From dfb3531e89dedaac2646a09853e85805002f43de Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Tue, 9 Sep 2025 10:58:46 +0200 Subject: Small edits --- zif.tex | 25 +++++++++++++++++++++++-- 1 file changed, 23 insertions(+), 2 deletions(-) (limited to 'zif.tex') diff --git a/zif.tex b/zif.tex index 50f083f..38aa2c4 100644 --- a/zif.tex +++ b/zif.tex @@ -158,9 +158,11 @@ \#_\text{points} &=\int_\Omega d\boldsymbol x\,\delta\big(\nabla H(\boldsymbol x)\big)\,\big|\det\operatorname{Hess}H(\boldsymbol x)\big| \end{align*} - Note absolute value of the determinant: want to account for curvature but not add $-1$ - \bigskip + Typically exponential in dimension $N$, with \emph{complexity} defined by + \[ + \Sigma=\frac1N\log\#_\text{points} + \] Can specify properties of points by inserting $\delta$-functions: \begin{align*} @@ -1193,6 +1195,25 @@ \end{columns} \end{frame} +\begin{frame} + \frametitle{Other landscape applications without RMT} + + \begin{columns} + \begin{column}{0.5\textwidth} + \includegraphics[width=\textwidth]{figs/folena_new.pdf} + + \tiny\fullcite{Kent-Dobias_2025_On} + \end{column} + \begin{column}{0.5\textwidth} + \vspace{2.5em} + + \includegraphics[width=\textwidth]{figs/walk.pdf} + + \tiny\fullcite{Kent-Dobias_2025_Very} + \end{column} + \end{columns} +\end{frame} + \begin{frame} \frametitle{Understanding the flat parts of random landscapes} \begin{columns} -- cgit v1.2.3-70-g09d2