySTja91jvU9oklBaJMa5xGFgJCffO2H9JBE6 JEBZOsKAWOjJlO3ik4Rt+ui9exMMeFne+m+z3CTRFdivKT7FQPWZ/9YFHpgk NFwaNjb+YoDnwAultSqTROzNwsnnswyoia4y9NacJFafTKlUmGOAYa2/caPO JPFIPjyUOc9AYeBSFdqxSWJwre9Df14mfEoLTGJITht4sHVuMRNnN+4IUyRZ rMx8LmEpE9LafcXz2pPEy7hLzVcFmFhg+5FRSvJFh0OuxauYSCv7u12f5Onl f3veiDEhZteUaKM1SRxWdPMV2cfEeMXj/Jijk0TbdZGDwQpMzJ02+WFP8v13 P9olFJlY3ar2FSTHMzpEtyszcZS6yLVVY5LQWWWVF6fKhP4ttm0oyQzlhSZ7 1Jkw41Zdv0PyZt/d3w5qM+E5+16Tl+QcokgjR4eJb852B2rUJ4lLw5foKieZ //9f3P8qsvJwqr4uTNEgkQbJEAkhU5MMZUmSShlSGkxJJRlSqJQMEaUiP2Su NEuhVDItJEOlTCE0kHvOucO515UoxHe+P99n773etd619lr7PEfjBoOHZOno qu0EXO+68rzOfBATLCKXbbIjYNk+0bOaRoOo47ewod6BgKovQRaX9AexIS3P 22YXAbZ7OTM5GoM4Rdj+ZOc+Ak7uaU19vGAQsxV9bDucGf87N7tLzh5EU2tR 4T43AjKcypb5ig1i4M3lqz08Cajefe+l3i8hEtvDS477ETBn16m2wiYhvs/V qrsaScA9e4U5xXFC9Gqv8JKJJsCkOb5D7oIQxaY4SiTHEPDBTuzmGaZezfae 3555hdHTltY1PSrEgumtrbkpBKzbgdsqrISY5HnuR10uAWN7V2p5DQ+gQYJM 5LYnBLS9EH01mzuAjaX3l37KJ+CpTLPl8+8DOG1e8+H2IgLcGvzdJ+oH8HSV Ot1fQUCt0ZMbSRkD6Lz401/RVgLSFmpOqzIfQKlFJ16UfiZgqf7GTSdWD2DV vAUBQZ0EJFu5Ri3VHECNmfsp6iuzPyhpykXpART8Ito/UYx+D0QnkssEGNkw 8TxrgoCk+9c6KBkBrq657e8kSsIJ+HkmdJKPZIXlchkxEhQ71yrOpfloU3Q5 J2omCaUze91N6/m44Kbs9WPzSWj3WcW5ep6PDwP1/Iy1SVBa1Tm+kkvjPv9m rV86JHx/r3OzrpPG2d6BrDx9Eu57RmxwrqXxhFuJs8oaEsxTtC9G36ZRbZ+L XNdaEmboh2nKx9PY7ijS9p8JCS11re+enqPRdKvVtunmJLj8PSfd6UQj35I9 rcqCBK3E5kKfTTTegivVIZtIGNDWcBRdRaODif751dYkLIqcv0zXgEaxNS3G /K0kDNdxIV6fxpf6Qb8fbCehe/abPUI9Go9qyxUesCOhemd6wE4Gf1R21fy8 i4SL363vLNSlMVxetP/aHhIOqauUndGhcdWCuzet95NgfWykrXs5jakSHNky dxJmjtybdkubRo/fQeJ3jpFwXWqqt6Ymjb/fXe07HkFC0fpyA+OlNPbM+uw1 foGEWM/cinuqNFbbKApiLpJgEXfDZi6DEz7mjmXHkfCjM8CLq0JjsPRghPY1 Eh5Pug47MdjFznjGywQS/DRsomqUabS8Hn5tw///u243nruCwdotdfMbk0kQ CdS4lbWYxjnzpDP2pJLwLn2engSDR3buXtKfzujtvGsiiNHjW1LWA/8sEtz2 7XyTZEFjzed+3bGbJKTssY99vovGXFmdoos5JHB2225v8aLxutNJk7n3SDDY tX2u8CyNrl9EN2vlktBjvyVTL4fxR35LY1EeCVJ2mw9sf0Hj8v0JO83zSdiz Y5OGTz2Nf3oWuzsVkfB364aCR3waE3+YnomuIEHW0rhGzZSPtWTQ494Wph4N tXjybXzM0yxf4fuZiX/1skJjko//HRUr/tNBwsRK9eA9o3x05ybWSH8lIUl/ iUiKigBH+flf15MkVGoumi/jK0D9YbZ0+hhTf00BLtLTB1B27YoU9QmGP9cn yVxmAMdPnVYsFKHAJPrI+wCFAXz3d5pWvTgFTcYuxm36A+j5b6nFsDQFQznW C9L2DGCqmGuggxoFBkHKjaq5AzhxcOGaZg0KnnWYfVMpYva/afptq0XBShNX weIK5v5Hbjy1XY8C/clMGYWWAUzpHV/7wYCC0gNlqot6GH7zl3+2rqLAtKZ7 1UJiAOsnNUOsjSgwuyS/e97oAOq59ZnUmVBQxTU+IiPG9JeKjLFN6ymw2rH3 tLSUEEeVdpXVAAXF2/qO1MwTonuoVOhGCwo+qdvdDlsoxNqeuvXVlhT0TpZ3 mSgIUWddxIT5ZgoGvyyfP7xYiCOjv8LMbCiYd216jI+GEJ33PTEv30GBrldQ 5TJtIVa/Piy6zp6CjRY///bpCvHa6S+RxrspODJc4bN3jRA1hiuiV7tTUOAa 7GBlKcTdwktx2oEU2OmzlFQ8hFhmt9HmUTAFnjN3OnUfEqJqwbik5hkKTv+s TEhh+iffz/+a+nkKsm5kTp0dIETHj5q2d8MpeBEgsb4+UIglun3SSy9Q8GHb 6eALp4UYzXO8rhJLAXtyJ/tvmBA526Qcbl6m4O+XKtUXTL+2e1w3d/FVCiSL 9J2PxwjxpUREa2Y8BcrXspKXM/1d0dskSSGRgplWA7pRDI5s+OWYnkTB4Vll GRgrRErzyYJFNxj9mmJmjkULsYhUviGbSUHcfmVWQLgQ5Td/cUrOZvRT4To8 CRVi+P1Eufm3KXAgXlZSzHywOSSeLnOfggUBOzLdgoTY38fJlCygIO1i6M7t 3kKc9+1FzpQaCnILu6s0HRk9JUNDX9VSoPSgdLmmvRAlTC33+DRQEJ+Zkbxs hxCnpLbMbv9IQVDM/qMa1kI8X5tGXW6mgHXOtFWdeY+NDrm/gTZG7xMK69Ut hDhoLzj96AtTfy7dc9TWMe+x8Jc7XXsoeOxQGrLUmNHraajevO8Mn3VGv6qh EA9/tZxZ38vEt/7sDtVVQuydJdl/rp+CDRKl9iSTb2eT1ooVJAWyGoo9fmpC 7PRKTyPYFHRvCD08LC/EpreatnYCCjzOwFnxGUz8QwIt8UEKtJJviV+dYOpZ 9ZVYyRCTrwLRhPm/BxDDNpUsHaUgkHpzd2nfAD419lAfEWNDopP1xw1lA3jl ScZYljwb6tfYLzl/fABn9Hi0Oyix4bL9s8fiRwYwSkK7cLoKG3b6zjO86jKA Z48UHw5QZ0Pf3c9bM7cO4HBy2AYNTTbkVRp+XrphAE/UWCl2a7PBv+eG2+O1 A+i95HOzpQEbJubtCyxRG0DCNjPv70o21OiXTmxg7r/H+YMxT9ewIWmb4qUG pj98y9P2OGjEhhapbCWxaQO4t1u4Ts6UDRK5r/0W/xKgdbLUQ+4mNmR15687 FS9A8dAIR+MANnTdjg3sEuFjkZD3F0+yodQ8fEo6m0bPw3tuWgWz4dL3Uwl7 W5h+a6vP2XmWDRpKR/I679AYpfo1zC+aDetSN/W3WzHzq97o8Z00hu99fU52 PA+nzBsQlapmsE6H4WFVLj6L2f8gqYYNUnPlChJncdFjvNZGoY4NCn/2aOEQ B6tZWTc0P7DBpKZLQa6Og5HF23Q3trMhzPmbyLtjHBR1fbDnNIcNO0pqvml+ YqPII9f8vrkc2HHKdEfEIwpreR1+NxdwwDJhqDQrmcIrBvZ6znIcUH/0RKsk gsKFxRuffFbiwIJuZfFfeynsGSvzSVThwPyhzhPSVhTmgKGO7VIO/JNM/LF8 JYV6dZqP6zU5wDcTK/OUoHBIIsc7ejkHapzKtSKGSSzZoaBtoceBiuPBN7L6 SAxPTGJPGHDA6MLh+KB2Eje1z35UuooDRd3ZB9e8J1FCPsbrtCEHzFZ3rP2N JDa5iGiuMebA0yvSki+KSHRmDd5/asaBl+vDi1Znk8z3l8/hYxs4oJNSHDuU SCLlw1LXtGTs8Qeci2JIPDnUcff2Fg48u3lAfHUAiZenluckOXKgQHTj7lWW JL5eEpMd4s2BW2/F/6zgEHj+kIjrWl8OaC42+yD8RqDlozNKQ/6MveDgW4Wt BDYZ+GT6BnGgchlpvaKcwJRA1n7t0xxQDVdWEhYS6FzsqkCGcCC/00lYcJ9A 1fGOrjuhHDBckfD2eAaBFNinu4cz8VyqTzNIIPDphXd7lS4w+kR/eXgyjsDA uo2LuqI5UP/3yb3xSwSazCrvTInlwH3fyJzoWAIndxim7ozjQGLv7ptSMQTW JOY7zbnG4F3LM29EE3i5XXNhYwIHLjRMpqpEESjrqpBilcKBw4UPE1dGENhz O2nX1DQO2KiHxpeGEZjDmr2gMoMD5mn2VyzPE6jrK5JkfJsDahGj0bvPMvGf Y13XyeMAaWdzJiSIQIlKV3v2Uw58qVEJnhrI6DG1c879Qg50Gf0+ceUEgfvj 3sUrv+JAikq2T7Y/gSfS86/OreaA34DArfooga/G02OqaziwPTV8pYMXgeOu FyNO1HFAyVxGvO8wgRZVAWdV33FghLzdEXCIwJilLkEtH5h6il+ZK+pJ4Ido a//ITxwoW/vm3HUPAudSq46ubOHAle87bZccINBpq/LBvjYODGaar77DrGfm SbgkdjD5iX1hl+RNYK/U8G6LLg5sOantG834qxHQazfYw4Fw15uXgkMILFhT bOnQx4FPqy9V77lM4NuKQzpzaQ6c73VerZTLxL/EXqNawIEnH5rtpJ4RaHdh ncqJQQ70vLLynXxNYNfmefNbRjigd83gfm8DgfymyrHrU7jwzkRM7j6bQLmf Cu9l5LigmfR4TE+LRJdN099WyXNha5iKnMoKEnMeDFYEKHHhnHfyahljEnV8 Gp41q3Kh1jzM95c1iRt+B6df1+WCgU3R8+1+JHpPbzkqs5ELbxaVDccx9yX/ aPnBqk1cSJ+nhM8bSBx6/9AlwJqxP/t8THcriWEJYfbN27lQIGIut5wiMWmR rvH1PVy4SL4xfjeHwi9n5VZt2M8Fo161KYPyFC7+NlVX6MKF3q7od4vUKXyY 06Vif5ALjh837z9qTGH58tgZMn5cWPPi/bkZHhQati1sTDzOhfK4Qw8ijlFY cO7B9fknuWDlMdk8Gkihlvra3SlBXCgyShs/eZ7pJ4218nKnuWAsvWoZHUOh YvDu72khXJCN/f2mKp7C5MXEHYVQLvw3Xfm+C9OvpOqCvLLCuDAlxjr2bzqF sf7iusqRXDg/7YR38i0KReWShbeiuNAdnWGz4j6FIZVqL1VjuGAn/lav8TGF vjKWoHGFCyAm90vsFYUOzyPtdVO4MHNKxdnARgrf758rm5/K6B9BusxppdBS LKfLIIMLgyIy5nmdFK7dVXVw9S0u9E0eFOv/yfg7MhlkmsuFu/9mXt05SmHK zXiT8jwuaISu8hdMUihtrTxpls+FhHFn+zhxNk5JM4u1KOJC8Fj+gjdz2Eia hKZvqeCCxd9d2SuXsdH9p6Tb+0oulJwOC/+ow8auuMyl298w9v489PBeycad q3Woj2+58PxUi+U0IzZ+6CnNs6vngsTImEbOejZaRW8LaHnH8AWrzzTbyEbU 7V7j2MjUy4dX2g+t2GjU7j36+RMXXL6UfRfdzMZn50crnFq4kEZUJe1n8PJl ly98aeNCw6/aLS8YfPfTIuv9HVygRT5MSFmz8YaKcbNrDxf2KLR7VTP4XPWp n4cILiyz46zT2srG397TH5IUF9a5CISRDPabd8PnKJcLV72H7vcw+IDny98+ A1zgRU3MSdjG+Dvt9/TAUS48fD2XNWzDxsqnUR9+j3PhZ+3CdLvtbDR2mn/9 1CQTX5uibS6DdR6ukj8rxoOTfI3XLjvYKLP1hE6kFA8Ml5perbFl460q6Vkm MjxojDZpUbdjo4HxE7ZwHg+uUcYLYxiMBVvrH8nyQG2bsTPF4B2a1P0Di3jQ +cTo9hZ7Nn69GR29SJEH5+YYEbkM9lm41LN5MQ+0Tq5dLunAxrFrlRaXlvBA fkPxuz2Mv5enuS7ZoMYD9y1toUsYfRedH5v8o8GDdPsBZsqx8eHv1G8FWjzg 7JXsf2bMxrr+1gwVfR64eFtutdRlo9ibLbIiJjzwjCuSPTKfjcy38tCrdTxI /K+pQV+KjarPolr9gQc/Mnjn/kxno/ltTPhuyYM9eWo/L41RGBq2Zhba8sCt MSk/r49CyZEWdrADD+58LvAI6qEw0+94vd4u5vzXDwvM2ikscXkcnb2PB958 sXOfGigcNl0icv4QD05IB1kPFlAY/bzi2xovHmQvvD5Wkkvh/OXO5bQ3D2jl J08v3KXwbs7fjHu+PNDRbDhgk03hKvkbIS7HeeBnwJq/IJXC6uur9y44yYMS 8jfpmcDcr5ktaxuDeCDRbTaiyNzv438kf687y4OaqqYFV5l+MOmf2zoUygON F4vUNzH94hq5+VleOA8uPvRY/e8AhXntkf6KF3mgHz/k4GtLIbvoD3ssgQf/ OcslbNdm3ie6Ta1nynhglvgg6mMyiTe5MqFTkQdJfmf2ql0l0ePRTo2rVTwY 3bpNLySKRLZax+lbtTyQ6h4pP3GSxGGFb0p1TTz4uME+bL0DiTISvCPzWTxY Jy02pVWaxLY6XZlskgf9XvueRU8nMTXav2QZhweXqws8jCYJXCz6S9JUwOgT 5PImi0+gzp+/hQf+8iCv52WUVyOBghem+7ljPNhoOHuNwlsCn50MFQua4MFE /EFWYxmBxgIRp9ipNDhsnGO1Ko9AK2L6+NPZNEjmHp0+wcyfmXe33DOaQ8OD qZWvCiKZ+Xcgbkf1XBqCXWS9DjLzKkG5cWTbAhq0X/nIyTLzbOdXqdufF9Jg ONL6z5+Zd7IZdlvd5Jn9jtkzZJl52rUn8RelSENNode8MjcC3dsWWI0vocHL 55/mjF0EqiU6CaLVaKhtqFv11JZA0jYtVXoZDVOWJZo5biXQ770iV1WHhsJe DcdbQODZ6qUJWwxpmOZkF2akTaBZ+CHjViMaXIrkL39TI3CK2YM+Z1MaqmVY SVHKBMa+1l5z3JwGjw9ncpvmM++nghVdKVtpSNxw57PXJAv3+p28oLKdhrZs 3x9SoyxU1Hmhk2tLg934Wm7REAvvPDAKK3ekoePlBxFRDgsLskGt35UGI53h 5WltLPwV8mv6gQM0mK7Zq77vEwsNnR5wvx5k9DUrW6zwjoWnV+3/tO8wDYc2 K8v11LCwVFr6eYcXDafsImWykIUT3OoUx2M0zIjrcb1bxkLz+uCQZl8a+t+5 y7wqZeGFu9quO47TcEuC9aahhIW14d82vD9Bg/PWo8E9r1k4wyVR3TqIBrPL tKagmIXbjK1mvj3F2HsX0C3K4Cbhk6aKczTkbgkxX/aShd0eoW7PLjL2reMk Tjxj4WJYsVH/Eg3PYqXLowpZ6K7A0siLo+FS/X/+NwpYSLTa8O8l0LDQOrOt 7CkLBywVQ9PSaTi6+Un29McsXLWkyV02i4ZVMSvs5XNZGPzvguV/N2kYqn0x VfcRC8decGddvUvDDasKL4cHLJy2rDQ9/CkNPzZ9Wpl1h4Vbpvqf/1dAQ0r0 TlZ+DguvfFf1CHlOQ8DbjhvVt1n4sbR908gLpr7Enbd+vsVCmdTLWoHFTH1s +jFO3mShY6DZbGEJDawoz/zRbBam2A0O+JbTMN+gVMwik4VfdO63cZAGA3vH 5uQkJr8z9xUfqabB9QSdxb7CQjfW7Mz+GhqO/3fRe300C3OqqsIO1NFwrUh5 7fVQFi4L0dq8/wNTn8P2TUZ+LFzJ/fN5RzsNu8++nBJry8KgurzX7ztp8My0 /dS9mYXFd9yzrLtpuFdOZeibs3C9c72nxQ8a3k3Kr+kwYKF1441fazg0WESF HdGYy8LLj7Z1POPREHhPbnWIBAsboydL9AU0RNUWinycwkIHsyORWkM0dM3o Twv61Y8u+YYyShNMvq9af6hp68eX+/5INYnw4YhOckXAh36UmlYieWEqH9Lf 9xYsrunHI4VnJQyn8eGet96d96X9WOm8fgZ7Bh/6Zp5NPv28H+VmTIpnzuLD n4d1MeqP+zHgeeVUWyk+qFjPD2nJ6cd3rpGiU2T48OxunP/lhH5UlbCcLJrH h2z2uIJhcD+GvBD/d0SWDwl6fvW9+/ux1b1uVH4RH0JOfg+8uqEfo15tHQ5f zAfnf1WN/ZL9SHja0zZafFCViQn7785PNJszjzu5nA9au/8sh0s/8UZpG/VM jw9TMo52cvx+ovXcPf1yq/nAUbNZYWHyE3PRtbvfjOE3kvk50NSHfvI+Decc +WDtnmG1Y6IXa9/q1uk78cHwnuSvvz97UTlAUNO3l+HjhN6819CLpxULq5Od +SCrL9hmn9+LTXUnKq3dGL5A9z/jSb2oeXJ1xdgBPgwVN999GNKLEYuHS596 8qFFRLy8dE8vrgw682q+Nx8sORtUlszrxZFPF+/lhfHhofKxfb5/v2N49O2I nlw+GL00vvbmZjfOPjV964EnfBivDo1ucu3GdC/fuUQ+H1I/VZ37qtSNz7cZ 3xEU8eEHteXYSEYXEjLNNVOQD7Ff/C7nZn/BbdkiM7Ra+aBpHXBE624Hyr5y uxY0xodw9eAly/Jb8c7Dt7tH//FB56Tsv3b/VjRIX64cJiKAOVUvOy8atOKW 0JH8WHEB5DmPxBOFLXhuY3xzhrQAnJf/Pq3U0Yx9nyrmVy8VgEqh/EGZNU3o X6X21UpDAJUH3H58EmnC8WeX773XFICIunWpYtonXJCy2/CzrgAMqH0FsvUf 0dqZ70StFcCAb3i6hEYjPqGUMqRsBHDrzHu/wd4GjM2Kdv+2QwDu0i8/bPZt QE8HWv2pvQBm3L2lnfWnHs2n7+KGOjLYOC528EI9KpaVFWx3EkBBYxCxWboe /xxXC1baJ4CHHu6WWel12Kp+xZR2FkBsv8Iwz6YOn3b9Eil3Y+x/LY64IF6H l+P3117xYOJp3zVbvqIWD1u+iXM+JIDjnwZTC4Jr0eKvtr2OlwA06+PVNuvX 4l+P0e73vgJoet1gGnjrLXoZpgklzgjgdNZ674+RNWjJFXnVdZY5n9L129O0 BpVveZ3LPc/Yjz8VMfbrDbbPNJq+NUoAdhGFqZqH3uCmr+2Kl+IF8MNTvS5y czWqJJr17UkUQKdLtcMikWoct7r/QDNZAPW73b7lF1dhUUHQyvp0ARRbp/3u 0arChENfR25kCcBrg2HEyb5KPCa/qfzILUZvk1ZJiYxKVI2abz39PhOvzmy1 tZKVOGF0bnbHQyY/2xzdMi4hfqF/ttx/zOTP9Fpw/WgFFuVsSw1+yvj7lNII uF6BCU7PXawKmfU3Gt6P9lagj6TCUtki5vwXzye9SyrQuiqSYr0UgDk/Z2AR pxwntR1ORpcx+ZRTPnU5pBy7vr822oUMv55LSbVFOb5MWjKhVs3s35jxb1Si HP0mBmJr6pj4fRdGHcsow57m+Oyprf/nk75uU1aKxRdHDrZ+ZnDn9raoqFJM MnXTutPJ8PPjFpbblOK2e3pFFt+Y+pWbka37tQRLTjc2RLD/b0/ksdTEa0zR XRNvz2POR5rxrWpfY0BfpuMSAbOeem5F2LXXqGnj871y6P98f14JFr9GMdG2 uwkjjP1Ow7FlZDH+eGHq7T7KrNOBZu75xVjmfUff4J8AEqY+j0g9VYw3lGf9 npxk4pMT1jRBMf4PNnGZww== "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.1426039760181024`, 0.9999998782112116}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.1426039760181024`, 0.9999998782112116}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwUmnk0lV8XxymVSlJpIGVImiSVosIXIZVKpRKSSorKlEQTSlJUEoWQkFnm eXiueZ7n2b3uiGvKL5T0Pu9fd33WPmc/+7vPOXufs9aVvG597uYCHh6ewUU8 PP//PXGT3UjhXFClvFFrzzgTSfAdFbXpF1GAWsq2Yp1XkcT+r/5BqSKaoPQI JnYVRBIna9tTgkX0wbO7131+dxRxyWw630fEDDx1Tge1BaKJ3j2vjr4VsQfP mlS/1ooYwvfrBspWowfgORzoeosnljixMla5IMgBLjdc780qxhIZozUHxsSd oJZ6RmtTVCzxLmH19rMyz8BzYWTK7GUcobUpIoJzyxmUZ80Dv/LiiGdlgUKF +i6gRObUeEzFEQoHZd9e/uQKyi+PiPgb8cTKUfvqrYrP4SJh4636JZ4Y+p6/ dLL9OXh0Lj1paIonSq8s1ilwfAE1W9Xb15clEKFrz7i/EXGDWsBW/Sn1BOJx 7eeSizlucPG+bYD7CcTFlwMLthi9hJroxMmUEwnEXpUd6mN/XoIS5oStUgmE wH+2zrlB7lCTXbDffzaeYMXn5L9SeQWX9DcyyxvjiSKzhXPn+0hWXiP6LDqe cGzxdRwRfw3KKWles0vxxHmv3owsymvwdMRPtcnFE3KaMv+5XXsDiukB9vHF 8QQ9NdN2U7gneO5r1+9JjyPOfuyyPC3zDmqfbgf/WR1HyJ7cEiNa/g4U8Qlv q6FYgn/hXRbz1nuoRTu5UQtjiavZ88mEvjfUct7cKbeJJdbu8JYz+PQBlL74 Qx/rYogFL9NOFTA/QO3Wgd2LI2OI8YGOu9KKPlAbz5dwehpDVPtLxo23+8CF t37JVdkYImtKq+ri9o9Qe3PpT+PCGCJSz5KT5/gRLmsGRjW7ownf+Hf8Wyo/ gifkNi0zJZpw5U/d9lrEFzwyE60730QTO4998EixIflN/ycFk2ii6aU1p7vc F2rP6o3+LoomHpecOrFI3A8uAXeC7A5FEdILZePkHPyglrakl3U3kqhRXyZg UEva68I3XQn9TjxwYd91lf4EChsmTc0RRNnfCLmWpk/k+jv25x0OJ6yVX7z/ u+MzeA4JS+yzCiM2PL42LuP6GZQLSaZR374RFjObUpz2+IPyhk39wB9KCPz8 dEDcKwA8I8kVtfEBRPreB590BgPgIjl0PGuNP2Fic37a9nAgeC5JVYc9+kQk cldml7BJLvGpfajzkTjH9lC21Aoiv8eKOFrxmvgjcyv4YxDJYZeiNnxyJyJu as3n/SR5WUUM98YL4j8aL2VlWDB4Gs5e2fPPiQiRHJA4NEty6L7rnYH3CW3T AtfreiHgGZCpW3zPkhgLCaJ5RpGs15iYrmNE+Pc+Opo+T7LLsQM9DzYS6mKX I/oufAVPxIkqv+ZbGDJUXMSfQDLlfQ5rwhGbR5xuJOwOBY9GSoqQ62tYWxzc ytNDslux3PeKAKw2S4z+rhQGF5mau9YjMTB/sfnyYbMwqN13WnL/bRxyw94u rX9P2gtkwhzkEmBGvWM5wwyDRAJlWFUpCekm22VP+oXDRWujpPajVCx79rmn nxIOtRHb0fITaTAJXvzWfiQcpj4Vucc3piMl74HK0g0RUFMSf109nI7FPXRu 8NEImPY9uHgqLwOGf86H7LOOwIBbzZZ6r0wkihafLg8kx+/aMqF3JQt8h/f9 Myoj7SoOEhvtsmFw+Vvi+ARpf6flR5TlYKxbf1mY6HdQtrdubeTLg7sJ/83z R78jtMgsg6aRj9Qb1qIZvt9hOv2ifRFBQNBK5eVjxUio7aEKRBoVofR5p+Hi p1GgfBI/M3K+HPviVy0W448Fz9zcmnWRDaiUKzWtlY9Fh1VJ+JbZBpgmO+Y+ uxwLR6rn/r26jXib0W9DjY3FQJnoed3JRrApCd2Rp+JA+aDk81y1GSGtx5P3 foyH/zZ7obG2Vhww+Lt8MDceaoFHQud2tKGmK8nclx6PDSsWyi972obZ/vVi 0wcScHvyw5mtW9qhP8Rwz+tIgEF+4jsj6w4M3w2g3uP9ASH5h5stijrwfExX WXznDySFqf5wWNuJpKnUCdfHPyDhUVv7IbcTxx7e0t0f8QP8f3yvfBXsQt+s aBS9hhx/z5gbf60L9k/qeD/99wMGA1ue5qR1Yfk/V+NjmxPh4bO+oG22C/4W l0xktRMRWu/7yHtfN6RbZE1XWSWCf8VqxRN3uqEa036jOz8R3q8EkvJ7upEd 8yk9Uy4J3k94wyKIHnDPj+SdrEuCi/nwS7uXfVBY2q6iSktCQ/htDdmCPjwq KCyQ/5UEeSpjnvGrD0t2fKas3ZyMUKOBh5dv90NyXr2k/14yDKKHFEK3DuB2 qqxWk2syxrV3rPmrPoAft9eXlfglw5dxa+KyyQCONI+Ux+Qno0eKkbDm8wCe e7TrBDUmw75wi5dN6gAqVIoq3zGSscH0umVt/QAEf8afcJ1NRvR8qM7OkQFc iP5cfX9FCvSD+2Ve8VMRdOW5rrkkybxZCiGSVNBW36s1OJACncAKzrkDVFg/ 1ahXuZIChRrO+TxjKl6f4zYtSUgBn7zs9vdxVOTPaXR90U1F/HRSg8JxGvhS dhu9M01FkHfhS44xDSdubehxsU+F946mwyE2NLQ3cntvBqXCxuhnxBJ/GiYi /al7RlJhQBxw6mLSsPXsKLvYMw097jmSLm6DEHU+dvjWtzRkTVy1HAgYhFBC qOeyzDQoLGrlDiQMYlH3bE9CTRrulv14IEEM4jf/ebmztDT4vvL4e7VhEA2U zPt9SulQ8hoTM1lLxyN51/kZRjrS/PKNDL/SYW3SdSboTzoGLn4eDEiiw8xr /zesyoDYBts7nYV0nGEzjrorZ+BRoPRjAzod0qEnXq/5mIHtXz0DL+5gQKQu vCsjOgMGpjelPh1mQHBubpdhQQbcJRHbepKB2UuJdaGcDFSET2brWzEw+pJf QvNfBvhu1qj7OjNAT71myxLOxGGZyMpmbwY6qTlFb3Zm4i7L+eyaMAbqVgoL y6llwif6cue5VAaKVe7dbLyQiSded8a1CxnIulOWYX8nE479FXWr6hgIL3e8 nPuJtL984RnFYsDRuTdEh5sJ38YZvmZRJqTGInfcCMwCxWJweocrE+s38Txe nJSFjDy1tqm3TAicvFwTU0raV4akEYFMTEcutx4fz8JQuoHthTQmakxs0p4e y0Ybb92QC4uJIq/KRZJXsjGiv6vy5BQTmTlSl0rIOjYf5RG1jpeFsHWts8tC SPupo2bxoix81pQ7+SOVtIeGajzcxoKX3augs5XZEJz6K6GhwMLz0AHuVF82 7Lq50cfUWHhYdwj+U9koeW5TUHWMBUG5dEYlfw5mVHyf1p5mIeKtvNcfsRxo zGYqN1xgoVF3W6eJVg5arP/ltN5gYVe18P2tn3IwZ/wuc8CZhf7yscgUxVzo KcYn/cpkwWHbnVP0k7lImqy3ni1gQeAV8+da01yMJ/yUmytl4ZB2r5qTRy7e SB9J4G1h4WNJVRc6c1GwqipGYJyFndLarrbcXAjWcm+vnGaB8qJwWzhvHnQ9 Vm1fPc8CVyPLfvHOPAzMG0SuF2DDLWz/RiXVPGzPeXJTdA0bogsSCy3O5eHd g1DpTaJsJF3befuLeR5y5EsGxSXZOFb4XbD2UR4M7u87fmgbG30Skunz7/Lg KO5bvVeWDXuXICP58Dz4VP93audeNr7hY/TH6jzkbck+t/EIG3/yXTQMxfKh 0QLjv6fZSMwxcmDl52P1gVPWhQ5saIu2i4k05UOW+mMi+zEbPU7nik8w86H8 Vsg+xYWNpYeOC/0QLMATRrNj+Bs2bmQejLW/WoA+P8PnL0PY+L0uRS/yfgHZ j/P4noWz4e2we7r9VQEkRje9cohmI/+AtOaRpAKc06Z63kphQ9/v69DdkgJY TmoImmayMTQl+iGkowCOIRHeBnlsuOh/UmwYKUD8icVrzhaysT5tVR8vL4G0 X7f8jpexYez1R5++jsCknJPw1xo2wswY1WWyBCSc/2SYNrMhuzY729OAgL44 z9zgABsaDqZ+a5MIDF1d6j70h42DQZciffdQ0DewMXB6LweXPWqoLw9TsGxv iHK2EgdP7NU3PdSiQN5Vov8ROCjU3eV72YgCQ8mt0vO6HOj+nXfd/IqCpmty P/huc2DFuZ+/0oeCmeQkvTIrDj60smd4gikQW7D/56sHHKQVXlGYjKJA+Vy6 3/EnHLQlNFkPplCgH6aotPwFB7MBx+Ja8imwmczuqnnNgZh7HrO0goIgDeWn 77w5ULXbK5XZTIFUoUx7rR8H10wir0T3UZDU8/bKtgAO3E5sDAjgULBzZmrQ JYiDyIPeLW+mKPixxtiy6ysHI4KPTt5bVoi0Ezsfvo3kwIE4dWjfwUL4Z5V5 /0zlICCuyH6LeiG2t+xefyqTg7zPiknCuoWIGPMNjszhgNdGctv0tUKEytyI vVzIgZfEf8J5bwvh7fuvmKjj4IeApV6CfyE2J5mfEGnioHGmzzMknLRX1zbY tXKwrrFigWs2yQuCerf2cHAoX0XVrqQQQpsXmjn3c2Ack+J0o74Qnw5ZDnXQ OPjmGjSuxSjEMxulaU8OByX3VskqjhdindfXp4wRDpiX3W9t/1MIj6jFfBjn YKn2nzCRxUUQLr73xv8nB7L7bPqWrSqCd1+L0OQvDk5vZojMbSyCgwTf20cz HNguM7zAlSmCWU12yaNJDnx/1Xn37S2CrKP13CPSfwbtaE29chHmtmxVeMwk 10vHdeLtsSLYt/FZfR7g4NePgnW654rQ40GPSu3iQPHxoWsVt4pQxQ3fOELm I2vNnl8UnyJEZ0otvELms8Pp7kbn4CLMWCxQcUrmYKY/Rk0lmoxHjObgF8eB Ury0Z3Z+EXRdvw3VkuuVrSkqkcIugsRJiSZVDw66Yi9p2fwk9fz9t9zoOQe/ hfws5eaLIJTUr/WQ3E+He1emx64pxrjw1+xEGw4Mj57qur25GKblz35WW3Lw KObNP5kdxShwMtnNNuMg58GiE+Gqxcjo2/RN4jLpv1vD+trxYgh9+NulfJ70 r+7iK65fjJCjvcKXT3EgGp2f3WtSjJn/8k4/OMbBEcE/fV8sijG076VrLHk+ jO2V+AztiyEQohv9+AB5froe7NjgXAy9pcL1urvI/RQ5ft/Xtxhp/WFiY+s4 6BGQCzj3tRi0E5ZHKQIczNndKRCKLcaGjL2WHxZwoAIm/1uiGN5elMz9o2wU tHcHvxwqxvVDfeccS9kg+MvLHdRKIPVR5DWvPRsDVnxchZMl0J0fSGyyYIOn VX31zwslcLOIbgu/yobatzxj6zsl+AVFae2TbJgu+e2626EEMnHzJ9ark/Xm nmLUsEsJjNeV2bIPskE5lDJx61MJOkb0iTdSpP+vY+tkvpVAwECMabSB9L94 tzI9rgRqxYMCuwXZkLhreS0so4R8L2+44ryIDfWmKHfTwhLU+GVdSf7LQpFl 8MbLIyUYX6dk6tTHQirnzh2TXyUQrkPM3nayf90+nHuDpxRKL49NcupZeGne bmglXIonPy+6GRayoHN9VeAL5VLwNTyIPhJB9iNqP8dDuxTSr55O/Awi+4/p j0Pv9EphqvrycLwf2b9MTnb6m5UiKN63RuwVC/WXX2744VWKDa9Tx/9akP2p 4/zt1E+l0FPLPZRxnYWkS1JZWaGlMJsuem5lxILPBeJScVopkm42CffrsvCi 5W1URUEpGsS6rnzWYsH+vPF0bUUpfjVTI8+osnDx7Oynjp5S7NOYUKLsYeFY Qzmzl1mKi7Mzro7bWVA68+ng4DipJ4mnWl6She11Zu7s36VoOZtZOS3Cgsip /W1cvjKE8njL00heVsMr81OwDI8Sb3+uIfn3iYYHMxvKoGeiPp9Bco/OvbUL d5dhJHey2pPk2vIjN/kVy1BjWb3PgeQC7WXpK9TL4C0SEWBK8lfNKP0NF8qg +/DCrQMkX1ejftz9tAzR+7IW9G9g4TyROLjvVRnuUr0tKknWVH22X+lDGfS9 LRpSSd6qvLFZ43sZZriiIR4ksxUvrDaoLYNBzNND+0juzNhy/Up7GWQNLoaK kVx1YDL5OrUMPEv2LFlCctz+92fv/VeGSLOBlu71LASlXPlm968Mz9dkHykj 2Wuv7MTDpeXQLvoQlkSy1Z5K7+ebyjEiftTmJclXf3weeLWtHA11G9utSdbb bS7/dm854p9OqRiSrB6v4OJzpBxPZGsjNEnet2thw2etchh2f1++h+QtsY3i wWfK0XJnarBIigXhHaHWYZfLoRcoZPxFjoX/ZFRWJtwrh/K0jq6uNguqNI3y N47lsK896Sd9ngX3YB3n2y/KkRJ+um/uKgvrhPXHtgSUQ1NP3ybBiYWDvHfq A0vKoRZz1VcwgYVneTavHOvL4e98vZeZzULZQwdc7CLjv3BThihj4dKoa+Kq 8XLoLriTZT3AgmO3/3uPjRUwNXLoaSDvQ5RPIcfMZSoQtNdpa4wEG/znIv4d 3VuBviVPrFx3sxFQkWj9T5scn+bKs+8YG7QX6dt6z1Yg/o3b8WX6bOxEbn+O cQXYpq98aKZs5KSXnXGwq4DxirfSHx+xscC2Zon+0wpEDr6/d+cVGydkm4i9 HhWYzPbJOOrLhg+r/eHKjxXweBGblRbGRndY7x5ucAXUdN1a1Mj7irTJIKsq ugICa03Ga6rZuCvC+RqdWoGKXkWBy+R9Y+791Eqzygrcth4+aruUA82Tv8vV WyogrVR69e8msn8u5nER7yfj4/n6+PU+DjY9XT7eNVWBuz7nUr8Zkf3eUqrh rEQl7NKzpZoSOHDW1PPGw0qE/XnFu//cEBbMxglt3FoFDy2mUf+XYWys1fiJ PVWY1Hx/Ry5xGArfOlvNDlVBW1Pp8dOiYdw8vuTLj1NV4Dv6JnAjZxgVAde3 ajhU4a6aXOelgyN4f1jksEV5FQ4fcbjY0DCCaMEksXeNVfA9LG4uTh8Bhab9 L6W7CrRDFQ+spkcw+ca+ZG6sCtFKon4Cm7lYfnV5lOTvKswpFkcY7eVCen/Y a22+ahgo3k2L1eTiYnf9ae8N1RA4WNCsc4cL60TzvelS1bA5cGvw8zMumee/ a7pkqyE2FyLj946L0Eu+v+YPViMr9H3YxSAusnft6tyiTvrTctm8IZYLsSfu NzItqlHSriG4mcrFAb1N2j33q6H/ZP+b/lEuTkunbed9Vg22hPTib3NcONdQ uSd8qiFtuWh+y4ZR0MRUHPtyquE2V87dcWYUf8abDReWVmP7tyyLYeNRCJda qmyvJ/1rxTDiLUehfc9/gd1gNSbfvend4z6KmPyfXosEanBX8lTtgfxRFH14 Y71zXQ3mSlWOT1eNouum5LkzEjUItJQrzeoYhYDgmfUBCjXkO29l/pGpUWyl MWbzVcn5BjyH/vKOQTXjSQ9NpwYL/o6nFawcg41J7DfZKzXQ0G6KV981htf7 1N3O3qrB0FDR9oWHxhC2uMPcwbYG9u9TI0q0x5DTZXX8y+MaPDeVYP05Pobm H4tkKS9rIDC+IrhHdwwjz4MEGe9r4O3851z+mTHwXdo/sTSQtK/k8IecG8PB f6YZ53/UYINcif1VgzHonqI818qqge9rj/i9RmO48UX8jGJRDYQYuvSFJmPw VuxjibbVYOBL6/noG2PgWBuJ0P7WwGUpa9+E1Rh4CnIYzUtqMWYWZ1lsO4Z1 AqIppatqcYpiHeZnPwaN6I4TMVtrof5wZtXhR2MIGrjwxOZULWj0pRPPX44h RS5d5/qlWhio1W2/4DGGiifCa/Wv1SL9i4/pNs8x/LehOUHxQS0Cz21sqPYe g8CtfY92ONfid0L/kpCPY5BK/6C98XUtLJdGwObTGE6f1eufD6rFFopsonDQ GMy+JsaNR9YibuMEkxkyhsdcQUdaUi3WPEzfnP1tDD5HrDRbcmrh2uR00TNi DNGva4XKSmph+0u8wpq0F7TL9mbW1WJTWHA2nfTXstUrJqajFu2nNsZd9h8D b9EJjbcjtVD7vu7d0fdj2CAUK+j8qxZTer7OWW/GIGeytNuGpw7xc6tsd7uP wfB3+X198jKwSX+F/vqnY0jbp/V9o3Id+hbwiQ5bjsE8HPyxnnV4Zjrx3Ydc 7ycTIS1f/OqgKWD9eYnGGD6SL+m3X+swmjni8URlDJTuvEO2qXUwXMm+Y64w BhHhw3eUuusgXtC397DUGGrcFOrKdtaj7/baerWZURxeWb3gw4F6XH3J5nya GEV0wDVFI7V6TH7L5eMOjeLFj3ehYxfqsbb72uGAXnJ8B9tug2s9LE/9+D5R RI7fFbzesr0e3L3HnoS9HYUG53nSYo0GZL1d/zlBZhROcnVVd441QHH/y/YG iVEk3RdhNOg2ILxjcv2U6Cg2zyeKfLnUgC9b6vwPrxzF7Ore53vuNcAt2y2w fJqLJGXFCwb+DbjAmAimVnDBcn1unR/cgJo3V/v4irnYXF77Wiq8AUflazdv z+fC66xZwUhCA/Y9jv5qlcxF8afEjrOpDYiXWDfwIY6L392/JzOyGiBX9kIi /TsXt80/bHMtboD4qqvf/gRw8TWuR51Z0YCvGTXUzb5ctI1vMz5Z14DVxoel NMj6tOLgfYek5gaI7qcn677hQvNxgffazgbE2v4588Gdi8eUpXGP+hqglrR6 tPU5FymLLpT2DzagbXSHl6gzF+Lew7Mxow34fcegIvwhFwXXnGNSfjagkGGl v92eC5P9ay7nzjTA5erLgXgbLoLaDmfVLGgE3/mUmXQLLjZseuMwtq4RCocF dlQYcZE5uklmZmMjBlOl0nUNyHpLSW7lkWxEyu5D6o36XPjd6FRYvasRqpLm l7tOcbE6dvtPBTTiND/l9Qi4SH6cF6ai2Yitz9vW2ipzoXdK75z28Ub0/Rn5 9p8SF+/HHyZfOt+Im2MiOfNkfZcrWn7N1KARchby2i/kuKj7+FXI4koj/tC0 m5bs4kJAsdz60a1GOLfdHxKS5iKO30j8xd1GKOu9cfCT4OJE12idp20jVlWF LhDdxAUn7vkzX4dGjKg7mRzfQPaDp+vkgh83YnHFjQXlq7jYdia297tLI7af Ph2puZyLMgnVtz9eNuJEi9KJIj4uFpXcHCHeN8JrYIVPPtmfIvxmv1T4NiLe fObAkYkRaN56e7IxoBEVI7TOrKERPF+WHksLb8TvmUzJtN4RzOvxWSzKaoTb quvJscUjCJby3yCY34jIz7oXtuePQHlqV8W6okaUbFKc/Z4xgsefz2/bXtOI yR0C6t9iRjDTG8Y4MdAIe42Mhs/vR/A58aDfeUYj/CpC7deSGT7oWqVpPNSI gtOeGz4+H8ED6cnwe1ONmDI0NX33YATCv16ed5htxEbqCT4B6xGklYssdJ4n 1/fWgejXt8l+a6l+3Zu/Cbb3l427GY3gg3LrqoAVTQiYnfq44MII5AUtCr+t bkKKc7+iy+kR1PfP2cSub0Lpoqruv8dGYJXsLZEq1gS7imbluCMjWPFCuiFX sgn7E35Nd+8cQbx+lnOJTBMGP4ikCoiOYHi6v69VvgnmRld3WM0MI+PW+6IT B5sgsN7M5wBzGC7tqpHEkSZkN93+M9c8jHWZwfditJvAe8Ku1pO8f2g4GM09 MW5CmNJL2xjzYQROtYlIezShZG1cNr1lCDoTtfp2/U2Qt7hhIuHDwZprT5VY 9CZccB2283/EQV+DrJjxUBM+Bdx/JXSDA/skz0Gt/5rAX/UiiUeBg6/Wx+1E ljejZWfEAmorG7+4Je8pB5sRNkKP/CbCRsRQbpXgu2Z82pq8sriOCavPZ7ZY fmxGq2hlwOd8JhQ1Bx+X+jeDT4i65W48E1XBy3Y/CW/Gh99CSmvfMDGhd/k9 J6sZT+ptTG9pMZHzd4SlWdCMqBKPoSMKTLjFuqiFFjdjJDvUXmgLExv4oicu 1jXjXESDRzYPE6qZv86XDDZDyUk+eXkeA/xmb+LFOc2wt9I5MhDLQJPQ5kWP R5sRe8O0NC2AgZuWWhl7Z5shfdq788pDBuTWdwq+nW+G8dHoG/vMGZgpvnuL vbAF75Qo3MUXGCiy4aEcXdqCht0dD7uPMuC1yXfDV8EW2E+f9+k5yMDFqm22 v9e04MthSanhnQyIP8ytvCDSgrKno8mzmxlIaaA9EpBugSzf68Z1SxjofLG3 1+lQC8aECoTOttMRJl96oFW1BRv0PUOvVtNxt9fgnbxmC3Q/G8hbEXTwKLqA dboFIZt+nvGMokNmqO6bvlkLru/c/r70IR32enfN97xvQdNRnxWHN9AhuClq jE5vQcGQ0fPt5wahdvFF7yCnBYExFLqx9iDs3l+tpo22wOf21mMfDg+ijXdD 1MBMCxyYo8t/Sw0ihOlh0iPQCgmaq1/1TxoaxG/qdq9qhfA35vQ/Fg0LLqsf 7lrXCj7Tk4YKPTSYV8+u7ZBoBaNXWDy4hAa5JMvaZoVW+HdGRVv50WDK0c5t OtSKl/4Cy8Nf0+AjtSWmUbUV1pds77U/peGXb7dbvU4rDFoP71Mzp5Hv1Uy7 ulOtUPf96mtvSIPhEl/T2nOt2HOebzr6NA1eajanay614sKSvrE0TRoKnHSV q41bMfDTX/67Mg3jKdt3Vl1rxZOB87Z+CjRIjfBtqDRvxcpawZSXsjS4m+T/ LLNpxdFIt/3mYjScOioXV+TWimgDm4Pb5qh49mRZQOHrVihr7Xq4foqKpHSm O+VdK+r2MjOXjFAhvP3r9QJ/Uv9y40Psbip6BIREc+JbcTn/mHJMLhWC2iNL spNbwRu74GlAKhVqzhX/ZWa0wvtTfv7rOCoiJlwa0ymtKLDeD8svVNxtm/BI bmmFqJS4xq7HVISsrHNI6mzFD8Gu5xvvU9GgE2uW2NcKnT++xcvvUKGQe10t gd2KZy3LtEYMqTCfUpWL55L6Cktf9pyjwn/3RrG4yVbEJbiU1Zygosp8emns dCsOBh5Zkq9BxdzX5unouVZUbh54fAdUyHUmMqJ429D2wfbESU0qTFd7NUcu bkMX30KRXcepKHHTTIwQagPP8NaMIdK/l0W6eah0G+Qz74xbmFMxpJbgsXxn G656Lz6bSsZ3bMP3WIc9bQi0+JY8Z0PFgnLfUd3DbVgq1m73ntTnJG3vMHum DWwXjf/SvKlo+3PH3+xCGyQNey/M+5H6mm/k1Bu2wXS/Y8YxMj/jrufnv99s Qycj4WHXd1Jv/z73c4/bkHBC5Pe/HDK+jJ3R+S5tmNySZnicQoXUO6mq7e5t WPf3dK5PKRUuN0VHPnq2Qa+Ns7Gniope5dWC/7zb8CHR7cnWBioOCy+Tt/zU hjwP8V6rVjJ/w7znWr+0YfZajkpWFxW/imbvq31rw2GfQ6/FaFToB074xUW2 oTDCvPTHTypSbDmZ6+LboJP5kVd9EQ0rj1M7XZPbUFNJUWleR0PVdMMmg7w2 1I+KZkwfokH9QtJ3vqY2UJXqI9VcaAiRjS63bm/DzZNztKYPNMwtDOV09bRh 4soO8ZvhNGSlvN+dzGrD9PMXn1+XkedLyDr9yt82LK9V9GgSGIRY9e7SjO3t 2HEt1MIsYBC/1OLot53bsfYfVe/iAB15EcNfHrq14+TfY1+Kpuh4zi973v11 O9z/JDDkljIg2BBfGP6xHYtmnB4t2ceAzNUfIX1R7aCPr4rIesHASNHoBW58 OxTGHo5K+5P1TGbPirnkdlzn9ip9iGdAdTTxsUheO/o4MbUWrWQ9fJpsoN/Q Tr5j1adFtzEhRp1YeaO1HbzUKPVXR5igae4rt+1qx7H+FV4/zzARHW33zKW/ HS9677ddNSP7h0Dqgff0dqR0d0rUODKhYPNzJJjTjl+duKP0lonfzfsj4kfb 8TvX6ebpECYoivZGuT/bsVV5HOkJTLh/SVtdNdOOQ3nmomJk/9H9N1XZ8bcd hsq9U89rmFh944Ara0EH7PLO13O6mQjZmTHGt6IDmXlqbpm/mUjPzqyBZAe2 54uOnlNi4dGmmRenZTpwVOVDRfYxFtRclY5c2dWBG/lLwiUusVCjkx3z6EAH IvKnLo0+YIHenuOefrwDwgV1ha9TWYg98kel5HQHdqlqBY0XsWDz9ch/Tec7 oFeQ63CpiYU587wb41c64FUQvWvrBIu8n+Sr7bLrAB/x3I8ix0bX5fnpQw/J eDBrvU2VjdB81USdJx1QIaxPvDvFhrmks/kl1w5cBlP6P2M2ZF8Sm8zdO/CM MP5ndJeNSfa/FnvPDrxDc2fRYzaydNW8Xnh3II84nrbDk41nSS5Hffw64HDz 7m1bLzY0hQt/hwZ24OxcXF0nycsceVMSv3ZA7uOwgsZbNhq61S0KIjqwdueu L7EkG4cXtXf/6EDNpdhbj9+xYb+vJG1dcQc0UqN5NnmT8SlIhH6o6ECWhavE O5INDj7xFKjrgLyEodo/ko8cVri+oLMDi98ud6F+YGOBRsTK0dEOsm5Z/fv+ kY2pozx/bk91AJuOia/3ZYOhZcwcnO1AbrM4PEiuOC6c38nXCR+1xmeWfmy8 P+tmWSraCQNRhXm5z2y4nB+4oCbRiZoGgc2hJNtdUFbP3doJlVcMlVX+bJhd 8pc9uKsT8SoFV56TfPHy1Ppk+U5ITH16+pNkHSO9hbIHO+EXax1sFsDGoSvx o5FHOlFpUNGu78HGzqv8XZLqnej77qPa7sCG2DWz0iDtTvyZNP5++SYbgjco Set1OyGgtk2g5zwbPDfFgnzOdkL87YSdiQYbg7db7DyMO3Fum7vaDXE2Ym00 JeztOkExSuy+28lCkF3o8rGHnWiOdtIYK2fhrf3cL4unnRj672iMbQa5nxzT aq96dGKVd4eDw0cWFF2kH58M6cTdEt7VLqdY2P7cxbwsvBMvVtU4LlBmQdSt 56x6TCdCTD71u+1kYf6V73bFtE7Uz+xMeL2EhZL3fG1SVZ2Q362v87GQiYwP poXB9Z3Ao82Ja5PI8/oxL35DayculrPX+pPnL9Bvg//Hrk44Cqc+ESXPp+dn +xeCA51Q/qqq3G3DxJOABqvXDFJf/JsD7mfJ8/1F1pBvuBNXs9vk9u5j4txX uvzv/zrh0mwl+eonA5rf1MQe/CF5IEd0XwsDB8KDlozzdOErd7FwbxoDG6L0 +xjLu5Cx5Ovi/Q4M9P8o8WyU7MLUkfrhvhk6Grh8I/u2dcFBPWlsYxcdFFkt XV9Z0q794adBLh2hsaUClxS70Hv2/J+mp3Rcjyx726PbhYJb7cvKF9DBDK54 z3rYBdeP/TsSyfrK9ar5+Le2CzaF4XkS3QPoqxaYMmnugj51fsY5cwB1y07p Uzq6cJrX8ED/xwH88KgVfjHYBXl1oR/BugOwcavz45/tQovrrOqBJ/0wLRb8 ZTHfBUphYuZPhX6cXXDmYvXCbqTxmsuncPuwz6V+3TvBbji4NknuudoHKWLl w7E13bhY6BHIXd+HNfNn2vVEuiHLizXxDb2YetzweY10N2Zc4vh2aPSCniM0 Y7+jG6Ojq1785O1F66yeQZtcN+Ym34QyK3qQ8bBxQ8Chbuz886S75mIPHO83 BWw+0w2v5dfOBth1449ly5cdj7rhK7tDZV9sJ/QPXvkg59yNLFCOz9qT54SX 6b7fjfR/7tJFCjph4j9tq/KuG/ucXlqfbu1AYamoztmwbrBLqd8seTog+iFc 5WJUN6Q6HX/srW6HnbHsfqP4buiMrMyd8WuH9E+VzTczuhG0WrXFfVc7nhaU rbHM7QZla+vAqV/kveT1maXWlG7QlO5yhQvbIHehY/5+aTcEdRf+7ib7+iuJ a1OOVd1Quxq4OPxiGwaGOZyn9d0wFhJOS9ndBqVMu/7nLd2wOrv3VtLyNgyd cqvy6iP1Nt+pjStvxanHUaGhk6S+9oGAMLRiTRtXt0K0B8sGqvZ572nB3W8O GrXiPZCQZDPermhByd1/ik3SPVC7vijAc7gZDgtXbemR64EOHf/co5rRKa8w O6bRg3fstOqn4s3YN5c3OnWsB747mp49/tuEN+Va9FndHsRbju116m6Cssml +oWXevBjZIe//ecm+O0YKOE37kHd7mMn7R40YXTqds6Kaz3IszKbtz7fhK+e j76vv9ODtvEQszsrmzBzceEXMZseMPfmrbfgNkJPystb8kEPItW6b/C1NCKG K+wu86gHLlcSnrEKGrEgO/jxLuce6D1yDqiKaYSRm4ytvFsPdn4+m5ZAvuPT ziSaH3jdg/nULfXezo24yaScxcceULjlfJcuNGKX+pJ589weeLQYdFvHNyAp Nm5bB6UHMzYNzZ5+DVAQ1jt7vKwH2it0aqKeNUCZ5R+xq7EHUtqK+f16DTj9 dufJcWYPTK13qX4dqkfTrzr7ayM94IsW3dOeV49LpvdDmiZIvQNLJVa+ryfv gXkTaXPk+HNsXuf99aAHmW6UWdALMc/2yYxF9bBYvEjr85JedBSXDY6212HU OsaKf0Uv4ufSW2Ri62DXecrfaXUvbA58LzV5UodfGpOFQ+t7oaMksaNSrw6P 4z8NG23qBVuNv+n9gTrwrDuytlaqFzXHxx9dFK2Dm3O/qur2Xhif69iy6V8t +c61ZSxQ7YX3A8dyRZ9aZNv67vOy6IVLbpbgvawaqHYrGf+1Iv2XhGbuD65B kWbvSyv7Xmyv9TD97VqDqvUynXrOvfDvM0h5dbIGPfmZzmv9epHFO3shrK8a ptuMY9wDe6G0jDp/u7gaDG+e5umvvRBYUxm1J7oaozeOy3TFkvqkA2bzbKth V8s9czKpFwa7XcNeXKzG9EEfp7z0XvActDh54kg1noQeDN+d24sk1bNTQhLV 4FnWXRNCIccr8nVXr6iG233nXyvLetFilH1H6V8VlvZukXCtJvW5WM1FjFdh ddLd+zfaekGp7Nj0rLkK0hfnRbaP9ELZOMFUPqAKx8IkbyWTdUnB9SLTV7oK Cv6CMmVifVB2N5ifWVcFiXd/6F2SfZDwNFx3ZWkVfju1XueT7YOSn4n21tFK JJx9bXJJrQ9pMeaR6ZmVCDzmsOmuVh88ftwuEImthLvKjR6XE33wTrVsexpU ifv79b74nemDS9bdUeq7SpjuUDGM1e8DJd9qsbZrJU6J7xQhLpNcZLM59n4l Dq9d39Fs0oeScruDguaVkFnO95l9ow9uIn8eHb5QiTW8Exf+3u5DVlKzWaJK JXime4VXW/VBXif+tLRMJUZGqppl7vfBv99NKUCwEmUdEWf1nvZBV/CgwIv+ CjglGZwK/9CH6Dv+qRddK9B/laJ5PKcPZjJXFsyXlKPmQsJCE6IPSfkHRuwS ypF1MrDIroTM1wXBNpZfOXwU7dWC6vpQ84KIaTQvh9bK7cpjtD6oUSXPfucv x75Fa/8sZJP+HX8fFp0ow+Y/vDkbyD4hLNQs/b6zDMsnRh13T/ZBNipOkK+o DDPMbkWNaTJfqm4zjrFlYPRU/Lo414fxVmMa16cMTU3p6Xd4+6F570DN9cdl KKgIs3dZ3I8gPsGM9htliCt4v99veT9ChSZWft9RBv+0J5MxQiS3ef1cRS+F W6xFcsHafrCDtrc/CymFyaeje9ji/VDaYRpisKYUq6ymdx4h+1qQer2swN9i PNx0VYpq3A8vu4Tj9xsKcV1P/mLPtX6IuZyYUPEqxOkXvG/azfuh+5blz69T CBlO+EStTT+EoiXZwQQFLWlsSo5bP/hzd634cIUAhZU9lf66H/6tN41lWgsQ J+q5Pfkd2VfHv8bl6hbguctu7yj/fnRsFT7BPJIPq9T54rDgftxWOx3wODUP l5n108Fh/fAw8mAL7cqDpsi3XQFRpD6HIsXIsFzI69pd9Y3vx4z3nPsR0VyI OR/9+D6Z9D+x7Sz/uRwsSREuf5PRD70Zicg+52z0rc+Uc6X0o2HRGj3P7kx4 Df75e6+FzIfUdDjdJw3sRy+Djs2R9tRnn+UWxmPo4q7b33gGIFRoo95tEkvG vWaB+MIBeNddH36VE42TWxgHRPkHMD6kDartd0i9fhUstHoAplqb67YVBqNB v+bu360D4Fk7a/Gx/w5kRy4sbz9F3jNOmCf4Pf1OZOnrEm/0SNba8mNqeRRx NF/jvur5ASSpDfw4HxhNGL7b0/3dYAChBwyTVmXGEa/ll8bZ3xiAklBUp/ZM EiEc8M9kuzk5/u0iQwcimQjl/bW65/YA9JabdX13TyGymmiPjloNgH+xZDff 2jRC80in3LTNADxeOBsp9KQR9eH1tNj7pB6evu4b4emEoUDZJxOHAag9Uzb+ aJlBMO3zTqx2GoDjn8Ceor2ZhF1vynzpY1KP06zx5Ewm8VcrJsXpGRkP07x0 57MswuPHV/PdrqSex7JGEbNZhPD6T6LUF2R+Vk6Ob3qQTRzNth5KfDcAeTN+ Hb4buUToX6k3pyLI+Jcf+NWgShCy5iKqvFED8A/97XkihyAy61ZOpsUMoEd0 QIgmSiHqvs5dFkscQF7i90ijTxTir3rbjuHsAZR0yjedfltIeMTW9IbkkXoj 1gQvry4khNcUfzhHDKDG6tetCv4iQpaeOJtdMgCvhXl/1d2KiCzdyIR75QOQ rgupmC8sIo6mB12TrCLj8Xf9mPuviKjb9HFtaw0Z/3UzE0eVYsLQ/XWlR/0A +LT4nwrYFxPMUeenyk0DUChzFM7xLSZsLznsHW8ZwIZjnLhb6cWEx/YbAZe6 yHwcr+oq+lVMZFQpW8gwSP+nvJScnEqINSvH+Ut+D8DsotAU41kp0ZT/5tXx vwOYkh9JMgsuJXzubl1c/28Abssr7g3mlhKrqwwXdvFR4U1xZg3MkPyy9O+Y IBXRO8e6uu3KiKb9pk8erKJCaFH1Z8MPZYQP7ffv32uoiO+P1O9MLCNWqcnP LBKhIs3XpK5tpIxoGK1y8NxIhZ71Yc8Ly8sJ7+Cb/wltpiLr+Dqdlh3lhJ4u j/0nCSrUpCf5zuuUE0J/Aic3bqHCMVhEaeBqOdEQc8D221bS39H26Qg7cr5B w5jMdipqOL6ZFi/LiZUZi7h7d1Ox4aCQ4s/YckLQ1oZ1TJGKpLrFBxf/KicE WFo9909SMfXv535Zrwqixm/AcPYUGX9k8s/xkArCS/Nx5zM9KsR0rVPTkyuI 5WFJba8vUGHmP7QP7RXEsisbG79eJf3vpe49J1VJVC3POLP1OhXy7SET6w5U Em9y9OpizajQfWqc3H2skli6wb063YLUV9kuf/NeJVFRJnHiyF0qOqz9xne4 VBIeD3IrKFZU5K09nzTqU0noSF88pm1LBU+ekE3q90qCv3m8tPo++b3rdXsc s8j5rp6aZx2oEIh8RjFpIefLyxS3OVKhv8bm1chkJbHknRGF+pQKNvfcWn75 KmLx8bKc6VdUKIVv2IvYKoKP+JK4JYiKJysibieEVBNdypo6/SFUeMx7FlcR 1URizshA4DcqQsfub2YPVBOGGSqrV0dRMdd4tEVqSw2RnNBvz5NCrsenQfhH 1RDuuzxW5KWR/l5VB6ZX1BDGMfKRDzOpiHBM/a+JU0Pwf3dtH80j5xu+iFsh W0v0Se20iSX+n987i3edqiVSQ5v4zYtIVjl/TceqlvDY/PibZCkV/HJH8m6+ ryVMgrYc7i2nwo2+ccYxq5ZQEK1p8q+iYiBgOtrpVy2x1N/+jn4tuZ6nmy8/ Uqgj0j6WBlU3USGd/Sb3cVIdsdzz1r/sXipa3s4+exZdT2Q5xZV8+kmF/5fh BRo1DcS76fNXzv2iQsrhspHGcANx48HcfytmqUjRK0/VWNZI7p9T217Ok+u1 KNzsqE4jcfP22Ov7S2nYbWNYplnSSBxmfpbaI0BD/ImKzVqDjYSQmVrukCAN N7YefKi1oIlgUtnnI1fR8PtfeL2WZBORd/XDyDVhGh51rdqurdZE+PQeerlp PQ0S6c4u2lebiFtGtE2dIjSkvud2aD9rIpQ732T4itEgu6A9cDqhiVh9af8Z PXEaWPeSa7J6mwh2SzdruRQNeZ2e804rmon8c24u5dI0mGiZyx9RaSZun25N Vt1JA11so29+UDNRoPVQePcBGtjVbkZFRi3EHYXczqUnSd5hMFTd2UpQGlrj s07R8FSYw03gbyPW3ht3vqVHw+J/ThPvFdsI4vtWmdILNKi2fJk579dGrFnv bediSup51r+4R6+dyJ01Wz79gAa3jsDLnZMdhNAn577vjjQskBAJXirXSdzc F5is/5gGh1ufBw5ZdBIr79RfSnGhwfDXx1uB/Z3EjZ5DEfc8adgr/PaBUU0X sZwQVKGH0lBxxvlD7/cewtRoh9DHcBr5HvnbsoLaQ6RPHx1Uj6QhsO/xBlWx XuKqvNPrr3E0eN1z/Bri00ukfhtsNcwg8+Fpm3DVuY8wcsuyaqymwbcifvW7 XQNE3PHroQW/aFC6Urt04QIaoSArqYpZGuyHrEasN9GIAsGBbuIPmd+HQvU9 SjSiofnK+kKeQcj7nPfNsKYRU1cuvyteNojV5Z2bLXtphKqd3pOKzYOw4Uvn 7QgZJMr1V4oelxyEhWvaoHT6IKGnWJdZuWUQ5+dTS22rB4nrcyd/Vm0fxMGZ lNfLZwaJV+7HLGv3DYJnJGkVztKJhkBVgybtQbg2x0tGLmQQl5/+/e/c8UFY 6sUv/CnCIGhX8z42nxyEcW0cA/IMYkr6cH2LHumvPDam05hBPF0ye/fC+UFs 04z1lLnPIBYPZS5ruzAI6cKYe/dfMwiRxAPa7YaDWJIbvXdFBoMI+zA1eOnK IBiK0WsMaxiErH2qa8fVQYynRf0XSWMQ6RftxC9fH0TH3qj2nzMMQvXQ3vxO s0GoVz1nqq5kEuUbxw0Nbw1iw+PXKlQxJqE3/2Omy2IQK2S9fV/sZBLXi2UV eqwGkfU2WKNCi0kMfx9uNLYdhK9qRIDleSZh7xFr3XufzNdY7LjANSbx6tT2 uD7HQew6mxVy9gmTiG/fIkV9PogI4ebfXSlM4r9hUSEmWYt8v/CncsVZhG8w qzwoYBBlbm11GXIsYv+ZNOfzQYMYvBcx5KzCImxTTo1Rvg1CU01NarURizyv olEPIwZxf4egarcFi0hcyzKRiyJr2+qeyxGOLILr6FL3JX4Q0/SHHw5+YhFe O0+5n0scxJY6rYR/ESxiV4+I6tIUcj0z11RWpLKIqrfM/4i0QbiEUukfiliE BVITHDIHkfQ6kceokUXwTzjf3J0ziOuNjsW3O1hEVJjuJnreILp+KC5e1c8i GIuYXmeLBlFlke55bYRFuGWmaPKXDkLtmH3d0p8sYouF81xB+SCypfevSpll EddqNtyVrR1EbH/SpwVL2ESvz8mTSzoG8f5C/LdwSTbRKp68NJ87CCP18EzG RTZh3/i08P44mY/N13+/vcIm1rw44bTz5yC05iRUDpqxibPMQfbnmUEoZ4YU uduyidr4dRV2C+mQ2B1Yu82LTZQeeuK+XYSOhzVjGXwVbMJsWEe1fyMd64pW pdDq2cTC4LW//DbTkZ25P4HSzibUeRJvLpSmYzLsYfgTFpvIL6Nq9snRccXp 3/upxRwi/fyxhb6adGjLrLSga3EIj5NZL8WO0eGZ+ddK+RSHMD66g//7cTqa dUbsffU5xIL9y1dknKbD5E6li+YNDtG688l71bN0RM1lugdZcohoKe6q8vN0 0N5Gek3ZcojTq+vXdRjQcT3phX+EC4eQXKYWYGpER6S6XcjcKw4xxZu8kXOF jj0Sk6fPfOAQFbOSIbamdPz2EVcsDeEQXyZ8JH5fpyNm0SnxI/EcwoqzMPz5 TdKf46MlydkcQoNqv3X5bTqkh6PGZMo5BLvh4k6xe3SENyygrKZxiNyK8vgI azr0j8pHe4xxiHcUpT277egQyrjiPT/HIRSSRBVUH9Lx4kuW6dD6IcL1fZ+K qSsd5uZWvEWnhgjR0+ZnI/zoUJ7r1LDNHiK4Wu3Nsv50/LVasotVNkRQVHQu pgfSkUVVWHOlZYgw373TqOwrHQrl7wd1xoaIQ1u/9J4Oo6PtUH51wdwQIbBJ wLQ9go7A+KFUhWXDRKrAqBk7ho5lPlpuEluHCXe+qyybeDrq+O7f/bRvmDCc q7eY/UHHu4eh+gJqw8TuKbUR12Q61CaIks96wwTPSLLVsjRyfySu+pl7fZjQ rX7gKFtAx5tIg3jduGFCvJj5O41Ch7FZbJdN/jAxmXPpqUoxqUdqjt+vfpgI iD30/HQFuT+Cv97s/TlMMF//9bRpIsf7MTdbKY8Qzjovv6Yx6TjoZv/hfe0I 0WRy21ieQ0dIzMPjBv0jhPSDkyLxw3SM1j3ilZwYIaq+rfoYPk5HuoirbYow lxD+E+zu85uO1Ylvz7YacYnohIx7NoIMCF/PFNjxi0s0rGYfkT3IwBLkb9h0 ZIyQ2lE9E6XEQHfQ08t3z4wRD/AjfcsRBn78VgnMvTFGiN6137NRjQHtjIKN hl5jhFkpz5ZlJxh4s5uy+XPvGDHzUGQZ+woDfBceN6aqjhOSvSc6wl8ycCpQ 6u2C7nHiTdGRxAseDJxeZXEqiDFOTEbJui/xZOCSR+KKg+PjRJGdoMIdbwYM HZTfWSyaIMz4m97v+8KA5bmL7xv2TBA13CJzejADNpVBZywPTxAHmlNVPoWS drXBlXxaE0RIVoSwTjgDjzJ3NASfmSAWh/gNz35nwFXOxlvRcIKweuFeFBfN QJKKzR0pswmi/fbDgCtk6+iTmvcKvjNBRO+/fKwwiYGLXJGGj48mCCGRE5vv pzLg3hQ1Ifh8gnCaP/yfdAYDZZkH1rx5PUGcqBQL98hlQOH52Ysu/hPEsMnA /JkyBjasf91zN2OCkHtzK6Ovm4E6tRm21uQE8cna4K13HwPLZNyXFc5OEP/0 j5tpUBlQXS4sq8w7STSI71odySTja91jvU9oklBaJMa5xGFgJCffO2H9JBE6 JEBZOsKAWOjJlO3ik4Rt+ui9exMMeFne+m+z3CTRFdivKT7FQPWZ/9YFHpgk NFwaNjb+YoDnwAultSqTROzNwsnnswyoia4y9NacJFafTKlUmGOAYa2/caPO JPFIPjyUOc9AYeBSFdqxSWJwre9Df14mfEoLTGJITht4sHVuMRNnN+4IUyRZ rMx8LmEpE9LafcXz2pPEy7hLzVcFmFhg+5FRSvJFh0OuxauYSCv7u12f5Onl f3veiDEhZteUaKM1SRxWdPMV2cfEeMXj/Jijk0TbdZGDwQpMzJ02+WFP8v13 P9olFJlY3ar2FSTHMzpEtyszcZS6yLVVY5LQWWWVF6fKhP4ttm0oyQzlhSZ7 1Jkw41Zdv0PyZt/d3w5qM+E5+16Tl+QcokgjR4eJb852B2rUJ4lLw5foKieZ //9f3P8qsvJwqr4uTNEgkQbJEAkhU5MMZUmSShlSGkxJJRlSqJQMEaUiP2Su NEuhVDItJEOlTCE0kHvOucO515UoxHe+P99n773etd619lr7PEfjBoOHZOno qu0EXO+68rzOfBATLCKXbbIjYNk+0bOaRoOo47ewod6BgKovQRaX9AexIS3P 22YXAbZ7OTM5GoM4Rdj+ZOc+Ak7uaU19vGAQsxV9bDucGf87N7tLzh5EU2tR 4T43AjKcypb5ig1i4M3lqz08Cajefe+l3i8hEtvDS477ETBn16m2wiYhvs/V qrsaScA9e4U5xXFC9Gqv8JKJJsCkOb5D7oIQxaY4SiTHEPDBTuzmGaZezfae 3555hdHTltY1PSrEgumtrbkpBKzbgdsqrISY5HnuR10uAWN7V2p5DQ+gQYJM 5LYnBLS9EH01mzuAjaX3l37KJ+CpTLPl8+8DOG1e8+H2IgLcGvzdJ+oH8HSV Ot1fQUCt0ZMbSRkD6Lz401/RVgLSFmpOqzIfQKlFJ16UfiZgqf7GTSdWD2DV vAUBQZ0EJFu5Ri3VHECNmfsp6iuzPyhpykXpART8Ito/UYx+D0QnkssEGNkw 8TxrgoCk+9c6KBkBrq657e8kSsIJ+HkmdJKPZIXlchkxEhQ71yrOpfloU3Q5 J2omCaUze91N6/m44Kbs9WPzSWj3WcW5ep6PDwP1/Iy1SVBa1Tm+kkvjPv9m rV86JHx/r3OzrpPG2d6BrDx9Eu57RmxwrqXxhFuJs8oaEsxTtC9G36ZRbZ+L XNdaEmboh2nKx9PY7ijS9p8JCS11re+enqPRdKvVtunmJLj8PSfd6UQj35I9 rcqCBK3E5kKfTTTegivVIZtIGNDWcBRdRaODif751dYkLIqcv0zXgEaxNS3G /K0kDNdxIV6fxpf6Qb8fbCehe/abPUI9Go9qyxUesCOhemd6wE4Gf1R21fy8 i4SL363vLNSlMVxetP/aHhIOqauUndGhcdWCuzet95NgfWykrXs5jakSHNky dxJmjtybdkubRo/fQeJ3jpFwXWqqt6Ymjb/fXe07HkFC0fpyA+OlNPbM+uw1 foGEWM/cinuqNFbbKApiLpJgEXfDZi6DEz7mjmXHkfCjM8CLq0JjsPRghPY1 Eh5Pug47MdjFznjGywQS/DRsomqUabS8Hn5tw///u243nruCwdotdfMbk0kQ CdS4lbWYxjnzpDP2pJLwLn2engSDR3buXtKfzujtvGsiiNHjW1LWA/8sEtz2 7XyTZEFjzed+3bGbJKTssY99vovGXFmdoos5JHB2225v8aLxutNJk7n3SDDY tX2u8CyNrl9EN2vlktBjvyVTL4fxR35LY1EeCVJ2mw9sf0Hj8v0JO83zSdiz Y5OGTz2Nf3oWuzsVkfB364aCR3waE3+YnomuIEHW0rhGzZSPtWTQ494Wph4N tXjybXzM0yxf4fuZiX/1skJjko//HRUr/tNBwsRK9eA9o3x05ybWSH8lIUl/ iUiKigBH+flf15MkVGoumi/jK0D9YbZ0+hhTf00BLtLTB1B27YoU9QmGP9cn yVxmAMdPnVYsFKHAJPrI+wCFAXz3d5pWvTgFTcYuxm36A+j5b6nFsDQFQznW C9L2DGCqmGuggxoFBkHKjaq5AzhxcOGaZg0KnnWYfVMpYva/afptq0XBShNX weIK5v5Hbjy1XY8C/clMGYWWAUzpHV/7wYCC0gNlqot6GH7zl3+2rqLAtKZ7 1UJiAOsnNUOsjSgwuyS/e97oAOq59ZnUmVBQxTU+IiPG9JeKjLFN6ymw2rH3 tLSUEEeVdpXVAAXF2/qO1MwTonuoVOhGCwo+qdvdDlsoxNqeuvXVlhT0TpZ3 mSgIUWddxIT5ZgoGvyyfP7xYiCOjv8LMbCiYd216jI+GEJ33PTEv30GBrldQ 5TJtIVa/Piy6zp6CjRY///bpCvHa6S+RxrspODJc4bN3jRA1hiuiV7tTUOAa 7GBlKcTdwktx2oEU2OmzlFQ8hFhmt9HmUTAFnjN3OnUfEqJqwbik5hkKTv+s TEhh+iffz/+a+nkKsm5kTp0dIETHj5q2d8MpeBEgsb4+UIglun3SSy9Q8GHb 6eALp4UYzXO8rhJLAXtyJ/tvmBA526Qcbl6m4O+XKtUXTL+2e1w3d/FVCiSL 9J2PxwjxpUREa2Y8BcrXspKXM/1d0dskSSGRgplWA7pRDI5s+OWYnkTB4Vll GRgrRErzyYJFNxj9mmJmjkULsYhUviGbSUHcfmVWQLgQ5Td/cUrOZvRT4To8 CRVi+P1Eufm3KXAgXlZSzHywOSSeLnOfggUBOzLdgoTY38fJlCygIO1i6M7t 3kKc9+1FzpQaCnILu6s0HRk9JUNDX9VSoPSgdLmmvRAlTC33+DRQEJ+Zkbxs hxCnpLbMbv9IQVDM/qMa1kI8X5tGXW6mgHXOtFWdeY+NDrm/gTZG7xMK69Ut hDhoLzj96AtTfy7dc9TWMe+x8Jc7XXsoeOxQGrLUmNHraajevO8Mn3VGv6qh EA9/tZxZ38vEt/7sDtVVQuydJdl/rp+CDRKl9iSTb2eT1ooVJAWyGoo9fmpC 7PRKTyPYFHRvCD08LC/EpreatnYCCjzOwFnxGUz8QwIt8UEKtJJviV+dYOpZ 9ZVYyRCTrwLRhPm/BxDDNpUsHaUgkHpzd2nfAD419lAfEWNDopP1xw1lA3jl ScZYljwb6tfYLzl/fABn9Hi0Oyix4bL9s8fiRwYwSkK7cLoKG3b6zjO86jKA Z48UHw5QZ0Pf3c9bM7cO4HBy2AYNTTbkVRp+XrphAE/UWCl2a7PBv+eG2+O1 A+i95HOzpQEbJubtCyxRG0DCNjPv70o21OiXTmxg7r/H+YMxT9ewIWmb4qUG pj98y9P2OGjEhhapbCWxaQO4t1u4Ts6UDRK5r/0W/xKgdbLUQ+4mNmR15687 FS9A8dAIR+MANnTdjg3sEuFjkZD3F0+yodQ8fEo6m0bPw3tuWgWz4dL3Uwl7 W5h+a6vP2XmWDRpKR/I679AYpfo1zC+aDetSN/W3WzHzq97o8Z00hu99fU52 PA+nzBsQlapmsE6H4WFVLj6L2f8gqYYNUnPlChJncdFjvNZGoY4NCn/2aOEQ B6tZWTc0P7DBpKZLQa6Og5HF23Q3trMhzPmbyLtjHBR1fbDnNIcNO0pqvml+ YqPII9f8vrkc2HHKdEfEIwpreR1+NxdwwDJhqDQrmcIrBvZ6znIcUH/0RKsk gsKFxRuffFbiwIJuZfFfeynsGSvzSVThwPyhzhPSVhTmgKGO7VIO/JNM/LF8 JYV6dZqP6zU5wDcTK/OUoHBIIsc7ejkHapzKtSKGSSzZoaBtoceBiuPBN7L6 SAxPTGJPGHDA6MLh+KB2Eje1z35UuooDRd3ZB9e8J1FCPsbrtCEHzFZ3rP2N JDa5iGiuMebA0yvSki+KSHRmDd5/asaBl+vDi1Znk8z3l8/hYxs4oJNSHDuU SCLlw1LXtGTs8Qeci2JIPDnUcff2Fg48u3lAfHUAiZenluckOXKgQHTj7lWW JL5eEpMd4s2BW2/F/6zgEHj+kIjrWl8OaC42+yD8RqDlozNKQ/6MveDgW4Wt BDYZ+GT6BnGgchlpvaKcwJRA1n7t0xxQDVdWEhYS6FzsqkCGcCC/00lYcJ9A 1fGOrjuhHDBckfD2eAaBFNinu4cz8VyqTzNIIPDphXd7lS4w+kR/eXgyjsDA uo2LuqI5UP/3yb3xSwSazCrvTInlwH3fyJzoWAIndxim7ozjQGLv7ptSMQTW JOY7zbnG4F3LM29EE3i5XXNhYwIHLjRMpqpEESjrqpBilcKBw4UPE1dGENhz O2nX1DQO2KiHxpeGEZjDmr2gMoMD5mn2VyzPE6jrK5JkfJsDahGj0bvPMvGf Y13XyeMAaWdzJiSIQIlKV3v2Uw58qVEJnhrI6DG1c879Qg50Gf0+ceUEgfvj 3sUrv+JAikq2T7Y/gSfS86/OreaA34DArfooga/G02OqaziwPTV8pYMXgeOu FyNO1HFAyVxGvO8wgRZVAWdV33FghLzdEXCIwJilLkEtH5h6il+ZK+pJ4Ido a//ITxwoW/vm3HUPAudSq46ubOHAle87bZccINBpq/LBvjYODGaar77DrGfm SbgkdjD5iX1hl+RNYK/U8G6LLg5sOantG834qxHQazfYw4Fw15uXgkMILFhT bOnQx4FPqy9V77lM4NuKQzpzaQ6c73VerZTLxL/EXqNawIEnH5rtpJ4RaHdh ncqJQQ70vLLynXxNYNfmefNbRjigd83gfm8DgfymyrHrU7jwzkRM7j6bQLmf Cu9l5LigmfR4TE+LRJdN099WyXNha5iKnMoKEnMeDFYEKHHhnHfyahljEnV8 Gp41q3Kh1jzM95c1iRt+B6df1+WCgU3R8+1+JHpPbzkqs5ELbxaVDccx9yX/ aPnBqk1cSJ+nhM8bSBx6/9AlwJqxP/t8THcriWEJYfbN27lQIGIut5wiMWmR rvH1PVy4SL4xfjeHwi9n5VZt2M8Fo161KYPyFC7+NlVX6MKF3q7od4vUKXyY 06Vif5ALjh837z9qTGH58tgZMn5cWPPi/bkZHhQati1sTDzOhfK4Qw8ijlFY cO7B9fknuWDlMdk8Gkihlvra3SlBXCgyShs/eZ7pJ4218nKnuWAsvWoZHUOh YvDu72khXJCN/f2mKp7C5MXEHYVQLvw3Xfm+C9OvpOqCvLLCuDAlxjr2bzqF sf7iusqRXDg/7YR38i0KReWShbeiuNAdnWGz4j6FIZVqL1VjuGAn/lav8TGF vjKWoHGFCyAm90vsFYUOzyPtdVO4MHNKxdnARgrf758rm5/K6B9BusxppdBS LKfLIIMLgyIy5nmdFK7dVXVw9S0u9E0eFOv/yfg7MhlkmsuFu/9mXt05SmHK zXiT8jwuaISu8hdMUihtrTxpls+FhHFn+zhxNk5JM4u1KOJC8Fj+gjdz2Eia hKZvqeCCxd9d2SuXsdH9p6Tb+0oulJwOC/+ow8auuMyl298w9v489PBeycad q3Woj2+58PxUi+U0IzZ+6CnNs6vngsTImEbOejZaRW8LaHnH8AWrzzTbyEbU 7V7j2MjUy4dX2g+t2GjU7j36+RMXXL6UfRfdzMZn50crnFq4kEZUJe1n8PJl ly98aeNCw6/aLS8YfPfTIuv9HVygRT5MSFmz8YaKcbNrDxf2KLR7VTP4XPWp n4cILiyz46zT2srG397TH5IUF9a5CISRDPabd8PnKJcLV72H7vcw+IDny98+ A1zgRU3MSdjG+Dvt9/TAUS48fD2XNWzDxsqnUR9+j3PhZ+3CdLvtbDR2mn/9 1CQTX5uibS6DdR6ukj8rxoOTfI3XLjvYKLP1hE6kFA8Ml5perbFl460q6Vkm MjxojDZpUbdjo4HxE7ZwHg+uUcYLYxiMBVvrH8nyQG2bsTPF4B2a1P0Di3jQ +cTo9hZ7Nn69GR29SJEH5+YYEbkM9lm41LN5MQ+0Tq5dLunAxrFrlRaXlvBA fkPxuz2Mv5enuS7ZoMYD9y1toUsYfRedH5v8o8GDdPsBZsqx8eHv1G8FWjzg 7JXsf2bMxrr+1gwVfR64eFtutdRlo9ibLbIiJjzwjCuSPTKfjcy38tCrdTxI /K+pQV+KjarPolr9gQc/Mnjn/kxno/ltTPhuyYM9eWo/L41RGBq2Zhba8sCt MSk/r49CyZEWdrADD+58LvAI6qEw0+94vd4u5vzXDwvM2ikscXkcnb2PB958 sXOfGigcNl0icv4QD05IB1kPFlAY/bzi2xovHmQvvD5Wkkvh/OXO5bQ3D2jl J08v3KXwbs7fjHu+PNDRbDhgk03hKvkbIS7HeeBnwJq/IJXC6uur9y44yYMS 8jfpmcDcr5ktaxuDeCDRbTaiyNzv438kf687y4OaqqYFV5l+MOmf2zoUygON F4vUNzH94hq5+VleOA8uPvRY/e8AhXntkf6KF3mgHz/k4GtLIbvoD3ssgQf/ OcslbNdm3ie6Ta1nynhglvgg6mMyiTe5MqFTkQdJfmf2ql0l0ePRTo2rVTwY 3bpNLySKRLZax+lbtTyQ6h4pP3GSxGGFb0p1TTz4uME+bL0DiTISvCPzWTxY Jy02pVWaxLY6XZlskgf9XvueRU8nMTXav2QZhweXqws8jCYJXCz6S9JUwOgT 5PImi0+gzp+/hQf+8iCv52WUVyOBghem+7ljPNhoOHuNwlsCn50MFQua4MFE /EFWYxmBxgIRp9ipNDhsnGO1Ko9AK2L6+NPZNEjmHp0+wcyfmXe33DOaQ8OD qZWvCiKZ+Xcgbkf1XBqCXWS9DjLzKkG5cWTbAhq0X/nIyTLzbOdXqdufF9Jg ONL6z5+Zd7IZdlvd5Jn9jtkzZJl52rUn8RelSENNode8MjcC3dsWWI0vocHL 55/mjF0EqiU6CaLVaKhtqFv11JZA0jYtVXoZDVOWJZo5biXQ770iV1WHhsJe DcdbQODZ6qUJWwxpmOZkF2akTaBZ+CHjViMaXIrkL39TI3CK2YM+Z1MaqmVY SVHKBMa+1l5z3JwGjw9ncpvmM++nghVdKVtpSNxw57PXJAv3+p28oLKdhrZs 3x9SoyxU1Hmhk2tLg934Wm7REAvvPDAKK3ekoePlBxFRDgsLskGt35UGI53h 5WltLPwV8mv6gQM0mK7Zq77vEwsNnR5wvx5k9DUrW6zwjoWnV+3/tO8wDYc2 K8v11LCwVFr6eYcXDafsImWykIUT3OoUx2M0zIjrcb1bxkLz+uCQZl8a+t+5 y7wqZeGFu9quO47TcEuC9aahhIW14d82vD9Bg/PWo8E9r1k4wyVR3TqIBrPL tKagmIXbjK1mvj3F2HsX0C3K4Cbhk6aKczTkbgkxX/aShd0eoW7PLjL2reMk Tjxj4WJYsVH/Eg3PYqXLowpZ6K7A0siLo+FS/X/+NwpYSLTa8O8l0LDQOrOt 7CkLBywVQ9PSaTi6+Un29McsXLWkyV02i4ZVMSvs5XNZGPzvguV/N2kYqn0x VfcRC8decGddvUvDDasKL4cHLJy2rDQ9/CkNPzZ9Wpl1h4Vbpvqf/1dAQ0r0 TlZ+DguvfFf1CHlOQ8DbjhvVt1n4sbR908gLpr7Enbd+vsVCmdTLWoHFTH1s +jFO3mShY6DZbGEJDawoz/zRbBam2A0O+JbTMN+gVMwik4VfdO63cZAGA3vH 5uQkJr8z9xUfqabB9QSdxb7CQjfW7Mz+GhqO/3fRe300C3OqqsIO1NFwrUh5 7fVQFi4L0dq8/wNTn8P2TUZ+LFzJ/fN5RzsNu8++nBJry8KgurzX7ztp8My0 /dS9mYXFd9yzrLtpuFdOZeibs3C9c72nxQ8a3k3Kr+kwYKF1441fazg0WESF HdGYy8LLj7Z1POPREHhPbnWIBAsboydL9AU0RNUWinycwkIHsyORWkM0dM3o Twv61Y8u+YYyShNMvq9af6hp68eX+/5INYnw4YhOckXAh36UmlYieWEqH9Lf 9xYsrunHI4VnJQyn8eGet96d96X9WOm8fgZ7Bh/6Zp5NPv28H+VmTIpnzuLD n4d1MeqP+zHgeeVUWyk+qFjPD2nJ6cd3rpGiU2T48OxunP/lhH5UlbCcLJrH h2z2uIJhcD+GvBD/d0SWDwl6fvW9+/ux1b1uVH4RH0JOfg+8uqEfo15tHQ5f zAfnf1WN/ZL9SHja0zZafFCViQn7785PNJszjzu5nA9au/8sh0s/8UZpG/VM jw9TMo52cvx+ovXcPf1yq/nAUbNZYWHyE3PRtbvfjOE3kvk50NSHfvI+Decc +WDtnmG1Y6IXa9/q1uk78cHwnuSvvz97UTlAUNO3l+HjhN6819CLpxULq5Od +SCrL9hmn9+LTXUnKq3dGL5A9z/jSb2oeXJ1xdgBPgwVN999GNKLEYuHS596 8qFFRLy8dE8vrgw682q+Nx8sORtUlszrxZFPF+/lhfHhofKxfb5/v2N49O2I nlw+GL00vvbmZjfOPjV964EnfBivDo1ucu3GdC/fuUQ+H1I/VZ37qtSNz7cZ 3xEU8eEHteXYSEYXEjLNNVOQD7Ff/C7nZn/BbdkiM7Ra+aBpHXBE624Hyr5y uxY0xodw9eAly/Jb8c7Dt7tH//FB56Tsv3b/VjRIX64cJiKAOVUvOy8atOKW 0JH8WHEB5DmPxBOFLXhuY3xzhrQAnJf/Pq3U0Yx9nyrmVy8VgEqh/EGZNU3o X6X21UpDAJUH3H58EmnC8WeX773XFICIunWpYtonXJCy2/CzrgAMqH0FsvUf 0dqZ70StFcCAb3i6hEYjPqGUMqRsBHDrzHu/wd4GjM2Kdv+2QwDu0i8/bPZt QE8HWv2pvQBm3L2lnfWnHs2n7+KGOjLYOC528EI9KpaVFWx3EkBBYxCxWboe /xxXC1baJ4CHHu6WWel12Kp+xZR2FkBsv8Iwz6YOn3b9Eil3Y+x/LY64IF6H l+P3117xYOJp3zVbvqIWD1u+iXM+JIDjnwZTC4Jr0eKvtr2OlwA06+PVNuvX 4l+P0e73vgJoet1gGnjrLXoZpgklzgjgdNZ674+RNWjJFXnVdZY5n9L129O0 BpVveZ3LPc/Yjz8VMfbrDbbPNJq+NUoAdhGFqZqH3uCmr+2Kl+IF8MNTvS5y czWqJJr17UkUQKdLtcMikWoct7r/QDNZAPW73b7lF1dhUUHQyvp0ARRbp/3u 0arChENfR25kCcBrg2HEyb5KPCa/qfzILUZvk1ZJiYxKVI2abz39PhOvzmy1 tZKVOGF0bnbHQyY/2xzdMi4hfqF/ttx/zOTP9Fpw/WgFFuVsSw1+yvj7lNII uF6BCU7PXawKmfU3Gt6P9lagj6TCUtki5vwXzye9SyrQuiqSYr0UgDk/Z2AR pxwntR1ORpcx+ZRTPnU5pBy7vr822oUMv55LSbVFOb5MWjKhVs3s35jxb1Si HP0mBmJr6pj4fRdGHcsow57m+Oyprf/nk75uU1aKxRdHDrZ+ZnDn9raoqFJM MnXTutPJ8PPjFpbblOK2e3pFFt+Y+pWbka37tQRLTjc2RLD/b0/ksdTEa0zR XRNvz2POR5rxrWpfY0BfpuMSAbOeem5F2LXXqGnj871y6P98f14JFr9GMdG2 uwkjjP1Ow7FlZDH+eGHq7T7KrNOBZu75xVjmfUff4J8AEqY+j0g9VYw3lGf9 npxk4pMT1jRBMf4PNnGZww== "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.1426039760181024`, 0.9999998782112116}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Directive[ RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ RGBColor[0.455, 0.7, 0.21], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.578, 0.51, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.4, 0.64, 1.], AbsoluteThickness[2]], Directive[ RGBColor[1., 0.75, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.8, 0.4, 0.76], AbsoluteThickness[2]], Directive[ RGBColor[0.637, 0.65, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.948123171401717*^9, 3.948123199718768*^9}, 3.9481232473881474`*^9, {3.948123396096857*^9, 3.948123411837347*^9}, { 3.9481234767898397`*^9, 3.948123500779153*^9}, 3.9481237384346323`*^9, { 3.9481242148953342`*^9, 3.948124253607568*^9}, {3.948124795973659*^9, 3.948124841391388*^9}, 3.948124885271016*^9, 3.948124995955097*^9}, CellLabel-> "Out[553]=",ExpressionUUID->"4984b1f7-133c-4235-869e-314fef96e28e"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"testini4", "=", RowBox[{"0", RowBox[{"RandomVariate", "[", RowBox[{ RowBox[{"NormalDistribution", "[", "]"}], ",", "100"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.948117958635509*^9, 3.948117961737759*^9}, 3.948118009196693*^9, {3.9481184224530888`*^9, 3.948118457550139*^9}, { 3.948118865567238*^9, 3.948118865622703*^9}, {3.948120671985375*^9, 3.948120674553061*^9}, {3.948121770190486*^9, 3.948121770270083*^9}, { 3.948121909348001*^9, 3.9481219370123243`*^9}, 3.9481236993410187`*^9, 3.948123954152379*^9, 3.948124077916299*^9}, CellLabel-> "In[554]:=",ExpressionUUID->"16fd2f85-0c15-4ce1-9650-d56f875e3ac0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Norm", "[", RowBox[{"Total", "[", RowBox[{"Transpose", "[", RowBox[{ RowBox[{"dCost", "[", RowBox[{ RowBox[{"edgeBasis", "[", "100", "]"}], ",", "testdat"}], "]"}], "@@", RowBox[{"(", RowBox[{"testresult4", "=", RowBox[{ RowBox[{"gradientDescent2", "[", RowBox[{ RowBox[{"edgeBasis", "[", "100", "]"}], ",", "testdat", ",", "300000", ",", "0.01"}], "]"}], "@@", "testini4"}]}], ")"}]}], "]"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.948116443805812*^9, 3.948116595874456*^9}, 3.94811663448494*^9, {3.948116675111467*^9, 3.94811669012147*^9}, { 3.9481170279593077`*^9, 3.948117034948435*^9}, {3.948117139185307*^9, 3.948117139416718*^9}, {3.948117619301654*^9, 3.948117644869664*^9}, { 3.948117701129861*^9, 3.948117725424323*^9}, 3.9481177976042557`*^9, { 3.948117949234351*^9, 3.948118005251853*^9}, {3.9481181222490892`*^9, 3.948118131658963*^9}, {3.948118183420438*^9, 3.948118183730976*^9}, { 3.948118290031867*^9, 3.948118300008397*^9}, {3.948118391012185*^9, 3.9481183956216516`*^9}, {3.9481184306853952`*^9, 3.948118480496229*^9}, { 3.9481187959571867`*^9, 3.948118869886958*^9}, {3.948118944962851*^9, 3.94811896683502*^9}, {3.948119010941477*^9, 3.948119011052844*^9}, { 3.948120502251251*^9, 3.9481205305715523`*^9}, {3.9481205627655373`*^9, 3.948120562876808*^9}, {3.948120655117876*^9, 3.9481206875217953`*^9}, { 3.948120734940549*^9, 3.948120735011962*^9}, {3.948121549534327*^9, 3.9481215880145884`*^9}, {3.948121688668117*^9, 3.948121689443036*^9}, { 3.948121772639497*^9, 3.948121793399719*^9}, {3.948121906717914*^9, 3.9481219497410717`*^9}, {3.948122060586152*^9, 3.948122061514122*^9}, { 3.948122366662612*^9, 3.9481223667420883`*^9}, {3.948122438057753*^9, 3.94812243882589*^9}, {3.948122591337932*^9, 3.948122648962617*^9}, { 3.948122680659992*^9, 3.94812268076335*^9}, {3.9481235113820963`*^9, 3.9481235571530323`*^9}, {3.9481236002414913`*^9, 3.948123605905151*^9}, { 3.9481236961972723`*^9, 3.948123696332697*^9}, {3.948123765032242*^9, 3.9481237652555923`*^9}, {3.948123889619471*^9, 3.948123907909679*^9}, { 3.948123982992901*^9, 3.9481239962089443`*^9}, {3.948124597409724*^9, 3.9481246018335533`*^9}, 3.948125013642815*^9, {3.94812505862953*^9, 3.948125058723675*^9}, {3.948125216419588*^9, 3.948125275405216*^9}, { 3.948125312014535*^9, 3.948125341471352*^9}, 3.948125396762092*^9}, CellLabel-> "In[572]:=",ExpressionUUID->"d6909a2d-ebee-4926-a02b-8ab0c90b08df"], Cell[BoxData["$Aborted"], "Output", CellChangeTimes->{ 3.948116920781104*^9, {3.948117036764943*^9, 3.948117051224715*^9}, { 3.948117143594776*^9, 3.948117150513681*^9}, 3.94811718447971*^9, 3.9481172182141438`*^9, {3.948117638498147*^9, 3.9481177376918983`*^9}, { 3.948117798579523*^9, 3.948117841103928*^9}, {3.948117941742052*^9, 3.94811801037414*^9}, {3.9481181194825706`*^9, 3.948118132143605*^9}, 3.948118184196604*^9, {3.9481182858143787`*^9, 3.948118292728421*^9}, 3.948118322966217*^9, {3.948118392460451*^9, 3.948118404573513*^9}, { 3.948118446107132*^9, 3.9481184873970633`*^9}, {3.948118789974741*^9, 3.948118876322757*^9}, {3.9481189372969913`*^9, 3.9481189777874928`*^9}, 3.948119026920826*^9, 3.948120164039448*^9, 3.94812041284212*^9, { 3.9481205240286617`*^9, 3.948120540191484*^9}, 3.948120580966222*^9, 3.948120724047164*^9, 3.948120766860879*^9, {3.948121555151058*^9, 3.948121571333715*^9}, 3.9481216223770313`*^9, 3.948121726277417*^9, { 3.948121782452505*^9, 3.948121806304799*^9}, 3.9481220635162907`*^9, 3.948122403912108*^9, 3.9481225250971203`*^9, {3.9481226174475193`*^9, 3.9481226535379543`*^9}, {3.9481226916168537`*^9, 3.948122713284994*^9}, { 3.948123515310081*^9, 3.948123544456394*^9}, {3.948123577118528*^9, 3.948123614314814*^9}, 3.948123708636023*^9, 3.948123773869932*^9, { 3.9481238937855587`*^9, 3.9481239124597692`*^9}, {3.9481239447412558`*^9, 3.948124001898543*^9}, 3.948124084910391*^9, 3.948124267587978*^9, 3.9481250129269457`*^9, {3.948125057685088*^9, 3.948125066913569*^9}, { 3.948125228749289*^9, 3.948125258577572*^9}, 3.948125292299946*^9, 3.948125332188156*^9, 3.948125375805745*^9, 3.948125424904982*^9}, CellLabel-> "Out[572]=",ExpressionUUID->"209516ff-1879-4481-9231-611ef1c9825c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"ListPlot", "[", "testdat", "]"}], ",", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", RowBox[{"2", "\[Pi]", " ", "x"}], "]"}], ",", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"trialFunction", "[", RowBox[{"edgeBasis", "[", "100", "]"}], "]"}], "@@", "testresult4"}], ")"}], "[", "x", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.948117023108872*^9, 3.9481171310642633`*^9}, 3.948117218900462*^9, {3.94811769508072*^9, 3.948117695281692*^9}, { 3.948118169788609*^9, 3.9481181746288633`*^9}, {3.948118343586754*^9, 3.94811835689841*^9}, {3.948118469784132*^9, 3.948118475959201*^9}, { 3.94811887985721*^9, 3.9481188799758053`*^9}, {3.9481190649687033`*^9, 3.948119065175358*^9}, {3.948119114227518*^9, 3.948119115009656*^9}, { 3.948119271665592*^9, 3.948119271792173*^9}, {3.9481193316511087`*^9, 3.948119359235722*^9}, {3.948119390894739*^9, 3.948119391477193*^9}, { 3.948120045849962*^9, 3.9481200478721933`*^9}, {3.948120212047411*^9, 3.948120239015778*^9}, {3.94812035284509*^9, 3.9481203555162077`*^9}, { 3.948120543757267*^9, 3.948120549148551*^9}, {3.9481207229881372`*^9, 3.948120728083869*^9}, {3.948121787648656*^9, 3.948121787751334*^9}, { 3.948121995664372*^9, 3.948121995879733*^9}, {3.948122049138997*^9, 3.948122049377921*^9}, {3.9481224151298027`*^9, 3.9481224196570587`*^9}, 3.948123524175694*^9, {3.948125277204863*^9, 3.948125279356223*^9}}, CellLabel-> "In[571]:=",ExpressionUUID->"459c2b59-8ce1-4f14-9c91-8fdcc83acf25"], Cell[BoxData[ GraphicsBox[{{{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[0.24, 0.6, 0.8], PointSize[0.011000000000000001`], AbsoluteThickness[2], PointBox[CompressedData[" 1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz 7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74 eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU 1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9 xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1 nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB 9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7 W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2 lJGQGy0j/wAEu7KH "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz 7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74 eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU 1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9 xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1 nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB 9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7 W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2 lJGQGy0j/wAEu7KH "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Point[CompressedData[" 1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz 7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74 eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU 1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9 xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1 nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB 9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7 W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2 lJGQGy0j/wAEu7KH "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.011000000000000001`], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[ {RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwUWHc8le8bpnwlSWhRkkpSSUtpyCVJdiorSkgaSpJEw0qSKAmpkJCsrOz1 2nsce6+zzUNpiPi9v7/O5/o8976f97rv52yyvH32yiIuLq4P/3Fx/f9X8wq7 qWjYQMltfep815oYgufEOrsBMXlwTTj412rGEPs/hoR+E1MFV9GhzQUuMYRW fUdamJg+iqyKTkYwYwgjq98FAWJWcEts9LXO/EL07X52wk/MAW7KE+t+GMQR gR9Fi7aa3gOXSFoi/XkcobkiXrEw1BFc9HtK7QVxROZE3QHORmdwef+zyNka T7z8KiJzRtoFRU0Cca4/44mTG6Kjh6+6wi2acuTO9gTCpeK9ULG+G9wcA+ss LyYQ8gdl/c4Hu8NtnfjkyfIEYsWEQ+1WBQ+4jQ+4K8wkECOfC5Z+7yAxEbVy +65Eovwir3qh0xMUvb76eZ1FIhGx+rSXj5gn3Cx3KggEJRIP69+WGeZ6gku3 yKa5NJEwfDq4aIvpUxRJa/x8H5tI7D22/Thn9incFppcLvslEgI/77jmhXpB ucuET9Y+kWAl5hY8O/YMymm019OGiUSJ1eK5c/3PwOV7c33B0UTCqTXQaWzj c7gpucjp/pdInPPty8wueg6uNUuy14wkEHKq0j89LXzgNvXq+EBDAkH/lnVn Q9QLcEV90rcLSSDOvOm+oSv9ElxLyh8E7EwgZLW2xK2rfImiQR0eU6EEgm/x TRbz6isoZ7f7bSHrdylnPpXQ94fyTXZEemE8sXq7v5xx8GsoU5ZVtp+JJxY9 TdcpZL6GW1yg3seD8cTkYOdNKYUAcD3Z0H11fTxRG7IpYbIjAMryu8f/0OOI 7OmTNYYyb+AmkO1YXB1HxOjdGM53IjFTmcsniex34ku+LdVvwFVc/fzsmzjC ne/btudigVB+d3bleqc4Ysep195pdoEo0trq+84kjmh+enu4pzIQXPIqjzIF 44iHZTqa/20MAtf5vy5s9VhCarFsgpxjENxc09zXPflC1B3nFzCuD4JyzA1P 7YIY4p4b+6a7VDDc6jc/c/n9maj4Fy3X2hyMIrE3vlSbaOK24pNX/7a/Bddx rVerYqII0YcWk9Lub6F8bXGA2mAkcf3PhjTn3SHgyrj7Nl7/EyHwI/jARt93 cAuLVWU8CCUy9t4LVqe9A9eYqKYG5z1hZnfu950j7+F26Pnpr5ffEcnjK3LK 2O/B1Xzd5J52MHGW7a1442QouHh32v0n4U/MSl8NexNK4piDo81SfkT0lZPz +T9IrLb21/vlPsRPKnfRisgwcDl3Lts58IQI3zQoeXiGxKtz1vyodCPUzAvd LfXCwXVh/wlHi4cEJzyU+uILib2njXn33yNC+h6cyJgnsZtNn+xSW+K4+Pno foOP4FKOsgjhO0GMmCj8x/eVxBHnY1mLrSEx5nz5664IcL29X8NF98Dt6we3 cvVGwI0r7OSStmCIWCXHfj4UCa6s3U986mNh/UTi/BGrSBT1H7006hyPvEi/ pY2vIqG8WP2otnQirIZsbvxhkvic+Y/lrsnIMJOR1QqKQpFjVaq66Dfwu7zt HSiKgqRPw0bniW8wC+P1cxiLAldYq19cWTrS8u8dWyoajYiU7tmu9xng7aWP h52IhnnZ4HX+O5kwmT0Xvu92NJQ7mB1HTmUheV2pbuX7aHCNjp202ZANniP7 FkwrSKz3iUYczIHx+U/Jk1PRKOoMf973MhecHn3+yHWfMSjjaraLkgcvM74r 5058hrnzpf2PhQvw7fLtdZmBnxEhKtknHkhA0PbY04cKMdBL1BNN0i5BuUeX Ce/jLxAaa7IZP1OJfYnCvOJ88ZhcPbZ9IJGCarly8/o98TB+0oY/sxSYpzrl uZyPx5/JQgNhrSb4ZQ7YDcXHI6L2tfuJ4Sawi772xOgk4Ka7QteXrS0Ib9NI 3fsmEaFjHt524W04YPxvGS0vEZ3nb4Y/H29DXXeKdSA9EdcqDdIjFdsxM7BW /PeBr5CJlBls7W6H/gjDK7/zK8aMGhQOr+3E6M13Q7e4k3ChPEvnrHUnPDja iht3JCFw36fLNhmdSJn+NuX+MAneyx1ehZ3rwqn7V7X3Ryeh98HFz5mRXeif WfeFXpcEY7ZaXuNUFxweNXAH/0xCtsGeJrZyN5YtuF84JZGMkBuStR+fdiPk upGZrFoyDpmE81UWdUOqVdZc2DYZdRriahOz3VCK67jcU5AM0e2ixYr2PciJ C87IkkuBFWtFVpdZL8bPjeVrNaRA1GohcuWhfsgv7TimRE0B5dzjwSN3+/Gg sLhwzy9S/sTsBsukfizZ/rZotUQq/Df/DkmRGsCm+eNlA7dS4WR3vzKGbxDX vsmebHZPxZFrB62PSA8i6drairKgVPCZ/+RpODGIoy1jlXEFqUg8fVflp8sg PLw71EObUnHz1L4h79BBVB0rqX7JSIUyplzFcwch+CNR032G1FdIkUjpGIRB 7Nvau8vT0Cl3u+DEz0GEXvTQtt6UBllX9R0nBYdAFblVb3wgDVbGUTbFG4cg U2Wkq6WRBre984nH9g7h9mOVxmMX0xDDf34iR2UIz8+ONy/5mgb522U/4r2H UDCn0v1B+xu0D32Y911FxdYzE+zSF+nwqVFfdUaWhnWup45c/ZQOgXKuPHXQ IPQ14gV/Vjqk7P8Z2p2l4S/fObkz1HR01mZWuTrTQCnKutt/KAOHXLcnhlfS 8GCP+/wfRgYmGYJ3ey/Tcdus+3TobAaKAkZ3Wt2nw8p3/ycIZyIaVfRRHzpO sxknvBQzSf52N5xNpUMqQvP5yjfkufb04XVcDIg1RHVnxmbCcYby/dNKBgTn 5naaFGZCPuZrwvZtDMwYJTdEDGeCi+vqhsO6DEw85ZNUXchEfuKJ9iILBujf LO6wVmUh+rzkK/V7DHQN5Zb47MiCG++/UxRvBhpWrFolp5wF429dXMahDJQe u3WlySALVW1GFo/jGci2qch0sMlCgIgMf0EmA1GVTufzgrOww7fKVLGRASfX vnD18SzIuC5dOMLFxGZOzPbL77Nx6MqLk4csmVi7geshb0o2pj+ZTty3ZUJA 63xdXHk2yXc732Y9YOJ3zLLbk5PZUDGuYx98w0SdmV3641M5UNZa7nugjIkS 3+r/Nl3MAZ93n/w9ChNZuZuNyuxzUFX2tS+9l4nINW0z/OE5MFfS3S3/k4m3 qnJaSd9ysOahROddbhZ87Z+FnqnOQWfWhNu35Sx4RAyOT/fnIH2v4rPjYizc bziMkOkcRFQGmRVJsiAol8Go5suFSJSADLGNhWi/Pb6z4rkwd3kyVSDHQpP2 ti6zk7n4K3/HM0+RhZ21q+5uDc6FYaR2fKYxCwOVnJg0hTxMPlr8K9GfBcdt Njp0rTwoGj8gEt6yIPCM+WO1eR5C9095x4ezcFitT9nZOw+qI/3rYxNZeFNW 042uPEQb5R6PqmJhh5Sa+53xPEzs27ssspGFoifF26K486EuGNsa0c7CuEq2 A++OfPwpC7oaTmfBM3L/+kNK5HmEwN6wURbWLUouvn42H4EPn/z98J2FFIsd 1z5Y5+O74d/S9zMsnCr+LFj/gNT/6/732gIL/ZKbMuZf5kM26tymwsVsOLiF mu6Jyoe51lb1lXxsfMKb2De1+ej8UBVUIMTGbIGbiol4ARoUV+wV2cxGcq6p I6ugAPEuoVfzVNlQW9chLtZcgAlp25dCGmz0Op8t1WQW4GAjMq7osLH0sIZQ kmAhEjfSFgkZsnE562C8w6VChBRtD7e6ysbfNWl6MXcLMXhttizHhg1/x12/ O54Vgke4flTQjo2CA1KqR1MK4W1hdzjHiQ39oI8jN8sK0blUxVzwMRsj0+te h3cWQiBt5bPL7my46QcrUMYKoWzC+Jr9lI216cL93NwEPBdltS73YeOC76w+ fQ0B3/eRkxF+bERaMWorZAko7jdene7PhuzqnJwXxqS8ValZdzAbKo7mQatT CMhUvpuSjmLjYKhRTODuIhj6qq0tymPjvHfd0NMjReDZOne0pZCNRw7HN9w/ WYTIglRzZjEbxdo7A8+bFmFiQjxeoIoN7X/z7hLPihB65ofi+VY2bIfvFqwI KILsSKzFzQ42Xrex/3CFFYHqYebl2s1GevFF+e9fiuC1flVCQB8b7V+bb9PS iiCZXt34eZCNmXenEloLitCp7TqdTWND3CufWV5VBE+GvFgdkw0l+72bs1qK 4BIcqCIzzIaFWczF2P4iTL69phE+woan5vp374aLoPdOUW/VGBsxB/1bfaaL kPheyMhnnI0xwQdat/iL8Sgs28pxkg1HQufwvoPFmIjkc9P9xca7hBKHLceL oRfd61X2m438twopq7SLkfk5xe/IDBvcdpu2/bYohkOs8QfpOTZ8JX+uyvcr xtzX2Mx57mEkCdzQ+xpC6ic/KnBYPIymP/0vwqOKkZuiVzbCM4w1TVWL3HOK 4fTtT1P7kmEcLjimZF9WjOb0uk7tpcO4EJfmfLmxGPKZEQMl/MP45B46eZJR DN4c9fGk5cMouyUsqzBZDMNc8WmpFcNgnve6KjNbjPy8yb/vhYaxVG02Uoy3 BOIFZdzCIsOQ3WfXzy9cArvCEL5nK4ehK8EQm1tfgqTR6U1hJL7Db2IwLl2C XpPcvwuk/cBfDf79e0swX+3aYsk3jEzqibpGxRJIHT6ZWL5oGO3q7lN+p0rA 55CXq/KPjV9JhWu0z5agM2lvNUHWS+HhYYuqqyVIlJJg5pD1z165+1dRQAn0 hH5vTGpnI0d1nWQauwQPWLFvguPJ+sZM3g0MLEUV86NMCPl99QrIvTv7sRQT K6iruU6xMWdvUygUXwrZw1KLrymzcQxMPj+iFF4vYvsU9rNR2NET9nSkFOp7 UgM6RNkg+CorHZXLUONcMreG5JdBW55xea0yzEXyjLj0scDVdlzkh0EZjtSp dTBJPlL+lH/htk0ZfCRqUzOrWTBf8td9l2MZMk8t/yhRyoLbLYUvo25l+GV3 2tcrn+Szw2lTV4PLoF/aYm2YTNr/yFkj/akMD8ZW6xfGkvZ5dynSE0j91cbH pSNZkLx5wyIyswz2F9QDE0NZON78xcu8uAy8iUlHu0h+tTzESJCoK4PX7Cra f29Ivg/f3NTbXgYRrYc++16yUHIjbP35sTIojZzqeuHJwrdhGxuzX2Xg2WL0 bJkbyffXjuRd5ipHr6n1gRcPWXhq3WFiu6oc4fWer33sWVC3FH7/RLEcv1KK NZ6bk/w9NDDsrUbKD1N+810g+do86fBLvXKUbR787G1E8r2ZVleIVTlsA+e5 vXVZaDz/VDTJtxyt94/mepHzo6jz3LVvweVISdG8xnuI5GejzdnZEeUIGT6/ xms/CwEGhFFpejk0TZ3sn+5g4Umr35eqwnKIBj6T/E+aBYdzF37XV5Vjvi64 wXMTC4ZnZoI7e8sRq5Sxw1OU5HdKJbOPWQ6H+2Wdi1excOh08EHaZDnsUlq8 nqxgQabByov9txziMawVK5axIKazv32cpwIS3e9vmQqwwF/HLf1DsAL7BHVr v5Dz868m5d4f0QrsUeHePi3IQq/6rdWLd1VALf4q3VeYhfrKo1f4FCqg1L9O pUuEhUI1/ozlxyugItLwcSvp/6PqF31RgwqcfSBvWriG7Jfy0JtdjyvwSJO7 mbOehXNEMm3fswo4uaTvVtzAgqqSy/5Dr8nztKt+3hIsbFVc36LyuQLB6xrU N5H5shUMRIzrK5Ay8p44S9ajK3OL5cWOCmRL6G74SM7vmgPfUy2HKlB0lvvh qAwLCftfnbn1swKZuVcPeu5kITTt4if7hQqUTawLpMiS+8Je2an7SyvRu7lh Spyc97a7q/09NlSC7SP/NWMPC5eS3g4+20biQhb/on0s6O2y3uO3txIT399f 0yX7dTxR3i3gaCUWbdOteC/Pwr6diylvT5LYlFuKdYCFLfFNG8NOV2J+pzBf jDILq7ZH3I48Xwk3J/aTUC0WfkofW/H1ViUeCL99+NyCBSWqSqWPUyWUD8xk 3bzFgleYuuu1J5WYNjadPu3MwppV+pwt70j9iI231rxm4SC3TeP7skoE7o41 iypiwakn5JX3+irk6+QcL9jIRlFw+Clr6So8urPeJWInG3xnoxdO7K3CoaDH uU8USL6uSr69oFaFot7j+zVPs0F9krGt7wwpzxV9e5cpGzuQN5B7oQrqUryJ QuR8zs2oOO1oX4VqmxqpDhc2Ft2pW6L/uAohr2Qtcsl5qinbTOz1rsLFby/D wsh5GcDquL/iTRWUu88Uscl52RPZt3s8jMRdV04GZrIhZUZj1cSSuNO5BtVs 3BQb/hj7rQrGHX6nR3tI/no1vcKqugpGbRnnVcj5oKr1t/J4axXOtlb3j5P8 68vL5bZxoAqXWvouv5MexobHyya7p0nc9J/tpNYwlG5sppyRrMbjegOP8OBh uKrq+eN+NaLLf8b/3TmCRTMJQuu31qDhzZ5FbmdHsb5e5Qd214A16bnv/OVR yH/qarM6XIMlul2W+xxGcUVjyYcknRoc5vMopQeNouqd5VYVxxp8etTiqdE1 ildHxI5cr6yByxXHJSvNxxArmCL+sqkGsSU1CmN2Yyiiqi2k9dSgcOPGa+Xu Y/ju41A2x6nBVFdl1f2oMSy7tOzLpr814FYQn9FLH4PU/sjnajy12Blot31H +RgMexp1/UVrcUFXzKeXOYbbydZ7MzbX4l7CrdyM32PwfvJvZbdsLWAjYSDM O44Io8Bf8wdr8XJZxRQhMo6cnTu7thyvRV3CrZe2G8ch/sjrctb1WvDvEuDe fnYcB/Q2qPXerYVe/bewDrNx6Eqly3C71CLslukRL5txuNYNjWsG1GJfUvxd muc4qOLHnPpza2GzW4MZljWO2ckWk8XltShpnPTQLhvHqvIbx2Qaa7HcLmTj LGUcardCFtnTapGQwjI2HhlHXMEP3/8E6jC416tWZMMESl773N6xpg4Kzbuu FW+fQPeVTWdPS9bhnn0bj93BCQgInl77Tr4Om79JKdWfnsBWKmOmQKkOVufq uh9emIBS5qNeqnodkn/cvb/j+gTszOI/yV6sg7p8acozjwk833fc88zVOvi2 3tA5+GoCkbyd1o536jDtIDJC/zCB3G5bjQ8P66BqqGF2JGoCLUn/yRY9rcPK 3M+sy/ETGPMIFWS8qkPPhkV3/FInwGO0f2rp+zqku5v9zcyewMEF88xzSXXQ 1Fi7nL9yAto6RR4ns+tgIu3ruaJhApc/bDytUEKeL+aeW9U2AX+Ffta69joc LxgZ2UibwPBtUzHqvzps3VtYdWBhAlyFuYyWJfUQFtyvfJSXgzUC69LKheux avRLlvJyDlRiOzXjttZj0efXMVrrOQgdNHhkp1OPYdErnhYKHKTJZahbGtVj 6GfXrLUSB1WPVq3Wt6jHQLPu3ZsnOfgp2vJV4V49yn0PWd4/x4HA1X0PtrvW o+j6165HJhxsznittv55ParUNp/xsOBA94zewHxoPSK5BJT9bnNg9TE5YTKG xH1uWQGOHDwcF3SiptTjc+5PuZDHHAQctVVtza3H17c3YsI8OYh9Xi9UUVYP v1UKVcQzDrl/yPZlNdTjh3/g8ORzDlq3+sbFddbDbPl3/s2+HHCXaKr4jdVj B+9XHU9/DkSF4gVdf9XjhQf/7YwADuTMlvbYcTVgcv6qPzOQA5O/lXf1VzUg 8/fmFvV3HKTvO/l5vWID1IdDjJdHclDjFn1nuVoDvl755awUzcFgw2KlhdMN WEQ99+F2DAfLbUraqZcb0NIt2N8Uz4F1FPjiXzTgUp3n5eBvHDyaCm/9ENSA enWqZ2UGB28wH+H3sQF7yxHzJ4uDop78w3e+NWCq4C/bJJ+D9u3ivJcLGnD2 iDG/byEHY/cfNutXNiAjM2NnQREHYquO2BzqacDTZDvbjeUc7LF8p7CDQerv bHilV8mBWsqfxeKcBpyJ3ZnqXs3BhXkjyvKZBsRJPW9Oq+XAXjsrdGFRI1Z9 Yv6g1XPg/X7N9SmBRhyI5vi21nHwkX3vAG1NIxaWjAtVV3GQebCNu02yEUU2 I4EFZRzUeco3VOxoxMdGlmgaGc+RFbWLXh9oBD3l5FtdMv7YdxYKpsqNkA2I Wj1K5vck6WUEx6ARhfqXRKSSSflOtr2oeyOYXe3LgsNI+Z1ha290NEKaXj7v /IC8r5n7teWpjbAr3/J4DXk/PJVr3ObHGlEW4z6bdoeDlPhZBw1uCtSvH/sz eo0DFkftVRIvBT6aHxy9rTiQOBAQt1KAAsbOmWkpcw5eEDL9fWsouDmRPnXR iIMSHoc/KuIUfGsUsft7loM/GoRI7CYKFqXaTQTrcrD7Ff+u5dso0AtouLlf k+xnq8Epe1kKSsSYMnKqHISJfbLo2EuBkgEhM65I3j+zsYeKChQk+ofIJB4g v69hjxReFRIv0ZLZsY0DZ7mGGptTFEiekJIZ3kjGf1eMQdGmIMTl37ZYUTLe +WSxD0YUvPyZvE2an4MZkT6P3bcoeEBbtW3z+ARSFBUMjEMo0CT6t677NoGN /qMzcRMUTPnvOW10fAKFFq5xaT8oOCT8sotzZAJm+1eez/tDgcnr0cve8hMI bT+SXbeoCTWvY5xytk1AdIOPI2dNE8IDxCPXC04ga2KD9J/1TSgXeSCbvmQC hkWpbVybmjAb0JGpzT2BoMtd8iI7m3DjTUDt4+lxiMTL/JBHEw4G8v0c6B5H 6sP8yGOqTXBYZe3q1DoOPR29s2oaTYgILF0q3DCOV5P3U43ONWEh0EVCpXgc ciXLLMyNSf3VvbHduePkHP0odP0iaT/o8P676eMQUKi8/eBqE/qDpk9FfxlH Ap/pxic3myC45myz4qdxaHZPNLy404RDwckX2t6PYzjBwyXQsQlKHfFLawPG 4f14jVzYwyZkXChUTvQex7bT8X2f3Uh5atN9P5dxVEgq+SU9JfO9ykiydRjH f2VXxohXTSizF9iw13wc0UEzH6oCm6D6Z6O+iOE4VK/6aTW9a0Lp4/0vfmiN w4M/I54aRWJvk5kMhXHM6/Fc/y+7CbXhsW1HVozjT18kQ3OwCYM1qi9VC8fw Nvlg0DkGmZ+ecflWcj4fdK9RvTDShJE2mzne+DHck/oedWu6CT8HA25UB41h 1a+n5xxnmuBsHfMp/sUY0ivFFrvON2FyNKfzxf/n/43jlv58zfj1a1BN99YY Xiu2Cb9b3gyPR9OPd18ewx7B68WfRJrBu4gvQ+j8GBoH5uzi1zbD5dn6sSnd Mdim+kt+E2/G90+tLo+Oj2H5EylK3qZm/Kl4evfu3jEk6me7lkk349/owWs3 No1h9PdAf9ueZowceHfGmHsMmVdflWgebEbK8bmQX5xRuHUoxRBHm/FY59Jg YP8o1mSF3YpTa4bIla23m/JGoeJoOvfoQjO0A1N9NR1H8X66XUzKuxnB36sr FUdHoD5Vr28/0Iy/zcu0nmYMY6XF40MsejPYt74UloYPo58iK35hpBndfCf2 LfIehkPKC9rJn80oUXog5moyjI+3NezFlrXALZ7Nclog38fjZa+KDraA36Pc 86YGG9EjeTWCL1sw77rQH/6PCdu3p7fceNOC0E87XR+MMqGgSntYHtIC2VKj jYZdTNSE8e96FNWCm7wpl5ZnMDGld/7VcHYLhn3NBx/eZCL33xhLtbAFd5N8 3YxMmPCMd1OOKG2BJCVbcr86E6I8sVOGDS04uVLYYmQLE0pZv86V0VpQ8a54 yLiHAT4rn8SNwy0wyht3l69moFlI4r+HEy341Su2WSiLgSs3TmbunWnBAUl7 y8oABuTWdgn6zbeg9nj4oig3Bv6U3rzKXtyK65drIl1sGSix4yo6sbQVPE9/ qZhcYMB3Q6DoR8FWNIfw6eicZsCwZtudvytb8dJv13/PTzCw8X5etYFYK7Q9 zhaUKTCQRqE+EJBqRadN6C5FSQa6nuztcz7cigqlPYI7p+iI3FN+oE2pFW77 DSqsGXTc7DN+uUe1FYdlHrhEdtHBpeAGlm4rUoTLJsRK6JAeafikb9WKGLpR I98bOhz0blrvftWKIB9Xf6Y8HYIbvnDo9FYoXuEzUXhDg7Lhkz7acCvowrN9 hT402L+6VEudaIVr4biFmgcN7dyiXwb/tKJmbct1gzs0hDO9zXoF2qBbE+Z8 9zQNlI1XtHuE2/DT0f/fXzUaFp0/fqR7TRsitzxx91Ciwbp2ZnWnZBsYj649 f72LBrmUG/Ut8m24vXv/u+RlNJgPq+U1H27D0t6tGxQW0xCweUtck1IbEr1F PxX+paLMdCGYcqINhgeWbVX7TsWvwB7PRvU2/Br6F1s/TCXfx1n2DTpteP9y UtZgiAqTJYHm9WfboHyUltLbSYWvsp1unVEbOq+c4tdtpqLQWVux9kIbfI+q XMusp2IyTWZHjUUbtIWPVUhUU7F5jEe02roNPCwFqWdlVHiZFfyosCPlA3YN GuVRoXNCLqHEsw0+w6LGM7FUuDzif1f8vA3HiJWZFtFUpGQwvYpetoErSHBV zUcqVsl8tCwMaSPnKA/lfTAVvQJC63IT2+DwlnNK0ZMKQbWxJTmpbdh9a+Rz tCsVyq5VP7MyyfxUGIuXP6QiesqtKaOIlJ/oJvruUHGzfco7tbUNV05WKLhe oiJ8RYNjSlcbJNYXB7FMqKCox1sl97dheDLvx2lDKhZ5eJ1NopH1qcg8k32G Cvk8S+WvbFI/NDVZUocK62klucTxNmy3T1z+XJ2KkF3rxRO+t4F96ovN1Akq aqx/L43/TepviKw+DyrmPrb8jp0j9Z1k3hQco0KuK5nxhbsdfP9+LVc/ToW5 iG9LDG87KtzLvZtVyf55qiZHC7VjxwtLF5YW2Y/rGdYRUu0YCQu9LkzGO6L8 1XvZjnZ07c8IYl+k4pTo53jH3e0oq64vJizI+CsDJ7SPtMP757yY7XUqnKUc HGdOt0NWx6KmxomK9lmbECuDdgjTnH99ekTm13I5t9GkHX+cAjY7u5H9dT83 //lKO4qiSx9s8ybzHdjndfZhOyzntu70fEvGl7kjtsCtHToBSkamH8j+v9xc I+PVDkUZoyf7yP65XVk39uZFO8QLbycvjaKiT1FEcMGfzFffu2cwhoojq/j3 3Agm8xmOWJIdT9ZvlPts24d2NLvm7H+VRN7Xkpm7yp/Iehjf/+uSToX++6mg hJh2UKRWerwm71faneGsNYntqJpMWhrdSsUKjaEu99R2VOZrvs6kk/X/Tdlg nN+OfH2PiB4eGo4bpHzmaSax51Th1pPk9ygbW3m7ox1pen5qhwxomFscMdzd 24508e0NmldoyE57tSuV1Y7UdPO+20/J70/odsbFf+0kPzTO5pTTIF67qzxT pgMvVZMO6arR8Us5gX7NtYPknZ6BbBMG8qNHP9z37MDmPTxHbtgw4MEne87r eQeidu8KXP+IAUFKYnHUmw6Eyrmqu4QxIH0pKbz/Swd8ZbeknhhkYKxkwmA8 sQNLZLWX/Zwk+U569/K51A647Lx3JYab5OeJ5Idi+STeUSm2lORrw8epxvqU DlyVsfFouMKE+NDUisttHWBvC+x1dWSCqrqv8k53B6y2FRzc+4yJ2Fh7F7eB DlClmf7Ut+R8Efh24BW9AxekV4y+iWVC3u7HWNhwB7q3Hjp5MoeJvy37oxMn OrBz4m1IQzkTRQoOpnk/OhBeEvBbicKE14d0kZo/HZgP9jNM7mZCe2G6uvNf ByxtvDM2MpgQuXzAnbWok9zAnqzy5zARviOTw7O8E2/ZTs12PCxk5GTVYVMn Dhyx0t0nx8KDDX+e6Ep3IlTw0tfIQywoux86enFnJ3hp5wVWnmChTj0n7sGB TrS9OF3zw4gFekeuV4ZGJ671HVHLcGch/ujssTJd0l/qgc9bfVmw+3j0Z/O5 Thz02sMTHMzCnHX+5cmLnVi8W7rEMYFF7i8FyjvtO5HoJqx0qI2F7vPzvw/f 74SIgUBY7AALEQVKyeqPOuG8fcmc6AgL1ptcrY3cO9H9j9v0+TQLsk+JDdZe ndBsnsuZmWfhO3uh1eFFJ5JifoveWMpGtray7xN/0t7D7/e7V7LhkuJ2IiCo E3KZnAPnhdhQXVX8N+J9JwJed9+bXcYGvxN3WvLHTozdLM8IW8IGpef49cLo TpxWT/mJxWxciCrp6EnqxPKFp/c8/7LgsK8sfU1pJ3xu7r23fJiMT14y4nVV J4K3b9Y6S2fB+OCjFwINnchlimx6S+Zz9Ii85aIu0r75dJ1kOwuLVKJXTEx0 wtwgS0q+lIXpE1yz16Y74SoS+9epkAXGyQtM2kwnohpDKAU5LFRprCro4ulC v8aDR6dSWHh1xvNG+bouKCkdazUJY8Ht3KCBsmQXrs3uiv8YwoK9geLxvK1d cM+WcKO/YcHKKET24M4uhN9bYbj9FQuG56fXpu7pQuE+LllbHxbUTfUWyx7s Qg9nkvvbUxYOX0yciDnahQntdDMhJxZ2XOLr3nS8C/tlWnoP3GBB3MKqPFSt C/6Lv5uYXmBB8HJRylrtLoz3C3W56bLAdUU8NOBMF47k7jb6//+TtGut9t4X usC0u3VuSoq8L3aqkg72XUA/W+vZOBOh9hHLOPe7EJizpCZxgAk/h7lf1x93 YSxQWr25iQk7p/T6S95deKFlpbohk9zH3KQeaoV3oT17QPGbCxMyHm7WFVGk v8D53E47JtZ59p45HteF97c3HJ63ZGL+WaCMQnoXFKVND2icYqLsFU/75pou BL1p3zWwgonM1+bFYY1dYNv+TOBZRH6vb/ITRdu6sE9z1Y4d0wy8DxINedPd hedb98eeZjLw4q3DE8HBLkTSwzPOUhh49I5i+5zRhc4mB1eubAZsP8ia8Ix2 QZzQ1Ej6yMDZj/Q9f392wendr96ltxlQ/aQsfm+2C6FedTFZhgwciApdMsnV je67kXZXlBgQ/aLfz1jWDSVdXZ7i5QwMJJW9aNrUDa7FMTudEumgjPOM7dvW jZXQPfs2kI4i2ZPagbLd2PDwl1PmIzoi4ssFjBRI/R9qFdPadFjGVPj1anfD gcYyvzNOw1kG78Sxs91w3uj/zL+NhhNSp3Q/GnXDw/RQUnIBDVKRlYKWlt2I afGeHfejgRlW9Yp1vxutpduDb8iR+1Yv36T6427QFpryn6+hoXK9hl68RzcM uYIWxP5RkW3yPGWZdzeE3AI0NgxQyfd+tdAtv25kL7x6I1lMJd9xNa+/R3bD af5p3i4NKsZ96978q+/G8OydZernh9BfKzBt1tKN1w9vG2gdHUIDv45+UWc3 NGZvftTdMIQk7/pVT2jdiPh7db/B0CDsPBuC+Ga6YT5z0dTy+iDMSwV/XZ/v xnJn089XtAZxZtFpw9rFPUj/Y8y5tmsQ+9wa17wU7MHhyS+8A9QBbCZW3Oes 7IEPJ/I9I2YAK+dPd+iJ9aBhIkxu7MYAph9S3q6U6sHb8TeGM9/7Qc8V+uOw vQdmy5dLPM7vR9uMnnG7XA8WF7dfCnzRj8z7TaLvDvdAROYGrWR7P5zuNr+T ON0Dg1/+Ixut+zB7o/XD9gc96Avo/9PV3wP9gxdfy7n2wDxS7tzh1B4kcjO9 9nv24Geqy9eQJ6SfkN93jr3sAZUiYWkk04Pi8nXqZyJ7wBa8VNt6pxvPJC2m nWp6kOYzENZI8sTK9nHtqnW9UBP5T7jOpx03Pzmq1G/sxR0PvlOnL5N7y80F hWapXjh/X/a4+Wg7HBcLb+mV60Vss8hw51gbuvbIz3BUesFDdouh24Z9c/kT 06d6sWSx1O9r28i9svIkfUabtH93266xBXJPNzNqXGzUC9tzcu++p7Ti44sH n9fa9CJhpeKdBZFW/DFc/EHcrhe0J/jiMdoCvc2+/pvu9cLfMGxHRXULFuWE Pdzp2ovPH+W38/i24Aqz6Aze9KJz72VpN6EW7Dy+ZN46rxf2hkWSTmLkuzI+ YVtnUS9U3Kwd//1ugvwqvTMaFb2YjhOo82hvgiIrJHpnUy8c/hnf93vTBF2/ HVqTzF5oRk/VRy5vQvOvBgeLsV7wNbzdIjNGgZH53fDmqV5U/D7m/LWGAvP9 +VPpc72Q1fKRyn5GAT3UfL30oj7w3dvz4Jg1Bdd5/zv5dkkfQsPbG0tUKZi4 HWfLt7wPjlWPtqpvocC+SyfEWaQP4t83P6znppB78vfikbV9mCw7xE4qbcTD xOBR0w196DyS3mn2vhFca46urt/ch+mU3dWCdxrh6TqgpCRDYumEnMJTjQje eoexSKkPexZCHrpENiDnTuA+3+t9uJbssPDPqB5KPYcu/LPtg/7WSc5XuXqU qPY9tXXog8MHm8GL/9WT7yLpLj3XPsQ+sywuSKtDb0GW6+ogEl/Se/J4eR24 +Hvqwov6EF1+yHF7cQ1ORW66mrq2H52WshuHFlVBPkRQukK8H95u/nOMrkpI vpyld2/qR2/YdNdISiX+OrdZ8sj2I7EzP3DarBJfzzw3M1Luh76uDj9fXgXe n3LccPNkP7JtUlkCARXwOna5102zH1LPV5cLX6+A+fZjJvH6/agr7XNdv7YC Oht3iBHnyfOh4xclJ8pxZPXazhazfoTMfz6ytbwc0st43rIvk9/V/q4vPRHl WMk9ZfDvWj+sGCVVF73KwfW7b5WIbT883yYOD9iUY2yspkX6LqmvEcxveaYc FZ3RZ/Qek+dfr2tbi5fDOcVYJ+p1P3zvCVFs08owcKlIVSO3H9H/mXW49pei zuDrYjOiH4FZp/5wl5UiW+t9iX1ZP1qv7xXzjCtFgIKDcmhDP4rqeUy9HUpx coWMIofaj9ighH5//lLs+2/17GI2md+poAWRyRJIzHLnio6T9Z1xkQxqK8Gy qQmnXSSvZCdcO742rwR/mD0KKr/78efiWct3ESVg9Fb9MpzrR9UKxSfrvUrQ 3JyRYcM9gMHirdFhNiUorIp0cOMdQOvdFeUbz5QgofDV/qBlA6jL2m4xv7EE IemPvscJDcBqs4iZLasYnvHXUwtXD4Di+9ekP6kYZsEndrM3DiDFola/8Fgx hG1/7zgqPwD1ZbfUXUyLcH/Dpc1DFwZQVGB+aW5XASz19hj2WgzAf9mi5auJ fOg+4fbpsB6A5Pmo3F16+ZAejpqqtyPxT8bqS/Z5aE1nF+V6kv5kbeqKM3NQ xMqZznhO+nsg8KD7VA4S1r2QSX05gIiqr9t+dGbDw22X/5eQAchYTXpIzWbB 9tt8aWQYidNe7znmm4XzzMbfYZGkfa79/QYbsqAq9mnnuy8DENVtfWGblIk9 2vaXAhMHwP5w7/AzZELc9cSbV6mk/fDLJw8GZWBJ2qpKn8wB8GmciwgbSkf/ 2iw596IBTIbuM7z54Bt8abP/brUO4I/qVPHSxBSwHzwNPTVH1nt7377nEjEY Mdx57RPXIFIe57ONsqJhPrly0cbFgxhs+hAurRcFrS2MA+v4BkFxNuEvc4/A 5ufPwoREyLn0Jrn0X3UQKPp1N/9tHQRX9JXans0nCbWJdN6HMiSWoAfW5tkQ +c/CIv7sGIRb9/Kl71ruE19ybVt/7B5E0Qt1y9s7nhIuksKKI4cHEUFnvOxu e0PIjhks69AZhFCA/Fb/nVFEtr424aNH+h+f/1t6M5o4UaByV+ncICTVqym/ v34mTF7u7vlsTMrPX3x0aU8s8XzP0gSHy4PYY/OsRe7AV2LVuwUzGetBXCs/ E2fpmEREcP8S6b02CFFJcdfgrGQiu5n64ITtIIxtjFcviKcSqke75H7bkf5C jnG9K0glGqMaqfF3B6FYsXl0n1kawXTI1xRxHsShTeNF1h+/EfZ9afPlD0n/ p5sTuJTTiX8n49KcXQYh5ffyVGtKOuGd9NF6l/sg1C2eL323LoNYtTZ43dAT Mp4DnrUXPTOIEzm3R5Jfkudet1vsdmYREf82++hED0JVRo0W7JxLyFqLKXF/ GUTZnPJnU1oukdWw4nt63CD+UI5eldTJIxo+zp0XTx6Eg/Pe0TjJfOLf8fbt ozmkfo34j/zKAsI7vq4vPH8Q0eFrM9z3FhKrVpa+PksMgueuyH21D4WELD15 JqeMjGc932yjLUFka8d8vVU5iDrOooLAToI4kRFqsalmEIVDLoTspiKiYcOb 1W11g5jXeiS5wrCIMPF6Xu3dOIhA5b0MEe8igjnh+lixmbR3WsfwdGoRccfI ce9k6yDkzK5XvuguIrxlLr8z6h6E4KNPcTy7ionMGsXr0oxBeGUJ2/5qKiZW rpjkK/s7CG+577+61pcSzQU+zzT+kViSZ5+BSikRcHMrb+PCIKxF1tyiXCsl RGpMFnfzDEHx12FaRQaJn5b/4wgOgV3g3vjtdBnRvN/80T3hIRQlv+Hf7VhG BFD//v27cgitnz6fjA8tI4SV9/z5T2wIZk+r8yKGywjKRI3ji/VDULnf82u9 UDnhH3blp5AEia+P7317sJwQmn3/ff2WIZjMZ141cS0nKHEH7nzaOoRoueff CsJJeWMKR1pmCGqXTBckC8uJFZn/je/dNQTNooVg1lw5IXjHjnVKYQiGHuoV Dg8qCAHWyd67WkOw4u2WenWvkqgLGjSZ0RkCj0Ki3ffASsJX9WGXi94Q9K66 5BukVxLLIlPanxsMQb9qs774j0qC/+L6po+XhmDnY/Mkzq6KqFmWeXqr5RDG co81CvhXET65eg3xVkPwGF2x3i65ilgq6lWbcX0ITtrpaQcnqoiqCknNozeH 8OeR1/y75dWE9728qiLbIVh/Ndb8J1tNqEsZnlK7M4S5vh3B5trVBF/LZHnt 3SH4CP4bKrWpJqrcX6iecRzCzf8yU9ihpP4e6dJ2pyG0MxdJHGypJpa8NC0a ejyEPXGhfyioIXg1KnJ/PyOxHOUrr1gtwUN8SN4SOoTNhxRE7WvriG5FVfWB 8CF4FjyK0+atJ5JzxwbffxqC0ImSI9uO1xMmmcdERL4MoVtH52JvZj2R+nXA gSuN3KMvX45Ui2wgvHZ6L89PH8Kq4dj9m/oaiAtxe2LuZ5Hx2U6Uza5tJPg+ u3dM5JPxOzuzUvwaif7NO+ziCVJ+odDpRVUj8S2imc+6ZAgnVBb9942bQnhL PPy0qXwIvTyfdSQ3Ugiz0C1H+iqHsKmSqzNKiULIr6trDqkZQlncg+GoyxRi aYiDjX79EM75Tv+N8qYQ6W/KQ2ubyfqfYW+IbqYQy15cXcjpGwJ/b+PlaOsm Its5oSz4xxA6J8M50S+biZe/z108+4vMv0WU+/O3ZuLyvbmfy2eGIJEZIPK5 s5m8Pzrbns4P4eJDrwOfN7cQV65xnt9dSkXzf7YPP2e2ECJG+0/rbaTCINd0 8D2jlbCRz+taqkWFJffF9Wa3OogiSltitg4VbeNr1m0I6iBW35p0vapHhXQ3 RbQ3v4MgPm+VLjegoiRNdY2JQCexcq2/vZs5eW4lK2yY0EnkzVgt+32Pivvv 5735hbsJoWDX/s9OVBzbohO7S7WbuLLvfar+QyokEz9U6t3vJlbYNBqluVFR XHCI921fN3G593D0rRdUyA3ZP9kS30MsIwSP0SOoWNjGeqx4oo8wN90u9CaK ipGUA2GXHPuIjN8naMdjqCg87JnvEddHXNrj/PxjAhXXtTbNVq3oJ759orWZ ZFIxaGvqZNDbT5h6Zts21VKxMmpLjK/OIJGgYRlR+IvMd5Ql7LGNSsjLblLC DBVSHm0Ht5ygEoWCgz3ELBWPRUtNy8yoBKXl4tpiLhokT4Z/5g2mEtMXz78s 5SffmeH6h1/w0Agle71HVRI0NMvadO8gaESl/op1GptoMC22z+FupRF6Cg1Z 1Vto6Dd4ENLJphGWc1o/amRoGHd5buglQieeeZ26Ub+PBvGmL81DV+gE5b2S cbMaDbfu0WtCBBjE+cf/fp7VoGER/1jc7U0Mgnop/02LFg2+4T+81Q4yiGmp I42tejSEVC46NX2JQTxeMnPT4BwZ7wV+6VoHBsE7ksXfbkDDt0nh/yKfMwix 5ANqHSY0lIptKj39jUFEvp6mGV2kQTtJJlK6ikHIOnxz77xEw6TKHvd/vQwi w9B+43lLGuw6FMxbpxiE0uG9BV1WNNALblyM42USlesnTUyu0rDSvGDslQiT 0JtP+tN9nQbNRUKPHCWYhGWprHyvLQ3pahnvTxxkEqOfR5su3KGhk71kxw4V JuHgHX+77y4Na1+Y5AjpMolnOjIJ/U40ODYudPRdYRKJHVs2D3mQ9ow1VzsF MYmfo+uEmME0MK4PvEqcZhKBYazK0Hc0uDW6XA/kZhH7T6e7ngulQeCAxIlH giziTpoOp+gTDQe5Lv7SkmER405uDR8SaXAK7r4wasoifHfoeJ1NpkFkzvlg yzUWsbNXTGlpGg3RFmJCefdYRI0f8yeRTsOOyuzhSA8WcR3fvjpm0VAha1zq 84pF8E25XtmVS8OhoN1O/71jEV8itTfQ82l46Xh837lIFsH4j+l7poQG3cNX YibSWYRnVpoqXzkNH9fdN1csZBFbrrvOFVbSwDfnvc6nkkVY1InelK2nobww 8eXWbhbRF6CltaSThp2q044XFlhE28bUpQXjNGw8/eRUjQabcGh6XHx3kuzP niBu0XNsYuUTTecdP2ioFP6Sd+UCmzjDpLHf/iHvS2vNbu7bbKI+cU2V/WI6 Js+LiB4KZBPlhx95yYjRkW1uIdjbyyasRtWVBtaT51aKI20MNrE4bPWvIAk6 jl5fW9E4wSaOcyVfWSxFR/yd+selXMNEQcWQar8cHZ4eh8fjpYaJjHOnFgeq 0qESLVznfHOY8NbKfip+io7AOzOUbodh4sKJ7XyfNehYUBpqO/p4mFi0f9ny TF06PnalDPzzGybadjx6pXSGjvmYELpZ8DARu3lcuPIcHcYObsNE+DChK9K4 ptOYDt4Vej/ck4eJTfzK78xN6TDpVfhDzRomprlT1w9fJPOhaCRGlwwTVTOb wu+Y09FGud5v1jxMfJgKkPxrScd3ynMhMeowYTu8OMrjCh1CTXEqLVPDhMqQ w9Zl1+iQb6p28OMeIdgUwx3it+i40bS0i3vTCJFXVZkYfZsOr6bty/L3jBAv iw7t3mVPR0yTxjFH5RFCPmWdvNJ9Onqann8auTRCuL/qP2buTsbfvPRGS/gI sU7X+kx0EB1HWpbORouPEuMnO1pkQ+gwaNm+65LsKFF0TN0w4z0dNi0al8QU RwnrXTtMKz7S8bXleamf6SjxTWDCih1Hh0zrUl/H96OEdu09J9lCOtonanYf 2zRGuKo//ZjOpCN5urFi/8Fxotns2oU9w3SoWsSM7Dw1Tkjd0xJLHKWjrP6R oJTxOFHzSfhN1CQd7JjthqsejBOrZsO8Av7Sser8E8Z0wTgR+zXzlp0gAwbf px369k0Qf0vf7RgTYqCC87yJiglCp/sR6+pKBg6OS8ixtSeI77wnLC6JMiDJ Vmd9t54gFM0b9XU3M9DbF3qe78MEQRFhH5U9yIBFtarS/sUcYvP22j9fDjHQ V9H1/pAQh7iHpIwtRxk4VGb7+9gGDrHupsPu9coMyBAhKeoKHOKmh9FYsAoD ofm7luuqcggi5EicyEkGeHJLrp87wyGsyrm28Gsy8CN9bLOZDYfI7KENPNVm 4Eaau+tlJw6x9HtFKPdpBkqS1/Ree8ohLvDFn398hvT3NeGQbQCHSJLwWzNz joHoeOWgux85BNcBuxYHQzK/1c2WD5M5xDmtc/6TxgyMyty1kynlEH/ui/Gz LzKgqZfxwmOEQ2i+nKu4bM7AxGXDd7vnOURY9MCTAUsGWvMenpvgmyRUmj7/ a7/KgF+juMUH8UmSf/ZNld9hYPiX2aOfJyaJTX2anVFPGUg7SUuLC5gkfEqO Jht4M1Cs1uBnGDZJfP8i67XkBQOUUznXFsdOEiX2gvI2/mQ8Gq8kLhZMElZ8 za/2fWBAWveojxB7kqgbL7GmhzGw57T0lYLvk8SBlm/HgiMY0NATVr7xb5II z45epR7FwIUzc+vW8k0RvOFBozOfGTA/y/pZKjJF2D7xKkmIZYC/fXxPs/gU 0XHt/ruLCQxU5V3KiZeaImL3nz9VnMKAwrMTNabyU4SQmKbE3W8MfL+ZcVZe cYpwnj/yUyqTgfiz23oEVKcIzWrxKO88BtZJLBsrODdFjJoNzp+uYIAro3m5 5N0pQs7namZ/DwN1VIsz9NQpIvi2sZ9/PwMeVS1d+TlTxIK+hpXKEANHkk5a BhVPEZSNO0VimAxkO2+/q9Y0RRz6T3zYaJiBm5c+zEp0TRERIwJFS8cY2HRy uefvwSniTsbErVtTDAQKTQXGTk4R3e8HVDdOM6D3y3KD+58pQsWNsr7pFwMC va2fz3N9J+KvFH/3mGGgtFhNbh/fd0JEK61afo6BsKQTuVPLvhMP9kRFMOcZ eFAz1lFBYtrqwPsh3EycYwb9/EDi9MF7W+d4mRCUYO9RI7F4hfXc16VMMA+/ 1l1P4qcJRi2XBJgoMzhyc5L/O2HoeNi9VJgJDz/fL+9J/HvZv14fcSbG5/ZI cJZ+J44oeAaK7WOiucd5WQgZT7ul2MEweSZKzj/hsyPx3ZdJHZIKTGR3+P6n TuJERuc6GUUmIlo+Lvxe8p1QF7bNT1Bi4v2ZuLlGEjMUF5vtPs6EV2PazBcS SwTu+nRQjYm7teU/jEicS5So5KozYa7ROLmbxEajRvRjWkycrewcX0Li6TXj T4t1mPBv9Rky5/1O+Kt4bDupx8Su/I2m2gtThKzt2uqqs0zURKW3KpD1rX6X eEPbgAmrFxq6W6amiEVT7V/PmTARbnL3+F/qFBEufvN0xwUmDqnw5TF6poij 6txTJpeYaN0eJt/UOkU4fNwpb2nFxNqZim2xFVMEU8ct186WCe+36wQN46eI 2vjtlX4eTFxrLe5OvTNFXGsvvCb8lIn/8g31w25METyL9PmDnjHxMWq03vvy FKF03kUn1JeJbvvVxZcMpoiUJS0t8cFM6Ahf/7L88BQRaPVosDKeCaMCofvs mUnigkTjDHcLE0v0By58uD1JCIrZZ+S1MfFz8paPovUkUbxy9Z17nUxQ/eay +i5MEtJLTdnsPiYqKsVWSmpOEpwfzPZGNhnvUf3qaKlJwqN6/lvYPHk/Mjwa JMo5hHzZp9tG3CzYz0rdDsjkEKxC1Z3CPCyUHK9cwRvLIbTTfSI9l7LwpmHZ mXEfDrH645rXNqtYkGIHtuTpcYhYBznbwztYOLH+S6dx7wRhcrtp+w9ZFr5a aDjX1U8Qy284MBJ3s8AVOyqmTEwQ9pdyL0geYKFbfo/ptsgJQsrkomi3Agu7 HzbPvn8zQbTrc7W+OcJCYrFDqODTCeKopprWEmUWzP9XcZXHU/U+YUpRWbIk 0YIiRGjXNpabJBWSJUJSSSSV8pUtpT1bokgLQiVJJRKDhIqyFSFF995z7nbu vfai/M7vz/m8c2bmeeZ53zmzvfT70EEKKQZnapUlARXJ7pGH3Ci8B1erwzYR sLrr7/zvthQ6rjWOXGFDQIC/1xN72pZa2WJG2RIw28u5tHIrhcXGIUO522h8 O7e9M9lG4SEDtWd77QnwtWE039tO4acFnnpfdhHwyXQZJ9qBwmh1SWacK82P rv6QyJHC5bOy79q4E6CloSm514nCm9O5qm+8CTghJT/HwoVCn6GQKVmHCZjb zrGR3EPh0IdrfUfPEBARfj/vjB+F3TO++I2fJeCkxBunb4corLabK7xwno5/ 7quE6WEKEz49GrtzhQDHqzPcfgZSeFKh/4xBHAEWM3WnrAmicI+9mUxxAgGr ks2fxR+lkJEYHWdxnYCVau57iGAKDVrqVBpv0Plvh0yD4xTOVFZId71JgKxm wsuUExSO7HTWYqYRkMd9vVzyHIU9yRm5QRkEPGSat2IyhTVfmEZjdwko6qk9 FvmAwkeqhi/OZxLwosNOaUMxhYkux9cqPaD5a2l5NlZLoec3yc36jwhoru0R hZJ0PepbGl/kE9BT6Zuw+jeFS9wTdpo/JeDXa67x8DR6fnXP93Z5QYCoYPjI 8SVCTPq57r/YCgI0UuUFgUeEWEuEPO5toft9cCPHZ1CI+XrlpoFfCCgw8alJ mCTC64ekSkbbCXhjpKMimi5Cb15SjcJ3AkoWP35eoCFCa8NO2/QfdH2LjkyW p/VuFKjVrNtHQL2W6c5AQxH+oZ5+30AQ0KTxqn/JBhH+NB7Z955DwDe1MMsr m0RYd3Qj14lP6/nL/CWS20RY8Cz26E+KgNdmrlvn7BRhcn/D8GExAYZ3Eg+b uonQeJijkDZGAGl8ip8YLELV1aYpOv8IcE0ulH10SoTjp0LnPpMgAUc5htUR Ivzwe6p+/RQScqo8Avsv0fPz70LLYQUS/HZaUo6ZIrwp5XnCcREJPSflRMqt Ivy3b/bKZl0SAs4rn5b7Rvu/bRraoU/CyI05U6V/iNAkxurUtqUkyL7UmfuH K8KU3vHVDSYkXK9ZkjsgovObF4/aLidhTpvpMsGwCOsn9MJs1pCwZmCDzc9J 9Pzz6ltbt5aE+kmM1m/0PE6uSB/btIEEKyVbz1Z5Mf6Zt+tNDZBgeNxWNYee z94R8hFWliT8Gn1Jhs0SY2133YZqBgkPIrXKdqjR7+/6M//MN5OwV+ratUUa Yhz5MxC10Y6ETwq+yz5pitFj9xPz8u0kXLnxWSproRirSw9IrncgwUZjXfsp XTHGhX6LMXOm+dJVCtcyFKPucEXsCm8SijZUvjuxWozO4ktXDE6QcPXwXDeN 7WJ8Y29l9/AkCdbiC0tE9mLULhyX1fuPhPGTA39r6HlPHQmK04kkISTmQ+YR NzE6fdLbkR1NgonMqhArDzG+NupTWHiWBN61+5vVvMQYy3dK1LxIgtetUH6V rxi5W+Ud714mQWMBsyLloBjtH9cpzb9GwrfsHYmH6fe9ePqZ1tvxJKQYlO0z DxTjXP+1yRpJJGTOqbq/kLZj3g84pSWTcEaHUeRA+5N6T2bNSSXB17SuOoqO 94JYkKp6m4T5Wxp/de0Vo/rmby437pAw4WQ/OI2uJzonSU3lPgm93q1Sa+h6 7fZPSVPMISEr9JtOsrMYmX3c27KFJCzIYx202ypG5Z6XmZNqSFCW/sd7Q/8f xclGRLyqpfl62vj1iakYp69juAa8J2GSa0bVnaX0PLzZIvf1EwmsvPWp0Xpi jKy9RV5upvE7yMYE69D9H/R+C20kvP/dFeCjLcZ+B2How28kvLY9bcmg/8+O RBfv9OwmYemArdHKOTRfBRFLlX+QkJ6urqarKsYD3xnT6ntJmM3gTpqtLMbe GbLMcCYJTn4ci3E5Wg9rWytMCRIEz82HxqXE2OGXdovNISFhIjXv75gIm97p 7bAX0npIsVaY4IjQblCoP6WfBJ++jOqJn7SetV9JvR4kYdBoKESiQ4QYten1 wj8kGL/L6paspe+vmY/OiBQHbg5IPJKi79fVJ+ljGeoc+M++jDF9twhlun2+ Os7jgMptpdHpDiI8N93gmbQmB54Qhx7PsBHh6YMlB4J1OMCMVFOSWyXC4RtR Frp6HIj8EPROzkiEx2qs53YZcEBNtS70/++Nv9aXZoYJB+yfhPxQUBIhe8ft /N/LOMAfbUiaOU2EPpH7LhSs5MB5xiJrRQkR9uQb+Oxbw4FdS0iVLI4Q3brE 69XWceDPvYH5Dc1CtLkhn8fbxIFTp7Q2Hz0mxCkRZ5zMgjmwrbmDkBgS4Asx /zce54CZ6dBIZY8AfQ+43rU+yQGdREWZM/UCrNlhzN15mgM/7W31JG8L8Jz2 96gjsRzwaSrzk7QSoFT9msdZtzhgGSNY1pzKx0nKIkn5ag5sUk73PsTgYdEF 99zkGg4480N+LTPmoc94rZ1GHQe83tkfGJ/Dw2pWRqpeAwfiT00NiBdyMaZk q5HVVw40dQWfepnGRUnPXNdQLgcO7Lj2xWkGFyUeej7tU+KC3Re91qP0Pl/L bz9ydxYXviVe27aH3vevmjgs9VDjwq3t/XVbukmcXWL15Ms8LpTVlb3RLiFx aZ3e43o9Lix7vT2nLYhED1Z/TsFGLvj4jf8JGCTo/S7gwGELLmh7S2/rZxFI BrB09BhceOWidPdUO4HHB9uz72/hgvxmPauY1wRenlyemezEhRc6TldSowks 1bpwJ8yfC+N9jzWqZQmM3C/huTqQCw87iwM3/2Mj4+F/8waDuODcUoUNQjY2 mQTcDgzhQmZV+772FjamnGC5G4TS+Er7XnrUsNGjxFODCOPCaKFAuu8lG7XH 2zuzIrhwN2/U7WAuG0lwSPOO5oLlvcn5/JtsLDj7wW3eWS7Ihl/L/ZjExhN1 VnM6Y7ng3V4/0Z3AxrUzyjtSLnLhwTIpVyqOjRPbV93ceYULE9egcOIqG2uS nrrMjOOCLSdMRvEKGy9/1ZvdmMCFx4xib+1LbFT11EixTuGCzZih4qZYNnbf T941+RYXMpz9DjmfZWMmS25WZToXyGdZVQfPsOn5KZFsdp8LV/zUj12OoPGH sxIN87nQ+0W69XMIG6dXejpwCriwyNRqSe9xmo/JHTNznnEh/Grk2f5gNrpf +RC/4BUXNK2Gls86wsZjaU+vKVVz4XhhX/LuA2x8NZ52obqGCwz3WeITvmwc 9zx/5lgdF5Sm2myL92GjZVXwae0PXGgvDHv40JuNFxbuCWlp4EKB+5MpNZ5s bIi1CYr5TOtl6s+9PR5sVCKXH1rWwgWPZ0oVo7vZ6GK7YF9fG20PdM5jurPx dv70PUntXEjRaoscpuP3yg87W3Zy4e2Oxh8y/mzUDe617+/mAhVRa65B11+4 soTh2MeFkM6SSeZRbHxXsd9QScAF6+sZ5y+l0/i1HHSrhVw4WZVCpGey0f7s es1j/VwoFsbbFDxkY+dmZZWWES7o2MVMb33FRqqpcixxEg+mTjkYN7eNjWq/ ND4qqvGg/qRJylNab3s2Sb+rUufBQLb+SJUygZm5/RXB83iwtlXbtU2dQMOA 90XN2jx4bDxL/bcegRZDJ9MSjXiQudykMWkzgf7SLYcUrXjwQOmB7+kLBD49 VL6vahMP4gqunwqNJ3DwY96eYBseBNjGXA5JJTAqIcqheRsPFsd4FQblEpg8 x8gs0ZUHeeI54/vqCPx2Wm25hTsPrlyTUdj7mcD5PZONxHt44K8/ouVJ36e8 zE5Nh3080N/bttmVILB8yUUZxSM8yGqKu24nTeKqttmNSUd5YFJz27ZSnsTC 8NxEleM8KH71SHKFKon6OqudU0J4YPa4pCR3HomZjbXqaqE8qLxTG6ShQ+Lc k84/boXxoEN1aJuJAYk35rOzNCJ4sLr10NmZhiTK14X4ZUTxID6+p0RkROLF oClGC2J4MLF1J9VkTKKk2g3xvXM88JWpX/jMlMSwykXF2hd40FKz3i1xOYmB igzQvUrj3aBb47CaRMfnMQ5GKTywNv59q2UjiR/dlVSf3qTx8AI/F5mTyJDK 7DRJ54FSXp/UdUsSV++q2rfiHg+4mg1BO63pekcmQtY94sExpbub2raRmHI3 fm15Pg/aPimffrGDRAWbBRMbn/LA/MrFwmQHEifd2njR8gUP5kod09i1i0Ri bUTalgoeVA0xxF88SPT+Jev1sZIHykWlusWeJHZeub1w21se/HdkqUeKN4k7 VxiSn97xgG+QlXjSh8SG7rJ8+3oeOBOz65x9SbSO3Rrc8oHmO+vq+KoDJKJR 10qnRpq/C4l+z2h7zVf/P18+80C1PHPNmv0kFkX+qXBp4YHUwHMZ3EfiksWX z35r48GY3ruOTXT87M9zbNzbecD0/JrXQOdP1TRr9uzmQe6HUZvOPSSGV5/6 tZ/Ng5DMDZeGXEgc8pfOI0geOHZsdwt3JvGIcmrAIR4PNsh760+m8e71LR4K EPFAJyzm/UxHut6pQ9In/tD3waFumqEdiZUF5xqGxnnw6ELHtyJbEs1cVBJP TfAgqZzz0GwLiYZ5y9VPS/HBV1/WdjPNv6LtMcMYeT4oSjpc9qH7da9KYcZa RT70/2DEvaf7aWL2hCNW5kNFxZokkw00H4W29Q9V+ZCZYZiSuo7E7Xpkzt45 fDgbrpn2z4zE73djY+fM5cNOd5U7+9eQGDB7oW/zfD7or5XJbFhF4lhcpeUl LT54zHBnLKX1dHmqp5bFIj4oBdfK+dL6mxM5NjGqy4efX03bby0hMW/oZk+h Ph/y1mfc+7yYxDpma7qmMR+0ZU4sX6dJotTbLaoSa/mw7K6Wm5IiifQuPPhq PR/+SF3TtpEjUbvoXGsQ8OGd/ygvYhqJ5vcx4QeDD1tXfY7kSJIYEbVyBu7g g3tjeHZlP4HD67QkIvfzIWysXXikjcDY5xU9K/34YLfXqjS7iUCVJR7lAn8+ TKsriOlsIDA783f6g0A+vDVUt5v5nsDl6qlhe47y4XJS7CzrdwRWJ65wm3Wc D7anLAZLKwl0nNayujGED88Ph072KCPw6Kjs0PrTfMh2YmvdKyRwIuhR62AE HwQ280wtHxMYR2wuyo/mQ8AGJ3PmAwLzv8YEzT3PBxvdak+9dAI5L0Y5Ywl8 +DWSkV4YS2C3UVPrf2/4kL5RLr7ZmMDCO7CI6SkAlUs3EmYpsnEgbEB6714B XCYud6yVY+Mql1ze930CmGQdrek9jY2hy90/7z4ggKPZIX6xU9hYpqDwvN1P AOSkw4WPJNn4j1ed4nRYAO2S4x1LJlhoXn8yrDmQPt8a/IT1l4Vnsw08tx8V APsG+8zdcRbWRvdYfDwmAOYPd2e3MRbK7EnSsQkRgIxBs4HyHxZuNbOe9u6U AIjj1hMNoyxsEj9pqggXwKC0aZ75MAu7fCK8is4LQMNk6p/FYhbOB1Mr40sC UA07/alXyEJvDZZu/hUBrKoRZaZTLGS32lEPEgRg6Nq1VYHPQhFjbsStNAEw ogszhtksXK7V5K2aIQCHDzrHClksPPn3LOP6XQEEqqRb+zNZOPaSN+NatgC8 82KF33tZOHVxWVp0gQCONe22eNfNwi2TgyL/FgogSr1pVlQXC6/+0PYJey6A cN9N3DWdLPxU9nXTyEsBpBS8rujvYKHizcv6J0oEEDdqfD2/nYVOJzbKiV8L 4Krlg4MHvrIwxb5fFFgugI6qlalyrSz8ZpjTxkUBhN57HDf+noVzp+0uOVhN 44nSOs+rZKEXS+42s0YA3/ekRnS+YmFmVVXU3joBxKyXC3lfwMLFYfqb3Rto vn+P7su9zcJlvNEv278KIPtEk8W+UBaG1OWXfuyg8e+0NnMMYmFJlneGTZcA /pm+MbE4wMINHvW+lj8F4CzMXbDAiYU2jakDK7kCmOYf9bfTmIWXH25tL+IL oNJmaPC9LgsbYydeGwtp/8WH+SXzWOi48WCM/qAAkOnclTKDhXuerlKc908A Xl5LSx0JJhbvHpVvkqCAVXzufPh3JspPfS17djIFPvJdO3NamXjw2enpq6ZS ULbfVKvpPRMrPTbIcGQo2Fx+gfqNTFSTmZhyewYFNSo9ZQuLmRj8vHLyDnkK ZANWXNqWz8QPnjGSkxQpYK6e0j1wi4na0xkTL5QpiFOZl1ASzcSwl1P+HlSl QF+8ghFxkImt3nV/1OdQUNdoN2qxnYnnXtkOR8+nYPqFcO+PGkxk+zoI7PQp uPC7y6Sn+BdunKnMm1hCgd7XAWZmxi9MLWsji5ZS8KJoxq2D536hjZIrU20F BeOH10mKHX7hI/TsYm6kIKYnrXmyoA+PqAe8D3ei4Nxbt2P6C/uw9p1RnbEL BbPuBetS0/pwQbCwps+NgpzwS51Fol4Mnfus+oYHBS5u9+NOtfdiU92xShsv CkZXllqur+hFveMrKsb20vUpNQ9LPOjFM/OHywp8KSgyqz6kEtuLy0L+e6Xi T4GvyhT2U6teHPl8/kF+FM1P5Mz2eRt/YnTs/TPdj2j+8rYfG9jfjXKnpG33 PqHPz67wp/S6Mc0vUIn9lAIZb3UfDq8Ln281yxK+oEBJje3wI7gL2YrNNZOQ gpmw/ovP4U7cekdCRr+VgoZlv9UXeXag6iuvuJAxCi6qH8/JsWrDrLx3zn/+ UlBfYvD5n2QbmqQtWRAlIQRXl74R58pW3BIx8vTiFCGsSHbYIr2hFcOt4pvT FYSQL7bK9t7Vgn2fK1SqFwpBRmtz+p3UJgyqWvTdWlcIHecX72Z7NeF40eUH H/WEICuQnrNUrwlnpTiv+mIkhIvBiUangz+jjQflQq6m891PXlT6vBGfkPPS 5e1oWyJdaeWaD3gxI9a7Z7sQSoYlij6VvUdfR4FOgYMQogUHHPzgPZpL7+JF ONHxfjWIJN/W49w3bwq3uQhBr3NZQrp1PY4eXXRy3m4hhDbdNF75oQ5bda6u E3gIwdswtkjmvzos6ByQKPcSQp5ppWnL0jq8HO9ee9VHCH6rxgrTmbV4gPH2 isd+IRSuW2WyP60WLX8bOBj6CaHePPjpUvta/O3zp+tjoBB+2hJPqsreod+q W+Lp/wlB06v1EZFUgwyexKvO00Kw95U3eGZTgwvu+YU/ihSC2qEtD8P+vcWv 09ZI254Tws3jmCvn/xY3ff8691I8jefC4+zlFtWombSxzzVJCORV9sK/w1U4 bp2Tq3eD9k/UyqrNr8IXhSHL6tNo/m+n3ndTq8KE/d9HUjOEILrXornwUyUe Vt9UfvCeEGbmyN3jn61E7XMqNtI5NH5v6Q0TPYj/1oTLtecJock/Yl2SLeI3 wa+WnMdCMDkxYKZTXIEvMrfePFlAx5OesrJ7WwUmuDzfY/2M5uOx827RggoM kNVYqPqCjmefFyXVX442VTEkq5juz+DvbLWacpwwcDwe+0YI5uszhOZ+5dj5 o3TNLhRCQi+lsmttORYna/1bVE37x5qvPSRbjkf+iS7W1NH+jb/OJRa+we7m +DuTW2n+9hio942WYcn5kX2tX2h+J4XD8IcyTF7npZ/VQefPafSdnlGGWx8s fWHZQ8ejjj5dZlGGr0Mb35/h0HiiXjHOXnqNKUYr4x34tL1wmn+q+2sM7rvt pCWk+1e7O/6x0WvUswv4UTlI16fw71trcylKSbZlJ4zQ/DzfMUFkleLPl+v8 vf/Q+V3vLxoPKcU3/lnGJn+FcG+sf8tMm1JMXTBjaGKC/v4uI2iRein+D0lo QnE= "]]}, Annotation[#, "Charting`Private`Tag#2"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwUWHc8le8bpnwlSWhRkkpSSUtpyCVJdiorSkgaSpJEw0qSKAmpkJCsrOz1 2nsce6+zzUNpiPi9v7/O5/o8976f97rv52yyvH32yiIuLq4P/3Fx/f9X8wq7 qWjYQMltfep815oYgufEOrsBMXlwTTj412rGEPs/hoR+E1MFV9GhzQUuMYRW fUdamJg+iqyKTkYwYwgjq98FAWJWcEts9LXO/EL07X52wk/MAW7KE+t+GMQR gR9Fi7aa3gOXSFoi/XkcobkiXrEw1BFc9HtK7QVxROZE3QHORmdwef+zyNka T7z8KiJzRtoFRU0Cca4/44mTG6Kjh6+6wi2acuTO9gTCpeK9ULG+G9wcA+ss LyYQ8gdl/c4Hu8NtnfjkyfIEYsWEQ+1WBQ+4jQ+4K8wkECOfC5Z+7yAxEbVy +65Eovwir3qh0xMUvb76eZ1FIhGx+rSXj5gn3Cx3KggEJRIP69+WGeZ6gku3 yKa5NJEwfDq4aIvpUxRJa/x8H5tI7D22/Thn9incFppcLvslEgI/77jmhXpB ucuET9Y+kWAl5hY8O/YMymm019OGiUSJ1eK5c/3PwOV7c33B0UTCqTXQaWzj c7gpucjp/pdInPPty8wueg6uNUuy14wkEHKq0j89LXzgNvXq+EBDAkH/lnVn Q9QLcEV90rcLSSDOvOm+oSv9ElxLyh8E7EwgZLW2xK2rfImiQR0eU6EEgm/x TRbz6isoZ7f7bSHrdylnPpXQ94fyTXZEemE8sXq7v5xx8GsoU5ZVtp+JJxY9 TdcpZL6GW1yg3seD8cTkYOdNKYUAcD3Z0H11fTxRG7IpYbIjAMryu8f/0OOI 7OmTNYYyb+AmkO1YXB1HxOjdGM53IjFTmcsniex34ku+LdVvwFVc/fzsmzjC ne/btudigVB+d3bleqc4Ysep195pdoEo0trq+84kjmh+enu4pzIQXPIqjzIF 44iHZTqa/20MAtf5vy5s9VhCarFsgpxjENxc09zXPflC1B3nFzCuD4JyzA1P 7YIY4p4b+6a7VDDc6jc/c/n9maj4Fy3X2hyMIrE3vlSbaOK24pNX/7a/Bddx rVerYqII0YcWk9Lub6F8bXGA2mAkcf3PhjTn3SHgyrj7Nl7/EyHwI/jARt93 cAuLVWU8CCUy9t4LVqe9A9eYqKYG5z1hZnfu950j7+F26Pnpr5ffEcnjK3LK 2O/B1Xzd5J52MHGW7a1442QouHh32v0n4U/MSl8NexNK4piDo81SfkT0lZPz +T9IrLb21/vlPsRPKnfRisgwcDl3Lts58IQI3zQoeXiGxKtz1vyodCPUzAvd LfXCwXVh/wlHi4cEJzyU+uILib2njXn33yNC+h6cyJgnsZtNn+xSW+K4+Pno foOP4FKOsgjhO0GMmCj8x/eVxBHnY1mLrSEx5nz5664IcL29X8NF98Dt6we3 cvVGwI0r7OSStmCIWCXHfj4UCa6s3U986mNh/UTi/BGrSBT1H7006hyPvEi/ pY2vIqG8WP2otnQirIZsbvxhkvic+Y/lrsnIMJOR1QqKQpFjVaq66Dfwu7zt HSiKgqRPw0bniW8wC+P1cxiLAldYq19cWTrS8u8dWyoajYiU7tmu9xng7aWP h52IhnnZ4HX+O5kwmT0Xvu92NJQ7mB1HTmUheV2pbuX7aHCNjp202ZANniP7 FkwrSKz3iUYczIHx+U/Jk1PRKOoMf973MhecHn3+yHWfMSjjaraLkgcvM74r 5058hrnzpf2PhQvw7fLtdZmBnxEhKtknHkhA0PbY04cKMdBL1BNN0i5BuUeX Ce/jLxAaa7IZP1OJfYnCvOJ88ZhcPbZ9IJGCarly8/o98TB+0oY/sxSYpzrl uZyPx5/JQgNhrSb4ZQ7YDcXHI6L2tfuJ4Sawi772xOgk4Ka7QteXrS0Ib9NI 3fsmEaFjHt524W04YPxvGS0vEZ3nb4Y/H29DXXeKdSA9EdcqDdIjFdsxM7BW /PeBr5CJlBls7W6H/gjDK7/zK8aMGhQOr+3E6M13Q7e4k3ChPEvnrHUnPDja iht3JCFw36fLNhmdSJn+NuX+MAneyx1ehZ3rwqn7V7X3Ryeh98HFz5mRXeif WfeFXpcEY7ZaXuNUFxweNXAH/0xCtsGeJrZyN5YtuF84JZGMkBuStR+fdiPk upGZrFoyDpmE81UWdUOqVdZc2DYZdRriahOz3VCK67jcU5AM0e2ixYr2PciJ C87IkkuBFWtFVpdZL8bPjeVrNaRA1GohcuWhfsgv7TimRE0B5dzjwSN3+/Gg sLhwzy9S/sTsBsukfizZ/rZotUQq/Df/DkmRGsCm+eNlA7dS4WR3vzKGbxDX vsmebHZPxZFrB62PSA8i6drairKgVPCZ/+RpODGIoy1jlXEFqUg8fVflp8sg PLw71EObUnHz1L4h79BBVB0rqX7JSIUyplzFcwch+CNR032G1FdIkUjpGIRB 7Nvau8vT0Cl3u+DEz0GEXvTQtt6UBllX9R0nBYdAFblVb3wgDVbGUTbFG4cg U2Wkq6WRBre984nH9g7h9mOVxmMX0xDDf34iR2UIz8+ONy/5mgb522U/4r2H UDCn0v1B+xu0D32Y911FxdYzE+zSF+nwqVFfdUaWhnWup45c/ZQOgXKuPHXQ IPQ14gV/Vjqk7P8Z2p2l4S/fObkz1HR01mZWuTrTQCnKutt/KAOHXLcnhlfS 8GCP+/wfRgYmGYJ3ey/Tcdus+3TobAaKAkZ3Wt2nw8p3/ycIZyIaVfRRHzpO sxknvBQzSf52N5xNpUMqQvP5yjfkufb04XVcDIg1RHVnxmbCcYby/dNKBgTn 5naaFGZCPuZrwvZtDMwYJTdEDGeCi+vqhsO6DEw85ZNUXchEfuKJ9iILBujf LO6wVmUh+rzkK/V7DHQN5Zb47MiCG++/UxRvBhpWrFolp5wF429dXMahDJQe u3WlySALVW1GFo/jGci2qch0sMlCgIgMf0EmA1GVTufzgrOww7fKVLGRASfX vnD18SzIuC5dOMLFxGZOzPbL77Nx6MqLk4csmVi7geshb0o2pj+ZTty3ZUJA 63xdXHk2yXc732Y9YOJ3zLLbk5PZUDGuYx98w0SdmV3641M5UNZa7nugjIkS 3+r/Nl3MAZ93n/w9ChNZuZuNyuxzUFX2tS+9l4nINW0z/OE5MFfS3S3/k4m3 qnJaSd9ysOahROddbhZ87Z+FnqnOQWfWhNu35Sx4RAyOT/fnIH2v4rPjYizc bziMkOkcRFQGmRVJsiAol8Go5suFSJSADLGNhWi/Pb6z4rkwd3kyVSDHQpP2 ti6zk7n4K3/HM0+RhZ21q+5uDc6FYaR2fKYxCwOVnJg0hTxMPlr8K9GfBcdt Njp0rTwoGj8gEt6yIPCM+WO1eR5C9095x4ezcFitT9nZOw+qI/3rYxNZeFNW 042uPEQb5R6PqmJhh5Sa+53xPEzs27ssspGFoifF26K486EuGNsa0c7CuEq2 A++OfPwpC7oaTmfBM3L/+kNK5HmEwN6wURbWLUouvn42H4EPn/z98J2FFIsd 1z5Y5+O74d/S9zMsnCr+LFj/gNT/6/732gIL/ZKbMuZf5kM26tymwsVsOLiF mu6Jyoe51lb1lXxsfMKb2De1+ej8UBVUIMTGbIGbiol4ARoUV+wV2cxGcq6p I6ugAPEuoVfzVNlQW9chLtZcgAlp25dCGmz0Op8t1WQW4GAjMq7osLH0sIZQ kmAhEjfSFgkZsnE562C8w6VChBRtD7e6ysbfNWl6MXcLMXhttizHhg1/x12/ O54Vgke4flTQjo2CA1KqR1MK4W1hdzjHiQ39oI8jN8sK0blUxVzwMRsj0+te h3cWQiBt5bPL7my46QcrUMYKoWzC+Jr9lI216cL93NwEPBdltS73YeOC76w+ fQ0B3/eRkxF+bERaMWorZAko7jdene7PhuzqnJwXxqS8ValZdzAbKo7mQatT CMhUvpuSjmLjYKhRTODuIhj6qq0tymPjvHfd0NMjReDZOne0pZCNRw7HN9w/ WYTIglRzZjEbxdo7A8+bFmFiQjxeoIoN7X/z7hLPihB65ofi+VY2bIfvFqwI KILsSKzFzQ42Xrex/3CFFYHqYebl2s1GevFF+e9fiuC1flVCQB8b7V+bb9PS iiCZXt34eZCNmXenEloLitCp7TqdTWND3CufWV5VBE+GvFgdkw0l+72bs1qK 4BIcqCIzzIaFWczF2P4iTL69phE+woan5vp374aLoPdOUW/VGBsxB/1bfaaL kPheyMhnnI0xwQdat/iL8Sgs28pxkg1HQufwvoPFmIjkc9P9xca7hBKHLceL oRfd61X2m438twopq7SLkfk5xe/IDBvcdpu2/bYohkOs8QfpOTZ8JX+uyvcr xtzX2Mx57mEkCdzQ+xpC6ic/KnBYPIymP/0vwqOKkZuiVzbCM4w1TVWL3HOK 4fTtT1P7kmEcLjimZF9WjOb0uk7tpcO4EJfmfLmxGPKZEQMl/MP45B46eZJR DN4c9fGk5cMouyUsqzBZDMNc8WmpFcNgnve6KjNbjPy8yb/vhYaxVG02Uoy3 BOIFZdzCIsOQ3WfXzy9cArvCEL5nK4ehK8EQm1tfgqTR6U1hJL7Db2IwLl2C XpPcvwuk/cBfDf79e0swX+3aYsk3jEzqibpGxRJIHT6ZWL5oGO3q7lN+p0rA 55CXq/KPjV9JhWu0z5agM2lvNUHWS+HhYYuqqyVIlJJg5pD1z165+1dRQAn0 hH5vTGpnI0d1nWQauwQPWLFvguPJ+sZM3g0MLEUV86NMCPl99QrIvTv7sRQT K6iruU6xMWdvUygUXwrZw1KLrymzcQxMPj+iFF4vYvsU9rNR2NET9nSkFOp7 UgM6RNkg+CorHZXLUONcMreG5JdBW55xea0yzEXyjLj0scDVdlzkh0EZjtSp dTBJPlL+lH/htk0ZfCRqUzOrWTBf8td9l2MZMk8t/yhRyoLbLYUvo25l+GV3 2tcrn+Szw2lTV4PLoF/aYm2YTNr/yFkj/akMD8ZW6xfGkvZ5dynSE0j91cbH pSNZkLx5wyIyswz2F9QDE0NZON78xcu8uAy8iUlHu0h+tTzESJCoK4PX7Cra f29Ivg/f3NTbXgYRrYc++16yUHIjbP35sTIojZzqeuHJwrdhGxuzX2Xg2WL0 bJkbyffXjuRd5ipHr6n1gRcPWXhq3WFiu6oc4fWer33sWVC3FH7/RLEcv1KK NZ6bk/w9NDDsrUbKD1N+810g+do86fBLvXKUbR787G1E8r2ZVleIVTlsA+e5 vXVZaDz/VDTJtxyt94/mepHzo6jz3LVvweVISdG8xnuI5GejzdnZEeUIGT6/ xms/CwEGhFFpejk0TZ3sn+5g4Umr35eqwnKIBj6T/E+aBYdzF37XV5Vjvi64 wXMTC4ZnZoI7e8sRq5Sxw1OU5HdKJbOPWQ6H+2Wdi1excOh08EHaZDnsUlq8 nqxgQabByov9txziMawVK5axIKazv32cpwIS3e9vmQqwwF/HLf1DsAL7BHVr v5Dz868m5d4f0QrsUeHePi3IQq/6rdWLd1VALf4q3VeYhfrKo1f4FCqg1L9O pUuEhUI1/ozlxyugItLwcSvp/6PqF31RgwqcfSBvWriG7Jfy0JtdjyvwSJO7 mbOehXNEMm3fswo4uaTvVtzAgqqSy/5Dr8nztKt+3hIsbFVc36LyuQLB6xrU N5H5shUMRIzrK5Ay8p44S9ajK3OL5cWOCmRL6G74SM7vmgPfUy2HKlB0lvvh qAwLCftfnbn1swKZuVcPeu5kITTt4if7hQqUTawLpMiS+8Je2an7SyvRu7lh Spyc97a7q/09NlSC7SP/NWMPC5eS3g4+20biQhb/on0s6O2y3uO3txIT399f 0yX7dTxR3i3gaCUWbdOteC/Pwr6diylvT5LYlFuKdYCFLfFNG8NOV2J+pzBf jDILq7ZH3I48Xwk3J/aTUC0WfkofW/H1ViUeCL99+NyCBSWqSqWPUyWUD8xk 3bzFgleYuuu1J5WYNjadPu3MwppV+pwt70j9iI231rxm4SC3TeP7skoE7o41 iypiwakn5JX3+irk6+QcL9jIRlFw+Clr6So8urPeJWInG3xnoxdO7K3CoaDH uU8USL6uSr69oFaFot7j+zVPs0F9krGt7wwpzxV9e5cpGzuQN5B7oQrqUryJ QuR8zs2oOO1oX4VqmxqpDhc2Ft2pW6L/uAohr2Qtcsl5qinbTOz1rsLFby/D wsh5GcDquL/iTRWUu88Uscl52RPZt3s8jMRdV04GZrIhZUZj1cSSuNO5BtVs 3BQb/hj7rQrGHX6nR3tI/no1vcKqugpGbRnnVcj5oKr1t/J4axXOtlb3j5P8 68vL5bZxoAqXWvouv5MexobHyya7p0nc9J/tpNYwlG5sppyRrMbjegOP8OBh uKrq+eN+NaLLf8b/3TmCRTMJQuu31qDhzZ5FbmdHsb5e5Qd214A16bnv/OVR yH/qarM6XIMlul2W+xxGcUVjyYcknRoc5vMopQeNouqd5VYVxxp8etTiqdE1 ildHxI5cr6yByxXHJSvNxxArmCL+sqkGsSU1CmN2Yyiiqi2k9dSgcOPGa+Xu Y/ju41A2x6nBVFdl1f2oMSy7tOzLpr814FYQn9FLH4PU/sjnajy12Blot31H +RgMexp1/UVrcUFXzKeXOYbbydZ7MzbX4l7CrdyM32PwfvJvZbdsLWAjYSDM O44Io8Bf8wdr8XJZxRQhMo6cnTu7thyvRV3CrZe2G8ch/sjrctb1WvDvEuDe fnYcB/Q2qPXerYVe/bewDrNx6Eqly3C71CLslukRL5txuNYNjWsG1GJfUvxd muc4qOLHnPpza2GzW4MZljWO2ckWk8XltShpnPTQLhvHqvIbx2Qaa7HcLmTj LGUcardCFtnTapGQwjI2HhlHXMEP3/8E6jC416tWZMMESl773N6xpg4Kzbuu FW+fQPeVTWdPS9bhnn0bj93BCQgInl77Tr4Om79JKdWfnsBWKmOmQKkOVufq uh9emIBS5qNeqnodkn/cvb/j+gTszOI/yV6sg7p8acozjwk833fc88zVOvi2 3tA5+GoCkbyd1o536jDtIDJC/zCB3G5bjQ8P66BqqGF2JGoCLUn/yRY9rcPK 3M+sy/ETGPMIFWS8qkPPhkV3/FInwGO0f2rp+zqku5v9zcyewMEF88xzSXXQ 1Fi7nL9yAto6RR4ns+tgIu3ruaJhApc/bDytUEKeL+aeW9U2AX+Ffta69joc LxgZ2UibwPBtUzHqvzps3VtYdWBhAlyFuYyWJfUQFtyvfJSXgzUC69LKheux avRLlvJyDlRiOzXjttZj0efXMVrrOQgdNHhkp1OPYdErnhYKHKTJZahbGtVj 6GfXrLUSB1WPVq3Wt6jHQLPu3ZsnOfgp2vJV4V49yn0PWd4/x4HA1X0PtrvW o+j6165HJhxsznittv55ParUNp/xsOBA94zewHxoPSK5BJT9bnNg9TE5YTKG xH1uWQGOHDwcF3SiptTjc+5PuZDHHAQctVVtza3H17c3YsI8OYh9Xi9UUVYP v1UKVcQzDrl/yPZlNdTjh3/g8ORzDlq3+sbFddbDbPl3/s2+HHCXaKr4jdVj B+9XHU9/DkSF4gVdf9XjhQf/7YwADuTMlvbYcTVgcv6qPzOQA5O/lXf1VzUg 8/fmFvV3HKTvO/l5vWID1IdDjJdHclDjFn1nuVoDvl755awUzcFgw2KlhdMN WEQ99+F2DAfLbUraqZcb0NIt2N8Uz4F1FPjiXzTgUp3n5eBvHDyaCm/9ENSA enWqZ2UGB28wH+H3sQF7yxHzJ4uDop78w3e+NWCq4C/bJJ+D9u3ivJcLGnD2 iDG/byEHY/cfNutXNiAjM2NnQREHYquO2BzqacDTZDvbjeUc7LF8p7CDQerv bHilV8mBWsqfxeKcBpyJ3ZnqXs3BhXkjyvKZBsRJPW9Oq+XAXjsrdGFRI1Z9 Yv6g1XPg/X7N9SmBRhyI5vi21nHwkX3vAG1NIxaWjAtVV3GQebCNu02yEUU2 I4EFZRzUeco3VOxoxMdGlmgaGc+RFbWLXh9oBD3l5FtdMv7YdxYKpsqNkA2I Wj1K5vck6WUEx6ARhfqXRKSSSflOtr2oeyOYXe3LgsNI+Z1ha290NEKaXj7v /IC8r5n7teWpjbAr3/J4DXk/PJVr3ObHGlEW4z6bdoeDlPhZBw1uCtSvH/sz eo0DFkftVRIvBT6aHxy9rTiQOBAQt1KAAsbOmWkpcw5eEDL9fWsouDmRPnXR iIMSHoc/KuIUfGsUsft7loM/GoRI7CYKFqXaTQTrcrD7Ff+u5dso0AtouLlf k+xnq8Epe1kKSsSYMnKqHISJfbLo2EuBkgEhM65I3j+zsYeKChQk+ofIJB4g v69hjxReFRIv0ZLZsY0DZ7mGGptTFEiekJIZ3kjGf1eMQdGmIMTl37ZYUTLe +WSxD0YUvPyZvE2an4MZkT6P3bcoeEBbtW3z+ARSFBUMjEMo0CT6t677NoGN /qMzcRMUTPnvOW10fAKFFq5xaT8oOCT8sotzZAJm+1eez/tDgcnr0cve8hMI bT+SXbeoCTWvY5xytk1AdIOPI2dNE8IDxCPXC04ga2KD9J/1TSgXeSCbvmQC hkWpbVybmjAb0JGpzT2BoMtd8iI7m3DjTUDt4+lxiMTL/JBHEw4G8v0c6B5H 6sP8yGOqTXBYZe3q1DoOPR29s2oaTYgILF0q3DCOV5P3U43ONWEh0EVCpXgc ciXLLMyNSf3VvbHduePkHP0odP0iaT/o8P676eMQUKi8/eBqE/qDpk9FfxlH Ap/pxic3myC45myz4qdxaHZPNLy404RDwckX2t6PYzjBwyXQsQlKHfFLawPG 4f14jVzYwyZkXChUTvQex7bT8X2f3Uh5atN9P5dxVEgq+SU9JfO9ykiydRjH f2VXxohXTSizF9iw13wc0UEzH6oCm6D6Z6O+iOE4VK/6aTW9a0Lp4/0vfmiN w4M/I54aRWJvk5kMhXHM6/Fc/y+7CbXhsW1HVozjT18kQ3OwCYM1qi9VC8fw Nvlg0DkGmZ+ecflWcj4fdK9RvTDShJE2mzne+DHck/oedWu6CT8HA25UB41h 1a+n5xxnmuBsHfMp/sUY0ivFFrvON2FyNKfzxf/n/43jlv58zfj1a1BN99YY Xiu2Cb9b3gyPR9OPd18ewx7B68WfRJrBu4gvQ+j8GBoH5uzi1zbD5dn6sSnd Mdim+kt+E2/G90+tLo+Oj2H5EylK3qZm/Kl4evfu3jEk6me7lkk349/owWs3 No1h9PdAf9ueZowceHfGmHsMmVdflWgebEbK8bmQX5xRuHUoxRBHm/FY59Jg YP8o1mSF3YpTa4bIla23m/JGoeJoOvfoQjO0A1N9NR1H8X66XUzKuxnB36sr FUdHoD5Vr28/0Iy/zcu0nmYMY6XF40MsejPYt74UloYPo58iK35hpBndfCf2 LfIehkPKC9rJn80oUXog5moyjI+3NezFlrXALZ7Nclog38fjZa+KDraA36Pc 86YGG9EjeTWCL1sw77rQH/6PCdu3p7fceNOC0E87XR+MMqGgSntYHtIC2VKj jYZdTNSE8e96FNWCm7wpl5ZnMDGld/7VcHYLhn3NBx/eZCL33xhLtbAFd5N8 3YxMmPCMd1OOKG2BJCVbcr86E6I8sVOGDS04uVLYYmQLE0pZv86V0VpQ8a54 yLiHAT4rn8SNwy0wyht3l69moFlI4r+HEy341Su2WSiLgSs3TmbunWnBAUl7 y8oABuTWdgn6zbeg9nj4oig3Bv6U3rzKXtyK65drIl1sGSix4yo6sbQVPE9/ qZhcYMB3Q6DoR8FWNIfw6eicZsCwZtudvytb8dJv13/PTzCw8X5etYFYK7Q9 zhaUKTCQRqE+EJBqRadN6C5FSQa6nuztcz7cigqlPYI7p+iI3FN+oE2pFW77 DSqsGXTc7DN+uUe1FYdlHrhEdtHBpeAGlm4rUoTLJsRK6JAeafikb9WKGLpR I98bOhz0blrvftWKIB9Xf6Y8HYIbvnDo9FYoXuEzUXhDg7Lhkz7acCvowrN9 hT402L+6VEudaIVr4biFmgcN7dyiXwb/tKJmbct1gzs0hDO9zXoF2qBbE+Z8 9zQNlI1XtHuE2/DT0f/fXzUaFp0/fqR7TRsitzxx91Ciwbp2ZnWnZBsYj649 f72LBrmUG/Ut8m24vXv/u+RlNJgPq+U1H27D0t6tGxQW0xCweUtck1IbEr1F PxX+paLMdCGYcqINhgeWbVX7TsWvwB7PRvU2/Br6F1s/TCXfx1n2DTpteP9y UtZgiAqTJYHm9WfboHyUltLbSYWvsp1unVEbOq+c4tdtpqLQWVux9kIbfI+q XMusp2IyTWZHjUUbtIWPVUhUU7F5jEe02roNPCwFqWdlVHiZFfyosCPlA3YN GuVRoXNCLqHEsw0+w6LGM7FUuDzif1f8vA3HiJWZFtFUpGQwvYpetoErSHBV zUcqVsl8tCwMaSPnKA/lfTAVvQJC63IT2+DwlnNK0ZMKQbWxJTmpbdh9a+Rz tCsVyq5VP7MyyfxUGIuXP6QiesqtKaOIlJ/oJvruUHGzfco7tbUNV05WKLhe oiJ8RYNjSlcbJNYXB7FMqKCox1sl97dheDLvx2lDKhZ5eJ1NopH1qcg8k32G Cvk8S+WvbFI/NDVZUocK62klucTxNmy3T1z+XJ2KkF3rxRO+t4F96ovN1Akq aqx/L43/TepviKw+DyrmPrb8jp0j9Z1k3hQco0KuK5nxhbsdfP9+LVc/ToW5 iG9LDG87KtzLvZtVyf55qiZHC7VjxwtLF5YW2Y/rGdYRUu0YCQu9LkzGO6L8 1XvZjnZ07c8IYl+k4pTo53jH3e0oq64vJizI+CsDJ7SPtMP757yY7XUqnKUc HGdOt0NWx6KmxomK9lmbECuDdgjTnH99ekTm13I5t9GkHX+cAjY7u5H9dT83 //lKO4qiSx9s8ybzHdjndfZhOyzntu70fEvGl7kjtsCtHToBSkamH8j+v9xc I+PVDkUZoyf7yP65XVk39uZFO8QLbycvjaKiT1FEcMGfzFffu2cwhoojq/j3 3Agm8xmOWJIdT9ZvlPts24d2NLvm7H+VRN7Xkpm7yp/Iehjf/+uSToX++6mg hJh2UKRWerwm71faneGsNYntqJpMWhrdSsUKjaEu99R2VOZrvs6kk/X/Tdlg nN+OfH2PiB4eGo4bpHzmaSax51Th1pPk9ygbW3m7ox1pen5qhwxomFscMdzd 24508e0NmldoyE57tSuV1Y7UdPO+20/J70/odsbFf+0kPzTO5pTTIF67qzxT pgMvVZMO6arR8Us5gX7NtYPknZ6BbBMG8qNHP9z37MDmPTxHbtgw4MEne87r eQeidu8KXP+IAUFKYnHUmw6Eyrmqu4QxIH0pKbz/Swd8ZbeknhhkYKxkwmA8 sQNLZLWX/Zwk+U569/K51A647Lx3JYab5OeJ5Idi+STeUSm2lORrw8epxvqU DlyVsfFouMKE+NDUisttHWBvC+x1dWSCqrqv8k53B6y2FRzc+4yJ2Fh7F7eB DlClmf7Ut+R8Efh24BW9AxekV4y+iWVC3u7HWNhwB7q3Hjp5MoeJvy37oxMn OrBz4m1IQzkTRQoOpnk/OhBeEvBbicKE14d0kZo/HZgP9jNM7mZCe2G6uvNf ByxtvDM2MpgQuXzAnbWok9zAnqzy5zARviOTw7O8E2/ZTs12PCxk5GTVYVMn Dhyx0t0nx8KDDX+e6Ep3IlTw0tfIQywoux86enFnJ3hp5wVWnmChTj0n7sGB TrS9OF3zw4gFekeuV4ZGJ671HVHLcGch/ujssTJd0l/qgc9bfVmw+3j0Z/O5 Thz02sMTHMzCnHX+5cmLnVi8W7rEMYFF7i8FyjvtO5HoJqx0qI2F7vPzvw/f 74SIgUBY7AALEQVKyeqPOuG8fcmc6AgL1ptcrY3cO9H9j9v0+TQLsk+JDdZe ndBsnsuZmWfhO3uh1eFFJ5JifoveWMpGtray7xN/0t7D7/e7V7LhkuJ2IiCo E3KZnAPnhdhQXVX8N+J9JwJed9+bXcYGvxN3WvLHTozdLM8IW8IGpef49cLo TpxWT/mJxWxciCrp6EnqxPKFp/c8/7LgsK8sfU1pJ3xu7r23fJiMT14y4nVV J4K3b9Y6S2fB+OCjFwINnchlimx6S+Zz9Ii85aIu0r75dJ1kOwuLVKJXTEx0 wtwgS0q+lIXpE1yz16Y74SoS+9epkAXGyQtM2kwnohpDKAU5LFRprCro4ulC v8aDR6dSWHh1xvNG+bouKCkdazUJY8Ht3KCBsmQXrs3uiv8YwoK9geLxvK1d cM+WcKO/YcHKKET24M4uhN9bYbj9FQuG56fXpu7pQuE+LllbHxbUTfUWyx7s Qg9nkvvbUxYOX0yciDnahQntdDMhJxZ2XOLr3nS8C/tlWnoP3GBB3MKqPFSt C/6Lv5uYXmBB8HJRylrtLoz3C3W56bLAdUU8NOBMF47k7jb6//+TtGut9t4X usC0u3VuSoq8L3aqkg72XUA/W+vZOBOh9hHLOPe7EJizpCZxgAk/h7lf1x93 YSxQWr25iQk7p/T6S95deKFlpbohk9zH3KQeaoV3oT17QPGbCxMyHm7WFVGk v8D53E47JtZ59p45HteF97c3HJ63ZGL+WaCMQnoXFKVND2icYqLsFU/75pou BL1p3zWwgonM1+bFYY1dYNv+TOBZRH6vb/ITRdu6sE9z1Y4d0wy8DxINedPd hedb98eeZjLw4q3DE8HBLkTSwzPOUhh49I5i+5zRhc4mB1eubAZsP8ia8Ix2 QZzQ1Ej6yMDZj/Q9f392wendr96ltxlQ/aQsfm+2C6FedTFZhgwciApdMsnV je67kXZXlBgQ/aLfz1jWDSVdXZ7i5QwMJJW9aNrUDa7FMTudEumgjPOM7dvW jZXQPfs2kI4i2ZPagbLd2PDwl1PmIzoi4ssFjBRI/R9qFdPadFjGVPj1anfD gcYyvzNOw1kG78Sxs91w3uj/zL+NhhNSp3Q/GnXDw/RQUnIBDVKRlYKWlt2I afGeHfejgRlW9Yp1vxutpduDb8iR+1Yv36T6427QFpryn6+hoXK9hl68RzcM uYIWxP5RkW3yPGWZdzeE3AI0NgxQyfd+tdAtv25kL7x6I1lMJd9xNa+/R3bD af5p3i4NKsZ96978q+/G8OydZernh9BfKzBt1tKN1w9vG2gdHUIDv45+UWc3 NGZvftTdMIQk7/pVT2jdiPh7db/B0CDsPBuC+Ga6YT5z0dTy+iDMSwV/XZ/v xnJn089XtAZxZtFpw9rFPUj/Y8y5tmsQ+9wa17wU7MHhyS+8A9QBbCZW3Oes 7IEPJ/I9I2YAK+dPd+iJ9aBhIkxu7MYAph9S3q6U6sHb8TeGM9/7Qc8V+uOw vQdmy5dLPM7vR9uMnnG7XA8WF7dfCnzRj8z7TaLvDvdAROYGrWR7P5zuNr+T ON0Dg1/+Ixut+zB7o/XD9gc96Avo/9PV3wP9gxdfy7n2wDxS7tzh1B4kcjO9 9nv24Geqy9eQJ6SfkN93jr3sAZUiYWkk04Pi8nXqZyJ7wBa8VNt6pxvPJC2m nWp6kOYzENZI8sTK9nHtqnW9UBP5T7jOpx03Pzmq1G/sxR0PvlOnL5N7y80F hWapXjh/X/a4+Wg7HBcLb+mV60Vss8hw51gbuvbIz3BUesFDdouh24Z9c/kT 06d6sWSx1O9r28i9svIkfUabtH93266xBXJPNzNqXGzUC9tzcu++p7Ti44sH n9fa9CJhpeKdBZFW/DFc/EHcrhe0J/jiMdoCvc2+/pvu9cLfMGxHRXULFuWE Pdzp2ovPH+W38/i24Aqz6Aze9KJz72VpN6EW7Dy+ZN46rxf2hkWSTmLkuzI+ YVtnUS9U3Kwd//1ugvwqvTMaFb2YjhOo82hvgiIrJHpnUy8c/hnf93vTBF2/ HVqTzF5oRk/VRy5vQvOvBgeLsV7wNbzdIjNGgZH53fDmqV5U/D7m/LWGAvP9 +VPpc72Q1fKRyn5GAT3UfL30oj7w3dvz4Jg1Bdd5/zv5dkkfQsPbG0tUKZi4 HWfLt7wPjlWPtqpvocC+SyfEWaQP4t83P6znppB78vfikbV9mCw7xE4qbcTD xOBR0w196DyS3mn2vhFca46urt/ch+mU3dWCdxrh6TqgpCRDYumEnMJTjQje eoexSKkPexZCHrpENiDnTuA+3+t9uJbssPDPqB5KPYcu/LPtg/7WSc5XuXqU qPY9tXXog8MHm8GL/9WT7yLpLj3XPsQ+sywuSKtDb0GW6+ogEl/Se/J4eR24 +Hvqwov6EF1+yHF7cQ1ORW66mrq2H52WshuHFlVBPkRQukK8H95u/nOMrkpI vpyld2/qR2/YdNdISiX+OrdZ8sj2I7EzP3DarBJfzzw3M1Luh76uDj9fXgXe n3LccPNkP7JtUlkCARXwOna5102zH1LPV5cLX6+A+fZjJvH6/agr7XNdv7YC Oht3iBHnyfOh4xclJ8pxZPXazhazfoTMfz6ytbwc0st43rIvk9/V/q4vPRHl WMk9ZfDvWj+sGCVVF73KwfW7b5WIbT883yYOD9iUY2yspkX6LqmvEcxveaYc FZ3RZ/Qek+dfr2tbi5fDOcVYJ+p1P3zvCVFs08owcKlIVSO3H9H/mXW49pei zuDrYjOiH4FZp/5wl5UiW+t9iX1ZP1qv7xXzjCtFgIKDcmhDP4rqeUy9HUpx coWMIofaj9ighH5//lLs+2/17GI2md+poAWRyRJIzHLnio6T9Z1xkQxqK8Gy qQmnXSSvZCdcO742rwR/mD0KKr/78efiWct3ESVg9Fb9MpzrR9UKxSfrvUrQ 3JyRYcM9gMHirdFhNiUorIp0cOMdQOvdFeUbz5QgofDV/qBlA6jL2m4xv7EE IemPvscJDcBqs4iZLasYnvHXUwtXD4Di+9ekP6kYZsEndrM3DiDFola/8Fgx hG1/7zgqPwD1ZbfUXUyLcH/Dpc1DFwZQVGB+aW5XASz19hj2WgzAf9mi5auJ fOg+4fbpsB6A5Pmo3F16+ZAejpqqtyPxT8bqS/Z5aE1nF+V6kv5kbeqKM3NQ xMqZznhO+nsg8KD7VA4S1r2QSX05gIiqr9t+dGbDw22X/5eQAchYTXpIzWbB 9tt8aWQYidNe7znmm4XzzMbfYZGkfa79/QYbsqAq9mnnuy8DENVtfWGblIk9 2vaXAhMHwP5w7/AzZELc9cSbV6mk/fDLJw8GZWBJ2qpKn8wB8GmciwgbSkf/ 2iw596IBTIbuM7z54Bt8abP/brUO4I/qVPHSxBSwHzwNPTVH1nt7377nEjEY Mdx57RPXIFIe57ONsqJhPrly0cbFgxhs+hAurRcFrS2MA+v4BkFxNuEvc4/A 5ufPwoREyLn0Jrn0X3UQKPp1N/9tHQRX9JXans0nCbWJdN6HMiSWoAfW5tkQ +c/CIv7sGIRb9/Kl71ruE19ybVt/7B5E0Qt1y9s7nhIuksKKI4cHEUFnvOxu e0PIjhks69AZhFCA/Fb/nVFEtr424aNH+h+f/1t6M5o4UaByV+ncICTVqym/ v34mTF7u7vlsTMrPX3x0aU8s8XzP0gSHy4PYY/OsRe7AV2LVuwUzGetBXCs/ E2fpmEREcP8S6b02CFFJcdfgrGQiu5n64ITtIIxtjFcviKcSqke75H7bkf5C jnG9K0glGqMaqfF3B6FYsXl0n1kawXTI1xRxHsShTeNF1h+/EfZ9afPlD0n/ p5sTuJTTiX8n49KcXQYh5ffyVGtKOuGd9NF6l/sg1C2eL323LoNYtTZ43dAT Mp4DnrUXPTOIEzm3R5Jfkudet1vsdmYREf82++hED0JVRo0W7JxLyFqLKXF/ GUTZnPJnU1oukdWw4nt63CD+UI5eldTJIxo+zp0XTx6Eg/Pe0TjJfOLf8fbt ozmkfo34j/zKAsI7vq4vPH8Q0eFrM9z3FhKrVpa+PksMgueuyH21D4WELD15 JqeMjGc932yjLUFka8d8vVU5iDrOooLAToI4kRFqsalmEIVDLoTspiKiYcOb 1W11g5jXeiS5wrCIMPF6Xu3dOIhA5b0MEe8igjnh+lixmbR3WsfwdGoRccfI ce9k6yDkzK5XvuguIrxlLr8z6h6E4KNPcTy7ionMGsXr0oxBeGUJ2/5qKiZW rpjkK/s7CG+577+61pcSzQU+zzT+kViSZ5+BSikRcHMrb+PCIKxF1tyiXCsl RGpMFnfzDEHx12FaRQaJn5b/4wgOgV3g3vjtdBnRvN/80T3hIRQlv+Hf7VhG BFD//v27cgitnz6fjA8tI4SV9/z5T2wIZk+r8yKGywjKRI3ji/VDULnf82u9 UDnhH3blp5AEia+P7317sJwQmn3/ff2WIZjMZ141cS0nKHEH7nzaOoRoueff CsJJeWMKR1pmCGqXTBckC8uJFZn/je/dNQTNooVg1lw5IXjHjnVKYQiGHuoV Dg8qCAHWyd67WkOw4u2WenWvkqgLGjSZ0RkCj0Ki3ffASsJX9WGXi94Q9K66 5BukVxLLIlPanxsMQb9qs774j0qC/+L6po+XhmDnY/Mkzq6KqFmWeXqr5RDG co81CvhXET65eg3xVkPwGF2x3i65ilgq6lWbcX0ITtrpaQcnqoiqCknNozeH 8OeR1/y75dWE9728qiLbIVh/Ndb8J1tNqEsZnlK7M4S5vh3B5trVBF/LZHnt 3SH4CP4bKrWpJqrcX6iecRzCzf8yU9ihpP4e6dJ2pyG0MxdJHGypJpa8NC0a ejyEPXGhfyioIXg1KnJ/PyOxHOUrr1gtwUN8SN4SOoTNhxRE7WvriG5FVfWB 8CF4FjyK0+atJ5JzxwbffxqC0ImSI9uO1xMmmcdERL4MoVtH52JvZj2R+nXA gSuN3KMvX45Ui2wgvHZ6L89PH8Kq4dj9m/oaiAtxe2LuZ5Hx2U6Uza5tJPg+ u3dM5JPxOzuzUvwaif7NO+ziCVJ+odDpRVUj8S2imc+6ZAgnVBb9942bQnhL PPy0qXwIvTyfdSQ3Ugiz0C1H+iqHsKmSqzNKiULIr6trDqkZQlncg+GoyxRi aYiDjX79EM75Tv+N8qYQ6W/KQ2ubyfqfYW+IbqYQy15cXcjpGwJ/b+PlaOsm Its5oSz4xxA6J8M50S+biZe/z108+4vMv0WU+/O3ZuLyvbmfy2eGIJEZIPK5 s5m8Pzrbns4P4eJDrwOfN7cQV65xnt9dSkXzf7YPP2e2ECJG+0/rbaTCINd0 8D2jlbCRz+taqkWFJffF9Wa3OogiSltitg4VbeNr1m0I6iBW35p0vapHhXQ3 RbQ3v4MgPm+VLjegoiRNdY2JQCexcq2/vZs5eW4lK2yY0EnkzVgt+32Pivvv 5735hbsJoWDX/s9OVBzbohO7S7WbuLLvfar+QyokEz9U6t3vJlbYNBqluVFR XHCI921fN3G593D0rRdUyA3ZP9kS30MsIwSP0SOoWNjGeqx4oo8wN90u9CaK ipGUA2GXHPuIjN8naMdjqCg87JnvEddHXNrj/PxjAhXXtTbNVq3oJ759orWZ ZFIxaGvqZNDbT5h6Zts21VKxMmpLjK/OIJGgYRlR+IvMd5Ql7LGNSsjLblLC DBVSHm0Ht5ygEoWCgz3ELBWPRUtNy8yoBKXl4tpiLhokT4Z/5g2mEtMXz78s 5SffmeH6h1/w0Agle71HVRI0NMvadO8gaESl/op1GptoMC22z+FupRF6Cg1Z 1Vto6Dd4ENLJphGWc1o/amRoGHd5buglQieeeZ26Ub+PBvGmL81DV+gE5b2S cbMaDbfu0WtCBBjE+cf/fp7VoGER/1jc7U0Mgnop/02LFg2+4T+81Q4yiGmp I42tejSEVC46NX2JQTxeMnPT4BwZ7wV+6VoHBsE7ksXfbkDDt0nh/yKfMwix 5ANqHSY0lIptKj39jUFEvp6mGV2kQTtJJlK6ikHIOnxz77xEw6TKHvd/vQwi w9B+43lLGuw6FMxbpxiE0uG9BV1WNNALblyM42USlesnTUyu0rDSvGDslQiT 0JtP+tN9nQbNRUKPHCWYhGWprHyvLQ3pahnvTxxkEqOfR5su3KGhk71kxw4V JuHgHX+77y4Na1+Y5AjpMolnOjIJ/U40ODYudPRdYRKJHVs2D3mQ9ow1VzsF MYmfo+uEmME0MK4PvEqcZhKBYazK0Hc0uDW6XA/kZhH7T6e7ngulQeCAxIlH giziTpoOp+gTDQe5Lv7SkmER405uDR8SaXAK7r4wasoifHfoeJ1NpkFkzvlg yzUWsbNXTGlpGg3RFmJCefdYRI0f8yeRTsOOyuzhSA8WcR3fvjpm0VAha1zq 84pF8E25XtmVS8OhoN1O/71jEV8itTfQ82l46Xh837lIFsH4j+l7poQG3cNX YibSWYRnVpoqXzkNH9fdN1csZBFbrrvOFVbSwDfnvc6nkkVY1InelK2nobww 8eXWbhbRF6CltaSThp2q044XFlhE28bUpQXjNGw8/eRUjQabcGh6XHx3kuzP niBu0XNsYuUTTecdP2ioFP6Sd+UCmzjDpLHf/iHvS2vNbu7bbKI+cU2V/WI6 Js+LiB4KZBPlhx95yYjRkW1uIdjbyyasRtWVBtaT51aKI20MNrE4bPWvIAk6 jl5fW9E4wSaOcyVfWSxFR/yd+selXMNEQcWQar8cHZ4eh8fjpYaJjHOnFgeq 0qESLVznfHOY8NbKfip+io7AOzOUbodh4sKJ7XyfNehYUBpqO/p4mFi0f9ny TF06PnalDPzzGybadjx6pXSGjvmYELpZ8DARu3lcuPIcHcYObsNE+DChK9K4 ptOYDt4Vej/ck4eJTfzK78xN6TDpVfhDzRomprlT1w9fJPOhaCRGlwwTVTOb wu+Y09FGud5v1jxMfJgKkPxrScd3ynMhMeowYTu8OMrjCh1CTXEqLVPDhMqQ w9Zl1+iQb6p28OMeIdgUwx3it+i40bS0i3vTCJFXVZkYfZsOr6bty/L3jBAv iw7t3mVPR0yTxjFH5RFCPmWdvNJ9Onqann8auTRCuL/qP2buTsbfvPRGS/gI sU7X+kx0EB1HWpbORouPEuMnO1pkQ+gwaNm+65LsKFF0TN0w4z0dNi0al8QU RwnrXTtMKz7S8bXleamf6SjxTWDCih1Hh0zrUl/H96OEdu09J9lCOtonanYf 2zRGuKo//ZjOpCN5urFi/8Fxotns2oU9w3SoWsSM7Dw1Tkjd0xJLHKWjrP6R oJTxOFHzSfhN1CQd7JjthqsejBOrZsO8Av7Sser8E8Z0wTgR+zXzlp0gAwbf px369k0Qf0vf7RgTYqCC87yJiglCp/sR6+pKBg6OS8ixtSeI77wnLC6JMiDJ Vmd9t54gFM0b9XU3M9DbF3qe78MEQRFhH5U9yIBFtarS/sUcYvP22j9fDjHQ V9H1/pAQh7iHpIwtRxk4VGb7+9gGDrHupsPu9coMyBAhKeoKHOKmh9FYsAoD ofm7luuqcggi5EicyEkGeHJLrp87wyGsyrm28Gsy8CN9bLOZDYfI7KENPNVm 4Eaau+tlJw6x9HtFKPdpBkqS1/Ree8ohLvDFn398hvT3NeGQbQCHSJLwWzNz joHoeOWgux85BNcBuxYHQzK/1c2WD5M5xDmtc/6TxgyMyty1kynlEH/ui/Gz LzKgqZfxwmOEQ2i+nKu4bM7AxGXDd7vnOURY9MCTAUsGWvMenpvgmyRUmj7/ a7/KgF+juMUH8UmSf/ZNld9hYPiX2aOfJyaJTX2anVFPGUg7SUuLC5gkfEqO Jht4M1Cs1uBnGDZJfP8i67XkBQOUUznXFsdOEiX2gvI2/mQ8Gq8kLhZMElZ8 za/2fWBAWveojxB7kqgbL7GmhzGw57T0lYLvk8SBlm/HgiMY0NATVr7xb5II z45epR7FwIUzc+vW8k0RvOFBozOfGTA/y/pZKjJF2D7xKkmIZYC/fXxPs/gU 0XHt/ruLCQxU5V3KiZeaImL3nz9VnMKAwrMTNabyU4SQmKbE3W8MfL+ZcVZe cYpwnj/yUyqTgfiz23oEVKcIzWrxKO88BtZJLBsrODdFjJoNzp+uYIAro3m5 5N0pQs7namZ/DwN1VIsz9NQpIvi2sZ9/PwMeVS1d+TlTxIK+hpXKEANHkk5a BhVPEZSNO0VimAxkO2+/q9Y0RRz6T3zYaJiBm5c+zEp0TRERIwJFS8cY2HRy uefvwSniTsbErVtTDAQKTQXGTk4R3e8HVDdOM6D3y3KD+58pQsWNsr7pFwMC va2fz3N9J+KvFH/3mGGgtFhNbh/fd0JEK61afo6BsKQTuVPLvhMP9kRFMOcZ eFAz1lFBYtrqwPsh3EycYwb9/EDi9MF7W+d4mRCUYO9RI7F4hfXc16VMMA+/ 1l1P4qcJRi2XBJgoMzhyc5L/O2HoeNi9VJgJDz/fL+9J/HvZv14fcSbG5/ZI cJZ+J44oeAaK7WOiucd5WQgZT7ul2MEweSZKzj/hsyPx3ZdJHZIKTGR3+P6n TuJERuc6GUUmIlo+Lvxe8p1QF7bNT1Bi4v2ZuLlGEjMUF5vtPs6EV2PazBcS SwTu+nRQjYm7teU/jEicS5So5KozYa7ROLmbxEajRvRjWkycrewcX0Li6TXj T4t1mPBv9Rky5/1O+Kt4bDupx8Su/I2m2gtThKzt2uqqs0zURKW3KpD1rX6X eEPbgAmrFxq6W6amiEVT7V/PmTARbnL3+F/qFBEufvN0xwUmDqnw5TF6poij 6txTJpeYaN0eJt/UOkU4fNwpb2nFxNqZim2xFVMEU8ct186WCe+36wQN46eI 2vjtlX4eTFxrLe5OvTNFXGsvvCb8lIn/8g31w25METyL9PmDnjHxMWq03vvy FKF03kUn1JeJbvvVxZcMpoiUJS0t8cFM6Ahf/7L88BQRaPVosDKeCaMCofvs mUnigkTjDHcLE0v0By58uD1JCIrZZ+S1MfFz8paPovUkUbxy9Z17nUxQ/eay +i5MEtJLTdnsPiYqKsVWSmpOEpwfzPZGNhnvUf3qaKlJwqN6/lvYPHk/Mjwa JMo5hHzZp9tG3CzYz0rdDsjkEKxC1Z3CPCyUHK9cwRvLIbTTfSI9l7LwpmHZ mXEfDrH645rXNqtYkGIHtuTpcYhYBznbwztYOLH+S6dx7wRhcrtp+w9ZFr5a aDjX1U8Qy284MBJ3s8AVOyqmTEwQ9pdyL0geYKFbfo/ptsgJQsrkomi3Agu7 HzbPvn8zQbTrc7W+OcJCYrFDqODTCeKopprWEmUWzP9XcZXHU/U+YUpRWbIk 0YIiRGjXNpabJBWSJUJSSSSV8pUtpT1bokgLQiVJJRKDhIqyFSFF995z7nbu vfai/M7vz/m8c2bmeeZ53zmzvfT70EEKKQZnapUlARXJ7pGH3Ci8B1erwzYR sLrr7/zvthQ6rjWOXGFDQIC/1xN72pZa2WJG2RIw28u5tHIrhcXGIUO522h8 O7e9M9lG4SEDtWd77QnwtWE039tO4acFnnpfdhHwyXQZJ9qBwmh1SWacK82P rv6QyJHC5bOy79q4E6CloSm514nCm9O5qm+8CTghJT/HwoVCn6GQKVmHCZjb zrGR3EPh0IdrfUfPEBARfj/vjB+F3TO++I2fJeCkxBunb4corLabK7xwno5/ 7quE6WEKEz49GrtzhQDHqzPcfgZSeFKh/4xBHAEWM3WnrAmicI+9mUxxAgGr ks2fxR+lkJEYHWdxnYCVau57iGAKDVrqVBpv0Plvh0yD4xTOVFZId71JgKxm wsuUExSO7HTWYqYRkMd9vVzyHIU9yRm5QRkEPGSat2IyhTVfmEZjdwko6qk9 FvmAwkeqhi/OZxLwosNOaUMxhYkux9cqPaD5a2l5NlZLoec3yc36jwhoru0R hZJ0PepbGl/kE9BT6Zuw+jeFS9wTdpo/JeDXa67x8DR6fnXP93Z5QYCoYPjI 8SVCTPq57r/YCgI0UuUFgUeEWEuEPO5toft9cCPHZ1CI+XrlpoFfCCgw8alJ mCTC64ekSkbbCXhjpKMimi5Cb15SjcJ3AkoWP35eoCFCa8NO2/QfdH2LjkyW p/VuFKjVrNtHQL2W6c5AQxH+oZ5+30AQ0KTxqn/JBhH+NB7Z955DwDe1MMsr m0RYd3Qj14lP6/nL/CWS20RY8Cz26E+KgNdmrlvn7BRhcn/D8GExAYZ3Eg+b uonQeJijkDZGAGl8ip8YLELV1aYpOv8IcE0ulH10SoTjp0LnPpMgAUc5htUR Ivzwe6p+/RQScqo8Avsv0fPz70LLYQUS/HZaUo6ZIrwp5XnCcREJPSflRMqt Ivy3b/bKZl0SAs4rn5b7Rvu/bRraoU/CyI05U6V/iNAkxurUtqUkyL7UmfuH K8KU3vHVDSYkXK9ZkjsgovObF4/aLidhTpvpMsGwCOsn9MJs1pCwZmCDzc9J 9Pzz6ltbt5aE+kmM1m/0PE6uSB/btIEEKyVbz1Z5Mf6Zt+tNDZBgeNxWNYee z94R8hFWliT8Gn1Jhs0SY2133YZqBgkPIrXKdqjR7+/6M//MN5OwV+ratUUa Yhz5MxC10Y6ETwq+yz5pitFj9xPz8u0kXLnxWSproRirSw9IrncgwUZjXfsp XTHGhX6LMXOm+dJVCtcyFKPucEXsCm8SijZUvjuxWozO4ktXDE6QcPXwXDeN 7WJ8Y29l9/AkCdbiC0tE9mLULhyX1fuPhPGTA39r6HlPHQmK04kkISTmQ+YR NzE6fdLbkR1NgonMqhArDzG+NupTWHiWBN61+5vVvMQYy3dK1LxIgtetUH6V rxi5W+Ud714mQWMBsyLloBjtH9cpzb9GwrfsHYmH6fe9ePqZ1tvxJKQYlO0z DxTjXP+1yRpJJGTOqbq/kLZj3g84pSWTcEaHUeRA+5N6T2bNSSXB17SuOoqO 94JYkKp6m4T5Wxp/de0Vo/rmby437pAw4WQ/OI2uJzonSU3lPgm93q1Sa+h6 7fZPSVPMISEr9JtOsrMYmX3c27KFJCzIYx202ypG5Z6XmZNqSFCW/sd7Q/8f xclGRLyqpfl62vj1iakYp69juAa8J2GSa0bVnaX0PLzZIvf1EwmsvPWp0Xpi jKy9RV5upvE7yMYE69D9H/R+C20kvP/dFeCjLcZ+B2How28kvLY9bcmg/8+O RBfv9OwmYemArdHKOTRfBRFLlX+QkJ6urqarKsYD3xnT6ntJmM3gTpqtLMbe GbLMcCYJTn4ci3E5Wg9rWytMCRIEz82HxqXE2OGXdovNISFhIjXv75gIm97p 7bAX0npIsVaY4IjQblCoP6WfBJ++jOqJn7SetV9JvR4kYdBoKESiQ4QYten1 wj8kGL/L6paspe+vmY/OiBQHbg5IPJKi79fVJ+ljGeoc+M++jDF9twhlun2+ Os7jgMptpdHpDiI8N93gmbQmB54Qhx7PsBHh6YMlB4J1OMCMVFOSWyXC4RtR Frp6HIj8EPROzkiEx2qs53YZcEBNtS70/++Nv9aXZoYJB+yfhPxQUBIhe8ft /N/LOMAfbUiaOU2EPpH7LhSs5MB5xiJrRQkR9uQb+Oxbw4FdS0iVLI4Q3brE 69XWceDPvYH5Dc1CtLkhn8fbxIFTp7Q2Hz0mxCkRZ5zMgjmwrbmDkBgS4Asx /zce54CZ6dBIZY8AfQ+43rU+yQGdREWZM/UCrNlhzN15mgM/7W31JG8L8Jz2 96gjsRzwaSrzk7QSoFT9msdZtzhgGSNY1pzKx0nKIkn5ag5sUk73PsTgYdEF 99zkGg4480N+LTPmoc94rZ1GHQe83tkfGJ/Dw2pWRqpeAwfiT00NiBdyMaZk q5HVVw40dQWfepnGRUnPXNdQLgcO7Lj2xWkGFyUeej7tU+KC3Re91qP0Pl/L bz9ydxYXviVe27aH3vevmjgs9VDjwq3t/XVbukmcXWL15Ms8LpTVlb3RLiFx aZ3e43o9Lix7vT2nLYhED1Z/TsFGLvj4jf8JGCTo/S7gwGELLmh7S2/rZxFI BrB09BhceOWidPdUO4HHB9uz72/hgvxmPauY1wRenlyemezEhRc6TldSowks 1bpwJ8yfC+N9jzWqZQmM3C/huTqQCw87iwM3/2Mj4+F/8waDuODcUoUNQjY2 mQTcDgzhQmZV+772FjamnGC5G4TS+Er7XnrUsNGjxFODCOPCaKFAuu8lG7XH 2zuzIrhwN2/U7WAuG0lwSPOO5oLlvcn5/JtsLDj7wW3eWS7Ihl/L/ZjExhN1 VnM6Y7ng3V4/0Z3AxrUzyjtSLnLhwTIpVyqOjRPbV93ceYULE9egcOIqG2uS nrrMjOOCLSdMRvEKGy9/1ZvdmMCFx4xib+1LbFT11EixTuGCzZih4qZYNnbf T941+RYXMpz9DjmfZWMmS25WZToXyGdZVQfPsOn5KZFsdp8LV/zUj12OoPGH sxIN87nQ+0W69XMIG6dXejpwCriwyNRqSe9xmo/JHTNznnEh/Grk2f5gNrpf +RC/4BUXNK2Gls86wsZjaU+vKVVz4XhhX/LuA2x8NZ52obqGCwz3WeITvmwc 9zx/5lgdF5Sm2myL92GjZVXwae0PXGgvDHv40JuNFxbuCWlp4EKB+5MpNZ5s bIi1CYr5TOtl6s+9PR5sVCKXH1rWwgWPZ0oVo7vZ6GK7YF9fG20PdM5jurPx dv70PUntXEjRaoscpuP3yg87W3Zy4e2Oxh8y/mzUDe617+/mAhVRa65B11+4 soTh2MeFkM6SSeZRbHxXsd9QScAF6+sZ5y+l0/i1HHSrhVw4WZVCpGey0f7s es1j/VwoFsbbFDxkY+dmZZWWES7o2MVMb33FRqqpcixxEg+mTjkYN7eNjWq/ ND4qqvGg/qRJylNab3s2Sb+rUufBQLb+SJUygZm5/RXB83iwtlXbtU2dQMOA 90XN2jx4bDxL/bcegRZDJ9MSjXiQudykMWkzgf7SLYcUrXjwQOmB7+kLBD49 VL6vahMP4gqunwqNJ3DwY96eYBseBNjGXA5JJTAqIcqheRsPFsd4FQblEpg8 x8gs0ZUHeeI54/vqCPx2Wm25hTsPrlyTUdj7mcD5PZONxHt44K8/ouVJ36e8 zE5Nh3080N/bttmVILB8yUUZxSM8yGqKu24nTeKqttmNSUd5YFJz27ZSnsTC 8NxEleM8KH71SHKFKon6OqudU0J4YPa4pCR3HomZjbXqaqE8qLxTG6ShQ+Lc k84/boXxoEN1aJuJAYk35rOzNCJ4sLr10NmZhiTK14X4ZUTxID6+p0RkROLF oClGC2J4MLF1J9VkTKKk2g3xvXM88JWpX/jMlMSwykXF2hd40FKz3i1xOYmB igzQvUrj3aBb47CaRMfnMQ5GKTywNv59q2UjiR/dlVSf3qTx8AI/F5mTyJDK 7DRJ54FSXp/UdUsSV++q2rfiHg+4mg1BO63pekcmQtY94sExpbub2raRmHI3 fm15Pg/aPimffrGDRAWbBRMbn/LA/MrFwmQHEifd2njR8gUP5kod09i1i0Ri bUTalgoeVA0xxF88SPT+Jev1sZIHykWlusWeJHZeub1w21se/HdkqUeKN4k7 VxiSn97xgG+QlXjSh8SG7rJ8+3oeOBOz65x9SbSO3Rrc8oHmO+vq+KoDJKJR 10qnRpq/C4l+z2h7zVf/P18+80C1PHPNmv0kFkX+qXBp4YHUwHMZ3EfiksWX z35r48GY3ruOTXT87M9zbNzbecD0/JrXQOdP1TRr9uzmQe6HUZvOPSSGV5/6 tZ/Ng5DMDZeGXEgc8pfOI0geOHZsdwt3JvGIcmrAIR4PNsh760+m8e71LR4K EPFAJyzm/UxHut6pQ9In/tD3waFumqEdiZUF5xqGxnnw6ELHtyJbEs1cVBJP TfAgqZzz0GwLiYZ5y9VPS/HBV1/WdjPNv6LtMcMYeT4oSjpc9qH7da9KYcZa RT70/2DEvaf7aWL2hCNW5kNFxZokkw00H4W29Q9V+ZCZYZiSuo7E7Xpkzt45 fDgbrpn2z4zE73djY+fM5cNOd5U7+9eQGDB7oW/zfD7or5XJbFhF4lhcpeUl LT54zHBnLKX1dHmqp5bFIj4oBdfK+dL6mxM5NjGqy4efX03bby0hMW/oZk+h Ph/y1mfc+7yYxDpma7qmMR+0ZU4sX6dJotTbLaoSa/mw7K6Wm5IiifQuPPhq PR/+SF3TtpEjUbvoXGsQ8OGd/ygvYhqJ5vcx4QeDD1tXfY7kSJIYEbVyBu7g g3tjeHZlP4HD67QkIvfzIWysXXikjcDY5xU9K/34YLfXqjS7iUCVJR7lAn8+ TKsriOlsIDA783f6g0A+vDVUt5v5nsDl6qlhe47y4XJS7CzrdwRWJ65wm3Wc D7anLAZLKwl0nNayujGED88Ph072KCPw6Kjs0PrTfMh2YmvdKyRwIuhR62AE HwQ280wtHxMYR2wuyo/mQ8AGJ3PmAwLzv8YEzT3PBxvdak+9dAI5L0Y5Ywl8 +DWSkV4YS2C3UVPrf2/4kL5RLr7ZmMDCO7CI6SkAlUs3EmYpsnEgbEB6714B XCYud6yVY+Mql1ze930CmGQdrek9jY2hy90/7z4ggKPZIX6xU9hYpqDwvN1P AOSkw4WPJNn4j1ed4nRYAO2S4x1LJlhoXn8yrDmQPt8a/IT1l4Vnsw08tx8V APsG+8zdcRbWRvdYfDwmAOYPd2e3MRbK7EnSsQkRgIxBs4HyHxZuNbOe9u6U AIjj1hMNoyxsEj9pqggXwKC0aZ75MAu7fCK8is4LQMNk6p/FYhbOB1Mr40sC UA07/alXyEJvDZZu/hUBrKoRZaZTLGS32lEPEgRg6Nq1VYHPQhFjbsStNAEw ogszhtksXK7V5K2aIQCHDzrHClksPPn3LOP6XQEEqqRb+zNZOPaSN+NatgC8 82KF33tZOHVxWVp0gQCONe22eNfNwi2TgyL/FgogSr1pVlQXC6/+0PYJey6A cN9N3DWdLPxU9nXTyEsBpBS8rujvYKHizcv6J0oEEDdqfD2/nYVOJzbKiV8L 4Krlg4MHvrIwxb5fFFgugI6qlalyrSz8ZpjTxkUBhN57HDf+noVzp+0uOVhN 44nSOs+rZKEXS+42s0YA3/ekRnS+YmFmVVXU3joBxKyXC3lfwMLFYfqb3Rto vn+P7su9zcJlvNEv278KIPtEk8W+UBaG1OWXfuyg8e+0NnMMYmFJlneGTZcA /pm+MbE4wMINHvW+lj8F4CzMXbDAiYU2jakDK7kCmOYf9bfTmIWXH25tL+IL oNJmaPC9LgsbYydeGwtp/8WH+SXzWOi48WCM/qAAkOnclTKDhXuerlKc908A Xl5LSx0JJhbvHpVvkqCAVXzufPh3JspPfS17djIFPvJdO3NamXjw2enpq6ZS ULbfVKvpPRMrPTbIcGQo2Fx+gfqNTFSTmZhyewYFNSo9ZQuLmRj8vHLyDnkK ZANWXNqWz8QPnjGSkxQpYK6e0j1wi4na0xkTL5QpiFOZl1ASzcSwl1P+HlSl QF+8ghFxkImt3nV/1OdQUNdoN2qxnYnnXtkOR8+nYPqFcO+PGkxk+zoI7PQp uPC7y6Sn+BdunKnMm1hCgd7XAWZmxi9MLWsji5ZS8KJoxq2D536hjZIrU20F BeOH10mKHX7hI/TsYm6kIKYnrXmyoA+PqAe8D3ei4Nxbt2P6C/uw9p1RnbEL BbPuBetS0/pwQbCwps+NgpzwS51Fol4Mnfus+oYHBS5u9+NOtfdiU92xShsv CkZXllqur+hFveMrKsb20vUpNQ9LPOjFM/OHywp8KSgyqz6kEtuLy0L+e6Xi T4GvyhT2U6teHPl8/kF+FM1P5Mz2eRt/YnTs/TPdj2j+8rYfG9jfjXKnpG33 PqHPz67wp/S6Mc0vUIn9lAIZb3UfDq8Ln281yxK+oEBJje3wI7gL2YrNNZOQ gpmw/ovP4U7cekdCRr+VgoZlv9UXeXag6iuvuJAxCi6qH8/JsWrDrLx3zn/+ UlBfYvD5n2QbmqQtWRAlIQRXl74R58pW3BIx8vTiFCGsSHbYIr2hFcOt4pvT FYSQL7bK9t7Vgn2fK1SqFwpBRmtz+p3UJgyqWvTdWlcIHecX72Z7NeF40eUH H/WEICuQnrNUrwlnpTiv+mIkhIvBiUangz+jjQflQq6m891PXlT6vBGfkPPS 5e1oWyJdaeWaD3gxI9a7Z7sQSoYlij6VvUdfR4FOgYMQogUHHPzgPZpL7+JF ONHxfjWIJN/W49w3bwq3uQhBr3NZQrp1PY4eXXRy3m4hhDbdNF75oQ5bda6u E3gIwdswtkjmvzos6ByQKPcSQp5ppWnL0jq8HO9ee9VHCH6rxgrTmbV4gPH2 isd+IRSuW2WyP60WLX8bOBj6CaHePPjpUvta/O3zp+tjoBB+2hJPqsreod+q W+Lp/wlB06v1EZFUgwyexKvO00Kw95U3eGZTgwvu+YU/ihSC2qEtD8P+vcWv 09ZI254Tws3jmCvn/xY3ff8691I8jefC4+zlFtWombSxzzVJCORV9sK/w1U4 bp2Tq3eD9k/UyqrNr8IXhSHL6tNo/m+n3ndTq8KE/d9HUjOEILrXornwUyUe Vt9UfvCeEGbmyN3jn61E7XMqNtI5NH5v6Q0TPYj/1oTLtecJock/Yl2SLeI3 wa+WnMdCMDkxYKZTXIEvMrfePFlAx5OesrJ7WwUmuDzfY/2M5uOx827RggoM kNVYqPqCjmefFyXVX442VTEkq5juz+DvbLWacpwwcDwe+0YI5uszhOZ+5dj5 o3TNLhRCQi+lsmttORYna/1bVE37x5qvPSRbjkf+iS7W1NH+jb/OJRa+we7m +DuTW2n+9hio942WYcn5kX2tX2h+J4XD8IcyTF7npZ/VQefPafSdnlGGWx8s fWHZQ8ejjj5dZlGGr0Mb35/h0HiiXjHOXnqNKUYr4x34tL1wmn+q+2sM7rvt pCWk+1e7O/6x0WvUswv4UTlI16fw71trcylKSbZlJ4zQ/DzfMUFkleLPl+v8 vf/Q+V3vLxoPKcU3/lnGJn+FcG+sf8tMm1JMXTBjaGKC/v4uI2iRein+D0lo QnE= "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.1279160762741534`, 0.9999998782112116}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.1279160762741534`, 0.9999998782112116}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy 7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/ Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF 34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2 s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0 vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5 PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+ VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4 nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW 8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5 KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7 Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY 56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7 fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6 kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM 9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC 6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f 8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u 2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961 Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9 ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr 9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/ bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/ xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY 9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33 u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9 Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN 3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/ 7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk +AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb 3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4 yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH 9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k 988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P 81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ 1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1 yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4 1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024 iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5 ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6 nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ 36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF /15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+ wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv 33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun 3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk 0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0 eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi 1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6 NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP 5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC 2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY 4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/ wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2 re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21 vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/ ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwUWHc8le8bpnwlSWhRkkpSSUtpyCVJdiorSkgaSpJEw0qSKAmpkJCsrOz1 2nsce6+zzUNpiPi9v7/O5/o8976f97rv52yyvH32yiIuLq4P/3Fx/f9X8wq7 qWjYQMltfep815oYgufEOrsBMXlwTTj412rGEPs/hoR+E1MFV9GhzQUuMYRW fUdamJg+iqyKTkYwYwgjq98FAWJWcEts9LXO/EL07X52wk/MAW7KE+t+GMQR gR9Fi7aa3gOXSFoi/XkcobkiXrEw1BFc9HtK7QVxROZE3QHORmdwef+zyNka T7z8KiJzRtoFRU0Cca4/44mTG6Kjh6+6wi2acuTO9gTCpeK9ULG+G9wcA+ss LyYQ8gdl/c4Hu8NtnfjkyfIEYsWEQ+1WBQ+4jQ+4K8wkECOfC5Z+7yAxEbVy +65Eovwir3qh0xMUvb76eZ1FIhGx+rSXj5gn3Cx3KggEJRIP69+WGeZ6gku3 yKa5NJEwfDq4aIvpUxRJa/x8H5tI7D22/Thn9incFppcLvslEgI/77jmhXpB ucuET9Y+kWAl5hY8O/YMymm019OGiUSJ1eK5c/3PwOV7c33B0UTCqTXQaWzj c7gpucjp/pdInPPty8wueg6uNUuy14wkEHKq0j89LXzgNvXq+EBDAkH/lnVn Q9QLcEV90rcLSSDOvOm+oSv9ElxLyh8E7EwgZLW2xK2rfImiQR0eU6EEgm/x TRbz6isoZ7f7bSHrdylnPpXQ94fyTXZEemE8sXq7v5xx8GsoU5ZVtp+JJxY9 TdcpZL6GW1yg3seD8cTkYOdNKYUAcD3Z0H11fTxRG7IpYbIjAMryu8f/0OOI 7OmTNYYyb+AmkO1YXB1HxOjdGM53IjFTmcsniex34ku+LdVvwFVc/fzsmzjC ne/btudigVB+d3bleqc4Ysep195pdoEo0trq+84kjmh+enu4pzIQXPIqjzIF 44iHZTqa/20MAtf5vy5s9VhCarFsgpxjENxc09zXPflC1B3nFzCuD4JyzA1P 7YIY4p4b+6a7VDDc6jc/c/n9maj4Fy3X2hyMIrE3vlSbaOK24pNX/7a/Bddx rVerYqII0YcWk9Lub6F8bXGA2mAkcf3PhjTn3SHgyrj7Nl7/EyHwI/jARt93 cAuLVWU8CCUy9t4LVqe9A9eYqKYG5z1hZnfu950j7+F26Pnpr5ffEcnjK3LK 2O/B1Xzd5J52MHGW7a1442QouHh32v0n4U/MSl8NexNK4piDo81SfkT0lZPz +T9IrLb21/vlPsRPKnfRisgwcDl3Lts58IQI3zQoeXiGxKtz1vyodCPUzAvd LfXCwXVh/wlHi4cEJzyU+uILib2njXn33yNC+h6cyJgnsZtNn+xSW+K4+Pno foOP4FKOsgjhO0GMmCj8x/eVxBHnY1mLrSEx5nz5664IcL29X8NF98Dt6we3 cvVGwI0r7OSStmCIWCXHfj4UCa6s3U986mNh/UTi/BGrSBT1H7006hyPvEi/ pY2vIqG8WP2otnQirIZsbvxhkvic+Y/lrsnIMJOR1QqKQpFjVaq66Dfwu7zt HSiKgqRPw0bniW8wC+P1cxiLAldYq19cWTrS8u8dWyoajYiU7tmu9xng7aWP h52IhnnZ4HX+O5kwmT0Xvu92NJQ7mB1HTmUheV2pbuX7aHCNjp202ZANniP7 FkwrSKz3iUYczIHx+U/Jk1PRKOoMf973MhecHn3+yHWfMSjjaraLkgcvM74r 5058hrnzpf2PhQvw7fLtdZmBnxEhKtknHkhA0PbY04cKMdBL1BNN0i5BuUeX Ce/jLxAaa7IZP1OJfYnCvOJ88ZhcPbZ9IJGCarly8/o98TB+0oY/sxSYpzrl uZyPx5/JQgNhrSb4ZQ7YDcXHI6L2tfuJ4Sawi772xOgk4Ka7QteXrS0Ib9NI 3fsmEaFjHt524W04YPxvGS0vEZ3nb4Y/H29DXXeKdSA9EdcqDdIjFdsxM7BW /PeBr5CJlBls7W6H/gjDK7/zK8aMGhQOr+3E6M13Q7e4k3ChPEvnrHUnPDja iht3JCFw36fLNhmdSJn+NuX+MAneyx1ehZ3rwqn7V7X3Ryeh98HFz5mRXeif WfeFXpcEY7ZaXuNUFxweNXAH/0xCtsGeJrZyN5YtuF84JZGMkBuStR+fdiPk upGZrFoyDpmE81UWdUOqVdZc2DYZdRriahOz3VCK67jcU5AM0e2ixYr2PciJ C87IkkuBFWtFVpdZL8bPjeVrNaRA1GohcuWhfsgv7TimRE0B5dzjwSN3+/Gg sLhwzy9S/sTsBsukfizZ/rZotUQq/Df/DkmRGsCm+eNlA7dS4WR3vzKGbxDX vsmebHZPxZFrB62PSA8i6drairKgVPCZ/+RpODGIoy1jlXEFqUg8fVflp8sg PLw71EObUnHz1L4h79BBVB0rqX7JSIUyplzFcwch+CNR032G1FdIkUjpGIRB 7Nvau8vT0Cl3u+DEz0GEXvTQtt6UBllX9R0nBYdAFblVb3wgDVbGUTbFG4cg U2Wkq6WRBre984nH9g7h9mOVxmMX0xDDf34iR2UIz8+ONy/5mgb522U/4r2H UDCn0v1B+xu0D32Y911FxdYzE+zSF+nwqVFfdUaWhnWup45c/ZQOgXKuPHXQ IPQ14gV/Vjqk7P8Z2p2l4S/fObkz1HR01mZWuTrTQCnKutt/KAOHXLcnhlfS 8GCP+/wfRgYmGYJ3ey/Tcdus+3TobAaKAkZ3Wt2nw8p3/ycIZyIaVfRRHzpO sxknvBQzSf52N5xNpUMqQvP5yjfkufb04XVcDIg1RHVnxmbCcYby/dNKBgTn 5naaFGZCPuZrwvZtDMwYJTdEDGeCi+vqhsO6DEw85ZNUXchEfuKJ9iILBujf LO6wVmUh+rzkK/V7DHQN5Zb47MiCG++/UxRvBhpWrFolp5wF429dXMahDJQe u3WlySALVW1GFo/jGci2qch0sMlCgIgMf0EmA1GVTufzgrOww7fKVLGRASfX vnD18SzIuC5dOMLFxGZOzPbL77Nx6MqLk4csmVi7geshb0o2pj+ZTty3ZUJA 63xdXHk2yXc732Y9YOJ3zLLbk5PZUDGuYx98w0SdmV3641M5UNZa7nugjIkS 3+r/Nl3MAZ93n/w9ChNZuZuNyuxzUFX2tS+9l4nINW0z/OE5MFfS3S3/k4m3 qnJaSd9ysOahROddbhZ87Z+FnqnOQWfWhNu35Sx4RAyOT/fnIH2v4rPjYizc bziMkOkcRFQGmRVJsiAol8Go5suFSJSADLGNhWi/Pb6z4rkwd3kyVSDHQpP2 ti6zk7n4K3/HM0+RhZ21q+5uDc6FYaR2fKYxCwOVnJg0hTxMPlr8K9GfBcdt Njp0rTwoGj8gEt6yIPCM+WO1eR5C9095x4ezcFitT9nZOw+qI/3rYxNZeFNW 042uPEQb5R6PqmJhh5Sa+53xPEzs27ssspGFoifF26K486EuGNsa0c7CuEq2 A++OfPwpC7oaTmfBM3L/+kNK5HmEwN6wURbWLUouvn42H4EPn/z98J2FFIsd 1z5Y5+O74d/S9zMsnCr+LFj/gNT/6/732gIL/ZKbMuZf5kM26tymwsVsOLiF mu6Jyoe51lb1lXxsfMKb2De1+ej8UBVUIMTGbIGbiol4ARoUV+wV2cxGcq6p I6ugAPEuoVfzVNlQW9chLtZcgAlp25dCGmz0Op8t1WQW4GAjMq7osLH0sIZQ kmAhEjfSFgkZsnE562C8w6VChBRtD7e6ysbfNWl6MXcLMXhttizHhg1/x12/ O54Vgke4flTQjo2CA1KqR1MK4W1hdzjHiQ39oI8jN8sK0blUxVzwMRsj0+te h3cWQiBt5bPL7my46QcrUMYKoWzC+Jr9lI216cL93NwEPBdltS73YeOC76w+ fQ0B3/eRkxF+bERaMWorZAko7jdene7PhuzqnJwXxqS8ValZdzAbKo7mQatT CMhUvpuSjmLjYKhRTODuIhj6qq0tymPjvHfd0NMjReDZOne0pZCNRw7HN9w/ WYTIglRzZjEbxdo7A8+bFmFiQjxeoIoN7X/z7hLPihB65ofi+VY2bIfvFqwI KILsSKzFzQ42Xrex/3CFFYHqYebl2s1GevFF+e9fiuC1flVCQB8b7V+bb9PS iiCZXt34eZCNmXenEloLitCp7TqdTWND3CufWV5VBE+GvFgdkw0l+72bs1qK 4BIcqCIzzIaFWczF2P4iTL69phE+woan5vp374aLoPdOUW/VGBsxB/1bfaaL kPheyMhnnI0xwQdat/iL8Sgs28pxkg1HQufwvoPFmIjkc9P9xca7hBKHLceL oRfd61X2m438twopq7SLkfk5xe/IDBvcdpu2/bYohkOs8QfpOTZ8JX+uyvcr xtzX2Mx57mEkCdzQ+xpC6ic/KnBYPIymP/0vwqOKkZuiVzbCM4w1TVWL3HOK 4fTtT1P7kmEcLjimZF9WjOb0uk7tpcO4EJfmfLmxGPKZEQMl/MP45B46eZJR DN4c9fGk5cMouyUsqzBZDMNc8WmpFcNgnve6KjNbjPy8yb/vhYaxVG02Uoy3 BOIFZdzCIsOQ3WfXzy9cArvCEL5nK4ehK8EQm1tfgqTR6U1hJL7Db2IwLl2C XpPcvwuk/cBfDf79e0swX+3aYsk3jEzqibpGxRJIHT6ZWL5oGO3q7lN+p0rA 55CXq/KPjV9JhWu0z5agM2lvNUHWS+HhYYuqqyVIlJJg5pD1z165+1dRQAn0 hH5vTGpnI0d1nWQauwQPWLFvguPJ+sZM3g0MLEUV86NMCPl99QrIvTv7sRQT K6iruU6xMWdvUygUXwrZw1KLrymzcQxMPj+iFF4vYvsU9rNR2NET9nSkFOp7 UgM6RNkg+CorHZXLUONcMreG5JdBW55xea0yzEXyjLj0scDVdlzkh0EZjtSp dTBJPlL+lH/htk0ZfCRqUzOrWTBf8td9l2MZMk8t/yhRyoLbLYUvo25l+GV3 2tcrn+Szw2lTV4PLoF/aYm2YTNr/yFkj/akMD8ZW6xfGkvZ5dynSE0j91cbH pSNZkLx5wyIyswz2F9QDE0NZON78xcu8uAy8iUlHu0h+tTzESJCoK4PX7Cra f29Ivg/f3NTbXgYRrYc++16yUHIjbP35sTIojZzqeuHJwrdhGxuzX2Xg2WL0 bJkbyffXjuRd5ipHr6n1gRcPWXhq3WFiu6oc4fWer33sWVC3FH7/RLEcv1KK NZ6bk/w9NDDsrUbKD1N+810g+do86fBLvXKUbR787G1E8r2ZVleIVTlsA+e5 vXVZaDz/VDTJtxyt94/mepHzo6jz3LVvweVISdG8xnuI5GejzdnZEeUIGT6/ xms/CwEGhFFpejk0TZ3sn+5g4Umr35eqwnKIBj6T/E+aBYdzF37XV5Vjvi64 wXMTC4ZnZoI7e8sRq5Sxw1OU5HdKJbOPWQ6H+2Wdi1excOh08EHaZDnsUlq8 nqxgQabByov9txziMawVK5axIKazv32cpwIS3e9vmQqwwF/HLf1DsAL7BHVr v5Dz868m5d4f0QrsUeHePi3IQq/6rdWLd1VALf4q3VeYhfrKo1f4FCqg1L9O pUuEhUI1/ozlxyugItLwcSvp/6PqF31RgwqcfSBvWriG7Jfy0JtdjyvwSJO7 mbOehXNEMm3fswo4uaTvVtzAgqqSy/5Dr8nztKt+3hIsbFVc36LyuQLB6xrU N5H5shUMRIzrK5Ay8p44S9ajK3OL5cWOCmRL6G74SM7vmgPfUy2HKlB0lvvh qAwLCftfnbn1swKZuVcPeu5kITTt4if7hQqUTawLpMiS+8Je2an7SyvRu7lh Spyc97a7q/09NlSC7SP/NWMPC5eS3g4+20biQhb/on0s6O2y3uO3txIT399f 0yX7dTxR3i3gaCUWbdOteC/Pwr6diylvT5LYlFuKdYCFLfFNG8NOV2J+pzBf jDILq7ZH3I48Xwk3J/aTUC0WfkofW/H1ViUeCL99+NyCBSWqSqWPUyWUD8xk 3bzFgleYuuu1J5WYNjadPu3MwppV+pwt70j9iI231rxm4SC3TeP7skoE7o41 iypiwakn5JX3+irk6+QcL9jIRlFw+Clr6So8urPeJWInG3xnoxdO7K3CoaDH uU8USL6uSr69oFaFot7j+zVPs0F9krGt7wwpzxV9e5cpGzuQN5B7oQrqUryJ QuR8zs2oOO1oX4VqmxqpDhc2Ft2pW6L/uAohr2Qtcsl5qinbTOz1rsLFby/D wsh5GcDquL/iTRWUu88Uscl52RPZt3s8jMRdV04GZrIhZUZj1cSSuNO5BtVs 3BQb/hj7rQrGHX6nR3tI/no1vcKqugpGbRnnVcj5oKr1t/J4axXOtlb3j5P8 68vL5bZxoAqXWvouv5MexobHyya7p0nc9J/tpNYwlG5sppyRrMbjegOP8OBh uKrq+eN+NaLLf8b/3TmCRTMJQuu31qDhzZ5FbmdHsb5e5Qd214A16bnv/OVR yH/qarM6XIMlul2W+xxGcUVjyYcknRoc5vMopQeNouqd5VYVxxp8etTiqdE1 ildHxI5cr6yByxXHJSvNxxArmCL+sqkGsSU1CmN2Yyiiqi2k9dSgcOPGa+Xu Y/ju41A2x6nBVFdl1f2oMSy7tOzLpr814FYQn9FLH4PU/sjnajy12Blot31H +RgMexp1/UVrcUFXzKeXOYbbydZ7MzbX4l7CrdyM32PwfvJvZbdsLWAjYSDM O44Io8Bf8wdr8XJZxRQhMo6cnTu7thyvRV3CrZe2G8ch/sjrctb1WvDvEuDe fnYcB/Q2qPXerYVe/bewDrNx6Eqly3C71CLslukRL5txuNYNjWsG1GJfUvxd muc4qOLHnPpza2GzW4MZljWO2ckWk8XltShpnPTQLhvHqvIbx2Qaa7HcLmTj LGUcardCFtnTapGQwjI2HhlHXMEP3/8E6jC416tWZMMESl773N6xpg4Kzbuu FW+fQPeVTWdPS9bhnn0bj93BCQgInl77Tr4Om79JKdWfnsBWKmOmQKkOVufq uh9emIBS5qNeqnodkn/cvb/j+gTszOI/yV6sg7p8acozjwk833fc88zVOvi2 3tA5+GoCkbyd1o536jDtIDJC/zCB3G5bjQ8P66BqqGF2JGoCLUn/yRY9rcPK 3M+sy/ETGPMIFWS8qkPPhkV3/FInwGO0f2rp+zqku5v9zcyewMEF88xzSXXQ 1Fi7nL9yAto6RR4ns+tgIu3ruaJhApc/bDytUEKeL+aeW9U2AX+Ffta69joc LxgZ2UibwPBtUzHqvzps3VtYdWBhAlyFuYyWJfUQFtyvfJSXgzUC69LKheux avRLlvJyDlRiOzXjttZj0efXMVrrOQgdNHhkp1OPYdErnhYKHKTJZahbGtVj 6GfXrLUSB1WPVq3Wt6jHQLPu3ZsnOfgp2vJV4V49yn0PWd4/x4HA1X0PtrvW o+j6165HJhxsznittv55ParUNp/xsOBA94zewHxoPSK5BJT9bnNg9TE5YTKG xH1uWQGOHDwcF3SiptTjc+5PuZDHHAQctVVtza3H17c3YsI8OYh9Xi9UUVYP v1UKVcQzDrl/yPZlNdTjh3/g8ORzDlq3+sbFddbDbPl3/s2+HHCXaKr4jdVj B+9XHU9/DkSF4gVdf9XjhQf/7YwADuTMlvbYcTVgcv6qPzOQA5O/lXf1VzUg 8/fmFvV3HKTvO/l5vWID1IdDjJdHclDjFn1nuVoDvl755awUzcFgw2KlhdMN WEQ99+F2DAfLbUraqZcb0NIt2N8Uz4F1FPjiXzTgUp3n5eBvHDyaCm/9ENSA enWqZ2UGB28wH+H3sQF7yxHzJ4uDop78w3e+NWCq4C/bJJ+D9u3ivJcLGnD2 iDG/byEHY/cfNutXNiAjM2NnQREHYquO2BzqacDTZDvbjeUc7LF8p7CDQerv bHilV8mBWsqfxeKcBpyJ3ZnqXs3BhXkjyvKZBsRJPW9Oq+XAXjsrdGFRI1Z9 Yv6g1XPg/X7N9SmBRhyI5vi21nHwkX3vAG1NIxaWjAtVV3GQebCNu02yEUU2 I4EFZRzUeco3VOxoxMdGlmgaGc+RFbWLXh9oBD3l5FtdMv7YdxYKpsqNkA2I Wj1K5vck6WUEx6ARhfqXRKSSSflOtr2oeyOYXe3LgsNI+Z1ha290NEKaXj7v /IC8r5n7teWpjbAr3/J4DXk/PJVr3ObHGlEW4z6bdoeDlPhZBw1uCtSvH/sz eo0DFkftVRIvBT6aHxy9rTiQOBAQt1KAAsbOmWkpcw5eEDL9fWsouDmRPnXR iIMSHoc/KuIUfGsUsft7loM/GoRI7CYKFqXaTQTrcrD7Ff+u5dso0AtouLlf k+xnq8Epe1kKSsSYMnKqHISJfbLo2EuBkgEhM65I3j+zsYeKChQk+ofIJB4g v69hjxReFRIv0ZLZsY0DZ7mGGptTFEiekJIZ3kjGf1eMQdGmIMTl37ZYUTLe +WSxD0YUvPyZvE2an4MZkT6P3bcoeEBbtW3z+ARSFBUMjEMo0CT6t677NoGN /qMzcRMUTPnvOW10fAKFFq5xaT8oOCT8sotzZAJm+1eez/tDgcnr0cve8hMI bT+SXbeoCTWvY5xytk1AdIOPI2dNE8IDxCPXC04ga2KD9J/1TSgXeSCbvmQC hkWpbVybmjAb0JGpzT2BoMtd8iI7m3DjTUDt4+lxiMTL/JBHEw4G8v0c6B5H 6sP8yGOqTXBYZe3q1DoOPR29s2oaTYgILF0q3DCOV5P3U43ONWEh0EVCpXgc ciXLLMyNSf3VvbHduePkHP0odP0iaT/o8P676eMQUKi8/eBqE/qDpk9FfxlH Ap/pxic3myC45myz4qdxaHZPNLy404RDwckX2t6PYzjBwyXQsQlKHfFLawPG 4f14jVzYwyZkXChUTvQex7bT8X2f3Uh5atN9P5dxVEgq+SU9JfO9ykiydRjH f2VXxohXTSizF9iw13wc0UEzH6oCm6D6Z6O+iOE4VK/6aTW9a0Lp4/0vfmiN w4M/I54aRWJvk5kMhXHM6/Fc/y+7CbXhsW1HVozjT18kQ3OwCYM1qi9VC8fw Nvlg0DkGmZ+ecflWcj4fdK9RvTDShJE2mzne+DHck/oedWu6CT8HA25UB41h 1a+n5xxnmuBsHfMp/sUY0ivFFrvON2FyNKfzxf/n/43jlv58zfj1a1BN99YY Xiu2Cb9b3gyPR9OPd18ewx7B68WfRJrBu4gvQ+j8GBoH5uzi1zbD5dn6sSnd Mdim+kt+E2/G90+tLo+Oj2H5EylK3qZm/Kl4evfu3jEk6me7lkk349/owWs3 No1h9PdAf9ueZowceHfGmHsMmVdflWgebEbK8bmQX5xRuHUoxRBHm/FY59Jg YP8o1mSF3YpTa4bIla23m/JGoeJoOvfoQjO0A1N9NR1H8X66XUzKuxnB36sr FUdHoD5Vr28/0Iy/zcu0nmYMY6XF40MsejPYt74UloYPo58iK35hpBndfCf2 LfIehkPKC9rJn80oUXog5moyjI+3NezFlrXALZ7Nclog38fjZa+KDraA36Pc 86YGG9EjeTWCL1sw77rQH/6PCdu3p7fceNOC0E87XR+MMqGgSntYHtIC2VKj jYZdTNSE8e96FNWCm7wpl5ZnMDGld/7VcHYLhn3NBx/eZCL33xhLtbAFd5N8 3YxMmPCMd1OOKG2BJCVbcr86E6I8sVOGDS04uVLYYmQLE0pZv86V0VpQ8a54 yLiHAT4rn8SNwy0wyht3l69moFlI4r+HEy341Su2WSiLgSs3TmbunWnBAUl7 y8oABuTWdgn6zbeg9nj4oig3Bv6U3rzKXtyK65drIl1sGSix4yo6sbQVPE9/ qZhcYMB3Q6DoR8FWNIfw6eicZsCwZtudvytb8dJv13/PTzCw8X5etYFYK7Q9 zhaUKTCQRqE+EJBqRadN6C5FSQa6nuztcz7cigqlPYI7p+iI3FN+oE2pFW77 DSqsGXTc7DN+uUe1FYdlHrhEdtHBpeAGlm4rUoTLJsRK6JAeafikb9WKGLpR I98bOhz0blrvftWKIB9Xf6Y8HYIbvnDo9FYoXuEzUXhDg7Lhkz7acCvowrN9 hT402L+6VEudaIVr4biFmgcN7dyiXwb/tKJmbct1gzs0hDO9zXoF2qBbE+Z8 9zQNlI1XtHuE2/DT0f/fXzUaFp0/fqR7TRsitzxx91Ciwbp2ZnWnZBsYj649 f72LBrmUG/Ut8m24vXv/u+RlNJgPq+U1H27D0t6tGxQW0xCweUtck1IbEr1F PxX+paLMdCGYcqINhgeWbVX7TsWvwB7PRvU2/Br6F1s/TCXfx1n2DTpteP9y UtZgiAqTJYHm9WfboHyUltLbSYWvsp1unVEbOq+c4tdtpqLQWVux9kIbfI+q XMusp2IyTWZHjUUbtIWPVUhUU7F5jEe02roNPCwFqWdlVHiZFfyosCPlA3YN GuVRoXNCLqHEsw0+w6LGM7FUuDzif1f8vA3HiJWZFtFUpGQwvYpetoErSHBV zUcqVsl8tCwMaSPnKA/lfTAVvQJC63IT2+DwlnNK0ZMKQbWxJTmpbdh9a+Rz tCsVyq5VP7MyyfxUGIuXP6QiesqtKaOIlJ/oJvruUHGzfco7tbUNV05WKLhe oiJ8RYNjSlcbJNYXB7FMqKCox1sl97dheDLvx2lDKhZ5eJ1NopH1qcg8k32G Cvk8S+WvbFI/NDVZUocK62klucTxNmy3T1z+XJ2KkF3rxRO+t4F96ovN1Akq aqx/L43/TepviKw+DyrmPrb8jp0j9Z1k3hQco0KuK5nxhbsdfP9+LVc/ToW5 iG9LDG87KtzLvZtVyf55qiZHC7VjxwtLF5YW2Y/rGdYRUu0YCQu9LkzGO6L8 1XvZjnZ07c8IYl+k4pTo53jH3e0oq64vJizI+CsDJ7SPtMP757yY7XUqnKUc HGdOt0NWx6KmxomK9lmbECuDdgjTnH99ekTm13I5t9GkHX+cAjY7u5H9dT83 //lKO4qiSx9s8ybzHdjndfZhOyzntu70fEvGl7kjtsCtHToBSkamH8j+v9xc I+PVDkUZoyf7yP65XVk39uZFO8QLbycvjaKiT1FEcMGfzFffu2cwhoojq/j3 3Agm8xmOWJIdT9ZvlPts24d2NLvm7H+VRN7Xkpm7yp/Iehjf/+uSToX++6mg hJh2UKRWerwm71faneGsNYntqJpMWhrdSsUKjaEu99R2VOZrvs6kk/X/Tdlg nN+OfH2PiB4eGo4bpHzmaSax51Th1pPk9ygbW3m7ox1pen5qhwxomFscMdzd 24508e0NmldoyE57tSuV1Y7UdPO+20/J70/odsbFf+0kPzTO5pTTIF67qzxT pgMvVZMO6arR8Us5gX7NtYPknZ6BbBMG8qNHP9z37MDmPTxHbtgw4MEne87r eQeidu8KXP+IAUFKYnHUmw6Eyrmqu4QxIH0pKbz/Swd8ZbeknhhkYKxkwmA8 sQNLZLWX/Zwk+U569/K51A647Lx3JYab5OeJ5Idi+STeUSm2lORrw8epxvqU DlyVsfFouMKE+NDUisttHWBvC+x1dWSCqrqv8k53B6y2FRzc+4yJ2Fh7F7eB DlClmf7Ut+R8Efh24BW9AxekV4y+iWVC3u7HWNhwB7q3Hjp5MoeJvy37oxMn OrBz4m1IQzkTRQoOpnk/OhBeEvBbicKE14d0kZo/HZgP9jNM7mZCe2G6uvNf ByxtvDM2MpgQuXzAnbWok9zAnqzy5zARviOTw7O8E2/ZTs12PCxk5GTVYVMn Dhyx0t0nx8KDDX+e6Ep3IlTw0tfIQywoux86enFnJ3hp5wVWnmChTj0n7sGB TrS9OF3zw4gFekeuV4ZGJ671HVHLcGch/ujssTJd0l/qgc9bfVmw+3j0Z/O5 Thz02sMTHMzCnHX+5cmLnVi8W7rEMYFF7i8FyjvtO5HoJqx0qI2F7vPzvw/f 74SIgUBY7AALEQVKyeqPOuG8fcmc6AgL1ptcrY3cO9H9j9v0+TQLsk+JDdZe ndBsnsuZmWfhO3uh1eFFJ5JifoveWMpGtray7xN/0t7D7/e7V7LhkuJ2IiCo E3KZnAPnhdhQXVX8N+J9JwJed9+bXcYGvxN3WvLHTozdLM8IW8IGpef49cLo TpxWT/mJxWxciCrp6EnqxPKFp/c8/7LgsK8sfU1pJ3xu7r23fJiMT14y4nVV J4K3b9Y6S2fB+OCjFwINnchlimx6S+Zz9Ii85aIu0r75dJ1kOwuLVKJXTEx0 wtwgS0q+lIXpE1yz16Y74SoS+9epkAXGyQtM2kwnohpDKAU5LFRprCro4ulC v8aDR6dSWHh1xvNG+bouKCkdazUJY8Ht3KCBsmQXrs3uiv8YwoK9geLxvK1d cM+WcKO/YcHKKET24M4uhN9bYbj9FQuG56fXpu7pQuE+LllbHxbUTfUWyx7s Qg9nkvvbUxYOX0yciDnahQntdDMhJxZ2XOLr3nS8C/tlWnoP3GBB3MKqPFSt C/6Lv5uYXmBB8HJRylrtLoz3C3W56bLAdUU8NOBMF47k7jb6//+TtGut9t4X usC0u3VuSoq8L3aqkg72XUA/W+vZOBOh9hHLOPe7EJizpCZxgAk/h7lf1x93 YSxQWr25iQk7p/T6S95deKFlpbohk9zH3KQeaoV3oT17QPGbCxMyHm7WFVGk v8D53E47JtZ59p45HteF97c3HJ63ZGL+WaCMQnoXFKVND2icYqLsFU/75pou BL1p3zWwgonM1+bFYY1dYNv+TOBZRH6vb/ITRdu6sE9z1Y4d0wy8DxINedPd hedb98eeZjLw4q3DE8HBLkTSwzPOUhh49I5i+5zRhc4mB1eubAZsP8ia8Ix2 QZzQ1Ej6yMDZj/Q9f392wendr96ltxlQ/aQsfm+2C6FedTFZhgwciApdMsnV je67kXZXlBgQ/aLfz1jWDSVdXZ7i5QwMJJW9aNrUDa7FMTudEumgjPOM7dvW jZXQPfs2kI4i2ZPagbLd2PDwl1PmIzoi4ssFjBRI/R9qFdPadFjGVPj1anfD gcYyvzNOw1kG78Sxs91w3uj/zL+NhhNSp3Q/GnXDw/RQUnIBDVKRlYKWlt2I afGeHfejgRlW9Yp1vxutpduDb8iR+1Yv36T6427QFpryn6+hoXK9hl68RzcM uYIWxP5RkW3yPGWZdzeE3AI0NgxQyfd+tdAtv25kL7x6I1lMJd9xNa+/R3bD af5p3i4NKsZ96978q+/G8OydZernh9BfKzBt1tKN1w9vG2gdHUIDv45+UWc3 NGZvftTdMIQk7/pVT2jdiPh7db/B0CDsPBuC+Ga6YT5z0dTy+iDMSwV/XZ/v xnJn089XtAZxZtFpw9rFPUj/Y8y5tmsQ+9wa17wU7MHhyS+8A9QBbCZW3Oes 7IEPJ/I9I2YAK+dPd+iJ9aBhIkxu7MYAph9S3q6U6sHb8TeGM9/7Qc8V+uOw vQdmy5dLPM7vR9uMnnG7XA8WF7dfCnzRj8z7TaLvDvdAROYGrWR7P5zuNr+T ON0Dg1/+Ixut+zB7o/XD9gc96Avo/9PV3wP9gxdfy7n2wDxS7tzh1B4kcjO9 9nv24Geqy9eQJ6SfkN93jr3sAZUiYWkk04Pi8nXqZyJ7wBa8VNt6pxvPJC2m nWp6kOYzENZI8sTK9nHtqnW9UBP5T7jOpx03Pzmq1G/sxR0PvlOnL5N7y80F hWapXjh/X/a4+Wg7HBcLb+mV60Vss8hw51gbuvbIz3BUesFDdouh24Z9c/kT 06d6sWSx1O9r28i9svIkfUabtH93266xBXJPNzNqXGzUC9tzcu++p7Ti44sH n9fa9CJhpeKdBZFW/DFc/EHcrhe0J/jiMdoCvc2+/pvu9cLfMGxHRXULFuWE Pdzp2ovPH+W38/i24Aqz6Aze9KJz72VpN6EW7Dy+ZN46rxf2hkWSTmLkuzI+ YVtnUS9U3Kwd//1ugvwqvTMaFb2YjhOo82hvgiIrJHpnUy8c/hnf93vTBF2/ HVqTzF5oRk/VRy5vQvOvBgeLsV7wNbzdIjNGgZH53fDmqV5U/D7m/LWGAvP9 +VPpc72Q1fKRyn5GAT3UfL30oj7w3dvz4Jg1Bdd5/zv5dkkfQsPbG0tUKZi4 HWfLt7wPjlWPtqpvocC+SyfEWaQP4t83P6znppB78vfikbV9mCw7xE4qbcTD xOBR0w196DyS3mn2vhFca46urt/ch+mU3dWCdxrh6TqgpCRDYumEnMJTjQje eoexSKkPexZCHrpENiDnTuA+3+t9uJbssPDPqB5KPYcu/LPtg/7WSc5XuXqU qPY9tXXog8MHm8GL/9WT7yLpLj3XPsQ+sywuSKtDb0GW6+ogEl/Se/J4eR24 +Hvqwov6EF1+yHF7cQ1ORW66mrq2H52WshuHFlVBPkRQukK8H95u/nOMrkpI vpyld2/qR2/YdNdISiX+OrdZ8sj2I7EzP3DarBJfzzw3M1Luh76uDj9fXgXe n3LccPNkP7JtUlkCARXwOna5102zH1LPV5cLX6+A+fZjJvH6/agr7XNdv7YC Oht3iBHnyfOh4xclJ8pxZPXazhazfoTMfz6ytbwc0st43rIvk9/V/q4vPRHl WMk9ZfDvWj+sGCVVF73KwfW7b5WIbT883yYOD9iUY2yspkX6LqmvEcxveaYc FZ3RZ/Qek+dfr2tbi5fDOcVYJ+p1P3zvCVFs08owcKlIVSO3H9H/mXW49pei zuDrYjOiH4FZp/5wl5UiW+t9iX1ZP1qv7xXzjCtFgIKDcmhDP4rqeUy9HUpx coWMIofaj9ighH5//lLs+2/17GI2md+poAWRyRJIzHLnio6T9Z1xkQxqK8Gy qQmnXSSvZCdcO742rwR/mD0KKr/78efiWct3ESVg9Fb9MpzrR9UKxSfrvUrQ 3JyRYcM9gMHirdFhNiUorIp0cOMdQOvdFeUbz5QgofDV/qBlA6jL2m4xv7EE IemPvscJDcBqs4iZLasYnvHXUwtXD4Di+9ekP6kYZsEndrM3DiDFola/8Fgx hG1/7zgqPwD1ZbfUXUyLcH/Dpc1DFwZQVGB+aW5XASz19hj2WgzAf9mi5auJ fOg+4fbpsB6A5Pmo3F16+ZAejpqqtyPxT8bqS/Z5aE1nF+V6kv5kbeqKM3NQ xMqZznhO+nsg8KD7VA4S1r2QSX05gIiqr9t+dGbDw22X/5eQAchYTXpIzWbB 9tt8aWQYidNe7znmm4XzzMbfYZGkfa79/QYbsqAq9mnnuy8DENVtfWGblIk9 2vaXAhMHwP5w7/AzZELc9cSbV6mk/fDLJw8GZWBJ2qpKn8wB8GmciwgbSkf/ 2iw596IBTIbuM7z54Bt8abP/brUO4I/qVPHSxBSwHzwNPTVH1nt7377nEjEY Mdx57RPXIFIe57ONsqJhPrly0cbFgxhs+hAurRcFrS2MA+v4BkFxNuEvc4/A 5ufPwoREyLn0Jrn0X3UQKPp1N/9tHQRX9JXans0nCbWJdN6HMiSWoAfW5tkQ +c/CIv7sGIRb9/Kl71ruE19ybVt/7B5E0Qt1y9s7nhIuksKKI4cHEUFnvOxu e0PIjhks69AZhFCA/Fb/nVFEtr424aNH+h+f/1t6M5o4UaByV+ncICTVqym/ v34mTF7u7vlsTMrPX3x0aU8s8XzP0gSHy4PYY/OsRe7AV2LVuwUzGetBXCs/ E2fpmEREcP8S6b02CFFJcdfgrGQiu5n64ITtIIxtjFcviKcSqke75H7bkf5C jnG9K0glGqMaqfF3B6FYsXl0n1kawXTI1xRxHsShTeNF1h+/EfZ9afPlD0n/ p5sTuJTTiX8n49KcXQYh5ffyVGtKOuGd9NF6l/sg1C2eL323LoNYtTZ43dAT Mp4DnrUXPTOIEzm3R5Jfkudet1vsdmYREf82++hED0JVRo0W7JxLyFqLKXF/ GUTZnPJnU1oukdWw4nt63CD+UI5eldTJIxo+zp0XTx6Eg/Pe0TjJfOLf8fbt ozmkfo34j/zKAsI7vq4vPH8Q0eFrM9z3FhKrVpa+PksMgueuyH21D4WELD15 JqeMjGc932yjLUFka8d8vVU5iDrOooLAToI4kRFqsalmEIVDLoTspiKiYcOb 1W11g5jXeiS5wrCIMPF6Xu3dOIhA5b0MEe8igjnh+lixmbR3WsfwdGoRccfI ce9k6yDkzK5XvuguIrxlLr8z6h6E4KNPcTy7ionMGsXr0oxBeGUJ2/5qKiZW rpjkK/s7CG+577+61pcSzQU+zzT+kViSZ5+BSikRcHMrb+PCIKxF1tyiXCsl RGpMFnfzDEHx12FaRQaJn5b/4wgOgV3g3vjtdBnRvN/80T3hIRQlv+Hf7VhG BFD//v27cgitnz6fjA8tI4SV9/z5T2wIZk+r8yKGywjKRI3ji/VDULnf82u9 UDnhH3blp5AEia+P7317sJwQmn3/ff2WIZjMZ141cS0nKHEH7nzaOoRoueff CsJJeWMKR1pmCGqXTBckC8uJFZn/je/dNQTNooVg1lw5IXjHjnVKYQiGHuoV Dg8qCAHWyd67WkOw4u2WenWvkqgLGjSZ0RkCj0Ki3ffASsJX9WGXi94Q9K66 5BukVxLLIlPanxsMQb9qs774j0qC/+L6po+XhmDnY/Mkzq6KqFmWeXqr5RDG co81CvhXET65eg3xVkPwGF2x3i65ilgq6lWbcX0ITtrpaQcnqoiqCknNozeH 8OeR1/y75dWE9728qiLbIVh/Ndb8J1tNqEsZnlK7M4S5vh3B5trVBF/LZHnt 3SH4CP4bKrWpJqrcX6iecRzCzf8yU9ihpP4e6dJ2pyG0MxdJHGypJpa8NC0a ejyEPXGhfyioIXg1KnJ/PyOxHOUrr1gtwUN8SN4SOoTNhxRE7WvriG5FVfWB 8CF4FjyK0+atJ5JzxwbffxqC0ImSI9uO1xMmmcdERL4MoVtH52JvZj2R+nXA gSuN3KMvX45Ui2wgvHZ6L89PH8Kq4dj9m/oaiAtxe2LuZ5Hx2U6Uza5tJPg+ u3dM5JPxOzuzUvwaif7NO+ziCVJ+odDpRVUj8S2imc+6ZAgnVBb9942bQnhL PPy0qXwIvTyfdSQ3Ugiz0C1H+iqHsKmSqzNKiULIr6trDqkZQlncg+GoyxRi aYiDjX79EM75Tv+N8qYQ6W/KQ2ubyfqfYW+IbqYQy15cXcjpGwJ/b+PlaOsm Its5oSz4xxA6J8M50S+biZe/z108+4vMv0WU+/O3ZuLyvbmfy2eGIJEZIPK5 s5m8Pzrbns4P4eJDrwOfN7cQV65xnt9dSkXzf7YPP2e2ECJG+0/rbaTCINd0 8D2jlbCRz+taqkWFJffF9Wa3OogiSltitg4VbeNr1m0I6iBW35p0vapHhXQ3 RbQ3v4MgPm+VLjegoiRNdY2JQCexcq2/vZs5eW4lK2yY0EnkzVgt+32Pivvv 5735hbsJoWDX/s9OVBzbohO7S7WbuLLvfar+QyokEz9U6t3vJlbYNBqluVFR XHCI921fN3G593D0rRdUyA3ZP9kS30MsIwSP0SOoWNjGeqx4oo8wN90u9CaK ipGUA2GXHPuIjN8naMdjqCg87JnvEddHXNrj/PxjAhXXtTbNVq3oJ759orWZ ZFIxaGvqZNDbT5h6Zts21VKxMmpLjK/OIJGgYRlR+IvMd5Ql7LGNSsjLblLC DBVSHm0Ht5ygEoWCgz3ELBWPRUtNy8yoBKXl4tpiLhokT4Z/5g2mEtMXz78s 5SffmeH6h1/w0Agle71HVRI0NMvadO8gaESl/op1GptoMC22z+FupRF6Cg1Z 1Vto6Dd4ENLJphGWc1o/amRoGHd5buglQieeeZ26Ub+PBvGmL81DV+gE5b2S cbMaDbfu0WtCBBjE+cf/fp7VoGER/1jc7U0Mgnop/02LFg2+4T+81Q4yiGmp I42tejSEVC46NX2JQTxeMnPT4BwZ7wV+6VoHBsE7ksXfbkDDt0nh/yKfMwix 5ANqHSY0lIptKj39jUFEvp6mGV2kQTtJJlK6ikHIOnxz77xEw6TKHvd/vQwi w9B+43lLGuw6FMxbpxiE0uG9BV1WNNALblyM42USlesnTUyu0rDSvGDslQiT 0JtP+tN9nQbNRUKPHCWYhGWprHyvLQ3pahnvTxxkEqOfR5su3KGhk71kxw4V JuHgHX+77y4Na1+Y5AjpMolnOjIJ/U40ODYudPRdYRKJHVs2D3mQ9ow1VzsF MYmfo+uEmME0MK4PvEqcZhKBYazK0Hc0uDW6XA/kZhH7T6e7ngulQeCAxIlH giziTpoOp+gTDQe5Lv7SkmER405uDR8SaXAK7r4wasoifHfoeJ1NpkFkzvlg yzUWsbNXTGlpGg3RFmJCefdYRI0f8yeRTsOOyuzhSA8WcR3fvjpm0VAha1zq 84pF8E25XtmVS8OhoN1O/71jEV8itTfQ82l46Xh837lIFsH4j+l7poQG3cNX YibSWYRnVpoqXzkNH9fdN1csZBFbrrvOFVbSwDfnvc6nkkVY1InelK2nobww 8eXWbhbRF6CltaSThp2q044XFlhE28bUpQXjNGw8/eRUjQabcGh6XHx3kuzP niBu0XNsYuUTTecdP2ioFP6Sd+UCmzjDpLHf/iHvS2vNbu7bbKI+cU2V/WI6 Js+LiB4KZBPlhx95yYjRkW1uIdjbyyasRtWVBtaT51aKI20MNrE4bPWvIAk6 jl5fW9E4wSaOcyVfWSxFR/yd+selXMNEQcWQar8cHZ4eh8fjpYaJjHOnFgeq 0qESLVznfHOY8NbKfip+io7AOzOUbodh4sKJ7XyfNehYUBpqO/p4mFi0f9ny TF06PnalDPzzGybadjx6pXSGjvmYELpZ8DARu3lcuPIcHcYObsNE+DChK9K4 ptOYDt4Vej/ck4eJTfzK78xN6TDpVfhDzRomprlT1w9fJPOhaCRGlwwTVTOb wu+Y09FGud5v1jxMfJgKkPxrScd3ynMhMeowYTu8OMrjCh1CTXEqLVPDhMqQ w9Zl1+iQb6p28OMeIdgUwx3it+i40bS0i3vTCJFXVZkYfZsOr6bty/L3jBAv iw7t3mVPR0yTxjFH5RFCPmWdvNJ9Onqann8auTRCuL/qP2buTsbfvPRGS/gI sU7X+kx0EB1HWpbORouPEuMnO1pkQ+gwaNm+65LsKFF0TN0w4z0dNi0al8QU RwnrXTtMKz7S8bXleamf6SjxTWDCih1Hh0zrUl/H96OEdu09J9lCOtonanYf 2zRGuKo//ZjOpCN5urFi/8Fxotns2oU9w3SoWsSM7Dw1Tkjd0xJLHKWjrP6R oJTxOFHzSfhN1CQd7JjthqsejBOrZsO8Av7Sser8E8Z0wTgR+zXzlp0gAwbf px369k0Qf0vf7RgTYqCC87yJiglCp/sR6+pKBg6OS8ixtSeI77wnLC6JMiDJ Vmd9t54gFM0b9XU3M9DbF3qe78MEQRFhH5U9yIBFtarS/sUcYvP22j9fDjHQ V9H1/pAQh7iHpIwtRxk4VGb7+9gGDrHupsPu9coMyBAhKeoKHOKmh9FYsAoD ofm7luuqcggi5EicyEkGeHJLrp87wyGsyrm28Gsy8CN9bLOZDYfI7KENPNVm 4Eaau+tlJw6x9HtFKPdpBkqS1/Ree8ohLvDFn398hvT3NeGQbQCHSJLwWzNz joHoeOWgux85BNcBuxYHQzK/1c2WD5M5xDmtc/6TxgyMyty1kynlEH/ui/Gz LzKgqZfxwmOEQ2i+nKu4bM7AxGXDd7vnOURY9MCTAUsGWvMenpvgmyRUmj7/ a7/KgF+juMUH8UmSf/ZNld9hYPiX2aOfJyaJTX2anVFPGUg7SUuLC5gkfEqO Jht4M1Cs1uBnGDZJfP8i67XkBQOUUznXFsdOEiX2gvI2/mQ8Gq8kLhZMElZ8 za/2fWBAWveojxB7kqgbL7GmhzGw57T0lYLvk8SBlm/HgiMY0NATVr7xb5II z45epR7FwIUzc+vW8k0RvOFBozOfGTA/y/pZKjJF2D7xKkmIZYC/fXxPs/gU 0XHt/ruLCQxU5V3KiZeaImL3nz9VnMKAwrMTNabyU4SQmKbE3W8MfL+ZcVZe cYpwnj/yUyqTgfiz23oEVKcIzWrxKO88BtZJLBsrODdFjJoNzp+uYIAro3m5 5N0pQs7namZ/DwN1VIsz9NQpIvi2sZ9/PwMeVS1d+TlTxIK+hpXKEANHkk5a BhVPEZSNO0VimAxkO2+/q9Y0RRz6T3zYaJiBm5c+zEp0TRERIwJFS8cY2HRy uefvwSniTsbErVtTDAQKTQXGTk4R3e8HVDdOM6D3y3KD+58pQsWNsr7pFwMC va2fz3N9J+KvFH/3mGGgtFhNbh/fd0JEK61afo6BsKQTuVPLvhMP9kRFMOcZ eFAz1lFBYtrqwPsh3EycYwb9/EDi9MF7W+d4mRCUYO9RI7F4hfXc16VMMA+/ 1l1P4qcJRi2XBJgoMzhyc5L/O2HoeNi9VJgJDz/fL+9J/HvZv14fcSbG5/ZI cJZ+J44oeAaK7WOiucd5WQgZT7ul2MEweSZKzj/hsyPx3ZdJHZIKTGR3+P6n TuJERuc6GUUmIlo+Lvxe8p1QF7bNT1Bi4v2ZuLlGEjMUF5vtPs6EV2PazBcS SwTu+nRQjYm7teU/jEicS5So5KozYa7ROLmbxEajRvRjWkycrewcX0Li6TXj T4t1mPBv9Rky5/1O+Kt4bDupx8Su/I2m2gtThKzt2uqqs0zURKW3KpD1rX6X eEPbgAmrFxq6W6amiEVT7V/PmTARbnL3+F/qFBEufvN0xwUmDqnw5TF6poij 6txTJpeYaN0eJt/UOkU4fNwpb2nFxNqZim2xFVMEU8ct186WCe+36wQN46eI 2vjtlX4eTFxrLe5OvTNFXGsvvCb8lIn/8g31w25METyL9PmDnjHxMWq03vvy FKF03kUn1JeJbvvVxZcMpoiUJS0t8cFM6Ahf/7L88BQRaPVosDKeCaMCofvs mUnigkTjDHcLE0v0By58uD1JCIrZZ+S1MfFz8paPovUkUbxy9Z17nUxQ/eay +i5MEtJLTdnsPiYqKsVWSmpOEpwfzPZGNhnvUf3qaKlJwqN6/lvYPHk/Mjwa JMo5hHzZp9tG3CzYz0rdDsjkEKxC1Z3CPCyUHK9cwRvLIbTTfSI9l7LwpmHZ mXEfDrH645rXNqtYkGIHtuTpcYhYBznbwztYOLH+S6dx7wRhcrtp+w9ZFr5a aDjX1U8Qy284MBJ3s8AVOyqmTEwQ9pdyL0geYKFbfo/ptsgJQsrkomi3Agu7 HzbPvn8zQbTrc7W+OcJCYrFDqODTCeKopprWEmUWzP9XcZXHU/U+YUpRWbIk 0YIiRGjXNpabJBWSJUJSSSSV8pUtpT1bokgLQiVJJRKDhIqyFSFF995z7nbu vfai/M7vz/m8c2bmeeZ53zmzvfT70EEKKQZnapUlARXJ7pGH3Ci8B1erwzYR sLrr7/zvthQ6rjWOXGFDQIC/1xN72pZa2WJG2RIw28u5tHIrhcXGIUO522h8 O7e9M9lG4SEDtWd77QnwtWE039tO4acFnnpfdhHwyXQZJ9qBwmh1SWacK82P rv6QyJHC5bOy79q4E6CloSm514nCm9O5qm+8CTghJT/HwoVCn6GQKVmHCZjb zrGR3EPh0IdrfUfPEBARfj/vjB+F3TO++I2fJeCkxBunb4corLabK7xwno5/ 7quE6WEKEz49GrtzhQDHqzPcfgZSeFKh/4xBHAEWM3WnrAmicI+9mUxxAgGr ks2fxR+lkJEYHWdxnYCVau57iGAKDVrqVBpv0Plvh0yD4xTOVFZId71JgKxm wsuUExSO7HTWYqYRkMd9vVzyHIU9yRm5QRkEPGSat2IyhTVfmEZjdwko6qk9 FvmAwkeqhi/OZxLwosNOaUMxhYkux9cqPaD5a2l5NlZLoec3yc36jwhoru0R hZJ0PepbGl/kE9BT6Zuw+jeFS9wTdpo/JeDXa67x8DR6fnXP93Z5QYCoYPjI 8SVCTPq57r/YCgI0UuUFgUeEWEuEPO5toft9cCPHZ1CI+XrlpoFfCCgw8alJ mCTC64ekSkbbCXhjpKMimi5Cb15SjcJ3AkoWP35eoCFCa8NO2/QfdH2LjkyW p/VuFKjVrNtHQL2W6c5AQxH+oZ5+30AQ0KTxqn/JBhH+NB7Z955DwDe1MMsr m0RYd3Qj14lP6/nL/CWS20RY8Cz26E+KgNdmrlvn7BRhcn/D8GExAYZ3Eg+b uonQeJijkDZGAGl8ip8YLELV1aYpOv8IcE0ulH10SoTjp0LnPpMgAUc5htUR Ivzwe6p+/RQScqo8Avsv0fPz70LLYQUS/HZaUo6ZIrwp5XnCcREJPSflRMqt Ivy3b/bKZl0SAs4rn5b7Rvu/bRraoU/CyI05U6V/iNAkxurUtqUkyL7UmfuH K8KU3vHVDSYkXK9ZkjsgovObF4/aLidhTpvpMsGwCOsn9MJs1pCwZmCDzc9J 9Pzz6ltbt5aE+kmM1m/0PE6uSB/btIEEKyVbz1Z5Mf6Zt+tNDZBgeNxWNYee z94R8hFWliT8Gn1Jhs0SY2133YZqBgkPIrXKdqjR7+/6M//MN5OwV+ratUUa Yhz5MxC10Y6ETwq+yz5pitFj9xPz8u0kXLnxWSproRirSw9IrncgwUZjXfsp XTHGhX6LMXOm+dJVCtcyFKPucEXsCm8SijZUvjuxWozO4ktXDE6QcPXwXDeN 7WJ8Y29l9/AkCdbiC0tE9mLULhyX1fuPhPGTA39r6HlPHQmK04kkISTmQ+YR NzE6fdLbkR1NgonMqhArDzG+NupTWHiWBN61+5vVvMQYy3dK1LxIgtetUH6V rxi5W+Ud714mQWMBsyLloBjtH9cpzb9GwrfsHYmH6fe9ePqZ1tvxJKQYlO0z DxTjXP+1yRpJJGTOqbq/kLZj3g84pSWTcEaHUeRA+5N6T2bNSSXB17SuOoqO 94JYkKp6m4T5Wxp/de0Vo/rmby437pAw4WQ/OI2uJzonSU3lPgm93q1Sa+h6 7fZPSVPMISEr9JtOsrMYmX3c27KFJCzIYx202ypG5Z6XmZNqSFCW/sd7Q/8f xclGRLyqpfl62vj1iakYp69juAa8J2GSa0bVnaX0PLzZIvf1EwmsvPWp0Xpi jKy9RV5upvE7yMYE69D9H/R+C20kvP/dFeCjLcZ+B2How28kvLY9bcmg/8+O RBfv9OwmYemArdHKOTRfBRFLlX+QkJ6urqarKsYD3xnT6ntJmM3gTpqtLMbe GbLMcCYJTn4ci3E5Wg9rWytMCRIEz82HxqXE2OGXdovNISFhIjXv75gIm97p 7bAX0npIsVaY4IjQblCoP6WfBJ++jOqJn7SetV9JvR4kYdBoKESiQ4QYten1 wj8kGL/L6paspe+vmY/OiBQHbg5IPJKi79fVJ+ljGeoc+M++jDF9twhlun2+ Os7jgMptpdHpDiI8N93gmbQmB54Qhx7PsBHh6YMlB4J1OMCMVFOSWyXC4RtR Frp6HIj8EPROzkiEx2qs53YZcEBNtS70/++Nv9aXZoYJB+yfhPxQUBIhe8ft /N/LOMAfbUiaOU2EPpH7LhSs5MB5xiJrRQkR9uQb+Oxbw4FdS0iVLI4Q3brE 69XWceDPvYH5Dc1CtLkhn8fbxIFTp7Q2Hz0mxCkRZ5zMgjmwrbmDkBgS4Asx /zce54CZ6dBIZY8AfQ+43rU+yQGdREWZM/UCrNlhzN15mgM/7W31JG8L8Jz2 96gjsRzwaSrzk7QSoFT9msdZtzhgGSNY1pzKx0nKIkn5ag5sUk73PsTgYdEF 99zkGg4480N+LTPmoc94rZ1GHQe83tkfGJ/Dw2pWRqpeAwfiT00NiBdyMaZk q5HVVw40dQWfepnGRUnPXNdQLgcO7Lj2xWkGFyUeej7tU+KC3Re91qP0Pl/L bz9ydxYXviVe27aH3vevmjgs9VDjwq3t/XVbukmcXWL15Ms8LpTVlb3RLiFx aZ3e43o9Lix7vT2nLYhED1Z/TsFGLvj4jf8JGCTo/S7gwGELLmh7S2/rZxFI BrB09BhceOWidPdUO4HHB9uz72/hgvxmPauY1wRenlyemezEhRc6TldSowks 1bpwJ8yfC+N9jzWqZQmM3C/huTqQCw87iwM3/2Mj4+F/8waDuODcUoUNQjY2 mQTcDgzhQmZV+772FjamnGC5G4TS+Er7XnrUsNGjxFODCOPCaKFAuu8lG7XH 2zuzIrhwN2/U7WAuG0lwSPOO5oLlvcn5/JtsLDj7wW3eWS7Ihl/L/ZjExhN1 VnM6Y7ng3V4/0Z3AxrUzyjtSLnLhwTIpVyqOjRPbV93ceYULE9egcOIqG2uS nrrMjOOCLSdMRvEKGy9/1ZvdmMCFx4xib+1LbFT11EixTuGCzZih4qZYNnbf T941+RYXMpz9DjmfZWMmS25WZToXyGdZVQfPsOn5KZFsdp8LV/zUj12OoPGH sxIN87nQ+0W69XMIG6dXejpwCriwyNRqSe9xmo/JHTNznnEh/Grk2f5gNrpf +RC/4BUXNK2Gls86wsZjaU+vKVVz4XhhX/LuA2x8NZ52obqGCwz3WeITvmwc 9zx/5lgdF5Sm2myL92GjZVXwae0PXGgvDHv40JuNFxbuCWlp4EKB+5MpNZ5s bIi1CYr5TOtl6s+9PR5sVCKXH1rWwgWPZ0oVo7vZ6GK7YF9fG20PdM5jurPx dv70PUntXEjRaoscpuP3yg87W3Zy4e2Oxh8y/mzUDe617+/mAhVRa65B11+4 soTh2MeFkM6SSeZRbHxXsd9QScAF6+sZ5y+l0/i1HHSrhVw4WZVCpGey0f7s es1j/VwoFsbbFDxkY+dmZZWWES7o2MVMb33FRqqpcixxEg+mTjkYN7eNjWq/ ND4qqvGg/qRJylNab3s2Sb+rUufBQLb+SJUygZm5/RXB83iwtlXbtU2dQMOA 90XN2jx4bDxL/bcegRZDJ9MSjXiQudykMWkzgf7SLYcUrXjwQOmB7+kLBD49 VL6vahMP4gqunwqNJ3DwY96eYBseBNjGXA5JJTAqIcqheRsPFsd4FQblEpg8 x8gs0ZUHeeI54/vqCPx2Wm25hTsPrlyTUdj7mcD5PZONxHt44K8/ouVJ36e8 zE5Nh3080N/bttmVILB8yUUZxSM8yGqKu24nTeKqttmNSUd5YFJz27ZSnsTC 8NxEleM8KH71SHKFKon6OqudU0J4YPa4pCR3HomZjbXqaqE8qLxTG6ShQ+Lc k84/boXxoEN1aJuJAYk35rOzNCJ4sLr10NmZhiTK14X4ZUTxID6+p0RkROLF oClGC2J4MLF1J9VkTKKk2g3xvXM88JWpX/jMlMSwykXF2hd40FKz3i1xOYmB igzQvUrj3aBb47CaRMfnMQ5GKTywNv59q2UjiR/dlVSf3qTx8AI/F5mTyJDK 7DRJ54FSXp/UdUsSV++q2rfiHg+4mg1BO63pekcmQtY94sExpbub2raRmHI3 fm15Pg/aPimffrGDRAWbBRMbn/LA/MrFwmQHEifd2njR8gUP5kod09i1i0Ri bUTalgoeVA0xxF88SPT+Jev1sZIHykWlusWeJHZeub1w21se/HdkqUeKN4k7 VxiSn97xgG+QlXjSh8SG7rJ8+3oeOBOz65x9SbSO3Rrc8oHmO+vq+KoDJKJR 10qnRpq/C4l+z2h7zVf/P18+80C1PHPNmv0kFkX+qXBp4YHUwHMZ3EfiksWX z35r48GY3ruOTXT87M9zbNzbecD0/JrXQOdP1TRr9uzmQe6HUZvOPSSGV5/6 tZ/Ng5DMDZeGXEgc8pfOI0geOHZsdwt3JvGIcmrAIR4PNsh760+m8e71LR4K EPFAJyzm/UxHut6pQ9In/tD3waFumqEdiZUF5xqGxnnw6ELHtyJbEs1cVBJP TfAgqZzz0GwLiYZ5y9VPS/HBV1/WdjPNv6LtMcMYeT4oSjpc9qH7da9KYcZa RT70/2DEvaf7aWL2hCNW5kNFxZokkw00H4W29Q9V+ZCZYZiSuo7E7Xpkzt45 fDgbrpn2z4zE73djY+fM5cNOd5U7+9eQGDB7oW/zfD7or5XJbFhF4lhcpeUl LT54zHBnLKX1dHmqp5bFIj4oBdfK+dL6mxM5NjGqy4efX03bby0hMW/oZk+h Ph/y1mfc+7yYxDpma7qmMR+0ZU4sX6dJotTbLaoSa/mw7K6Wm5IiifQuPPhq PR/+SF3TtpEjUbvoXGsQ8OGd/ygvYhqJ5vcx4QeDD1tXfY7kSJIYEbVyBu7g g3tjeHZlP4HD67QkIvfzIWysXXikjcDY5xU9K/34YLfXqjS7iUCVJR7lAn8+ TKsriOlsIDA783f6g0A+vDVUt5v5nsDl6qlhe47y4XJS7CzrdwRWJ65wm3Wc D7anLAZLKwl0nNayujGED88Ph072KCPw6Kjs0PrTfMh2YmvdKyRwIuhR62AE HwQ280wtHxMYR2wuyo/mQ8AGJ3PmAwLzv8YEzT3PBxvdak+9dAI5L0Y5Ywl8 +DWSkV4YS2C3UVPrf2/4kL5RLr7ZmMDCO7CI6SkAlUs3EmYpsnEgbEB6714B XCYud6yVY+Mql1ze930CmGQdrek9jY2hy90/7z4ggKPZIX6xU9hYpqDwvN1P AOSkw4WPJNn4j1ed4nRYAO2S4x1LJlhoXn8yrDmQPt8a/IT1l4Vnsw08tx8V APsG+8zdcRbWRvdYfDwmAOYPd2e3MRbK7EnSsQkRgIxBs4HyHxZuNbOe9u6U AIjj1hMNoyxsEj9pqggXwKC0aZ75MAu7fCK8is4LQMNk6p/FYhbOB1Mr40sC UA07/alXyEJvDZZu/hUBrKoRZaZTLGS32lEPEgRg6Nq1VYHPQhFjbsStNAEw ogszhtksXK7V5K2aIQCHDzrHClksPPn3LOP6XQEEqqRb+zNZOPaSN+NatgC8 82KF33tZOHVxWVp0gQCONe22eNfNwi2TgyL/FgogSr1pVlQXC6/+0PYJey6A cN9N3DWdLPxU9nXTyEsBpBS8rujvYKHizcv6J0oEEDdqfD2/nYVOJzbKiV8L 4Krlg4MHvrIwxb5fFFgugI6qlalyrSz8ZpjTxkUBhN57HDf+noVzp+0uOVhN 44nSOs+rZKEXS+42s0YA3/ekRnS+YmFmVVXU3joBxKyXC3lfwMLFYfqb3Rto vn+P7su9zcJlvNEv278KIPtEk8W+UBaG1OWXfuyg8e+0NnMMYmFJlneGTZcA /pm+MbE4wMINHvW+lj8F4CzMXbDAiYU2jakDK7kCmOYf9bfTmIWXH25tL+IL oNJmaPC9LgsbYydeGwtp/8WH+SXzWOi48WCM/qAAkOnclTKDhXuerlKc908A Xl5LSx0JJhbvHpVvkqCAVXzufPh3JspPfS17djIFPvJdO3NamXjw2enpq6ZS ULbfVKvpPRMrPTbIcGQo2Fx+gfqNTFSTmZhyewYFNSo9ZQuLmRj8vHLyDnkK ZANWXNqWz8QPnjGSkxQpYK6e0j1wi4na0xkTL5QpiFOZl1ASzcSwl1P+HlSl QF+8ghFxkImt3nV/1OdQUNdoN2qxnYnnXtkOR8+nYPqFcO+PGkxk+zoI7PQp uPC7y6Sn+BdunKnMm1hCgd7XAWZmxi9MLWsji5ZS8KJoxq2D536hjZIrU20F BeOH10mKHX7hI/TsYm6kIKYnrXmyoA+PqAe8D3ei4Nxbt2P6C/uw9p1RnbEL BbPuBetS0/pwQbCwps+NgpzwS51Fol4Mnfus+oYHBS5u9+NOtfdiU92xShsv CkZXllqur+hFveMrKsb20vUpNQ9LPOjFM/OHywp8KSgyqz6kEtuLy0L+e6Xi T4GvyhT2U6teHPl8/kF+FM1P5Mz2eRt/YnTs/TPdj2j+8rYfG9jfjXKnpG33 PqHPz67wp/S6Mc0vUIn9lAIZb3UfDq8Ln281yxK+oEBJje3wI7gL2YrNNZOQ gpmw/ovP4U7cekdCRr+VgoZlv9UXeXag6iuvuJAxCi6qH8/JsWrDrLx3zn/+ UlBfYvD5n2QbmqQtWRAlIQRXl74R58pW3BIx8vTiFCGsSHbYIr2hFcOt4pvT FYSQL7bK9t7Vgn2fK1SqFwpBRmtz+p3UJgyqWvTdWlcIHecX72Z7NeF40eUH H/WEICuQnrNUrwlnpTiv+mIkhIvBiUangz+jjQflQq6m891PXlT6vBGfkPPS 5e1oWyJdaeWaD3gxI9a7Z7sQSoYlij6VvUdfR4FOgYMQogUHHPzgPZpL7+JF ONHxfjWIJN/W49w3bwq3uQhBr3NZQrp1PY4eXXRy3m4hhDbdNF75oQ5bda6u E3gIwdswtkjmvzos6ByQKPcSQp5ppWnL0jq8HO9ee9VHCH6rxgrTmbV4gPH2 isd+IRSuW2WyP60WLX8bOBj6CaHePPjpUvta/O3zp+tjoBB+2hJPqsreod+q W+Lp/wlB06v1EZFUgwyexKvO00Kw95U3eGZTgwvu+YU/ihSC2qEtD8P+vcWv 09ZI254Tws3jmCvn/xY3ff8691I8jefC4+zlFtWombSxzzVJCORV9sK/w1U4 bp2Tq3eD9k/UyqrNr8IXhSHL6tNo/m+n3ndTq8KE/d9HUjOEILrXornwUyUe Vt9UfvCeEGbmyN3jn61E7XMqNtI5NH5v6Q0TPYj/1oTLtecJock/Yl2SLeI3 wa+WnMdCMDkxYKZTXIEvMrfePFlAx5OesrJ7WwUmuDzfY/2M5uOx827RggoM kNVYqPqCjmefFyXVX442VTEkq5juz+DvbLWacpwwcDwe+0YI5uszhOZ+5dj5 o3TNLhRCQi+lsmttORYna/1bVE37x5qvPSRbjkf+iS7W1NH+jb/OJRa+we7m +DuTW2n+9hio942WYcn5kX2tX2h+J4XD8IcyTF7npZ/VQefPafSdnlGGWx8s fWHZQ8ejjj5dZlGGr0Mb35/h0HiiXjHOXnqNKUYr4x34tL1wmn+q+2sM7rvt pCWk+1e7O/6x0WvUswv4UTlI16fw71trcylKSbZlJ4zQ/DzfMUFkleLPl+v8 vf/Q+V3vLxoPKcU3/lnGJn+FcG+sf8tMm1JMXTBjaGKC/v4uI2iRein+D0lo QnE= "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.1279160762741534`, 0.9999998782112116}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Directive[ RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ RGBColor[0.455, 0.7, 0.21], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.578, 0.51, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.4, 0.64, 1.], AbsoluteThickness[2]], Directive[ RGBColor[1., 0.75, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.8, 0.4, 0.76], AbsoluteThickness[2]], Directive[ RGBColor[0.637, 0.65, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.9481170957329683`*^9, 3.948117150598543*^9}, 3.948117184568419*^9, 3.948117219316367*^9, {3.948117691501904*^9, 3.948117711972096*^9}, {3.9481181709304953`*^9, 3.948118175025305*^9}, 3.94811829746743*^9, {3.948118331670322*^9, 3.9481184061077347`*^9}, 3.948118476448101*^9, {3.948118791597611*^9, 3.948118834715063*^9}, 3.948118880316525*^9, {3.948118924069378*^9, 3.948118979643305*^9}, 3.9481190290527687`*^9, {3.94811905993773*^9, 3.948119083885765*^9}, 3.9481191154096107`*^9, {3.948119199879396*^9, 3.948119218585884*^9}, { 3.948119267635496*^9, 3.948119272080647*^9}, {3.948119306877935*^9, 3.9481193600060596`*^9}, 3.9481193919109383`*^9, {3.948119472446267*^9, 3.948119492978435*^9}, 3.948120049042923*^9, 3.9481201267922277`*^9, { 3.948120167596425*^9, 3.948120183923332*^9}, {3.948120214736499*^9, 3.948120239570709*^9}, {3.948120350614382*^9, 3.9481203559351187`*^9}, 3.948120425917745*^9, 3.948120480872405*^9, 3.9481205495627117`*^9, 3.948120583274208*^9, {3.948120713953677*^9, 3.948120728627287*^9}, 3.948120768477592*^9, 3.948121389852212*^9, {3.948121556589933*^9, 3.948121572878214*^9}, 3.948121622747219*^9, 3.948121726679216*^9, { 3.948121783571022*^9, 3.948121879474448*^9}, {3.948121992064193*^9, 3.948121996756528*^9}, {3.9481220466285057`*^9, 3.948122050486739*^9}, 3.948122196501998*^9, 3.9481223776650887`*^9, 3.948122421312645*^9, 3.948122529439842*^9, 3.948122657474799*^9, 3.948122716639678*^9, 3.948122748276546*^9, 3.948122898602379*^9, {3.948123519366577*^9, 3.948123551654709*^9}, 3.948123616114772*^9, 3.948123711113534*^9, 3.948123775936576*^9, {3.948123901956167*^9, 3.9481239135446*^9}, 3.9481239469964857`*^9, {3.948123978241097*^9, 3.948124005300193*^9}, 3.948124086630891*^9, 3.9481242723863077`*^9, 3.948125069088151*^9, { 3.948125232697056*^9, 3.9481252592778387`*^9}, 3.948125293263578*^9, 3.9481253329434013`*^9, 3.9481253767312937`*^9}, CellLabel-> "Out[571]=",ExpressionUUID->"ffd6f419-7cc8-4a11-9daf-a5981d445824"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"2", RowBox[{"dCost", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "\[Function]", SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"0", ",", "5"}], "]"}]}], ",", "testdat"}], "]"}]}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9481158397245827`*^9, 3.948115841044066*^9}}, CellLabel->"In[47]:=",ExpressionUUID->"8f94b911-4282-4699-9f4f-af2006d0f1fb"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "29.647923774615556`"}], "+", RowBox[{"80.`", " ", "#1"}], "+", RowBox[{"36.595803983379156`", " ", "#2"}], "+", RowBox[{"24.962535935381`", " ", "#3"}], "+", RowBox[{"19.05380714012449`", " ", "#4"}], "+", RowBox[{"15.5101401826051`", " ", "#5"}], "+", RowBox[{"13.196827369860994`", " ", "#6"}]}], ",", RowBox[{ RowBox[{"-", "19.815396387906095`"}], "+", RowBox[{"36.595803983379156`", " ", "#1"}], "+", RowBox[{"24.962535935381`", " ", "#2"}], "+", RowBox[{"19.05380714012449`", " ", "#3"}], "+", RowBox[{"15.5101401826051`", " ", "#4"}], "+", RowBox[{"13.196827369860992`", " ", "#5"}], "+", RowBox[{"11.596351412551329`", " ", "#6"}]}], ",", RowBox[{ RowBox[{"-", "14.871363804529803`"}], "+", RowBox[{"24.962535935381`", " ", "#1"}], "+", RowBox[{"19.05380714012449`", " ", "#2"}], "+", RowBox[{"15.5101401826051`", " ", "#3"}], "+", RowBox[{"13.196827369860994`", " ", "#4"}], "+", RowBox[{"11.596351412551329`", " ", "#5"}], "+", RowBox[{"10.436693949866449`", " ", "#6"}]}], ",", RowBox[{ RowBox[{"-", "11.968768402486816`"}], "+", RowBox[{"19.05380714012449`", " ", "#1"}], "+", RowBox[{"15.5101401826051`", " ", "#2"}], "+", RowBox[{"13.196827369860994`", " ", "#3"}], "+", RowBox[{"11.596351412551329`", " ", "#4"}], "+", RowBox[{"10.436693949866449`", " ", "#5"}], "+", RowBox[{"9.56234675256812`", " ", "#6"}]}], ",", RowBox[{ RowBox[{"-", "10.108225506432749`"}], "+", RowBox[{"15.5101401826051`", " ", "#1"}], "+", RowBox[{"13.196827369860994`", " ", "#2"}], "+", RowBox[{"11.596351412551329`", " ", "#3"}], "+", RowBox[{"10.436693949866449`", " ", "#4"}], "+", RowBox[{"9.562346752568118`", " ", "#5"}], "+", RowBox[{"8.879452335050136`", " ", "#6"}]}], ",", RowBox[{ RowBox[{"-", "8.842807351152098`"}], "+", RowBox[{"13.196827369860994`", " ", "#1"}], "+", RowBox[{"11.596351412551329`", " ", "#2"}], "+", RowBox[{"10.436693949866449`", " ", "#3"}], "+", RowBox[{"9.56234675256812`", " ", "#4"}], "+", RowBox[{"8.879452335050136`", " ", "#5"}], "+", RowBox[{"8.329147936668374`", " ", "#6"}]}]}], "}"}]], "Output", CellChangeTimes->{ 3.9481157849331827`*^9, {3.9481158300446243`*^9, 3.948115841397894*^9}, 3.9481158738161383`*^9, 3.948116020446212*^9}, CellLabel->"Out[47]=",ExpressionUUID->"3039fc70-f0af-4e70-bc64-e604b3f36d0d"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"testas", "=", RowBox[{"RandomReal", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", "6"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.948116146875634*^9, 3.94811614943283*^9}}, CellLabel->"In[60]:=",ExpressionUUID->"cd2f3698-aefd-466e-b7c8-2012f3538973"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"cost", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "\[Function]", SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"0", ",", "5"}], "]"}]}], ",", "testdat"}], "]"}], "@@", "testas"}]], "Input", CellChangeTimes->{{3.948116322119855*^9, 3.948116325455949*^9}, { 3.948116360905766*^9, 3.9481163632579803`*^9}}, CellLabel->"In[91]:=",ExpressionUUID->"57aa01a8-18a7-45a2-b2b7-055f7b61faa7"], Cell[BoxData["29.31999606683431`"], "Output", CellChangeTimes->{{3.9481163256732407`*^9, 3.948116395337883*^9}}, CellLabel->"Out[91]=",ExpressionUUID->"15effdbc-9a3d-4a23-bfd0-494fb6fb5423"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Derivative", "[", RowBox[{ "0", ",", "1", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0"}], "]"}], "[", RowBox[{"cost", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "\[Function]", SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"0", ",", "5"}], "]"}]}], ",", "testdat"}], "]"}], "]"}], "@@", "testas"}], ")"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"dCost", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "\[Function]", SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"0", ",", "5"}], "]"}]}], ",", "testdat"}], "]"}], "@@", "testas"}], ")"}], "[", RowBox[{"[", "2", "]"}], "]"}]}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9481151229275208`*^9, 3.948115203569861*^9}, { 3.948115255580563*^9, 3.9481152579486113`*^9}, {3.948115708839774*^9, 3.9481157637475986`*^9}, {3.94811584524576*^9, 3.9481158456045437`*^9}, { 3.9481158815349083`*^9, 3.948115889223049*^9}, {3.948116026492364*^9, 3.948116059421412*^9}, {3.9481160944632874`*^9, 3.9481161551701307`*^9}, { 3.948116191141611*^9, 3.948116197794985*^9}, {3.948116402051536*^9, 3.948116405819162*^9}}, CellLabel->"In[92]:=",ExpressionUUID->"dcd9a96d-e483-4aa1-af04-d08688038cb6"], Cell[BoxData["0.`"], "Output", CellChangeTimes->{{3.9481151455969553`*^9, 3.948115170220882*^9}, 3.9481152581964283`*^9, {3.948115752725525*^9, 3.948115764025669*^9}, { 3.948115832602803*^9, 3.948115889658678*^9}, {3.948116023825748*^9, 3.948116081673368*^9}, {3.948116121851489*^9, 3.948116155422044*^9}, { 3.9481161913600187`*^9, 3.948116250436397*^9}, 3.948116307040431*^9, { 3.948116380525976*^9, 3.948116406091179*^9}}, CellLabel->"Out[92]=",ExpressionUUID->"1f8c8629-c764-4604-b0fe-5c01e46e6013"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"rawdat", "=", RowBox[{ "Import", "[", "\"\<~/doc/professional/presentations/2025/ictp-saifr_colloquium/\ test.dat\>\"", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9481307166422443`*^9, 3.948130754169201*^9}, { 3.9481309111456833`*^9, 3.948130912383401*^9}}, CellLabel-> "In[888]:=",ExpressionUUID->"b6f65d11-1714-42cd-b279-8e2c0eb8fe70"], Cell[BoxData[{ RowBox[{ RowBox[{"testdata", "=", RowBox[{"Partition", "[", RowBox[{ RowBox[{"rawdat", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "2"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"as", "=", RowBox[{"rawdat", "[", RowBox[{"[", "2", "]"}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.9481307549726753`*^9, 3.9481308081074133`*^9}}, CellLabel-> "In[889]:=",ExpressionUUID->"788c910c-c901-4771-95a4-a21a3056ef4d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", "\[Pi]", " ", "x"}], "]"}], ",", RowBox[{"Total", "[", RowBox[{"as", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"LegendreP", "[", RowBox[{"#", ",", "x"}], "]"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"0", ",", RowBox[{ RowBox[{"Length", "[", "as", "]"}], "-", "1"}]}], "]"}]}], ")"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}], ",", RowBox[{"ListPlot", "[", RowBox[{"testdata", ",", RowBox[{"PlotStyle", "->", "Black"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.94813081071697*^9, 3.9481308929987507`*^9}, { 3.948132238910755*^9, 3.9481322401010427`*^9}, {3.948137334422831*^9, 3.948137339243318*^9}, {3.948137727243544*^9, 3.948137728458662*^9}, { 3.9481379459479103`*^9, 3.948137959780064*^9}, {3.948138000630261*^9, 3.948138000909213*^9}, {3.9481382718091097`*^9, 3.9481382852840242`*^9}, { 3.948139799384047*^9, 3.948139819863104*^9}}, CellLabel-> "In[891]:=",ExpressionUUID->"64b9d7b0-4d42-4971-a779-d26a172dddb6"], Cell[BoxData[ GraphicsBox[{ InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJw12Xk4Fd//AHBS2YpIH59EVGgTPpF270orKUpElhBJsqtISSEkkiXJVqiI LIlsHSRK9jXbveNastw7R7KE8DvfP373n3lez51nznkvZ+bMM+ssHM5YLeLi 4nrAzcX1v6Om1WBDydA59dyF//0wLNaQcGSuVoXFagJr/hKrxEfFvF99GPLy rtmNEvdJynrfkD8FscbbxruItWrasmNX68HHHu3sUmLZIKnkBWlDUBlqeRVH /FfT8qm5vCnYztQ0uBAP+zSXm0eaA+V9QOUgscGlqeInqy/BwYbd35cSl2tI 5H2OsQYz6a/PyucxKG/YnzkufQW2+s/GeRDHLLqYIpd4FT4sG+jYRMzHuvdS X94e5MOea9fNYSigGms+6zlCwcB/U9eIHXUuaRpHOgHKK2lbTNyt9EDj0WpX sF+mrL7mL4bw+H9L5C64QfmVE+XRsxg0hVP3fYq5Di1T1d6ixLl09Q4s7Q79 Ss8Sh6cx2JmaZj8w94Dpjs18WsTra7GiTOItoD7mJCX+wRCcLrpJV/4OHO4z 8ds/heGIVFLS0GUv2GjY9P3OJIY7FdErSvXuQvjpXyc+TmBQVVN4ZBjpDdy9 Q6MrxzEkrDrtF7jaB3JDHuFroxhu1Twt1y/wgaTC6QVHjEHfl1q04YIv6PR8 0bSjMSybcPIqjPGDHV9vP9ZiY7jZHH6TLR0ASulNvWk/MZwN6s79WBIAYqLR tU4DGBQPy0/4mAdC5MTohGI/qef7PCepxIcQZBk0G8rCoBvWYXtKPhiMav1H ZrowKGhtSJGoDIYBqvmzdyfJN4/dz4HLIeDRY9TJ1YHBLH8+C+k9BtuDj779 bMWwavNjxfORofBQ4WD6+XoM3nzvNwasDgd1vzJORSmGLcdC/bMdw8Ho1rTt a4Sh0ddhqLMyHDT1nZruFJP+4VF4q3g9AnaFxtmI5mOomEtSbG6MBJ0jXR+q M0i8vyN3SAc9A0ZavUvwcwwf/nOLPN77DEo/tY93R2EwdTw75bQnGhSb99rJ RmLI4Ajnlw9GQ+i7rQcjH2M4M+i/z/ZIDAxoK0Uv98UQ1e2h8WE+DqSlfpZr 2WE4KGmYxDgXDzGZb4UEr5B+Ndq5hC89Hk6tuWFcaoVhLdvdMn1bAjzlHeRd aYbB4YqaHFdXAujPb8rX1MUgeinjTfKul/DY+JjVMlUM5w1fZIz+SgKpbpWr 1BgNuFNP4KVEMhQaf35WTdPgZ8pndVYjGY4WPRbJGqbhvaWDRG54MsThBcqC RYOQ/X7fWztfgVuYgaRtAw1f7rUbLb39Gu4nOI/zvqNhe5rIUkm+VLiQyRYI MKfhm+KXizXKqbDvluW9u8Y0XMy6WXjHMBXo6rDLjgY0PMplOvakpsKVCqW7 u7VpGCxJ73yl/RYmJ+SEnHbRENdyIuu/sDSwnv1Uen05DYIL3sbH1maAxIM4 4YEsDkRdMTBVOJoBEfTVHsE0Dsg2K1wUsc8A062BkVtecUA9pc2yszgDtJeb Zp6J5kB+SuSHPMVMWLT2SJX2PQ5wzrKLtGozYaY/o3NUhwPn3jz97rI8G3aH vBwbH2SDnC49+PlhDkix1I1OLWaDhNexPZdf5MDDiAI9sb8jsCI94aFAXg5E NifbNv4egRm+s4q6rBwwWbp2TK13BOpL8lwYuz4ACBlkvSgdAQ9l7/k//R/g yp99S7luj0CtsJiY4oE8sNLP2PiLMww3andD1Hg+sKqEdXbkD4F4jgiDmxtB Fo9miKfCT8hlaVTX7SsDk9nc5WWL+qDMNnaNIbscVLI11s88omBCfr9w+rVK cAwbcBeW7YBF029XrJGrgu1D92yMZBtBbeFi7tl31XB0Su3Xis/lUO2jWlux pQ7Uw2esrDhJIP14ZDqFrgdBY9XoQas8NDLFZLQoN8J/LPt3rrrfUdJwYZVQ cBP83RM/kMFqQUJSr3FfXzMwaoebUXg3CrrywTpBthXsDXrHXORZaPLA2z4b rzbw3hd0jd+zH7luL8/55/MPYPQVXbc8OIisVWUSQr/+ANk0j6rok4PovJrn w2W1P4BtELfqu8Eg2rtH1WJR+w9Yxy/n+4/9IFp0KEmYpn9A0hi3w/noQRSi 62P7RaIdQqePJ/r+GkSpjodlXJ3bYbn042SH6CHEfFf+sGFdB8xWypa1twyj es5i9vaNHTApo6gsyBxGJQpHToYrdIC4K3PtjsFhlJD6ZZnBzg4Y+sXt6jwz jCxeVTzqOtkBmjIquU/WjqCB2K8hP290gNG2SJvLViOIE1QdNlfTAVVlZy/r cEYQ4/uycdOmDrBSlJN+NDGCagW09Up+dICAzxB/2dwIeudfI3a/twPMzGQd xITYyNGnNoJvugNU1tbtuqDIRuO36p+ulO2E4jWBTfbX2GjWtvn5Zo9OEJzu pOP62UhPzSRU0asTuh5PBpmz2SiNe8BPxacTRvtWykn9ZiPTqCmn/cGdEKhb u8+Li4NKv0gc133ZCTFtA120BAc9kDEfv1nVCXKfbD08TnHQylbOya8SXXDY Q+fCrkwOsntx/VCNdBeERa1TFs/loHK7hZ2Nsl1QbTVTQxdy0HUekQ1dil1g 9e+/Zv6VHNSurDqND3UBcsjPuMTgoPiHHsniV7ughbWktUSARlsP8s5bF3ZB LEMcz5nQKDP17cYfJV2Q8zyl2cSSRqpiOronKrrA3SB5+QcbGu37GZW0tYHM R6Xc5YQLjU492qI1OkDO3xY0wO9PI+d27Sh30W741dMgNZhBo8lDY6XD4t0A E97+RTk0upUWOXJBivw/b67kn08jHy+muvqmbjhRskdhyWcaRco59S9S74bV NVFFES00yncK3x50pRvefAkVXTFNI/XOXcZz9t3wJMDjhcEcjcoOd/vau3YD /abdIJIboypx+XYdr274lCurNs2PUVdxnteqiG4YL49/qieBEZdAZ3VcSTdg +aXsi7sxOvZy3eUscQbol1Sf+uqIkWqUkHyFJAPuKqRsKXbBSCZ4tq9jHQPc Kxe2p17HaMa9xWKxAgM6xlUq7DwxStcNMDU4wICL++pZYQ8wWsn969ycDQMW ahYuXIkh4011i4naM6DdwSqNisOIza5qkndhQOvxgLU6LzCq+JGkq3ObAfnL X1iJv8LIPfO8dmIoA6Yjwu2PZWDENCs5fKKAAZ9P/ksrlGBUfS6dxxQxYNmO 36vkyzD6qBVd5lzOgHX+X/TFyzF6stP1QEwtAyJuWq5jVWJ0RHjTPsxigNbv GzX/1mG0fcmqWZ5BBsQwf2c01mO0dpa74F8OA8xdS177NGL0Z6Bz56EpBhjG x7bUt2D09lOISoQgEyZDxKQFujCKyvEcS1nBBLuHOQk+3Rj5pF7J+rSKCRle nqpTDIxMIzWUBqWZEOOyKrS8ByMR+6kte1WZkD3ZIMb1E6N5y76h07uZoGQg sHbvIEbDhg1vLqkzoeVIiZr9EEblR97KBx9nwpm1bhFFIxjdkDJb32PMBPXn G7hmMEYWOsr6XeZMGJx7nTA6itGp+9yBbdZM4C+Oj2X+wkh+KPFXjSMT0nyX pr36jZGopJvcNzcmCBfyFd8Zx2ju1FHDcg8mlCUlbT49gVFzzmBJgQ8TdvP2 ibVPYlTyM3/8QwATfmpuDnsyReKXeLgpK5gJ9T+07A7/weje3W2PX0cxwdf3 rmLoNEb27+c/v4wl4wlriCvMYGQ4UDcV+5IJ3QUaRohY+aSzWXgaEySuuNK1 sxhJemmEhWQxQc7dErT+YsSbLVYZmMsEzXKhYUQ81tc/41vIhCpLI1phDiOG eJ6idwkTNI4onHxCXKXpb+H5heRzix3PKPGH24aRN6qYcDuVR+zoPEYJmVuq nOuY4KrEuB1OHNQ7O3etmQk//gwe6CS++U/Nf1famWAqsdJEYgEjyxNxVpcY TNjpqd2oS3zK0+GZWS/JV2dggjfxnowDNUaDTBD9iipTiOVZItz6HCbgN6xj VcQiq3pVdceY0JU3ItNL/PdYjs3JKSaE8bScGSce9PCNOfaXCYYO0d1zxMP6 W21ecFEwnb27lLw/oIujKxdJ81BQbZQ9N03cGvD3ecwSCrIrl4SxibU29O+Q 4KPgH6Wd3m3EJUU1dU8FKBiJ1vpaQKymn3tl1XIK0odO2EQSp+E4njBhCoxr 95jbEq8PeBC7QpSCu/Wb3qsRR6133BksRoHUSRnTWZIPoaLzDYLiFBQ4KVl8 JPY5d/BqwGoKDI5ao2vE0/TmJbySFNgltrqtIbb3F433WUtBr1q4bynJf9+6 2V2L1pH53c+hzYjr9art5uQokHDzrPEl9TxK5yy9tYmCiCPnNZYTFz2ITfiz hQIR2QXRR6QfXhfYN/9WomDR3S0lbqRfJPUM7J22UxBf9SuWQfrrCQf4sCoF d4r5W4H4jozIvuHdFLzQ+3JuhPTneP50y+V9FARdLojdQWx7luXQr07B5MLL AzdJP5/ze59IaVBwqHBJ1ADpfwX2OcE2bQoag28+uUzWy0e9kyhQh4JSOcEy M7KeNIoPuaifpSBn7fHxU2S9GQUrdSafp6CLmjQX5WAUoMz/1tWSgtMTCle3 kfUr9mzBdJM1BU9Vl+Z3D5D+454U7bKhQIWttsy3n1y/keWhYU+B6Xm58o8s jAZcizRF3SkYSnXyzSH3E+fu7PkvtygI9Vbml+ok6/NISrb7HQqGkyIiPNvJ 9cUjJXruU9CssqVKppXML99hOCOYAl5rTsZcLRlvbn2gdhIFRw+l9PAjEp/1 anXu1xSw0w4p9BZhlFcrPJaTQuqpvdj/fQFGtfF/DSUzKOCU33TbnUvGO9i6 eSSfghDThd0daSRev4Bv/nWkHsl+XI5RZL601+19jRTc6JhKK4jAyMng+n+j zRTs/xrp9vcJRv6bLJ8ZdFBg33vd1OoRRrlV+67I91PA/2k2qdqbPA+ER/nK ZyhQV96Iftlg1Fgc+ODEHAUPv21/OWBF6msnt7RugYIee6GmJgtyv6oy4ulY 3APu2/aue2pM7PtlDgv1gN7OaZ/S0xitmI0eW7OhB04Xp0q+UsVo2c8jXS5a PeCZHOqT84dG1RGU0bR2D8QP5BTmjNMo6PCt9js6PVDPf9k4fZRGgi8zWwPO 9cBF3muMB4M0EjBZ0xBv1gOPzNdws9poxNc0+uW7Sw84ZP1+vfUDjRaj5xkb YnpAzVdZTNKWRh37Dh9nxvWAUV72ztJLNMooYFPRL3rI83082sSMRka5+0VF X/dAycyovKcejbLSma5c2T2QQrXd1VGnkWnMhj3dlSQ+hw3JBito9NH9bXnk b3J9ycmbI+kcFDx11uTMZA+wzOIqbr3mIEu3vxPLp3tgzR3fQJ4XHCTkpL3R d74Hlqn5eU6HcZCVDQ5w4WfBgquYupc7B4kaqJzWkWZBLPte/+9DHHRVtbCd X4sFi40tckPq2KikviXtozYLrspVpOz4ykarro16XdZhgehW54SmEjZCyXLy X86xQEmqLX4qi41Wij92vnuRBfYdxTJUGBsVTl8SnHJjgW22D/cOfTYSREL7 +xJYsOLQJuu55hH09oRFwqdJFrwT1FkWUDiMVBXWqcM0C8Kjci/3ZA+jT0JU J5plwZX9vLoqqWS/22QiXsrVCydUqlo+Rw2jcRPD4M8CvSDo0c966jaM1J11 PL+u7YVdatODyxXJ+dHq5xuP9oLJC92eA2T/PDEisWIgshfwljqjgxcH0Yez x3jCD/fB8lR35RU2/cjruG98zkAffA8W5bmvyULrujV/JPr2w1jg9RPf2N1o z06f8NXbB0CpLLoNqbQi47V109xNA8CpTqz9dKIGTVQ9Yjl6/4RFf4paH9d9 RFGLTV3PyA7Ct50ZVoJ+MbCS8eHlovJBCFp57kbx1s+w5La33m6nIahRVzPi ZzUAV4ppBkt0GFqLP4h7nG8H5+iMR6Jlw9C7EPogi6zz4q3+fCL2I1B62qbh wkQviGg6K9wTYsO2zJesPGoAurbVN7kXsUHls4l1yqshiB8Ruc2D2DB36EC6 YuYQWKSclX9UyobYixfC0sn72JBs282ECjbZf9WqRFUPweQahlRlPZvsJwV8 ZMaGQESAfVmsnw0JJv8Yze4dhqMDvH/fLefA95947FvVMGTGgWyfKQeW7Usc 0mkegd8ev3nNzTkg2Fw2s7hrBNQMXo90W3LgTDG/dTZ5fywUFn7fZsMBIblC jemxEai4yzj43ZkDZvnlg2oibOi0uG2W7ceBP0bOxxxPsmHpxsLou+84IDLm saaumA0neBzuzGVyYPPjDp635WwIYq638HjPgRUF3UJ3v7NBJCpws+tHDrQM aPqtameDJL/Rx8tlHEjhvlfD+c2G7SN/Wk61csAvq/n8mU0cMMlQE5Ga54C0 pUcE9ZADuUZ/hOq5aKB6VuWYkYeJ0NKCZfd5aFALPeXTGsWBEuP9fEN8NLQ8 19/+NpkD6wUOL+SspCF36vaT0U8cGLikyzm5mYYIxqcfQ5gD9hJ238i6hqIL +smBWjRUfNlWqWRAg+R/gQl/dWiQdsLlLEMa3i5qELfWp6G+0rnkuBkNayx8 XaXNadju5p4nZkvD95SQoq3XaZiq80tO86LhmgVAShwNd31feHel0vAkbO8p xSEalt/g1TRPJ85qv32IQ0O0zTXRgQwa+gZkpE7/ouG91u5EnEPDwNncV7rT 5CjSUL4I0ZAuklc1y4dBK46Lb3MTDeUD49698hh+hFjXp7fQkKh0YfedLRgu eVdHbf9B4s1z1BVRxHDnUtTmfd00nN6skCCzA0PmFmWt0z/J9QKY8b2HMPyT ZxbsNkvDcc//7GeMMSS++aI/M0cDq+vjd4mLGJSjt0p7cWGIaGv0VLHEcOL2 VIb/EgxdXPmt2lcweGqENDwXxuAs/lhP3g0Dq+6TWNkGDDn3kn5YPcTgUCrb fZTMMxOF/isYjOFvdmDy900YvA1bEt48xrAqUl+tZRuGPf6ND6ojMBw3pg0G d2LY0Lo9Li8eQ/qg1HOhkxj4rJQuS2Rj8I/1vcg4hWHca6T0fg6J9wxH7p0u hjEnbpfeXAySRUWZ2gYYsmfPt/gWYggMuVARZIHhTJDiA/1yDNaHPz80tsLA myrp7VyB4dD0Fl0FGwyv73G++3zFMG0x0/n9GobGnve6QdUYbNSe/RJwx6Aj Qy3b2Izh8AhXXsctDLJqXZ4TLRikE2w8U+9gmKjm2l3QhqGVfxevpg8GE/+4 MPlODEe6WyUDQjBUb637HNiDQeaJOuv8EwzCj2L9BHtJPo6+er2JxF3v8jT0 Xh/JW6bb9q/RGMTDj905+xPDeh+x47yvMBgbNb26y8Ywv8tzedsbDE8ub4h/ z8HQzultfPUWA9dDs64uGsNjg/cmR7NIHTJVZUV/YbBbtmbDPyRPvVfXKa4d I/ktvTfYT/Jk9+7FLZnfGBa2nHHxLSJ1ZshSvBMYOpj5u84hDM0HwibZxLnh 6+ZlyzDMrbI7/XUSg/38qH95JYa0FL1K8z8YNN+fPxVeRY6xP/ulpzHI2ZSs vFSDoeTayJFm4q6GkDieJgzl+XbfpGcxfPSbsmwiebup4MvOJQ7fa7Y58QcG J9vDOof/YnAcraCdSd6sjb3GK4m1khVzDjEwxPQubz84h0HeKNJdlORxrL1q Lot4kfC8OovkcVgk3OLfeQyMz1aLswfIOPqavG7EBTdrvnkPYThq1zBSSRy5 bUeILsnjQeEVK0QWyLisGL11mNRxArvoEJ98uljiF8nbxmoTcT/iTSftmCXj GFz2npjJ+t/3Ae7mpMdTGGZYSZLNxNSHvbYXZ0g9LljfIft7KLJNVFIm8xpT 85OeJX4qLTjxv+8K//994f8AxGZvRQ== "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[ {RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwVmXk8VV0Xxw0NHhWRiEhlSIUkpdEqU0WJMpdZpkqIniQ0IBpQSZIkQyFF xkRtmR+ZQ8Z7r2t27z1bSWbe/f51P9/PPXvvtX6/tc7Z+5xN9pdPn+fh4uK6 z83F9f9fvfPDTSUjJho9z8RhJ9cYLNGS8KCLq4FJqpePAuFdr2LicsS1ofJ9 Sft6wv2Ssrf+lTeA5qRRlxWE9et+Zr8UN4b2zR/1qUUMsg+kUhalLeCG0NCG r4Tn9Bye2clbg4WBvn4I4dGglnK7aDsI3ZbbqEvYzHHyy2NxRzBcNfNhcQFD uZZEQVmcE8h6Tw5kEVaROZT1R9oVPH+H+lgSjuOxTZNLugDPdj60mpvHwMe8 nWgq7w7NY/0vowl/ZjTXlRl7ANfSK3u2EvYwdNQ7F+0JGeaSW3LnMPTsuKv1 UNwbuFusV+fMYoh6ta5E7qwPVB+o5dtCWE8w/eDXuKsg6jBv/mQGQz5VuxtL +0KzuRuXyTSGi9bW2XftrkOt4H2z9CkMm+ux8sYkPxA027dsahJD+HthBSP5 AEjVk3a78ReDjlRy8ohzIPAHnZDOmcAQUBm7+pvxTbjv/Hs78w8GtT2KDy2i b8Ft2XT9reMYEtaeCrknHgR8EfopZzEGv7pn5aafg6A++aOoCYXBNJjBI3M2 GGaMaui6HAwrJzwDi+JC4HObme8aFoZrLVHX2NJhIG25p9ZwEMOZBz35n0rC oN3HZ37lAAZlbfmJILt7MNcod/dbH4b+nAJPqaT78AfbJq/pxWD0pNPNQD4c fHUc+M91YVDUl0mTqAoHbePDvF0dRG/ei0ODzhFgmddkcrodg03hwkdkHAkD ap1821oxrN0aqWwe/Qj+rrmS4V+P4RZfzpYw8Sio4BbYmI8wbDv6KDTbIwoc 9n6pifiCoTn48khXVRSoaabcsC0i9cOr+E756lNgcKonB/MxVM4nK7c0R4Mm 30uz0Pck3/Ho3dIPnoOwTraC1HMMeTt9oo/1PYfXu14EOEdjsPY4M+m5PxZe 6qf1pT7BkMkRLCwfjgXFz497VodjOD0cetBNJw4SDlS/9rmNIabnulbeQjwo utssPHbFcETSIplm8goGljs/MXAi9WqpvpTv/Su4Lmmoye2AYQPb1+G9UgIo vv05pn8Ow2XXPXJc3QkQ0lz/5qoBBmHHzNSUvYlQvEdIZfNODOYWrzPHfiVD SsSwaDumAHcZ8ydKpIDvly0CZSwKQqz5zp/RSoGSUzJWb4YoyHG4LJEflQLJ CpylpnQKBNwPBfupv4FS3/A4i3oKKm53WC7zfwve40PZv9MpUM0QWibJlw4x D6WeXbGm4D/lCts6lXSIpKldumBBge3Ha0UBFunAlGQWnTWm4GE+3aM3PR3s 7yRWyelRMFzyvuvNyXdQp5NWaLObgvjW4x93PsmAHUa9ay/yU7Bi8da5oxsy oXlgeRj+wIEYVzNrRd1McErZ0i2axgHZFkVbIfdMyEoVkVBP4oBG2k+Hri+Z kDb+5qz9Mw4UpkXnFShnAbtMZ71jIAc4Z9jF+vVZsPeDAlprwCH3mWffr6zK hsOdy8MPDLJBzogaLrufCxq7MsoGudkgEXh0v/PrXMiX2lCVOc2C1e8T7vMX 5EKUy/MRj18smOE7o2zEzIWvfPlRXQwWNJYUXKHtzYM9/oZlpxELrqvcWpga yIMZBe7QmussqBcUEVE+XABnElnmY6xR+Ld+H8T8KYTryxZ7XxeMgFiuEI2b G8G1FQPc2duHIJ+pVdtwsBQyxp+55PD0Q6nby/UW7HLY8Tj47dVwBkzIHxJ8 f6kKAmQexeTJdQLP9LvV6+Vq4OJ86S4n+WbYs2ibf+ZDLYj853nRrqocaoPU 6iu3NYDOKdablQvJIB3Jmk6jGkHJ2IMvwLoAsSbptFaVZqh/X3PN0uA7Sh4t qhEI/wG42vZJSG8rEpB6i/v7W8BsxFyDJ6oHPXDNc0qQbYOlX2zX6ckz0d/D 7/pdAn+CcqnLG4kbA8hbtTxXtKwdRIO3r8o4Moyc1DYmPKpuB435ZoP+E8PI fM+N+yvr20H2ybe7a82H0YH9avY8He0QTw9otncfRjyayYIU1Q7m0eqeqbHD KMIoyK1CogO0jx3j6/k1jNI9tDd6e3VAKnvgQ2vsCKJ/KL/ftKkTti39bn2u bRQ1cpawVbd0QkjD9dRw+igqUdQ5EaXYCeqJAV6Fw6MoIb1ipZl6J+Sc0fWf mhlF9m8qH3af6ISL6I28pDQLDb6sjhj6txNe08SiJ8+zEOdB7ZP5uk5QWTAu 5XBYiPZ95R/rH51g4Xzy+Pa/LFTPf9K4pL0TWMxSHrsFFvoQWidyp68Tzs1O 8+YJsJFHUP1TvulOaFs2sLigzEZ//BqfrZHtgmHGwaF17mw069byYuv1Ljgm zt5lMshGxnusHikHdsE6RY876zhslME9GLIrqAv4dC7XtoyzkXXMpOeh8C7o Xnpaey83B32rkDhmlNgFP/J2xqev56C7G+3+XKvpgsW4PVEHTnHQmjbOiWqJ brgtFpHN+5GDLr6+qlkn3Q0SavVyffkcVH5xUb1ZthsmIi7YFRVz0FVeIZlu 5W5wyhdSNK3moA4VtWms2Q0LXxKH1Ogc9Or+9RSxC90QXXGm9OkKCm0/snzB qagbfBtv5ndZUygr/d2W9pJuSE0NUT7oSCE1EUOj45XdsMpz6fQTVwodHIpJ 3t7UDbRrRoFbvSlk8HCb/thgN8wUDcmzQynk1XEyxle4BzI0TWPqsyj0V/P3 t1GxHliwLQ5OyqOQX0Y066xUD2w/rvfh8mcKBQXSNTQUemDJVdt3nDIKRct5 DvBo9EBy4LMdN9soVOgZpfrAtQemrl7dtzBNIY2uvefm3XugOb5/n+4ChUq1 e4LdvXsg6b8022AejGrE5DsMA3ugSMpKcoQfo+4vBYFrn/ZAueCvbbrrMeLi 76qNL+mBksMur032Y3Q0cZPzRzEaaPTVWpV6YqQWIyBfKUmDvZmRgQXeGG0M n+3v3ESD4fCM2uR/MZrxbbVfokgDyctcg87+GL03CrM2O0yD5gNC3JGhGK3h /mUy70IDzfVLwPklWW+yR0TYnQYbeNNKaa8wYrNrfshfoUGHeruTQSJGle3J Rob+NJB57iQg+hYj3yzzk0mPaDDyKPU/3SyM6DYl2sc/06C6wspL6RtGtSbv ea0RDeSlPxXKl2H0ST+21KucBqsGytetq8Dosbr34bh6Gow/XyLZV42RjqDC QcykgcqR8a0SjRipLl07yztMg7T6tE0tTRhtmOX+vI5Dg9JmB6WQHxhNDXap a07SwOqwSmBzG0bvvkbserqCDhFnirhW9mAUk3vjd9pqOvx2Xv0whIZRULrr x69r6aB+eu+2aTpG1tFaO4al6cA3+PBpJRMjIffJbQfU6KB9+4U8zzBGCw79 I6f20cF0sHzHoRGMRi2aUh016JC7SvCoxyhG5Trv5MOP0UFvf3P8VzZG/0rZ bO49RwcJvvWs2TGM7A1VTLvt6DCu+v3m718YGdzhvvfTiQ6nfWI8e39jJD+S 9KvOgw4hYskOqX8wEpb0kfvPhw4mk1ccb05gNG+ga1F+nQ5V1B1k+Bejltzh ks9BdBA9+eJO5yRGJUOFf/LC6GDTo8l+MkXyl7iv8DGcxN/u9kFnGqPbN5Ui 38bQIf9+pMbjGYzccxbKEl/S4e+6QyuVZjGyGGyYfJlIB7XPVaolhFVOeNlE ZZB8BUfCGuYwkgzUehLxkeSrfeiz/jxGy7NFqu7lk/UfjWqWEP7dPzATXESH OP0WGaUFjGhiBcq3Suiw6TX93GPCNXqh9jcq6OAaNc7BhPP8LaL/raGDyMJU m84iRglZ22q8GuiQ8aBTLIrwg77Z+UsthMuDsjoJXxOt2+naQQddriuNK7nG kMPx+POONDrY7/3Xm+zfkcGNy89t+ugwtOqY9mHC+zMP11kO00HqMh2MCcsz hbhNOUTP3XudHQkLre1TM/pNB5aswWcPwnNHc11OTBL/OFL7fAkPXw+OOzpH 6kUhpc+f8KjpdpfXXAzwsmIWBhC2HVvDI83LAPfZliI/wm1hcy/iljIgydp/ xJuwvszAbgk+BgzUdWu6ES4prmt4xs8Aeb+JqrOE95jmu65dxQC3OzXXjhPO wPG8TwQZ0ELZmOwivDns7svVwgx4k/XZSpxwzGYP9XARcr3BN5lJoodAsXnT CjEG/FX/2JdDOMjkyIUwcQasvms860J4mtq6dLkkA0T8it1ECbuHCr8K2sCA +1vndhYT/fs3ze7l2cSAvQEKRuS8gRqNay/OyzFAdyrpWSDxU5fKXeanwAAh WXm0jHDx3ZcJU9sYQPHMaoSQenj72b1lfAcDwiXEjrmTepE0NnP3VGXAT/6E pjZSX485wIfVGGAptZijTjhgo9DB0X0MENX/eYdJ6vNP4XSr80EGuNQneCoS djvDvDygQf7X7v3kTurZJCQniaHFgFi+G8bdpP4V2SYrfp4k+tV7VZwl/fLJ +AS6Z8gAhdntIWdIP2l90byicYYBTqrfj2qSfrMM39GVYs6Apr24fgmFUZjK P++8HRjQcaB8Qor0r8jzRWsFJwZMhzyurBsi9cf9V7jbhQG1nTjWe5DM38y8 ruXOgDtnu0+97cNo0LtYT9iX6CuZMZFA7idePdkLFX4M2HZkNcXXTfpTJy3b N4ABxkMGHOdOMr9YtETvHQakJ+/kWfGTxFd4eTST7KMqTf88Hmgg681vvncy mdSL5EwZG5H8nMQ1uN8SvxdMnSq+YFRQL/g7N40BpiMr1j0twqj+1ZyFZCYD xqsm3okXkPWOtG1lFTKgMy3+bcF7km9I2H+hDQwQlN8dfPQ5iZcK9D/YTPR6 bHnxUTRGnmZXd461MGB5QPel5icYhSo4PDfrZMCojGDZvnCM8msOusoPMED8 9aXal7fJ80BwjK98hgGPFA+tLXbFqPnLvbvH5xkg4Ckrl+VE/L0ot6xhkQFi jcduxTmQ+1WNJW/nkl5Ytv7UJmsrwsEV81igF46XDq0NNsRo9Wzs7/UyvbDh +I4g+90YrRzS6b6i3wtHE65dtiPPx9qnDMvpk70g/6T8te0EhR5o+3UEGPaC Uaz4QfNfFFqRmNUWZtIL193aMlRGKMRvtb7plU0vzHlVx4a0U4jvx1jF9yu9 MFMjHllFntdL0ItMmbheyN5wNyDFjUKdB7WP0eN7wTye2/j4eQplfmYzYl/3 AteXSOd+GwpZ5h8SFn7bC32+W09xmVDo43u6N1d2LxQY+Z1o0KCQdZzM/p6q XpjKe+X6fTWFPvm+K48e74WEeCGeYx84KHzyjNXpv72Q7L2loe0tBzn4zE2s mu6Fe1m8QlavOUjA8+SW4IVeSBl+MHMqioPOu+CwK/8wwbak63mDLwcJm+06 ZSjNhIllBoXqWhx0Qa2o4x99JryUdfArbGCjksbWjE8nmeBitey7VTUbrb00 FuhsyASl1hrJmRI2Qily8hUmTPCGiXqJbDZaIxbpddOWCUEC82/nnrBR0bTj ikkfJsz982CptikbrUACh/oTmNBnvzN1rIWF3h23T/j6lwkmG6L8NYtGkZri Jg2YZkL/o66Nz7NH0VcBRheaZcJpv0yjkTSy3/1hJfaNqw+u21xwvBoziv5Y WYSX8feBR/OjMC2fUaThZXijekMfuM6lZr9TItfHapg36/ZB24tnTaXPR9AE S2L1YHQfcK+Pr7lvM4zyzhzljdLuh+r2bPtRpwEUeCz4Ve5gP4ztmNZYeZyJ NvXotScFD8C6Erpc2EgP2q8eFCWuOgiWzYdxrEobOrehYZr7xyCknnhgn6Fd hyZqHjI9bg1B0H5apFXNJxSzxNr7tOwwqARw/NtvxsEaWl4iT/kwlG2/43Ju Sxks9b9lvM9zBEI1vif97GkCrjTrTKbwKGi4JfJ3nO4Ar9jMh8KloxD3M2dj Aun7L9tD+YTcWaCRsYNG/90HQnpeircF2BDucfbAV/ogdCs1/vAtZoN/6sEI 79QReMUS8udFbBhV2aaxLHsE7NPOyD/8xoYtd5nPHxWNwIjsz2sJlWwQTGKe fFo/An/X06SqGtlwuCfNwfDPCAjxs51FBtiQEGEl/0RjFHQHl899WMUBTd0D 2vvrRyErHmT7rTlwsY528UEHC8avjy+3s+OA+5EOlkEvC/aYvWX1OHBAOWtr Nf8IC4oEBXN+unBgf2F0pPsUCypv0o589+JAL5fNlkFRNnTZ+9tkh3BAW68g 5clpNizbUhR7k5yLc7+60TvK2XCc93LAfBYHbonzbCr/zoYH9M3213M4oPR9 5c23zWwQirm31fsTB47u+RJuwWCD5D+Wn5xLyTm6+PYnt1k2qLKmWg3aOGDp rRUJKhywytwjJLXAgforr4TfRHEg33JKoJGLgp0FrWa7XnBAYNnnlXd4Kchy 3Hjg02sOlJw7xDfCR0GsbExzKolrM7/2Yu4aCg7XNvHKVXNg0NGIc2IrBTEB 2OXuNNFB4uJ/N4wpKK9sh34TCiorlKp2mFGQvtn0h+1ZCqQ9cTnTgoxfsry4 xZaCxiqvkmM2FPC1bwlKvECBqo9vgYgbBerD0R9bb1Iw2RCSkhFIgemZe09j 0ii4Gfz6Vnc6Bdm8tFO3/lCw6t/lenbvKZhZmun/fIrE6XJJeDCTgia9031p cxTk6O9LwrlkXjXlUzlLMAwKNZXzIAp0dZR8XUQw6Mdz8W39QcGBSMdnlqoY 2iOcGt+3knk2c7wndmNwvFUbo9pOAcWccg/dhyHAMWbrwR4KVAJbP0YfxpC1 TUX/1BAFy4wstYwNMIgW2IT7zFIQH3FX8rQLhqTUCtOZeQok+5dPXbqAQSV2 u3QgF5m3Qbb1ljuG4/6TmaFLMcQ9Cnn4yBvDDa2IpheCGI7t2FdteBMDs+Gr SKkM4bpPYyeiMVz+JtujK4/h7C+1DcMxGOay76V8V8DQI5Sn6vcCw9po0z2t Shjs18vwhyWQcecos2F1DOckL2lrpWN4Pyz1QuAEhs0vfnmrFGMIfRlsSyNx f6i+u+vuVxLXaY7cByMMtX2VhT9KMEgWF2edNMMgkisqYlCB4V7E2coH9uRX vRdV1WFw0i67f+48hi1uiX61DRg0p7cZKZK8T00VsSubMEzbz3R9v4Sh9Frj QFwrBpc9z3/x+2K4Xek8XtuNQZvFVdDph0HQp0U8kIZBOsHlRnoAhgWe433y DAxt/+xdrhdE8vglbWrWhyH766ta8bsY1otyZuj9GMKvLH88EkZ0evFsn/Ug Bp2eNsmwCAyqYeZ+B0YwbHyswTR/jKHMuN03dpTopfvmrcJTMu4I3z+YhSE3 y0e1OhbD8I9jjdcookuQyLHlbzBMXRv7JjBO4th7Y9XPVOLP5eilEn8wdHD6 mt+8I3kMBldJTGCINMux0v1Ixvcv/zL3F8PFletlRHMxvCmdY/VMkri/3R4e yMdQWL4YkTuFYXHb6SvBRPdYuzElzRkMnfTCvSYIk/PHQZnp/78fjtq0IFuK Yd0rk6CUWQyPj4eV/SnHUJI6bHB0DoP7wlhoeRUGpf6kmzTCejnmBlE1GJrj 1MQuzGOQcylZ40h8iXt6dDWHMJeUQseuRgzxS8JcHRcwdDdFxPP+IH0Qnryx ifCnkEmHH8SXddo6u3YtYog6YLM1qR2DRuzaV/cIe4xVUl5dGFxdkd1Pwvop yrmaxKfEcZ9icj4AectoX+FeDN5Nmzz//36fR3BBg0l8Uj5cUKdBmFZ2fkk2 8UWi85+mU4Q/X6v77xbx5TGd7Uv25xCttDvCiI2hXm1XlR1hT2ac8SZM9LPJ LLAnfOLZEolfvzBYBu/SsyascOIivYT4oO/yyN/4/98XuFuSI4nOX8/HGuoQ ZuQdcLMlOr68Il2qQrjYLWmHCtFBecOvRlHCz6RXTCySPIJWoMn/f1/4H45b Sqs= "]]}, Annotation[#, "Charting`Private`Tag#2"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJw12Xk4Fd//AHBS2YpIH59EVGgTPpF270orKUpElhBJsqtISSEkkiXJVqiI LIlsHSRK9jXbveNastw7R7KE8DvfP373n3lez51nznkvZ+bMM+ssHM5YLeLi 4nrAzcX1v6Om1WBDydA59dyF//0wLNaQcGSuVoXFagJr/hKrxEfFvF99GPLy rtmNEvdJynrfkD8FscbbxruItWrasmNX68HHHu3sUmLZIKnkBWlDUBlqeRVH /FfT8qm5vCnYztQ0uBAP+zSXm0eaA+V9QOUgscGlqeInqy/BwYbd35cSl2tI 5H2OsQYz6a/PyucxKG/YnzkufQW2+s/GeRDHLLqYIpd4FT4sG+jYRMzHuvdS X94e5MOea9fNYSigGms+6zlCwcB/U9eIHXUuaRpHOgHKK2lbTNyt9EDj0WpX sF+mrL7mL4bw+H9L5C64QfmVE+XRsxg0hVP3fYq5Di1T1d6ixLl09Q4s7Q79 Ss8Sh6cx2JmaZj8w94Dpjs18WsTra7GiTOItoD7mJCX+wRCcLrpJV/4OHO4z 8ds/heGIVFLS0GUv2GjY9P3OJIY7FdErSvXuQvjpXyc+TmBQVVN4ZBjpDdy9 Q6MrxzEkrDrtF7jaB3JDHuFroxhu1Twt1y/wgaTC6QVHjEHfl1q04YIv6PR8 0bSjMSybcPIqjPGDHV9vP9ZiY7jZHH6TLR0ASulNvWk/MZwN6s79WBIAYqLR tU4DGBQPy0/4mAdC5MTohGI/qef7PCepxIcQZBk0G8rCoBvWYXtKPhiMav1H ZrowKGhtSJGoDIYBqvmzdyfJN4/dz4HLIeDRY9TJ1YHBLH8+C+k9BtuDj779 bMWwavNjxfORofBQ4WD6+XoM3nzvNwasDgd1vzJORSmGLcdC/bMdw8Ho1rTt a4Sh0ddhqLMyHDT1nZruFJP+4VF4q3g9AnaFxtmI5mOomEtSbG6MBJ0jXR+q M0i8vyN3SAc9A0ZavUvwcwwf/nOLPN77DEo/tY93R2EwdTw75bQnGhSb99rJ RmLI4Ajnlw9GQ+i7rQcjH2M4M+i/z/ZIDAxoK0Uv98UQ1e2h8WE+DqSlfpZr 2WE4KGmYxDgXDzGZb4UEr5B+Ndq5hC89Hk6tuWFcaoVhLdvdMn1bAjzlHeRd aYbB4YqaHFdXAujPb8rX1MUgeinjTfKul/DY+JjVMlUM5w1fZIz+SgKpbpWr 1BgNuFNP4KVEMhQaf35WTdPgZ8pndVYjGY4WPRbJGqbhvaWDRG54MsThBcqC RYOQ/X7fWztfgVuYgaRtAw1f7rUbLb39Gu4nOI/zvqNhe5rIUkm+VLiQyRYI MKfhm+KXizXKqbDvluW9u8Y0XMy6WXjHMBXo6rDLjgY0PMplOvakpsKVCqW7 u7VpGCxJ73yl/RYmJ+SEnHbRENdyIuu/sDSwnv1Uen05DYIL3sbH1maAxIM4 4YEsDkRdMTBVOJoBEfTVHsE0Dsg2K1wUsc8A062BkVtecUA9pc2yszgDtJeb Zp6J5kB+SuSHPMVMWLT2SJX2PQ5wzrKLtGozYaY/o3NUhwPn3jz97rI8G3aH vBwbH2SDnC49+PlhDkix1I1OLWaDhNexPZdf5MDDiAI9sb8jsCI94aFAXg5E NifbNv4egRm+s4q6rBwwWbp2TK13BOpL8lwYuz4ACBlkvSgdAQ9l7/k//R/g yp99S7luj0CtsJiY4oE8sNLP2PiLMww3andD1Hg+sKqEdXbkD4F4jgiDmxtB Fo9miKfCT8hlaVTX7SsDk9nc5WWL+qDMNnaNIbscVLI11s88omBCfr9w+rVK cAwbcBeW7YBF029XrJGrgu1D92yMZBtBbeFi7tl31XB0Su3Xis/lUO2jWlux pQ7Uw2esrDhJIP14ZDqFrgdBY9XoQas8NDLFZLQoN8J/LPt3rrrfUdJwYZVQ cBP83RM/kMFqQUJSr3FfXzMwaoebUXg3CrrywTpBthXsDXrHXORZaPLA2z4b rzbw3hd0jd+zH7luL8/55/MPYPQVXbc8OIisVWUSQr/+ANk0j6rok4PovJrn w2W1P4BtELfqu8Eg2rtH1WJR+w9Yxy/n+4/9IFp0KEmYpn9A0hi3w/noQRSi 62P7RaIdQqePJ/r+GkSpjodlXJ3bYbn042SH6CHEfFf+sGFdB8xWypa1twyj es5i9vaNHTApo6gsyBxGJQpHToYrdIC4K3PtjsFhlJD6ZZnBzg4Y+sXt6jwz jCxeVTzqOtkBmjIquU/WjqCB2K8hP290gNG2SJvLViOIE1QdNlfTAVVlZy/r cEYQ4/uycdOmDrBSlJN+NDGCagW09Up+dICAzxB/2dwIeudfI3a/twPMzGQd xITYyNGnNoJvugNU1tbtuqDIRuO36p+ulO2E4jWBTfbX2GjWtvn5Zo9OEJzu pOP62UhPzSRU0asTuh5PBpmz2SiNe8BPxacTRvtWykn9ZiPTqCmn/cGdEKhb u8+Li4NKv0gc133ZCTFtA120BAc9kDEfv1nVCXKfbD08TnHQylbOya8SXXDY Q+fCrkwOsntx/VCNdBeERa1TFs/loHK7hZ2Nsl1QbTVTQxdy0HUekQ1dil1g 9e+/Zv6VHNSurDqND3UBcsjPuMTgoPiHHsniV7ughbWktUSARlsP8s5bF3ZB LEMcz5nQKDP17cYfJV2Q8zyl2cSSRqpiOronKrrA3SB5+QcbGu37GZW0tYHM R6Xc5YQLjU492qI1OkDO3xY0wO9PI+d27Sh30W741dMgNZhBo8lDY6XD4t0A E97+RTk0upUWOXJBivw/b67kn08jHy+muvqmbjhRskdhyWcaRco59S9S74bV NVFFES00yncK3x50pRvefAkVXTFNI/XOXcZz9t3wJMDjhcEcjcoOd/vau3YD /abdIJIboypx+XYdr274lCurNs2PUVdxnteqiG4YL49/qieBEZdAZ3VcSTdg +aXsi7sxOvZy3eUscQbol1Sf+uqIkWqUkHyFJAPuKqRsKXbBSCZ4tq9jHQPc Kxe2p17HaMa9xWKxAgM6xlUq7DwxStcNMDU4wICL++pZYQ8wWsn969ycDQMW ahYuXIkh4011i4naM6DdwSqNisOIza5qkndhQOvxgLU6LzCq+JGkq3ObAfnL X1iJv8LIPfO8dmIoA6Yjwu2PZWDENCs5fKKAAZ9P/ksrlGBUfS6dxxQxYNmO 36vkyzD6qBVd5lzOgHX+X/TFyzF6stP1QEwtAyJuWq5jVWJ0RHjTPsxigNbv GzX/1mG0fcmqWZ5BBsQwf2c01mO0dpa74F8OA8xdS177NGL0Z6Bz56EpBhjG x7bUt2D09lOISoQgEyZDxKQFujCKyvEcS1nBBLuHOQk+3Rj5pF7J+rSKCRle nqpTDIxMIzWUBqWZEOOyKrS8ByMR+6kte1WZkD3ZIMb1E6N5y76h07uZoGQg sHbvIEbDhg1vLqkzoeVIiZr9EEblR97KBx9nwpm1bhFFIxjdkDJb32PMBPXn G7hmMEYWOsr6XeZMGJx7nTA6itGp+9yBbdZM4C+Oj2X+wkh+KPFXjSMT0nyX pr36jZGopJvcNzcmCBfyFd8Zx2ju1FHDcg8mlCUlbT49gVFzzmBJgQ8TdvP2 ibVPYlTyM3/8QwATfmpuDnsyReKXeLgpK5gJ9T+07A7/weje3W2PX0cxwdf3 rmLoNEb27+c/v4wl4wlriCvMYGQ4UDcV+5IJ3QUaRohY+aSzWXgaEySuuNK1 sxhJemmEhWQxQc7dErT+YsSbLVYZmMsEzXKhYUQ81tc/41vIhCpLI1phDiOG eJ6idwkTNI4onHxCXKXpb+H5heRzix3PKPGH24aRN6qYcDuVR+zoPEYJmVuq nOuY4KrEuB1OHNQ7O3etmQk//gwe6CS++U/Nf1famWAqsdJEYgEjyxNxVpcY TNjpqd2oS3zK0+GZWS/JV2dggjfxnowDNUaDTBD9iipTiOVZItz6HCbgN6xj VcQiq3pVdceY0JU3ItNL/PdYjs3JKSaE8bScGSce9PCNOfaXCYYO0d1zxMP6 W21ecFEwnb27lLw/oIujKxdJ81BQbZQ9N03cGvD3ecwSCrIrl4SxibU29O+Q 4KPgH6Wd3m3EJUU1dU8FKBiJ1vpaQKymn3tl1XIK0odO2EQSp+E4njBhCoxr 95jbEq8PeBC7QpSCu/Wb3qsRR6133BksRoHUSRnTWZIPoaLzDYLiFBQ4KVl8 JPY5d/BqwGoKDI5ao2vE0/TmJbySFNgltrqtIbb3F433WUtBr1q4bynJf9+6 2V2L1pH53c+hzYjr9art5uQokHDzrPEl9TxK5yy9tYmCiCPnNZYTFz2ITfiz hQIR2QXRR6QfXhfYN/9WomDR3S0lbqRfJPUM7J22UxBf9SuWQfrrCQf4sCoF d4r5W4H4jozIvuHdFLzQ+3JuhPTneP50y+V9FARdLojdQWx7luXQr07B5MLL AzdJP5/ze59IaVBwqHBJ1ADpfwX2OcE2bQoag28+uUzWy0e9kyhQh4JSOcEy M7KeNIoPuaifpSBn7fHxU2S9GQUrdSafp6CLmjQX5WAUoMz/1tWSgtMTCle3 kfUr9mzBdJM1BU9Vl+Z3D5D+454U7bKhQIWttsy3n1y/keWhYU+B6Xm58o8s jAZcizRF3SkYSnXyzSH3E+fu7PkvtygI9Vbml+ok6/NISrb7HQqGkyIiPNvJ 9cUjJXruU9CssqVKppXML99hOCOYAl5rTsZcLRlvbn2gdhIFRw+l9PAjEp/1 anXu1xSw0w4p9BZhlFcrPJaTQuqpvdj/fQFGtfF/DSUzKOCU33TbnUvGO9i6 eSSfghDThd0daSRev4Bv/nWkHsl+XI5RZL601+19jRTc6JhKK4jAyMng+n+j zRTs/xrp9vcJRv6bLJ8ZdFBg33vd1OoRRrlV+67I91PA/2k2qdqbPA+ER/nK ZyhQV96Iftlg1Fgc+ODEHAUPv21/OWBF6msnt7RugYIee6GmJgtyv6oy4ulY 3APu2/aue2pM7PtlDgv1gN7OaZ/S0xitmI0eW7OhB04Xp0q+UsVo2c8jXS5a PeCZHOqT84dG1RGU0bR2D8QP5BTmjNMo6PCt9js6PVDPf9k4fZRGgi8zWwPO 9cBF3muMB4M0EjBZ0xBv1gOPzNdws9poxNc0+uW7Sw84ZP1+vfUDjRaj5xkb YnpAzVdZTNKWRh37Dh9nxvWAUV72ztJLNMooYFPRL3rI83082sSMRka5+0VF X/dAycyovKcejbLSma5c2T2QQrXd1VGnkWnMhj3dlSQ+hw3JBito9NH9bXnk b3J9ycmbI+kcFDx11uTMZA+wzOIqbr3mIEu3vxPLp3tgzR3fQJ4XHCTkpL3R d74Hlqn5eU6HcZCVDQ5w4WfBgquYupc7B4kaqJzWkWZBLPte/+9DHHRVtbCd X4sFi40tckPq2KikviXtozYLrspVpOz4ykarro16XdZhgehW54SmEjZCyXLy X86xQEmqLX4qi41Wij92vnuRBfYdxTJUGBsVTl8SnHJjgW22D/cOfTYSREL7 +xJYsOLQJuu55hH09oRFwqdJFrwT1FkWUDiMVBXWqcM0C8Kjci/3ZA+jT0JU J5plwZX9vLoqqWS/22QiXsrVCydUqlo+Rw2jcRPD4M8CvSDo0c966jaM1J11 PL+u7YVdatODyxXJ+dHq5xuP9oLJC92eA2T/PDEisWIgshfwljqjgxcH0Yez x3jCD/fB8lR35RU2/cjruG98zkAffA8W5bmvyULrujV/JPr2w1jg9RPf2N1o z06f8NXbB0CpLLoNqbQi47V109xNA8CpTqz9dKIGTVQ9Yjl6/4RFf4paH9d9 RFGLTV3PyA7Ct50ZVoJ+MbCS8eHlovJBCFp57kbx1s+w5La33m6nIahRVzPi ZzUAV4ppBkt0GFqLP4h7nG8H5+iMR6Jlw9C7EPogi6zz4q3+fCL2I1B62qbh wkQviGg6K9wTYsO2zJesPGoAurbVN7kXsUHls4l1yqshiB8Ruc2D2DB36EC6 YuYQWKSclX9UyobYixfC0sn72JBs282ECjbZf9WqRFUPweQahlRlPZvsJwV8 ZMaGQESAfVmsnw0JJv8Yze4dhqMDvH/fLefA95947FvVMGTGgWyfKQeW7Usc 0mkegd8ev3nNzTkg2Fw2s7hrBNQMXo90W3LgTDG/dTZ5fywUFn7fZsMBIblC jemxEai4yzj43ZkDZvnlg2oibOi0uG2W7ceBP0bOxxxPsmHpxsLou+84IDLm saaumA0neBzuzGVyYPPjDp635WwIYq638HjPgRUF3UJ3v7NBJCpws+tHDrQM aPqtameDJL/Rx8tlHEjhvlfD+c2G7SN/Wk61csAvq/n8mU0cMMlQE5Ga54C0 pUcE9ZADuUZ/hOq5aKB6VuWYkYeJ0NKCZfd5aFALPeXTGsWBEuP9fEN8NLQ8 19/+NpkD6wUOL+SspCF36vaT0U8cGLikyzm5mYYIxqcfQ5gD9hJ238i6hqIL +smBWjRUfNlWqWRAg+R/gQl/dWiQdsLlLEMa3i5qELfWp6G+0rnkuBkNayx8 XaXNadju5p4nZkvD95SQoq3XaZiq80tO86LhmgVAShwNd31feHel0vAkbO8p xSEalt/g1TRPJ85qv32IQ0O0zTXRgQwa+gZkpE7/ouG91u5EnEPDwNncV7rT 5CjSUL4I0ZAuklc1y4dBK46Lb3MTDeUD49698hh+hFjXp7fQkKh0YfedLRgu eVdHbf9B4s1z1BVRxHDnUtTmfd00nN6skCCzA0PmFmWt0z/J9QKY8b2HMPyT ZxbsNkvDcc//7GeMMSS++aI/M0cDq+vjd4mLGJSjt0p7cWGIaGv0VLHEcOL2 VIb/EgxdXPmt2lcweGqENDwXxuAs/lhP3g0Dq+6TWNkGDDn3kn5YPcTgUCrb fZTMMxOF/isYjOFvdmDy900YvA1bEt48xrAqUl+tZRuGPf6ND6ojMBw3pg0G d2LY0Lo9Li8eQ/qg1HOhkxj4rJQuS2Rj8I/1vcg4hWHca6T0fg6J9wxH7p0u hjEnbpfeXAySRUWZ2gYYsmfPt/gWYggMuVARZIHhTJDiA/1yDNaHPz80tsLA myrp7VyB4dD0Fl0FGwyv73G++3zFMG0x0/n9GobGnve6QdUYbNSe/RJwx6Aj Qy3b2Izh8AhXXsctDLJqXZ4TLRikE2w8U+9gmKjm2l3QhqGVfxevpg8GE/+4 MPlODEe6WyUDQjBUb637HNiDQeaJOuv8EwzCj2L9BHtJPo6+er2JxF3v8jT0 Xh/JW6bb9q/RGMTDj905+xPDeh+x47yvMBgbNb26y8Ywv8tzedsbDE8ub4h/ z8HQzultfPUWA9dDs64uGsNjg/cmR7NIHTJVZUV/YbBbtmbDPyRPvVfXKa4d I/ktvTfYT/Jk9+7FLZnfGBa2nHHxLSJ1ZshSvBMYOpj5u84hDM0HwibZxLnh 6+ZlyzDMrbI7/XUSg/38qH95JYa0FL1K8z8YNN+fPxVeRY6xP/ulpzHI2ZSs vFSDoeTayJFm4q6GkDieJgzl+XbfpGcxfPSbsmwiebup4MvOJQ7fa7Y58QcG J9vDOof/YnAcraCdSd6sjb3GK4m1khVzDjEwxPQubz84h0HeKNJdlORxrL1q Lot4kfC8OovkcVgk3OLfeQyMz1aLswfIOPqavG7EBTdrvnkPYThq1zBSSRy5 bUeILsnjQeEVK0QWyLisGL11mNRxArvoEJ98uljiF8nbxmoTcT/iTSftmCXj GFz2npjJ+t/3Ae7mpMdTGGZYSZLNxNSHvbYXZ0g9LljfIft7KLJNVFIm8xpT 85OeJX4qLTjxv+8K//994f8AxGZvRQ== "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXk8VV0Xxw0NHhWRiEhlSIUkpdEqU0WJMpdZpkqIniQ0IBpQSZIkQyFF xkRtmR+ZQ8Z7r2t27z1bSWbe/f51P9/PPXvvtX6/tc7Z+5xN9pdPn+fh4uK6 z83F9f9fvfPDTSUjJho9z8RhJ9cYLNGS8KCLq4FJqpePAuFdr2LicsS1ofJ9 Sft6wv2Ssrf+lTeA5qRRlxWE9et+Zr8UN4b2zR/1qUUMsg+kUhalLeCG0NCG r4Tn9Bye2clbg4WBvn4I4dGglnK7aDsI3ZbbqEvYzHHyy2NxRzBcNfNhcQFD uZZEQVmcE8h6Tw5kEVaROZT1R9oVPH+H+lgSjuOxTZNLugDPdj60mpvHwMe8 nWgq7w7NY/0vowl/ZjTXlRl7ANfSK3u2EvYwdNQ7F+0JGeaSW3LnMPTsuKv1 UNwbuFusV+fMYoh6ta5E7qwPVB+o5dtCWE8w/eDXuKsg6jBv/mQGQz5VuxtL +0KzuRuXyTSGi9bW2XftrkOt4H2z9CkMm+ux8sYkPxA027dsahJD+HthBSP5 AEjVk3a78ReDjlRy8ohzIPAHnZDOmcAQUBm7+pvxTbjv/Hs78w8GtT2KDy2i b8Ft2XT9reMYEtaeCrknHgR8EfopZzEGv7pn5aafg6A++aOoCYXBNJjBI3M2 GGaMaui6HAwrJzwDi+JC4HObme8aFoZrLVHX2NJhIG25p9ZwEMOZBz35n0rC oN3HZ37lAAZlbfmJILt7MNcod/dbH4b+nAJPqaT78AfbJq/pxWD0pNPNQD4c fHUc+M91YVDUl0mTqAoHbePDvF0dRG/ei0ODzhFgmddkcrodg03hwkdkHAkD ap1821oxrN0aqWwe/Qj+rrmS4V+P4RZfzpYw8Sio4BbYmI8wbDv6KDTbIwoc 9n6pifiCoTn48khXVRSoaabcsC0i9cOr+E756lNgcKonB/MxVM4nK7c0R4Mm 30uz0Pck3/Ho3dIPnoOwTraC1HMMeTt9oo/1PYfXu14EOEdjsPY4M+m5PxZe 6qf1pT7BkMkRLCwfjgXFz497VodjOD0cetBNJw4SDlS/9rmNIabnulbeQjwo utssPHbFcETSIplm8goGljs/MXAi9WqpvpTv/Su4Lmmoye2AYQPb1+G9UgIo vv05pn8Ow2XXPXJc3QkQ0lz/5qoBBmHHzNSUvYlQvEdIZfNODOYWrzPHfiVD SsSwaDumAHcZ8ydKpIDvly0CZSwKQqz5zp/RSoGSUzJWb4YoyHG4LJEflQLJ CpylpnQKBNwPBfupv4FS3/A4i3oKKm53WC7zfwve40PZv9MpUM0QWibJlw4x D6WeXbGm4D/lCts6lXSIpKldumBBge3Ha0UBFunAlGQWnTWm4GE+3aM3PR3s 7yRWyelRMFzyvuvNyXdQp5NWaLObgvjW4x93PsmAHUa9ay/yU7Bi8da5oxsy oXlgeRj+wIEYVzNrRd1McErZ0i2axgHZFkVbIfdMyEoVkVBP4oBG2k+Hri+Z kDb+5qz9Mw4UpkXnFShnAbtMZ71jIAc4Z9jF+vVZsPeDAlprwCH3mWffr6zK hsOdy8MPDLJBzogaLrufCxq7MsoGudkgEXh0v/PrXMiX2lCVOc2C1e8T7vMX 5EKUy/MRj18smOE7o2zEzIWvfPlRXQwWNJYUXKHtzYM9/oZlpxELrqvcWpga yIMZBe7QmussqBcUEVE+XABnElnmY6xR+Ld+H8T8KYTryxZ7XxeMgFiuEI2b G8G1FQPc2duHIJ+pVdtwsBQyxp+55PD0Q6nby/UW7HLY8Tj47dVwBkzIHxJ8 f6kKAmQexeTJdQLP9LvV6+Vq4OJ86S4n+WbYs2ibf+ZDLYj853nRrqocaoPU 6iu3NYDOKdablQvJIB3Jmk6jGkHJ2IMvwLoAsSbptFaVZqh/X3PN0uA7Sh4t qhEI/wG42vZJSG8rEpB6i/v7W8BsxFyDJ6oHPXDNc0qQbYOlX2zX6ckz0d/D 7/pdAn+CcqnLG4kbA8hbtTxXtKwdRIO3r8o4Moyc1DYmPKpuB435ZoP+E8PI fM+N+yvr20H2ybe7a82H0YH9avY8He0QTw9otncfRjyayYIU1Q7m0eqeqbHD KMIoyK1CogO0jx3j6/k1jNI9tDd6e3VAKnvgQ2vsCKJ/KL/ftKkTti39bn2u bRQ1cpawVbd0QkjD9dRw+igqUdQ5EaXYCeqJAV6Fw6MoIb1ipZl6J+Sc0fWf mhlF9m8qH3af6ISL6I28pDQLDb6sjhj6txNe08SiJ8+zEOdB7ZP5uk5QWTAu 5XBYiPZ95R/rH51g4Xzy+Pa/LFTPf9K4pL0TWMxSHrsFFvoQWidyp68Tzs1O 8+YJsJFHUP1TvulOaFs2sLigzEZ//BqfrZHtgmHGwaF17mw069byYuv1Ljgm zt5lMshGxnusHikHdsE6RY876zhslME9GLIrqAv4dC7XtoyzkXXMpOeh8C7o Xnpaey83B32rkDhmlNgFP/J2xqev56C7G+3+XKvpgsW4PVEHTnHQmjbOiWqJ brgtFpHN+5GDLr6+qlkn3Q0SavVyffkcVH5xUb1ZthsmIi7YFRVz0FVeIZlu 5W5wyhdSNK3moA4VtWms2Q0LXxKH1Ogc9Or+9RSxC90QXXGm9OkKCm0/snzB qagbfBtv5ndZUygr/d2W9pJuSE0NUT7oSCE1EUOj45XdsMpz6fQTVwodHIpJ 3t7UDbRrRoFbvSlk8HCb/thgN8wUDcmzQynk1XEyxle4BzI0TWPqsyj0V/P3 t1GxHliwLQ5OyqOQX0Y066xUD2w/rvfh8mcKBQXSNTQUemDJVdt3nDIKRct5 DvBo9EBy4LMdN9soVOgZpfrAtQemrl7dtzBNIY2uvefm3XugOb5/n+4ChUq1 e4LdvXsg6b8022AejGrE5DsMA3ugSMpKcoQfo+4vBYFrn/ZAueCvbbrrMeLi 76qNL+mBksMur032Y3Q0cZPzRzEaaPTVWpV6YqQWIyBfKUmDvZmRgQXeGG0M n+3v3ESD4fCM2uR/MZrxbbVfokgDyctcg87+GL03CrM2O0yD5gNC3JGhGK3h /mUy70IDzfVLwPklWW+yR0TYnQYbeNNKaa8wYrNrfshfoUGHeruTQSJGle3J Rob+NJB57iQg+hYj3yzzk0mPaDDyKPU/3SyM6DYl2sc/06C6wspL6RtGtSbv ea0RDeSlPxXKl2H0ST+21KucBqsGytetq8Dosbr34bh6Gow/XyLZV42RjqDC QcykgcqR8a0SjRipLl07yztMg7T6tE0tTRhtmOX+vI5Dg9JmB6WQHxhNDXap a07SwOqwSmBzG0bvvkbserqCDhFnirhW9mAUk3vjd9pqOvx2Xv0whIZRULrr x69r6aB+eu+2aTpG1tFaO4al6cA3+PBpJRMjIffJbQfU6KB9+4U8zzBGCw79 I6f20cF0sHzHoRGMRi2aUh016JC7SvCoxyhG5Trv5MOP0UFvf3P8VzZG/0rZ bO49RwcJvvWs2TGM7A1VTLvt6DCu+v3m718YGdzhvvfTiQ6nfWI8e39jJD+S 9KvOgw4hYskOqX8wEpb0kfvPhw4mk1ccb05gNG+ga1F+nQ5V1B1k+Bejltzh ks9BdBA9+eJO5yRGJUOFf/LC6GDTo8l+MkXyl7iv8DGcxN/u9kFnGqPbN5Ui 38bQIf9+pMbjGYzccxbKEl/S4e+6QyuVZjGyGGyYfJlIB7XPVaolhFVOeNlE ZZB8BUfCGuYwkgzUehLxkeSrfeiz/jxGy7NFqu7lk/UfjWqWEP7dPzATXESH OP0WGaUFjGhiBcq3Suiw6TX93GPCNXqh9jcq6OAaNc7BhPP8LaL/raGDyMJU m84iRglZ22q8GuiQ8aBTLIrwg77Z+UsthMuDsjoJXxOt2+naQQddriuNK7nG kMPx+POONDrY7/3Xm+zfkcGNy89t+ugwtOqY9mHC+zMP11kO00HqMh2MCcsz hbhNOUTP3XudHQkLre1TM/pNB5aswWcPwnNHc11OTBL/OFL7fAkPXw+OOzpH 6kUhpc+f8KjpdpfXXAzwsmIWBhC2HVvDI83LAPfZliI/wm1hcy/iljIgydp/ xJuwvszAbgk+BgzUdWu6ES4prmt4xs8Aeb+JqrOE95jmu65dxQC3OzXXjhPO wPG8TwQZ0ELZmOwivDns7svVwgx4k/XZSpxwzGYP9XARcr3BN5lJoodAsXnT CjEG/FX/2JdDOMjkyIUwcQasvms860J4mtq6dLkkA0T8it1ECbuHCr8K2sCA +1vndhYT/fs3ze7l2cSAvQEKRuS8gRqNay/OyzFAdyrpWSDxU5fKXeanwAAh WXm0jHDx3ZcJU9sYQPHMaoSQenj72b1lfAcDwiXEjrmTepE0NnP3VGXAT/6E pjZSX485wIfVGGAptZijTjhgo9DB0X0MENX/eYdJ6vNP4XSr80EGuNQneCoS djvDvDygQf7X7v3kTurZJCQniaHFgFi+G8bdpP4V2SYrfp4k+tV7VZwl/fLJ +AS6Z8gAhdntIWdIP2l90byicYYBTqrfj2qSfrMM39GVYs6Apr24fgmFUZjK P++8HRjQcaB8Qor0r8jzRWsFJwZMhzyurBsi9cf9V7jbhQG1nTjWe5DM38y8 ruXOgDtnu0+97cNo0LtYT9iX6CuZMZFA7idePdkLFX4M2HZkNcXXTfpTJy3b N4ABxkMGHOdOMr9YtETvHQakJ+/kWfGTxFd4eTST7KMqTf88Hmgg681vvncy mdSL5EwZG5H8nMQ1uN8SvxdMnSq+YFRQL/g7N40BpiMr1j0twqj+1ZyFZCYD xqsm3okXkPWOtG1lFTKgMy3+bcF7km9I2H+hDQwQlN8dfPQ5iZcK9D/YTPR6 bHnxUTRGnmZXd461MGB5QPel5icYhSo4PDfrZMCojGDZvnCM8msOusoPMED8 9aXal7fJ80BwjK98hgGPFA+tLXbFqPnLvbvH5xkg4Ckrl+VE/L0ot6xhkQFi jcduxTmQ+1WNJW/nkl5Ytv7UJmsrwsEV81igF46XDq0NNsRo9Wzs7/UyvbDh +I4g+90YrRzS6b6i3wtHE65dtiPPx9qnDMvpk70g/6T8te0EhR5o+3UEGPaC Uaz4QfNfFFqRmNUWZtIL193aMlRGKMRvtb7plU0vzHlVx4a0U4jvx1jF9yu9 MFMjHllFntdL0ItMmbheyN5wNyDFjUKdB7WP0eN7wTye2/j4eQplfmYzYl/3 AteXSOd+GwpZ5h8SFn7bC32+W09xmVDo43u6N1d2LxQY+Z1o0KCQdZzM/p6q XpjKe+X6fTWFPvm+K48e74WEeCGeYx84KHzyjNXpv72Q7L2loe0tBzn4zE2s mu6Fe1m8QlavOUjA8+SW4IVeSBl+MHMqioPOu+CwK/8wwbak63mDLwcJm+06 ZSjNhIllBoXqWhx0Qa2o4x99JryUdfArbGCjksbWjE8nmeBitey7VTUbrb00 FuhsyASl1hrJmRI2Qily8hUmTPCGiXqJbDZaIxbpddOWCUEC82/nnrBR0bTj ikkfJsz982CptikbrUACh/oTmNBnvzN1rIWF3h23T/j6lwkmG6L8NYtGkZri Jg2YZkL/o66Nz7NH0VcBRheaZcJpv0yjkTSy3/1hJfaNqw+u21xwvBoziv5Y WYSX8feBR/OjMC2fUaThZXijekMfuM6lZr9TItfHapg36/ZB24tnTaXPR9AE S2L1YHQfcK+Pr7lvM4zyzhzljdLuh+r2bPtRpwEUeCz4Ve5gP4ztmNZYeZyJ NvXotScFD8C6Erpc2EgP2q8eFCWuOgiWzYdxrEobOrehYZr7xyCknnhgn6Fd hyZqHjI9bg1B0H5apFXNJxSzxNr7tOwwqARw/NtvxsEaWl4iT/kwlG2/43Ju Sxks9b9lvM9zBEI1vif97GkCrjTrTKbwKGi4JfJ3nO4Ar9jMh8KloxD3M2dj Aun7L9tD+YTcWaCRsYNG/90HQnpeircF2BDucfbAV/ogdCs1/vAtZoN/6sEI 79QReMUS8udFbBhV2aaxLHsE7NPOyD/8xoYtd5nPHxWNwIjsz2sJlWwQTGKe fFo/An/X06SqGtlwuCfNwfDPCAjxs51FBtiQEGEl/0RjFHQHl899WMUBTd0D 2vvrRyErHmT7rTlwsY528UEHC8avjy+3s+OA+5EOlkEvC/aYvWX1OHBAOWtr Nf8IC4oEBXN+unBgf2F0pPsUCypv0o589+JAL5fNlkFRNnTZ+9tkh3BAW68g 5clpNizbUhR7k5yLc7+60TvK2XCc93LAfBYHbonzbCr/zoYH9M3213M4oPR9 5c23zWwQirm31fsTB47u+RJuwWCD5D+Wn5xLyTm6+PYnt1k2qLKmWg3aOGDp rRUJKhywytwjJLXAgforr4TfRHEg33JKoJGLgp0FrWa7XnBAYNnnlXd4Kchy 3Hjg02sOlJw7xDfCR0GsbExzKolrM7/2Yu4aCg7XNvHKVXNg0NGIc2IrBTEB 2OXuNNFB4uJ/N4wpKK9sh34TCiorlKp2mFGQvtn0h+1ZCqQ9cTnTgoxfsry4 xZaCxiqvkmM2FPC1bwlKvECBqo9vgYgbBerD0R9bb1Iw2RCSkhFIgemZe09j 0ii4Gfz6Vnc6Bdm8tFO3/lCw6t/lenbvKZhZmun/fIrE6XJJeDCTgia9031p cxTk6O9LwrlkXjXlUzlLMAwKNZXzIAp0dZR8XUQw6Mdz8W39QcGBSMdnlqoY 2iOcGt+3knk2c7wndmNwvFUbo9pOAcWccg/dhyHAMWbrwR4KVAJbP0YfxpC1 TUX/1BAFy4wstYwNMIgW2IT7zFIQH3FX8rQLhqTUCtOZeQok+5dPXbqAQSV2 u3QgF5m3Qbb1ljuG4/6TmaFLMcQ9Cnn4yBvDDa2IpheCGI7t2FdteBMDs+Gr SKkM4bpPYyeiMVz+JtujK4/h7C+1DcMxGOay76V8V8DQI5Sn6vcCw9po0z2t Shjs18vwhyWQcecos2F1DOckL2lrpWN4Pyz1QuAEhs0vfnmrFGMIfRlsSyNx f6i+u+vuVxLXaY7cByMMtX2VhT9KMEgWF2edNMMgkisqYlCB4V7E2coH9uRX vRdV1WFw0i67f+48hi1uiX61DRg0p7cZKZK8T00VsSubMEzbz3R9v4Sh9Frj QFwrBpc9z3/x+2K4Xek8XtuNQZvFVdDph0HQp0U8kIZBOsHlRnoAhgWe433y DAxt/+xdrhdE8vglbWrWhyH766ta8bsY1otyZuj9GMKvLH88EkZ0evFsn/Ug Bp2eNsmwCAyqYeZ+B0YwbHyswTR/jKHMuN03dpTopfvmrcJTMu4I3z+YhSE3 y0e1OhbD8I9jjdcookuQyLHlbzBMXRv7JjBO4th7Y9XPVOLP5eilEn8wdHD6 mt+8I3kMBldJTGCINMux0v1Ixvcv/zL3F8PFletlRHMxvCmdY/VMkri/3R4e yMdQWL4YkTuFYXHb6SvBRPdYuzElzRkMnfTCvSYIk/PHQZnp/78fjtq0IFuK Yd0rk6CUWQyPj4eV/SnHUJI6bHB0DoP7wlhoeRUGpf6kmzTCejnmBlE1GJrj 1MQuzGOQcylZ40h8iXt6dDWHMJeUQseuRgzxS8JcHRcwdDdFxPP+IH0Qnryx ifCnkEmHH8SXddo6u3YtYog6YLM1qR2DRuzaV/cIe4xVUl5dGFxdkd1Pwvop yrmaxKfEcZ9icj4AectoX+FeDN5Nmzz//36fR3BBg0l8Uj5cUKdBmFZ2fkk2 8UWi85+mU4Q/X6v77xbx5TGd7Uv25xCttDvCiI2hXm1XlR1hT2ac8SZM9LPJ LLAnfOLZEolfvzBYBu/SsyascOIivYT4oO/yyN/4/98XuFuSI4nOX8/HGuoQ ZuQdcLMlOr68Il2qQrjYLWmHCtFBecOvRlHCz6RXTCySPIJWoMn/f1/4H45b Sqs= "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.000120855436617, 1.0000941443631546`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.000120855436617, 1.0000941443631546`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]], Line[CompressedData[" 1:eJw12Xk4Fd//AHBS2YpIH59EVGgTPpF270orKUpElhBJsqtISSEkkiXJVqiI LIlsHSRK9jXbveNastw7R7KE8DvfP373n3lez51nznkvZ+bMM+ssHM5YLeLi 4nrAzcX1v6Om1WBDydA59dyF//0wLNaQcGSuVoXFagJr/hKrxEfFvF99GPLy rtmNEvdJynrfkD8FscbbxruItWrasmNX68HHHu3sUmLZIKnkBWlDUBlqeRVH /FfT8qm5vCnYztQ0uBAP+zSXm0eaA+V9QOUgscGlqeInqy/BwYbd35cSl2tI 5H2OsQYz6a/PyucxKG/YnzkufQW2+s/GeRDHLLqYIpd4FT4sG+jYRMzHuvdS X94e5MOea9fNYSigGms+6zlCwcB/U9eIHXUuaRpHOgHKK2lbTNyt9EDj0WpX sF+mrL7mL4bw+H9L5C64QfmVE+XRsxg0hVP3fYq5Di1T1d6ixLl09Q4s7Q79 Ss8Sh6cx2JmaZj8w94Dpjs18WsTra7GiTOItoD7mJCX+wRCcLrpJV/4OHO4z 8ds/heGIVFLS0GUv2GjY9P3OJIY7FdErSvXuQvjpXyc+TmBQVVN4ZBjpDdy9 Q6MrxzEkrDrtF7jaB3JDHuFroxhu1Twt1y/wgaTC6QVHjEHfl1q04YIv6PR8 0bSjMSybcPIqjPGDHV9vP9ZiY7jZHH6TLR0ASulNvWk/MZwN6s79WBIAYqLR tU4DGBQPy0/4mAdC5MTohGI/qef7PCepxIcQZBk0G8rCoBvWYXtKPhiMav1H ZrowKGhtSJGoDIYBqvmzdyfJN4/dz4HLIeDRY9TJ1YHBLH8+C+k9BtuDj779 bMWwavNjxfORofBQ4WD6+XoM3nzvNwasDgd1vzJORSmGLcdC/bMdw8Ho1rTt a4Sh0ddhqLMyHDT1nZruFJP+4VF4q3g9AnaFxtmI5mOomEtSbG6MBJ0jXR+q M0i8vyN3SAc9A0ZavUvwcwwf/nOLPN77DEo/tY93R2EwdTw75bQnGhSb99rJ RmLI4Ajnlw9GQ+i7rQcjH2M4M+i/z/ZIDAxoK0Uv98UQ1e2h8WE+DqSlfpZr 2WE4KGmYxDgXDzGZb4UEr5B+Ndq5hC89Hk6tuWFcaoVhLdvdMn1bAjzlHeRd aYbB4YqaHFdXAujPb8rX1MUgeinjTfKul/DY+JjVMlUM5w1fZIz+SgKpbpWr 1BgNuFNP4KVEMhQaf35WTdPgZ8pndVYjGY4WPRbJGqbhvaWDRG54MsThBcqC RYOQ/X7fWztfgVuYgaRtAw1f7rUbLb39Gu4nOI/zvqNhe5rIUkm+VLiQyRYI MKfhm+KXizXKqbDvluW9u8Y0XMy6WXjHMBXo6rDLjgY0PMplOvakpsKVCqW7 u7VpGCxJ73yl/RYmJ+SEnHbRENdyIuu/sDSwnv1Uen05DYIL3sbH1maAxIM4 4YEsDkRdMTBVOJoBEfTVHsE0Dsg2K1wUsc8A062BkVtecUA9pc2yszgDtJeb Zp6J5kB+SuSHPMVMWLT2SJX2PQ5wzrKLtGozYaY/o3NUhwPn3jz97rI8G3aH vBwbH2SDnC49+PlhDkix1I1OLWaDhNexPZdf5MDDiAI9sb8jsCI94aFAXg5E NifbNv4egRm+s4q6rBwwWbp2TK13BOpL8lwYuz4ACBlkvSgdAQ9l7/k//R/g yp99S7luj0CtsJiY4oE8sNLP2PiLMww3andD1Hg+sKqEdXbkD4F4jgiDmxtB Fo9miKfCT8hlaVTX7SsDk9nc5WWL+qDMNnaNIbscVLI11s88omBCfr9w+rVK cAwbcBeW7YBF029XrJGrgu1D92yMZBtBbeFi7tl31XB0Su3Xis/lUO2jWlux pQ7Uw2esrDhJIP14ZDqFrgdBY9XoQas8NDLFZLQoN8J/LPt3rrrfUdJwYZVQ cBP83RM/kMFqQUJSr3FfXzMwaoebUXg3CrrywTpBthXsDXrHXORZaPLA2z4b rzbw3hd0jd+zH7luL8/55/MPYPQVXbc8OIisVWUSQr/+ANk0j6rok4PovJrn w2W1P4BtELfqu8Eg2rtH1WJR+w9Yxy/n+4/9IFp0KEmYpn9A0hi3w/noQRSi 62P7RaIdQqePJ/r+GkSpjodlXJ3bYbn042SH6CHEfFf+sGFdB8xWypa1twyj es5i9vaNHTApo6gsyBxGJQpHToYrdIC4K3PtjsFhlJD6ZZnBzg4Y+sXt6jwz jCxeVTzqOtkBmjIquU/WjqCB2K8hP290gNG2SJvLViOIE1QdNlfTAVVlZy/r cEYQ4/uycdOmDrBSlJN+NDGCagW09Up+dICAzxB/2dwIeudfI3a/twPMzGQd xITYyNGnNoJvugNU1tbtuqDIRuO36p+ulO2E4jWBTfbX2GjWtvn5Zo9OEJzu pOP62UhPzSRU0asTuh5PBpmz2SiNe8BPxacTRvtWykn9ZiPTqCmn/cGdEKhb u8+Li4NKv0gc133ZCTFtA120BAc9kDEfv1nVCXKfbD08TnHQylbOya8SXXDY Q+fCrkwOsntx/VCNdBeERa1TFs/loHK7hZ2Nsl1QbTVTQxdy0HUekQ1dil1g 9e+/Zv6VHNSurDqND3UBcsjPuMTgoPiHHsniV7ughbWktUSARlsP8s5bF3ZB LEMcz5nQKDP17cYfJV2Q8zyl2cSSRqpiOronKrrA3SB5+QcbGu37GZW0tYHM R6Xc5YQLjU492qI1OkDO3xY0wO9PI+d27Sh30W741dMgNZhBo8lDY6XD4t0A E97+RTk0upUWOXJBivw/b67kn08jHy+muvqmbjhRskdhyWcaRco59S9S74bV NVFFES00yncK3x50pRvefAkVXTFNI/XOXcZz9t3wJMDjhcEcjcoOd/vau3YD /abdIJIboypx+XYdr274lCurNs2PUVdxnteqiG4YL49/qieBEZdAZ3VcSTdg +aXsi7sxOvZy3eUscQbol1Sf+uqIkWqUkHyFJAPuKqRsKXbBSCZ4tq9jHQPc Kxe2p17HaMa9xWKxAgM6xlUq7DwxStcNMDU4wICL++pZYQ8wWsn969ycDQMW ahYuXIkh4011i4naM6DdwSqNisOIza5qkndhQOvxgLU6LzCq+JGkq3ObAfnL X1iJv8LIPfO8dmIoA6Yjwu2PZWDENCs5fKKAAZ9P/ksrlGBUfS6dxxQxYNmO 36vkyzD6qBVd5lzOgHX+X/TFyzF6stP1QEwtAyJuWq5jVWJ0RHjTPsxigNbv GzX/1mG0fcmqWZ5BBsQwf2c01mO0dpa74F8OA8xdS177NGL0Z6Bz56EpBhjG x7bUt2D09lOISoQgEyZDxKQFujCKyvEcS1nBBLuHOQk+3Rj5pF7J+rSKCRle nqpTDIxMIzWUBqWZEOOyKrS8ByMR+6kte1WZkD3ZIMb1E6N5y76h07uZoGQg sHbvIEbDhg1vLqkzoeVIiZr9EEblR97KBx9nwpm1bhFFIxjdkDJb32PMBPXn G7hmMEYWOsr6XeZMGJx7nTA6itGp+9yBbdZM4C+Oj2X+wkh+KPFXjSMT0nyX pr36jZGopJvcNzcmCBfyFd8Zx2ju1FHDcg8mlCUlbT49gVFzzmBJgQ8TdvP2 ibVPYlTyM3/8QwATfmpuDnsyReKXeLgpK5gJ9T+07A7/weje3W2PX0cxwdf3 rmLoNEb27+c/v4wl4wlriCvMYGQ4UDcV+5IJ3QUaRohY+aSzWXgaEySuuNK1 sxhJemmEhWQxQc7dErT+YsSbLVYZmMsEzXKhYUQ81tc/41vIhCpLI1phDiOG eJ6idwkTNI4onHxCXKXpb+H5heRzix3PKPGH24aRN6qYcDuVR+zoPEYJmVuq nOuY4KrEuB1OHNQ7O3etmQk//gwe6CS++U/Nf1famWAqsdJEYgEjyxNxVpcY TNjpqd2oS3zK0+GZWS/JV2dggjfxnowDNUaDTBD9iipTiOVZItz6HCbgN6xj VcQiq3pVdceY0JU3ItNL/PdYjs3JKSaE8bScGSce9PCNOfaXCYYO0d1zxMP6 W21ecFEwnb27lLw/oIujKxdJ81BQbZQ9N03cGvD3ecwSCrIrl4SxibU29O+Q 4KPgH6Wd3m3EJUU1dU8FKBiJ1vpaQKymn3tl1XIK0odO2EQSp+E4njBhCoxr 95jbEq8PeBC7QpSCu/Wb3qsRR6133BksRoHUSRnTWZIPoaLzDYLiFBQ4KVl8 JPY5d/BqwGoKDI5ao2vE0/TmJbySFNgltrqtIbb3F433WUtBr1q4bynJf9+6 2V2L1pH53c+hzYjr9art5uQokHDzrPEl9TxK5yy9tYmCiCPnNZYTFz2ITfiz hQIR2QXRR6QfXhfYN/9WomDR3S0lbqRfJPUM7J22UxBf9SuWQfrrCQf4sCoF d4r5W4H4jozIvuHdFLzQ+3JuhPTneP50y+V9FARdLojdQWx7luXQr07B5MLL AzdJP5/ze59IaVBwqHBJ1ADpfwX2OcE2bQoag28+uUzWy0e9kyhQh4JSOcEy M7KeNIoPuaifpSBn7fHxU2S9GQUrdSafp6CLmjQX5WAUoMz/1tWSgtMTCle3 kfUr9mzBdJM1BU9Vl+Z3D5D+454U7bKhQIWttsy3n1y/keWhYU+B6Xm58o8s jAZcizRF3SkYSnXyzSH3E+fu7PkvtygI9Vbml+ok6/NISrb7HQqGkyIiPNvJ 9cUjJXruU9CssqVKppXML99hOCOYAl5rTsZcLRlvbn2gdhIFRw+l9PAjEp/1 anXu1xSw0w4p9BZhlFcrPJaTQuqpvdj/fQFGtfF/DSUzKOCU33TbnUvGO9i6 eSSfghDThd0daSRev4Bv/nWkHsl+XI5RZL601+19jRTc6JhKK4jAyMng+n+j zRTs/xrp9vcJRv6bLJ8ZdFBg33vd1OoRRrlV+67I91PA/2k2qdqbPA+ER/nK ZyhQV96Iftlg1Fgc+ODEHAUPv21/OWBF6msnt7RugYIee6GmJgtyv6oy4ulY 3APu2/aue2pM7PtlDgv1gN7OaZ/S0xitmI0eW7OhB04Xp0q+UsVo2c8jXS5a PeCZHOqT84dG1RGU0bR2D8QP5BTmjNMo6PCt9js6PVDPf9k4fZRGgi8zWwPO 9cBF3muMB4M0EjBZ0xBv1gOPzNdws9poxNc0+uW7Sw84ZP1+vfUDjRaj5xkb YnpAzVdZTNKWRh37Dh9nxvWAUV72ztJLNMooYFPRL3rI83082sSMRka5+0VF X/dAycyovKcejbLSma5c2T2QQrXd1VGnkWnMhj3dlSQ+hw3JBito9NH9bXnk b3J9ycmbI+kcFDx11uTMZA+wzOIqbr3mIEu3vxPLp3tgzR3fQJ4XHCTkpL3R d74Hlqn5eU6HcZCVDQ5w4WfBgquYupc7B4kaqJzWkWZBLPte/+9DHHRVtbCd X4sFi40tckPq2KikviXtozYLrspVpOz4ykarro16XdZhgehW54SmEjZCyXLy X86xQEmqLX4qi41Wij92vnuRBfYdxTJUGBsVTl8SnHJjgW22D/cOfTYSREL7 +xJYsOLQJuu55hH09oRFwqdJFrwT1FkWUDiMVBXWqcM0C8Kjci/3ZA+jT0JU J5plwZX9vLoqqWS/22QiXsrVCydUqlo+Rw2jcRPD4M8CvSDo0c966jaM1J11 PL+u7YVdatODyxXJ+dHq5xuP9oLJC92eA2T/PDEisWIgshfwljqjgxcH0Yez x3jCD/fB8lR35RU2/cjruG98zkAffA8W5bmvyULrujV/JPr2w1jg9RPf2N1o z06f8NXbB0CpLLoNqbQi47V109xNA8CpTqz9dKIGTVQ9Yjl6/4RFf4paH9d9 RFGLTV3PyA7Ct50ZVoJ+MbCS8eHlovJBCFp57kbx1s+w5La33m6nIahRVzPi ZzUAV4ppBkt0GFqLP4h7nG8H5+iMR6Jlw9C7EPogi6zz4q3+fCL2I1B62qbh wkQviGg6K9wTYsO2zJesPGoAurbVN7kXsUHls4l1yqshiB8Ruc2D2DB36EC6 YuYQWKSclX9UyobYixfC0sn72JBs282ECjbZf9WqRFUPweQahlRlPZvsJwV8 ZMaGQESAfVmsnw0JJv8Yze4dhqMDvH/fLefA95947FvVMGTGgWyfKQeW7Usc 0mkegd8ev3nNzTkg2Fw2s7hrBNQMXo90W3LgTDG/dTZ5fywUFn7fZsMBIblC jemxEai4yzj43ZkDZvnlg2oibOi0uG2W7ceBP0bOxxxPsmHpxsLou+84IDLm saaumA0neBzuzGVyYPPjDp635WwIYq638HjPgRUF3UJ3v7NBJCpws+tHDrQM aPqtameDJL/Rx8tlHEjhvlfD+c2G7SN/Wk61csAvq/n8mU0cMMlQE5Ga54C0 pUcE9ZADuUZ/hOq5aKB6VuWYkYeJ0NKCZfd5aFALPeXTGsWBEuP9fEN8NLQ8 19/+NpkD6wUOL+SspCF36vaT0U8cGLikyzm5mYYIxqcfQ5gD9hJ238i6hqIL +smBWjRUfNlWqWRAg+R/gQl/dWiQdsLlLEMa3i5qELfWp6G+0rnkuBkNayx8 XaXNadju5p4nZkvD95SQoq3XaZiq80tO86LhmgVAShwNd31feHel0vAkbO8p xSEalt/g1TRPJ85qv32IQ0O0zTXRgQwa+gZkpE7/ouG91u5EnEPDwNncV7rT 5CjSUL4I0ZAuklc1y4dBK46Lb3MTDeUD49698hh+hFjXp7fQkKh0YfedLRgu eVdHbf9B4s1z1BVRxHDnUtTmfd00nN6skCCzA0PmFmWt0z/J9QKY8b2HMPyT ZxbsNkvDcc//7GeMMSS++aI/M0cDq+vjd4mLGJSjt0p7cWGIaGv0VLHEcOL2 VIb/EgxdXPmt2lcweGqENDwXxuAs/lhP3g0Dq+6TWNkGDDn3kn5YPcTgUCrb fZTMMxOF/isYjOFvdmDy900YvA1bEt48xrAqUl+tZRuGPf6ND6ojMBw3pg0G d2LY0Lo9Li8eQ/qg1HOhkxj4rJQuS2Rj8I/1vcg4hWHca6T0fg6J9wxH7p0u hjEnbpfeXAySRUWZ2gYYsmfPt/gWYggMuVARZIHhTJDiA/1yDNaHPz80tsLA myrp7VyB4dD0Fl0FGwyv73G++3zFMG0x0/n9GobGnve6QdUYbNSe/RJwx6Aj Qy3b2Izh8AhXXsctDLJqXZ4TLRikE2w8U+9gmKjm2l3QhqGVfxevpg8GE/+4 MPlODEe6WyUDQjBUb637HNiDQeaJOuv8EwzCj2L9BHtJPo6+er2JxF3v8jT0 Xh/JW6bb9q/RGMTDj905+xPDeh+x47yvMBgbNb26y8Ywv8tzedsbDE8ub4h/ z8HQzultfPUWA9dDs64uGsNjg/cmR7NIHTJVZUV/YbBbtmbDPyRPvVfXKa4d I/ktvTfYT/Jk9+7FLZnfGBa2nHHxLSJ1ZshSvBMYOpj5u84hDM0HwibZxLnh 6+ZlyzDMrbI7/XUSg/38qH95JYa0FL1K8z8YNN+fPxVeRY6xP/ulpzHI2ZSs vFSDoeTayJFm4q6GkDieJgzl+XbfpGcxfPSbsmwiebup4MvOJQ7fa7Y58QcG J9vDOof/YnAcraCdSd6sjb3GK4m1khVzDjEwxPQubz84h0HeKNJdlORxrL1q Lot4kfC8OovkcVgk3OLfeQyMz1aLswfIOPqavG7EBTdrvnkPYThq1zBSSRy5 bUeILsnjQeEVK0QWyLisGL11mNRxArvoEJ98uljiF8nbxmoTcT/iTSftmCXj GFz2npjJ+t/3Ae7mpMdTGGZYSZLNxNSHvbYXZ0g9LljfIft7KLJNVFIm8xpT 85OeJX4qLTjxv+8K//994f8AxGZvRQ== "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVmXk8VV0Xxw0NHhWRiEhlSIUkpdEqU0WJMpdZpkqIniQ0IBpQSZIkQyFF xkRtmR+ZQ8Z7r2t27z1bSWbe/f51P9/PPXvvtX6/tc7Z+5xN9pdPn+fh4uK6 z83F9f9fvfPDTSUjJho9z8RhJ9cYLNGS8KCLq4FJqpePAuFdr2LicsS1ofJ9 Sft6wv2Ssrf+lTeA5qRRlxWE9et+Zr8UN4b2zR/1qUUMsg+kUhalLeCG0NCG r4Tn9Bye2clbg4WBvn4I4dGglnK7aDsI3ZbbqEvYzHHyy2NxRzBcNfNhcQFD uZZEQVmcE8h6Tw5kEVaROZT1R9oVPH+H+lgSjuOxTZNLugDPdj60mpvHwMe8 nWgq7w7NY/0vowl/ZjTXlRl7ANfSK3u2EvYwdNQ7F+0JGeaSW3LnMPTsuKv1 UNwbuFusV+fMYoh6ta5E7qwPVB+o5dtCWE8w/eDXuKsg6jBv/mQGQz5VuxtL +0KzuRuXyTSGi9bW2XftrkOt4H2z9CkMm+ux8sYkPxA027dsahJD+HthBSP5 AEjVk3a78ReDjlRy8ohzIPAHnZDOmcAQUBm7+pvxTbjv/Hs78w8GtT2KDy2i b8Ft2XT9reMYEtaeCrknHgR8EfopZzEGv7pn5aafg6A++aOoCYXBNJjBI3M2 GGaMaui6HAwrJzwDi+JC4HObme8aFoZrLVHX2NJhIG25p9ZwEMOZBz35n0rC oN3HZ37lAAZlbfmJILt7MNcod/dbH4b+nAJPqaT78AfbJq/pxWD0pNPNQD4c fHUc+M91YVDUl0mTqAoHbePDvF0dRG/ei0ODzhFgmddkcrodg03hwkdkHAkD ap1821oxrN0aqWwe/Qj+rrmS4V+P4RZfzpYw8Sio4BbYmI8wbDv6KDTbIwoc 9n6pifiCoTn48khXVRSoaabcsC0i9cOr+E756lNgcKonB/MxVM4nK7c0R4Mm 30uz0Pck3/Ho3dIPnoOwTraC1HMMeTt9oo/1PYfXu14EOEdjsPY4M+m5PxZe 6qf1pT7BkMkRLCwfjgXFz497VodjOD0cetBNJw4SDlS/9rmNIabnulbeQjwo utssPHbFcETSIplm8goGljs/MXAi9WqpvpTv/Su4Lmmoye2AYQPb1+G9UgIo vv05pn8Ow2XXPXJc3QkQ0lz/5qoBBmHHzNSUvYlQvEdIZfNODOYWrzPHfiVD SsSwaDumAHcZ8ydKpIDvly0CZSwKQqz5zp/RSoGSUzJWb4YoyHG4LJEflQLJ CpylpnQKBNwPBfupv4FS3/A4i3oKKm53WC7zfwve40PZv9MpUM0QWibJlw4x D6WeXbGm4D/lCts6lXSIpKldumBBge3Ha0UBFunAlGQWnTWm4GE+3aM3PR3s 7yRWyelRMFzyvuvNyXdQp5NWaLObgvjW4x93PsmAHUa9ay/yU7Bi8da5oxsy oXlgeRj+wIEYVzNrRd1McErZ0i2axgHZFkVbIfdMyEoVkVBP4oBG2k+Hri+Z kDb+5qz9Mw4UpkXnFShnAbtMZ71jIAc4Z9jF+vVZsPeDAlprwCH3mWffr6zK hsOdy8MPDLJBzogaLrufCxq7MsoGudkgEXh0v/PrXMiX2lCVOc2C1e8T7vMX 5EKUy/MRj18smOE7o2zEzIWvfPlRXQwWNJYUXKHtzYM9/oZlpxELrqvcWpga yIMZBe7QmussqBcUEVE+XABnElnmY6xR+Ld+H8T8KYTryxZ7XxeMgFiuEI2b G8G1FQPc2duHIJ+pVdtwsBQyxp+55PD0Q6nby/UW7HLY8Tj47dVwBkzIHxJ8 f6kKAmQexeTJdQLP9LvV6+Vq4OJ86S4n+WbYs2ibf+ZDLYj853nRrqocaoPU 6iu3NYDOKdablQvJIB3Jmk6jGkHJ2IMvwLoAsSbptFaVZqh/X3PN0uA7Sh4t qhEI/wG42vZJSG8rEpB6i/v7W8BsxFyDJ6oHPXDNc0qQbYOlX2zX6ckz0d/D 7/pdAn+CcqnLG4kbA8hbtTxXtKwdRIO3r8o4Moyc1DYmPKpuB435ZoP+E8PI fM+N+yvr20H2ybe7a82H0YH9avY8He0QTw9otncfRjyayYIU1Q7m0eqeqbHD KMIoyK1CogO0jx3j6/k1jNI9tDd6e3VAKnvgQ2vsCKJ/KL/ftKkTti39bn2u bRQ1cpawVbd0QkjD9dRw+igqUdQ5EaXYCeqJAV6Fw6MoIb1ipZl6J+Sc0fWf mhlF9m8qH3af6ISL6I28pDQLDb6sjhj6txNe08SiJ8+zEOdB7ZP5uk5QWTAu 5XBYiPZ95R/rH51g4Xzy+Pa/LFTPf9K4pL0TWMxSHrsFFvoQWidyp68Tzs1O 8+YJsJFHUP1TvulOaFs2sLigzEZ//BqfrZHtgmHGwaF17mw069byYuv1Ljgm zt5lMshGxnusHikHdsE6RY876zhslME9GLIrqAv4dC7XtoyzkXXMpOeh8C7o Xnpaey83B32rkDhmlNgFP/J2xqev56C7G+3+XKvpgsW4PVEHTnHQmjbOiWqJ brgtFpHN+5GDLr6+qlkn3Q0SavVyffkcVH5xUb1ZthsmIi7YFRVz0FVeIZlu 5W5wyhdSNK3moA4VtWms2Q0LXxKH1Ogc9Or+9RSxC90QXXGm9OkKCm0/snzB qagbfBtv5ndZUygr/d2W9pJuSE0NUT7oSCE1EUOj45XdsMpz6fQTVwodHIpJ 3t7UDbRrRoFbvSlk8HCb/thgN8wUDcmzQynk1XEyxle4BzI0TWPqsyj0V/P3 t1GxHliwLQ5OyqOQX0Y066xUD2w/rvfh8mcKBQXSNTQUemDJVdt3nDIKRct5 DvBo9EBy4LMdN9soVOgZpfrAtQemrl7dtzBNIY2uvefm3XugOb5/n+4ChUq1 e4LdvXsg6b8022AejGrE5DsMA3ugSMpKcoQfo+4vBYFrn/ZAueCvbbrrMeLi 76qNL+mBksMur032Y3Q0cZPzRzEaaPTVWpV6YqQWIyBfKUmDvZmRgQXeGG0M n+3v3ESD4fCM2uR/MZrxbbVfokgDyctcg87+GL03CrM2O0yD5gNC3JGhGK3h /mUy70IDzfVLwPklWW+yR0TYnQYbeNNKaa8wYrNrfshfoUGHeruTQSJGle3J Rob+NJB57iQg+hYj3yzzk0mPaDDyKPU/3SyM6DYl2sc/06C6wspL6RtGtSbv ea0RDeSlPxXKl2H0ST+21KucBqsGytetq8Dosbr34bh6Gow/XyLZV42RjqDC QcykgcqR8a0SjRipLl07yztMg7T6tE0tTRhtmOX+vI5Dg9JmB6WQHxhNDXap a07SwOqwSmBzG0bvvkbserqCDhFnirhW9mAUk3vjd9pqOvx2Xv0whIZRULrr x69r6aB+eu+2aTpG1tFaO4al6cA3+PBpJRMjIffJbQfU6KB9+4U8zzBGCw79 I6f20cF0sHzHoRGMRi2aUh016JC7SvCoxyhG5Trv5MOP0UFvf3P8VzZG/0rZ bO49RwcJvvWs2TGM7A1VTLvt6DCu+v3m718YGdzhvvfTiQ6nfWI8e39jJD+S 9KvOgw4hYskOqX8wEpb0kfvPhw4mk1ccb05gNG+ga1F+nQ5V1B1k+Bejltzh ks9BdBA9+eJO5yRGJUOFf/LC6GDTo8l+MkXyl7iv8DGcxN/u9kFnGqPbN5Ui 38bQIf9+pMbjGYzccxbKEl/S4e+6QyuVZjGyGGyYfJlIB7XPVaolhFVOeNlE ZZB8BUfCGuYwkgzUehLxkeSrfeiz/jxGy7NFqu7lk/UfjWqWEP7dPzATXESH OP0WGaUFjGhiBcq3Suiw6TX93GPCNXqh9jcq6OAaNc7BhPP8LaL/raGDyMJU m84iRglZ22q8GuiQ8aBTLIrwg77Z+UsthMuDsjoJXxOt2+naQQddriuNK7nG kMPx+POONDrY7/3Xm+zfkcGNy89t+ugwtOqY9mHC+zMP11kO00HqMh2MCcsz hbhNOUTP3XudHQkLre1TM/pNB5aswWcPwnNHc11OTBL/OFL7fAkPXw+OOzpH 6kUhpc+f8KjpdpfXXAzwsmIWBhC2HVvDI83LAPfZliI/wm1hcy/iljIgydp/ xJuwvszAbgk+BgzUdWu6ES4prmt4xs8Aeb+JqrOE95jmu65dxQC3OzXXjhPO wPG8TwQZ0ELZmOwivDns7svVwgx4k/XZSpxwzGYP9XARcr3BN5lJoodAsXnT CjEG/FX/2JdDOMjkyIUwcQasvms860J4mtq6dLkkA0T8it1ECbuHCr8K2sCA +1vndhYT/fs3ze7l2cSAvQEKRuS8gRqNay/OyzFAdyrpWSDxU5fKXeanwAAh WXm0jHDx3ZcJU9sYQPHMaoSQenj72b1lfAcDwiXEjrmTepE0NnP3VGXAT/6E pjZSX485wIfVGGAptZijTjhgo9DB0X0MENX/eYdJ6vNP4XSr80EGuNQneCoS djvDvDygQf7X7v3kTurZJCQniaHFgFi+G8bdpP4V2SYrfp4k+tV7VZwl/fLJ +AS6Z8gAhdntIWdIP2l90byicYYBTqrfj2qSfrMM39GVYs6Apr24fgmFUZjK P++8HRjQcaB8Qor0r8jzRWsFJwZMhzyurBsi9cf9V7jbhQG1nTjWe5DM38y8 ruXOgDtnu0+97cNo0LtYT9iX6CuZMZFA7idePdkLFX4M2HZkNcXXTfpTJy3b N4ABxkMGHOdOMr9YtETvHQakJ+/kWfGTxFd4eTST7KMqTf88Hmgg681vvncy mdSL5EwZG5H8nMQ1uN8SvxdMnSq+YFRQL/g7N40BpiMr1j0twqj+1ZyFZCYD xqsm3okXkPWOtG1lFTKgMy3+bcF7km9I2H+hDQwQlN8dfPQ5iZcK9D/YTPR6 bHnxUTRGnmZXd461MGB5QPel5icYhSo4PDfrZMCojGDZvnCM8msOusoPMED8 9aXal7fJ80BwjK98hgGPFA+tLXbFqPnLvbvH5xkg4Ckrl+VE/L0ot6xhkQFi jcduxTmQ+1WNJW/nkl5Ytv7UJmsrwsEV81igF46XDq0NNsRo9Wzs7/UyvbDh +I4g+90YrRzS6b6i3wtHE65dtiPPx9qnDMvpk70g/6T8te0EhR5o+3UEGPaC Uaz4QfNfFFqRmNUWZtIL193aMlRGKMRvtb7plU0vzHlVx4a0U4jvx1jF9yu9 MFMjHllFntdL0ItMmbheyN5wNyDFjUKdB7WP0eN7wTye2/j4eQplfmYzYl/3 AteXSOd+GwpZ5h8SFn7bC32+W09xmVDo43u6N1d2LxQY+Z1o0KCQdZzM/p6q XpjKe+X6fTWFPvm+K48e74WEeCGeYx84KHzyjNXpv72Q7L2loe0tBzn4zE2s mu6Fe1m8QlavOUjA8+SW4IVeSBl+MHMqioPOu+CwK/8wwbak63mDLwcJm+06 ZSjNhIllBoXqWhx0Qa2o4x99JryUdfArbGCjksbWjE8nmeBitey7VTUbrb00 FuhsyASl1hrJmRI2Qily8hUmTPCGiXqJbDZaIxbpddOWCUEC82/nnrBR0bTj ikkfJsz982CptikbrUACh/oTmNBnvzN1rIWF3h23T/j6lwkmG6L8NYtGkZri Jg2YZkL/o66Nz7NH0VcBRheaZcJpv0yjkTSy3/1hJfaNqw+u21xwvBoziv5Y WYSX8feBR/OjMC2fUaThZXijekMfuM6lZr9TItfHapg36/ZB24tnTaXPR9AE S2L1YHQfcK+Pr7lvM4zyzhzljdLuh+r2bPtRpwEUeCz4Ve5gP4ztmNZYeZyJ NvXotScFD8C6Erpc2EgP2q8eFCWuOgiWzYdxrEobOrehYZr7xyCknnhgn6Fd hyZqHjI9bg1B0H5apFXNJxSzxNr7tOwwqARw/NtvxsEaWl4iT/kwlG2/43Ju Sxks9b9lvM9zBEI1vif97GkCrjTrTKbwKGi4JfJ3nO4Ar9jMh8KloxD3M2dj Aun7L9tD+YTcWaCRsYNG/90HQnpeircF2BDucfbAV/ogdCs1/vAtZoN/6sEI 79QReMUS8udFbBhV2aaxLHsE7NPOyD/8xoYtd5nPHxWNwIjsz2sJlWwQTGKe fFo/An/X06SqGtlwuCfNwfDPCAjxs51FBtiQEGEl/0RjFHQHl899WMUBTd0D 2vvrRyErHmT7rTlwsY528UEHC8avjy+3s+OA+5EOlkEvC/aYvWX1OHBAOWtr Nf8IC4oEBXN+unBgf2F0pPsUCypv0o589+JAL5fNlkFRNnTZ+9tkh3BAW68g 5clpNizbUhR7k5yLc7+60TvK2XCc93LAfBYHbonzbCr/zoYH9M3213M4oPR9 5c23zWwQirm31fsTB47u+RJuwWCD5D+Wn5xLyTm6+PYnt1k2qLKmWg3aOGDp rRUJKhywytwjJLXAgforr4TfRHEg33JKoJGLgp0FrWa7XnBAYNnnlXd4Kchy 3Hjg02sOlJw7xDfCR0GsbExzKolrM7/2Yu4aCg7XNvHKVXNg0NGIc2IrBTEB 2OXuNNFB4uJ/N4wpKK9sh34TCiorlKp2mFGQvtn0h+1ZCqQ9cTnTgoxfsry4 xZaCxiqvkmM2FPC1bwlKvECBqo9vgYgbBerD0R9bb1Iw2RCSkhFIgemZe09j 0ii4Gfz6Vnc6Bdm8tFO3/lCw6t/lenbvKZhZmun/fIrE6XJJeDCTgia9031p cxTk6O9LwrlkXjXlUzlLMAwKNZXzIAp0dZR8XUQw6Mdz8W39QcGBSMdnlqoY 2iOcGt+3knk2c7wndmNwvFUbo9pOAcWccg/dhyHAMWbrwR4KVAJbP0YfxpC1 TUX/1BAFy4wstYwNMIgW2IT7zFIQH3FX8rQLhqTUCtOZeQok+5dPXbqAQSV2 u3QgF5m3Qbb1ljuG4/6TmaFLMcQ9Cnn4yBvDDa2IpheCGI7t2FdteBMDs+Gr SKkM4bpPYyeiMVz+JtujK4/h7C+1DcMxGOay76V8V8DQI5Sn6vcCw9po0z2t Shjs18vwhyWQcecos2F1DOckL2lrpWN4Pyz1QuAEhs0vfnmrFGMIfRlsSyNx f6i+u+vuVxLXaY7cByMMtX2VhT9KMEgWF2edNMMgkisqYlCB4V7E2coH9uRX vRdV1WFw0i67f+48hi1uiX61DRg0p7cZKZK8T00VsSubMEzbz3R9v4Sh9Frj QFwrBpc9z3/x+2K4Xek8XtuNQZvFVdDph0HQp0U8kIZBOsHlRnoAhgWe433y DAxt/+xdrhdE8vglbWrWhyH766ta8bsY1otyZuj9GMKvLH88EkZ0evFsn/Ug Bp2eNsmwCAyqYeZ+B0YwbHyswTR/jKHMuN03dpTopfvmrcJTMu4I3z+YhSE3 y0e1OhbD8I9jjdcookuQyLHlbzBMXRv7JjBO4th7Y9XPVOLP5eilEn8wdHD6 mt+8I3kMBldJTGCINMux0v1Ixvcv/zL3F8PFletlRHMxvCmdY/VMkri/3R4e yMdQWL4YkTuFYXHb6SvBRPdYuzElzRkMnfTCvSYIk/PHQZnp/78fjtq0IFuK Yd0rk6CUWQyPj4eV/SnHUJI6bHB0DoP7wlhoeRUGpf6kmzTCejnmBlE1GJrj 1MQuzGOQcylZ40h8iXt6dDWHMJeUQseuRgzxS8JcHRcwdDdFxPP+IH0Qnryx ifCnkEmHH8SXddo6u3YtYog6YLM1qR2DRuzaV/cIe4xVUl5dGFxdkd1Pwvop yrmaxKfEcZ9icj4AectoX+FeDN5Nmzz//36fR3BBg0l8Uj5cUKdBmFZ2fkk2 8UWi85+mU4Q/X6v77xbx5TGd7Uv25xCttDvCiI2hXm1XlR1hT2ac8SZM9LPJ LLAnfOLZEolfvzBYBu/SsyascOIivYT4oO/yyN/4/98XuFuSI4nOX8/HGuoQ ZuQdcLMlOr68Il2qQrjYLWmHCtFBecOvRlHCz6RXTCySPIJWoMn/f1/4H45b Sqs= "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1}, {-1.000120855436617, 1.0000941443631546`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, InterpretationBox[{ TagBox[ TagBox[ {GrayLevel[0], PointSize[0.012833333333333334`], AbsoluteThickness[2], PointBox[{{0., 1.}, {0.111111111111111, 0.766044443118978}, { 0.222222222222222, 0.17364817766693}, {0.333333333333333, -0.5}, { 0.444444444444444, -0.939692620785908}, { 0.555555555555556, -0.939692620785908}, {0.666666666666667, -0.5}, { 0.777777777777778, 0.17364817766693}, {0.888888888888889, 0.766044443118978}, {1., 1.}}]}, Annotation[#, "Charting`Private`Tag#1"]& ], {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[2], GrayLevel[0]], Point[{{0., 1.}, {0.111111111111111, 0.766044443118978}, { 0.222222222222222, 0.17364817766693}, { 0.333333333333333, -0.5}, { 0.444444444444444, -0.939692620785908}, { 0.555555555555556, -0.939692620785908}, { 0.666666666666667, -0.5}, {0.777777777777778, 0.17364817766693}, {0.888888888888889, 0.766044443118978}, {1., 1.}}]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-0.939692620785908, 1.}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[2], GrayLevel[0]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-0.939692620785908, 1.}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[2], GrayLevel[0]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[2], GrayLevel[0]], Point[{{0., 1.}, {0.111111111111111, 0.766044443118978}, { 0.222222222222222, 0.17364817766693}, {0.333333333333333, -0.5}, { 0.444444444444444, -0.939692620785908}, { 0.555555555555556, -0.939692620785908}, { 0.666666666666667, -0.5}, {0.777777777777778, 0.17364817766693}, { 0.888888888888889, 0.766044443118978}, {1., 1.}}]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{0, 1.}, {-0.939692620785908, 1.}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[2], GrayLevel[0]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 1}, {-1.000120855436617, 1.0000941443631546`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.948130859956072*^9, 3.948130955099884*^9}, { 3.948132240485457*^9, 3.948132250365382*^9}, {3.948132417484611*^9, 3.9481324376701603`*^9}, 3.94813260750077*^9, {3.948132688345565*^9, 3.948132711310553*^9}, 3.9481327881911793`*^9, {3.9481329628023453`*^9, 3.94813298206507*^9}, 3.9481331151859083`*^9, 3.948133145872796*^9, 3.9481331931940002`*^9, {3.9481332275257883`*^9, 3.948133248903883*^9}, { 3.948134412219392*^9, 3.948134424786851*^9}, {3.948134704214121*^9, 3.9481347225143414`*^9}, 3.9481349678419323`*^9, 3.948135406718172*^9, { 3.948135659826041*^9, 3.948135691759862*^9}, {3.9481357472695427`*^9, 3.948135770136162*^9}, 3.9481358244100657`*^9, 3.948136618752692*^9, 3.948137070588904*^9, {3.948137311093301*^9, 3.948137353352693*^9}, 3.948137434492918*^9, {3.948137472737005*^9, 3.948137518400502*^9}, 3.94813761059442*^9, {3.9481377242665577`*^9, 3.948137728731876*^9}, { 3.9481377687762547`*^9, 3.948137808158538*^9}, 3.948137839999218*^9, { 3.948137915198165*^9, 3.948137961831544*^9}, {3.948138010326825*^9, 3.9481380852616253`*^9}, {3.948138171771494*^9, 3.948138194121057*^9}, 3.9481382402556753`*^9, {3.948138284976859*^9, 3.948138289201264*^9}, 3.948138338382262*^9, 3.948138452037212*^9, 3.948138831793432*^9, 3.948139774880522*^9, 3.948139820496393*^9, 3.94813985677387*^9, 3.948139978928771*^9, 3.948140059803281*^9}, CellLabel-> "Out[891]=",ExpressionUUID->"17f846e6-caa0-4daf-91be-6b65626b2b8f"] }, Open ]] }, WindowSize->{1024.5, 561}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, FrontEndVersion->"14.2 for Linux x86 (64-bit) (December 26, 2024)", StyleDefinitions->"Default.nb", ExpressionUUID->"14a32005-7b59-4d87-b0bd-3b9bb1b1dbdc" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[554, 20, 1020, 26, 23, "Input",ExpressionUUID->"8a6144b2-4825-430e-8735-470868f9d585"], Cell[CellGroupData[{ Cell[1599, 50, 500, 13, 23, "Input",ExpressionUUID->"bdf3d894-e06b-445f-a47d-201455db00a7"], Cell[2102, 65, 18599, 401, 192, "Output",ExpressionUUID->"967c071c-4eae-4105-9feb-985162975a4e"] }, Open ]], Cell[20716, 469, 1369, 34, 31, "Input",ExpressionUUID->"ebcff5a2-5e76-49f1-974f-f698316f393b"], Cell[22088, 505, 1896, 45, 23, "Input",ExpressionUUID->"ea7cb2c9-e52d-4b28-a789-25e067a66acf"], Cell[23987, 552, 226, 4, 23, "Input",ExpressionUUID->"bb0fd94f-bd94-4931-9ceb-b1c843b6ffed"], Cell[24216, 558, 4850, 118, 267, "Input",ExpressionUUID->"50ff86b5-737b-41c1-94ff-2145f7b2e4d1"], Cell[29069, 678, 2923, 76, 156, "Input",ExpressionUUID->"e23ecac0-2ba7-4f6f-af3e-48836159571d"], Cell[31995, 756, 605, 17, 30, "Input",ExpressionUUID->"a4305efd-2d5e-45f6-868d-8e07fb522f0e"], Cell[32603, 775, 967, 23, 23, "Input",ExpressionUUID->"5af352c6-8896-4a1b-b393-d7f34eecf643"], Cell[33573, 800, 796, 23, 23, "Input",ExpressionUUID->"8ba63f81-4994-40a7-b866-6e34144d0207"], Cell[34372, 825, 732, 20, 23, "Input",ExpressionUUID->"81c87f69-631d-4c87-9a94-4038f7ee3d75"], Cell[35107, 847, 892, 18, 23, "Input",ExpressionUUID->"8b2c7f0e-f6fa-4dcd-a222-e419e5bac57f"], Cell[36002, 867, 509, 12, 23, "Input",ExpressionUUID->"234f897f-aaa8-4394-81a2-948744438d34"], Cell[CellGroupData[{ Cell[36536, 883, 2353, 41, 23, "Input",ExpressionUUID->"56984f37-ab18-406a-b6c4-61b6a859e4b1"], Cell[38892, 926, 2007, 29, 35, "Output",ExpressionUUID->"919b4663-4a6a-4083-b40d-cf6c6b427a33"] }, Open ]], Cell[CellGroupData[{ Cell[40936, 960, 725, 20, 23, "Input",ExpressionUUID->"5945f6d0-c38c-4966-b262-8c714abbd4ad"], Cell[41664, 982, 66163, 1193, 186, "Output",ExpressionUUID->"0de6ebc1-d180-400d-a3ab-43318b41fb18"] }, Open ]], Cell[107842, 2178, 662, 14, 23, "Input",ExpressionUUID->"b30c963b-73c6-45e4-8851-ebca8a51734b"], Cell[CellGroupData[{ Cell[108529, 2196, 2253, 41, 23, "Input",ExpressionUUID->"836b3548-7e17-45c1-b28e-0607b57c13a5"], Cell[110785, 2239, 1461, 21, 35, "Output",ExpressionUUID->"d015d061-dada-4c76-9547-7fb223c133b4"] }, Open ]], Cell[CellGroupData[{ Cell[112283, 2265, 834, 22, 23, "Input",ExpressionUUID->"a6c9f209-5969-490c-8928-610839cf2732"], Cell[113120, 2289, 142956, 2451, 186, "Output",ExpressionUUID->"521a4e94-9194-4b92-8425-fea48cd77c67"] }, Open ]], Cell[256091, 4743, 851, 17, 23, "Input",ExpressionUUID->"bed33f4f-46a0-47eb-8dc2-b968bd2f29f2"], Cell[CellGroupData[{ Cell[256967, 4764, 2377, 41, 23, "Input",ExpressionUUID->"68019ef8-0ad0-4736-bcd3-369769400c1d"], Cell[259347, 4807, 1702, 25, 35, "Output",ExpressionUUID->"e79c5a28-1937-4270-9088-db58dd375331"] }, Open ]], Cell[CellGroupData[{ Cell[261086, 4837, 777, 21, 23, "Input",ExpressionUUID->"ed7e7612-8de4-4ef5-bc3b-f2cf49b64d0e"], Cell[261866, 4860, 136118, 2340, 182, "Output",ExpressionUUID->"4984b1f7-133c-4235-869e-314fef96e28e"] }, Open ]], Cell[397999, 7203, 703, 15, 23, "Input",ExpressionUUID->"16fd2f85-0c15-4ce1-9650-d56f875e3ac0"], Cell[CellGroupData[{ Cell[398727, 7222, 2618, 45, 23, "Input",ExpressionUUID->"d6909a2d-ebee-4926-a02b-8ab0c90b08df"], Cell[401348, 7269, 1824, 26, 35, "Output",ExpressionUUID->"209516ff-1879-4481-9231-611ef1c9825c"] }, Open ]], Cell[CellGroupData[{ Cell[403209, 7300, 1762, 34, 23, "Input",ExpressionUUID->"459c2b59-8ce1-4f14-9c91-8fdcc83acf25"], Cell[404974, 7336, 133495, 2294, 182, "Output",ExpressionUUID->"ffd6f419-7cc8-4a11-9daf-a5981d445824"] }, Open ]], Cell[CellGroupData[{ Cell[538506, 9635, 500, 14, 30, "Input",ExpressionUUID->"8f94b911-4282-4699-9f4f-af2006d0f1fb"], Cell[539009, 9651, 2546, 54, 59, "Output",ExpressionUUID->"3039fc70-f0af-4e70-bc64-e604b3f36d0d"] }, Open ]], Cell[541570, 9708, 332, 8, 23, "Input",ExpressionUUID->"cd2f3698-aefd-466e-b7c8-2012f3538973"], Cell[CellGroupData[{ Cell[541927, 9720, 519, 14, 30, "Input",ExpressionUUID->"57aa01a8-18a7-45a2-b2b7-055f7b61faa7"], Cell[542449, 9736, 192, 2, 25, "Output",ExpressionUUID->"15effdbc-9a3d-4a23-bfd0-494fb6fb5423"] }, Open ]], Cell[CellGroupData[{ Cell[542678, 9743, 1572, 41, 30, "Input",ExpressionUUID->"dcd9a96d-e483-4aa1-af04-d08688038cb6"], Cell[544253, 9786, 521, 7, 25, "Output",ExpressionUUID->"1f8c8629-c764-4604-b0fe-5c01e46e6013"] }, Open ]], Cell[544789, 9796, 394, 10, 23, "Input",ExpressionUUID->"b6f65d11-1714-42cd-b279-8e2c0eb8fe70"], Cell[545186, 9808, 482, 13, 40, "Input",ExpressionUUID->"788c910c-c901-4771-95a4-a21a3056ef4d"], Cell[CellGroupData[{ Cell[545693, 9825, 1329, 33, 23, "Input",ExpressionUUID->"64b9d7b0-4d42-4971-a779-d26a172dddb6"], Cell[547025, 9860, 62360, 1107, 182, "Output",ExpressionUUID->"17f846e6-caa0-4daf-91be-6b65626b2b8f"] }, Open ]] } ] *)