\documentclass[fleqn,aspectratio=169,dvipsnames]{beamer} \setbeamerfont{title}{family=\bf} \setbeamerfont{frametitle}{family=\bf} \setbeamerfont{normal text}{family=\rm} \setbeamertemplate{navigation symbols}{} \setbeamercolor{titlelike}{parent=structure,fg=cyan} \usepackage{enumitem} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{pifont} \usepackage{graphicx} \usepackage{xcolor} \usepackage{tikz} \definecolor{ictpblue}{HTML}{0471b9} \definecolor{ictpgreen}{HTML}{0c8636} \definecolor{mb}{HTML}{5e81b5} \definecolor{my}{HTML}{e19c24} \definecolor{mg}{HTML}{8fb032} \definecolor{mr}{HTML}{eb6235} \setbeamercolor{titlelike}{parent=structure,fg=ictpblue} \setbeamercolor{itemize item}{fg=ictpblue} \usepackage[ style=phys, eprint=true, maxnames = 100, terseinits=true ]{biblatex} \addbibresource{zif.bib} \title{ Understanding the flat parts of random landscapes } \author{\textbf{Jaron Kent-Dobias}} \date{9 September 2025} \begin{document} \begin{frame} \maketitle \vspace{-8pc} \begin{minipage}[c]{10pc} \centering \includegraphics[height=6pc]{figs/logo-ictp-saifr.jpg} \vspace{2em} \includegraphics[height=1.5pc]{figs/Simons-Foundation-Logo_blue.png} \end{minipage} \hfill\begin{minipage}[c]{10pc} \centering \includegraphics[height=6pc]{figs/ift-unesp.png} \vspace{2em} \includegraphics[height=1.5pc]{figs/fapesp.png} \end{minipage} \vspace{2pc} \end{frame} \begin{frame} \frametitle{Understanding the flat parts of random landscapes} \begin{columns} \begin{column}{0.33\textwidth} \textbf{Nearly flat parts} \vspace{-0.75em} \rule{\columnwidth}{1pt} \medskip Conditioning stationary point complexity on marginal optima \bigskip \centering \includegraphics[height=10pc]{figs/msg_marg_spectra.pdf} \end{column} \begin{column}{0.66\textwidth} \textbf{Really flat parts} \vspace{-0.75em} \rule{\columnwidth}{1pt} \bigskip \begin{minipage}{0.49\columnwidth} \raggedright Topology of solution manifolds via the average Euler characteristic \bigskip \centering \includegraphics[height=10pc]{figs/function_2.png} \end{minipage} \hfill \begin{minipage}{0.49\columnwidth} \raggedright Geometry of solution sets via the statistics of wedged and inscribed spheres \bigskip \centering \includegraphics[height=10pc]{figs/max_size_zoom.pdf} \end{minipage} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Marginal complexity} \begin{columns} \begin{column}{0.5\textwidth} Statistics of local optima imagined to govern behavior in rugged optimisation \bigskip \alert<2-3>{High-dimensional landscapes differ from cartoons in important ways} \bigskip \alert<4-6>{Generic rugged landscapes covered mostly by basins attached to marginal optima} \bigskip Understanding marginal optima is more important for typical dynamics than understanding typical optima \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/complex_landscapes.png}\centering\\\tiny C Cammarota\end{minipage} \onslide<2>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/fake_landscape.png}\\\tiny S Martiniani, YouTube\end{minipage} \onslide<3>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/real_landscape.png}\smallskip\\\tiny\fullcite{Suryadevara_2024_The}\end{minipage} \onslide<4>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/basin_1.png}\end{minipage} \onslide<5>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/basin_2.png}\end{minipage} \onslide<6>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/eigenvalue_convergence.pdf}\smallskip\\\tiny\fullcite{Kent-Dobias_2024_Algorithm-independent}\end{minipage} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Typical complexity} Number of stationary points with $\nabla H(\boldsymbol x)=0$ given by integral over Kac--Rice measure \begin{align*} \#_\text{points} &=\int_\Omega d\boldsymbol x\,\delta\big(\nabla H(\boldsymbol x)\big)\,\big|\det\operatorname{Hess}H(\boldsymbol x)\big| \end{align*} Typically exponential in dimension $N$, with \emph{complexity} defined by \[ \Sigma=\frac1N\log\#_\text{points} \] Can specify properties of points by inserting $\delta$-functions: \begin{align*} \#_\text{points}\alert<2>{(E)} &=\int_\Omega d\boldsymbol x\,\delta\big(\nabla H(\boldsymbol x)\big)\,\big|\det\operatorname{Hess}H(\boldsymbol x)\big| \alert<2>{\,\delta\big(H(\boldsymbol x)-NE\big)} \end{align*} \emph{How do we condition on marginal minima?} \end{frame} \begin{frame} \frametitle{Conditioning on the type of point: spherical models} \begin{columns} \begin{column}{0.5\textwidth} In spherical spin glasses with \[ H(\boldsymbol x)=\sum_pa_pH_p(\boldsymbol x) \qquad H_p(\boldsymbol x)=\frac1{p!}\sum_{i_1\cdots i_p}J_{i_1\cdots i_p}x_{i_1}\cdots x_{i_p} \] all points have the same Hessian spectral density: semicircle with radius $\mu_\text m$, but different shifts \[ \mu=\frac1N\operatorname{Tr}\operatorname{Hess} H(\boldsymbol x) \] \smallskip Condition on marginal minima by inserting \[ \delta\big(\operatorname{Tr}\operatorname{Hess}H(\boldsymbol x)-N\mu_\text{m}\big) \] \end{column} \begin{column}{0.5\textwidth} \begin{overlayarea}{\textwidth}{14.5em} \only<1-2>{\includegraphics[width=\columnwidth]{figs/mu_0.75.pdf}\\\hphantom{ello}\includegraphics[width=0.8\columnwidth]{figs/land_0.75.pdf}} \only<3>{\includegraphics[width=\columnwidth]{figs/mu_1.5.pdf}\\\hphantom{ello}\includegraphics[width=0.8\columnwidth]{figs/land_1.5.pdf}} \only<4>{\includegraphics[width=\columnwidth]{figs/mu_2.25.pdf}\\\hphantom{ello}\includegraphics[width=0.8\columnwidth]{figs/land_2.25.pdf}} \only<5>{\includegraphics[width=\columnwidth]{figs/mu_3.5.pdf}\\\hphantom{ello}\includegraphics[width=0.8\columnwidth]{figs/land_3.5.pdf}} \only<6>{\includegraphics[width=\columnwidth]{figs/mu_2.pdf}\\\hphantom{ello}\includegraphics[width=0.8\columnwidth]{figs/land_2.pdf}} \end{overlayarea} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Out of equilibrium dynamics and complexity: spherical models} \begin{columns} \begin{column}{0.41\textwidth} \alert<1-2>{Pure: all procedures reach $E_\text{th}$} \medskip \alert<3-4>{Mixed: different procedures reach different energies} \medskip Dynamical endpoints bounded by complexity of marginal minima \bigskip \tiny \fullcite{Folena_2020_Rethinking} \smallskip \fullcite{Folena_2021_Gradient} \smallskip \fullcite{Kent-Dobias_2023_How} \end{column} \begin{column}{0.59\textwidth} \begin{overlayarea}{\columnwidth}{0.8\textheight} \only<1>{% \includegraphics[width=0.8\columnwidth]{figs/complexity_3_marginal.pdf} }% \only<2>{% \bigskip \begin{minipage}[b]{0.83\columnwidth} \centering \includegraphics[width=0.18\columnwidth]{figs/land_0.75.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_0.75.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_0.75.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_0.75.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_0.75.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_1.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_1.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_1.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_1.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.25.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.25.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_3.5.pdf} \end{minipage} \raisebox{0.75em}{\includegraphics[width=0.15\columnwidth]{figs/energy_arrow.pdf}} } \only<3>{% \includegraphics[width=0.8\columnwidth]{figs/complexity_34_marginal.pdf} }% \only<4>{% \bigskip \begin{minipage}[b]{0.83\columnwidth} \centering \includegraphics[width=0.18\columnwidth]{figs/land_0.75.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_0.75.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_0.75.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_1.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_1.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_0.75.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_1.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_1.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_1.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.25.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.25.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_3.5.pdf} \includegraphics[width=0.18\columnwidth]{figs/land_2.25.pdf} \end{minipage} \raisebox{0.75em}{\includegraphics[width=0.15\columnwidth]{figs/energy_arrow_o1.pdf}} }% \end{overlayarea} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Marginal minima in generic models} \begin{columns} \begin{column}{0.5\textwidth} \alert<1>{In spherical spin glasses, all points have the same Hessian spectral density: semicircle with radius $\mu_\text m$, but different shifts} \bigskip In generic models, spectral density depends on stationarity, energy, etc! \bigskip \alert<2>{Example: multi-spherical model \[ H(\{\boldsymbol x_1,\boldsymbol x_2\}) =H_p^{(1)}(\boldsymbol x_1)+H_p^{(2)}(\boldsymbol x_2)+\epsilon\boldsymbol x_1\cdot\boldsymbol x_2 \]} \hspace{-0.25em}In most models we don't understand the Hessian at all \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\columnwidth]{figs/mu_0.75.pdf} \onslide<2>\includegraphics[width=0.9\columnwidth]{figs/msg_marg_spectra.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Towards generic marginal complexity} \begin{columns} \begin{column}{0.6\textwidth} \begin{itemize}[leftmargin=4em] \item[\color{ictpgreen}\bf Trick \#1:] condition stationary points on \emph{value of smallest eigenvalue} \end{itemize} { \small \begin{align*} \hspace{0em}&\delta(\lambda_\text{min}(A)) \\ &=\lim_{\beta\to\infty}\int \frac{d\boldsymbol s\,\delta(N-\|\boldsymbol s\|^2)e^{-\beta\boldsymbol s^TA\boldsymbol s}} {\int d\boldsymbol s'\,\delta(N-\|\boldsymbol s'\|^2)e^{-\beta\boldsymbol s'^TA\boldsymbol s'}} \delta\left(\frac{\boldsymbol s^TA\boldsymbol s}N\right) \end{align*} } \bigskip Only works if you happen to have the correct shift $\mu$ \bigskip \tiny \fullcite{Kent-Dobias_2024_Conditioning} \end{column} \begin{column}{0.4\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/spectrum_less.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/spectrum_more.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/spectrum_eq.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Towards generic marginal complexity} \begin{columns} \begin{column}{0.5\textwidth} \begin{itemize}[leftmargin=4em] \item[\color{ictpgreen}\bf Trick \#1:] condition stationary points on \emph{value of smallest eigenvalue} \end{itemize} { \small \begin{align*} \hspace{-3em}&\delta(\lambda_\text{min}(A)) \\ \hspace{-3em}&=\lim_{\beta\to\infty}\int \frac{d\boldsymbol s\,\delta(N-\|\boldsymbol s\|^2)e^{-\beta\boldsymbol s^TA\boldsymbol s}} {\int d\boldsymbol s'\,\delta(N-\|\boldsymbol s'\|^2)e^{-\beta\boldsymbol s'^TA\boldsymbol s'}} \delta\left(\frac{\boldsymbol s^TA\boldsymbol s}N\right) \end{align*} } \medskip \begin{itemize}[leftmargin=4em] \item[\color{ictpgreen}\bf Trick \#2:] adjust $\mu\propto\operatorname{Tr}\operatorname{Hess}H$ until order-$N$ large deviation breaks \end{itemize} \bigskip \tiny \fullcite{Kent-Dobias_2024_Conditioning} \end{column} \begin{column}{0.5\textwidth} \hspace{0.9em} \includegraphics[scale=0.8]{figs/spectrum_less.pdf} \hspace{-1.6em} \includegraphics[scale=0.8]{figs/spectrum_eq.pdf} \hspace{-1.6em} \includegraphics[scale=0.8]{figs/spectrum_more.pdf} \\ \includegraphics[scale=0.8]{figs/large_deviation.pdf} \vspace{-1em} \small \begin{align*} \hspace{-0.5em}G_0(\mu)=\frac 1N\log\Big\langle\delta\big(\lambda_\text{min}(A-\mu I)\big)\Big\rangle_{A\in\text{GOE}(N)} \end{align*} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Marginal complexity: example} \begin{columns} \begin{column}{0.5\textwidth} Example: model of nonlinear least squares: \[ H(\boldsymbol x)=\frac12\sum_{i=1}^{M}V_i(\boldsymbol x)^2 \] for spherical $\boldsymbol x\in\mathbb R^N$ and $M=\alpha N$ inhomogeneous random functions $V_i$ \[ V_i(\boldsymbol x)=H_2^{(i)}(\boldsymbol x)+H_3^{(i)}(\boldsymbol x) \] \bigskip \tiny \fullcite{Kent-Dobias_2024_Conditioning} \smallskip \fullcite{Kent-Dobias_2024_Algorithm-independent} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\vspace{4em}\includegraphics[width=\textwidth]{figs/most_squares_complex.pdf} \onslide<2>\vspace{-1.75em}\includegraphics[width=\textwidth]{figs/most_squares_complexity.pdf} \vspace{-1.95em} \hspace{-0.25em}\colorbox{white}{\includegraphics[width=\textwidth]{figs/most_squares_stability.pdf}} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Really flat parts: zero-cost sets} \begin{columns} \begin{column}{0.5\textwidth} Diverse optimization problems exactly fit data or satisfy constraints, reach zero cost \bigskip Stationary point technology useless for describing zero-cost sets \bigskip Mostly understood by pointwise sampling or interpolation between pairs of sampled points \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/neural_landscape_1.png}\smallskip\\\tiny\fullcite{Liu_2022_Loss}\end{minipage} \onslide<2>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/neural_landscape_2.png}\smallskip\\\tiny\fullcite{Liu_2022_Loss}\end{minipage} \onslide<3>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/draxler_2018.png}\smallskip\\\tiny\fullcite{Draxler_2018_Essentially}\end{minipage} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Zero cost manifolds vs.\ zero cost non-manifolds} \begin{columns} \begin{column}{0.5\textwidth} \textbf{Manifolds} \medskip Defined by sets of \emph{analytic equalities} \medskip Network $f_{\boldsymbol x}:\mathbb R^P\to\mathbb R$, $\boldsymbol x\in S^{N-1}\subset\mathbb R^N$, with analytic activations (e.g.\ $\tanh$): \[ y^\mu=f_{\boldsymbol x}(\boldsymbol a^\mu)\qquad\mu=1,\ldots,M \] \smallskip \textbf{(Usual) Non-manifolds} \medskip Defined by sets of \emph{inequalities} \medskip Rectified activations or jamming of disks: \[ \|\boldsymbol x^i-\boldsymbol x^j\|\geq 2R\qquad i,j=1,\ldots,P \] \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/intersections_3.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/nothing_zoom.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{The Euler characteristic \boldmath{$\chi$}} \begin{columns} \begin{column}{0.5\textwidth} The Euler characteristic $\chi(\Omega)$ is a topological invariant of a manifold $\Omega$ \medskip Defined by tiling the manifold, then taking the alternating sum \begin{align*} \chi(\Omega_{\text{cow}}) &= {\only<2,5->{\color{Red}}\#_\text{vertices}} &&\hspace{-1em}- {\only<3,5->{\color{ictpgreen}}\#_\text{edges}} &&\hspace{-1em}+ {\only<4,5->{\color{ictpblue}}\#_\text{faces}} \\ &\color{White}\only<2->{\color{Black}}= {\only<2,5->{\color{Red}}2904} &&\hspace{-1em}\color{White}\only<3->{\color{Black}}- {\only<3,5->{\color{ictpgreen}}8706} &&\hspace{-1em}\color{White}\only<4->{\color{Black}}+ {\only<4,5->{\color{ictpblue}}5804} \\ &\color{White}\only<5->{\color{Black}}=2 \end{align*} \[ \color{White}\only<6->{\color{Black}}\chi(\Omega_\text{football}) ={\only<6->{\color{Red}}60}-{\only<6->{\color{ictpgreen}}90}+{\only<6->{\color{ictpblue}}32}=2 \] \color{White}\only<7>{\color{Black}}Cow is homeomorphic to a sphere \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1,5>\includegraphics[width=\textwidth]{figs/cow.png} \onslide<2>\includegraphics[width=\textwidth]{figs/cow_vert.png} \onslide<3>\includegraphics[width=\textwidth]{figs/cow_edge.png} \onslide<4>\includegraphics[width=\textwidth]{figs/cow_face.png} \onslide<6->\hspace{2em}\includegraphics{figs/Football_Pallo_valmiina-cropped.jpg} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{The Euler characteristic \boldmath{$\chi$}} \framesubtitle{Characteristics of the characteristic} \begin{columns} \begin{column}{0.5\textwidth} For closed, connected 2-dimensional manifolds, related to genus $g$ by $\chi=2-2g$ \medskip General properties: \vspace{-0.5em} \[ \chi(\Omega)=0 \text{ for odd-dimensional $\Omega$} \] \vspace{-1.6em} \[ \chi(S^D)=2\text{ for even }D \] \[ \chi(\Omega_1\sqcup\Omega_2)=\chi(\Omega_1)+\chi(\Omega_2) \] \[ \chi(\Omega_1\times\Omega_2)=\chi(\Omega_1)\times\chi(\Omega_2) \] \smallskip Examples: \vspace{-0.5em} \[\chi(M\text{ even-$D$ spheres})=2M\] \vspace{-1.6em} \[\chi(S^1\times\text{anything})=0\] \end{column} \begin{column}{0.5\textwidth} \includegraphics[width=\textwidth]{figs/genus.png} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Computing the Euler characteristic} \begin{columns} \begin{column}{0.5\textwidth} Morse theory: gradient flow on an arbitrary ``height'' function $h$ makes a complex \begin{align*} \chi(\Omega) &= {\only<2,5>{\color{Red}}\#_\text{vertices}} - {\only<3,5>{\color{ictpgreen}}\#_\text{edges}} + {\only<4,5>{\color{ictpblue}}\#_\text{faces}} +\cdots \\ &= {\only<6>{\color{ictpblue}}\#_\text{index 0}} - {\only<6>{\color{ictpgreen}}\#_\text{index 1}} + {\only<6>{\color{Red}}\#_\text{index 2}} +\cdots \\ &=\sum_{i=0}^D(-1)^i\#_\text{index i} \end{align*} \[ \hspace{-1em}\operatorname{sgn}\big(\det\operatorname{Hess}(\pmb x)\big) = \operatorname{sgn}\left(\prod_{i=1}^D\lambda_i\right) =(-1)^{\text{index}} \] \[ \chi(\Omega) =\int_\Omega d\pmb x\,\delta\big(\nabla h(\pmb x)\big) \,\det\operatorname{Hess}h(\pmb x) \] \emph{Kac--Rice without the absolute value!} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/other_sphere.png} \onslide<2>\includegraphics[width=\textwidth]{figs/other_sphere_vert.png} \onslide<3>\includegraphics[width=\textwidth]{figs/other_sphere_edge.png} \onslide<4>\includegraphics[width=\textwidth]{figs/other_sphere_face.png} \onslide<5>\includegraphics[width=\textwidth]{figs/other_sphere_all.png} \onslide<6>\includegraphics[width=\textwidth]{figs/other_sphere_crit.png} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Computing the Euler characteristic} \begin{columns} \begin{column}{0.6\textwidth} Pick whatever height function $h:\Omega\to\mathbb R$ you like: $h(\pmb x)=\frac1N\pmb x_0\cdot\pmb x$ for arbitrary $\pmb x_0$. \[ \chi(\Omega) =\int_\Omega d\pmb x\,\delta\big(\nabla h(\pmb x)\big)\,\det\operatorname{Hess}h(\pmb x) \] \[ \Omega=\{\boldsymbol x\in S^{N-1}\subset\mathbb R^N\mid f_{\boldsymbol x}(\boldsymbol a^\mu)=y^\mu,1\leq\mu\leq M\} \] Lagrange multipliers replace differential geometry: \[ L(\boldsymbol x,\boldsymbol \omega)=h(\boldsymbol x)+\omega^0(\|\boldsymbol x\|^2-N)+\sum_{\mu=1}^M\omega^\mu(f_{\boldsymbol x}(\boldsymbol a^\mu)-y^\mu) \] \end{column} \begin{column}{0.4\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/function-1.png} \onslide<2>\includegraphics[width=\textwidth]{figs/function-2.png} \onslide<3>\includegraphics[width=\textwidth]{figs/function-3.png} \end{overprint} \end{column} \end{columns} \vspace{-1em} \[ \chi(\Omega) =\int_{\mathbb R^{N+M+1}} d\boldsymbol x\,d\boldsymbol \omega\,\delta\big(\begin{bmatrix}\frac{\partial L}{\partial\boldsymbol x}&\frac{\partial L}{\partial\boldsymbol \omega}\end{bmatrix}\big) \,\det\begin{bmatrix}\frac{\partial^2L}{\partial\boldsymbol x^2}&\frac{\partial^2L}{\partial\boldsymbol x\partial\boldsymbol \omega}\\\frac{\partial^2L}{\partial\boldsymbol x\partial\boldsymbol \omega}&\frac{\partial^2L}{\partial\boldsymbol \omega^2}\end{bmatrix} \] \end{frame} \begin{frame} \frametitle{Computing the Euler characteristic: example} \begin{columns} \begin{column}{0.5\textwidth} $M$ data points, $N$ parameters, $\alpha=M/N$, $y^\mu=V_0$, $\boldsymbol a^\mu$ spherical $p$-spin coefficients, \[ V_0 =f_{\boldsymbol x}(\boldsymbol a^\mu) =H^{(\mu)}_p(\boldsymbol x) \] Average Euler characteristic reduced to integral over $m=\frac1N\boldsymbol x\cdot\boldsymbol x_0$, \[ \overline{\chi(\Omega)} =\left(\frac N{2\pi}\right)^{\frac12} \int dm\,g(m)e^{N\mathcal S_\chi(m)} \] \smallskip\tiny \fullcite{Kent-Dobias_2025_On} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/action_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/action_3.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Computing the Euler characteristic: example} \begin{columns} \begin{column}{0.5\textwidth} $M$ data points, $N$ parameters, $\alpha=M/N$, $y^\mu=V_0$, $\boldsymbol a^\mu$ spherical $p$-spin coefficients, \[ V_0 =f_{\boldsymbol x}(\boldsymbol a^\mu) =H^{(\mu)}_p(\boldsymbol x) \] Simplest case: $p=1$, $\Omega$ is intersection of random hyperplanes with the sphere \medskip Results in $\overline{\chi(\Omega)}=0$ or $\overline{\chi(\Omega)}=2$ depending on whether solutions exist \medskip \hspace{2em}\includegraphics[width=0.33\textwidth]{figs/gone.pdf} \hfill \includegraphics[width=0.33\textwidth]{figs/connected.pdf}\hspace{2em} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/intersections_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/intersections_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/action_phase_1.pdf} \onslide<4>\includegraphics[width=\textwidth]{figs/intersections_3.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/intersections_4.pdf} \onslide<6>\includegraphics[width=\textwidth]{figs/action_phase_2.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/phases_1.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Computing the Euler characteristic: example} \begin{columns} \begin{column}{0.5\textwidth} $M$ data points, $N$ parameters, $\alpha=M/N$, $y^\mu=V_0$, $\boldsymbol a^\mu$ spherical $p$-spin coefficients, \[ f_{\boldsymbol x}(\boldsymbol a^\mu) =H^{(\mu)}_p(\boldsymbol x) \] For $p>1$, new phases are possible \medskip \alert<2>{\textbf{\boldmath{$m^*=0$, $\mathcal S_\chi(m^*)$ complex, $\overline{\chi(\Omega)}\ll0$, local maximum exists}}} \medskip \alert<3>{\textbf{\boldmath{$m^*=0$, $\mathcal S_\chi(m^*)$ complex, $\overline{\chi(\Omega)}\ll0$, no local maximum}}} \medskip \alert<4>{\textbf{\boldmath{$m^*=0$, $\mathcal S_\chi(m^*)$ real, $\overline{\chi(\Omega)}\gg0$}}} \medskip \includegraphics[width=0.23\textwidth]{figs/middle.pdf} \includegraphics[width=0.23\textwidth]{figs/complex.pdf} \includegraphics[width=0.23\textwidth]{figs/shattered.pdf} \includegraphics[width=0.23\textwidth]{figs/gone.pdf} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1-2>\includegraphics[width=\textwidth]{figs/action_phase_3.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/action_phase_4.pdf} \onslide<4>\includegraphics[width=\textwidth]{figs/action_phase_5.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/phases_2.pdf} \onslide<6>\includegraphics[width=\textwidth]{figs/phases_3.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/phases_4.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Computing the Euler characteristic: example} \begin{columns} \begin{column}{1.1\textwidth} \hspace{1em}Phases for inhomogeneous models: $1-\lambda$ parts linear ($p=1$) plus $\lambda$ quadratic ($p=2$) \medskip \includegraphics[width=0.21\columnwidth]{figs/phases_12_0.pdf} \nolinebreak\hspace{-2.5em} \includegraphics[width=0.21\columnwidth]{figs/phases_12_1.pdf} \nolinebreak\hspace{-2.5em} \includegraphics[width=0.21\columnwidth]{figs/phases_12_2.pdf} \nolinebreak\hspace{-2.5em} \includegraphics[width=0.21\columnwidth]{figs/phases_12_3.pdf} \nolinebreak\hspace{-2.5em} \includegraphics[width=0.21\columnwidth]{figs/phases_12_4.pdf} \nolinebreak\hspace{-2.5em} \includegraphics[width=0.21\columnwidth]{figs/phases_12_5.pdf} \medskip \hspace{5em} \includegraphics[width=0.13\textwidth]{figs/connected.pdf} \hfill \includegraphics[width=0.13\textwidth]{figs/middle.pdf} \hfill \includegraphics[width=0.13\textwidth]{figs/complex.pdf} \hfill \includegraphics[width=0.13\textwidth]{figs/shattered.pdf} \hfill \includegraphics[width=0.13\textwidth]{figs/gone.pdf} \hspace{5em} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Non manifolds: constraint satisfaction} \begin{columns} \begin{column}{0.5\textwidth} Continuous constraint satisfaction problems with $\boldsymbol x\in\Omega\subseteq\mathbb R^N$, with $\Omega$ $D$-dimensional \[ h^\mu(\boldsymbol x)\geq0 \qquad 1\leq\mu\leq M \] \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/nothing_zoom.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/max_size_zoom.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Non manifolds: wedged spheres} \begin{columns} \begin{column}{0.5\textwidth} Sphere of radius $r$ uniquely defined by $h^\mu(\boldsymbol x)=r$ for $D$ constraints, $h^\mu(\boldsymbol x)\geq r$ for the other $M-D$ constraints \begin{align*} \hspace{-2em}\#_r = \int_{\mathbb R^D} d\boldsymbol x \sum_{\substack{\sigma\subset[M]\\|\sigma|=D}} \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg) \\ \times\bigg(\prod_{\mu\in\sigma}\delta\big(h^\mu(\boldsymbol x)-r\big)\bigg) \\ \times\left| \det\begin{bmatrix} \frac\partial{\partial\boldsymbol x}h^{\sigma_1}(\boldsymbol x) & \cdots & \frac\partial{\partial\boldsymbol x}h^{\sigma_D}(\boldsymbol x) \end{bmatrix} \right| \end{align*} \alert<3>{With margin, $\#_r(\kappa)=\#_0(r+\kappa)$} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/nothing_zoom.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/fixed_size_zoom_r.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/fixed_size_zoom_0.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Non manifolds: inscribed spheres} \begin{columns} \begin{column}{0.5\textwidth} Sphere of maximal radius uniquely defined by $h^\mu(\boldsymbol x)=r$ for $D+1$ constraints, $h^\mu(\boldsymbol x)\geq r$ for other $M-D-1$ constraints \begin{align*} \hspace{-2em}&\#_\text{insc} = \int_0^\infty dr\int_{\mathbb R^D} d\boldsymbol x \sum_{\substack{\sigma\subset[M]\\|\sigma|=D+1}} \\ \hspace{-2em}&\times\bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg) \bigg(\prod_{\mu\in\sigma}\delta\big(h^\mu(\boldsymbol x)-r\big)\bigg) \\ \hspace{-2em}&\hspace{4em}\times\left| \det\begin{bmatrix} \frac\partial{\partial\boldsymbol x}h^{\sigma_1}(\boldsymbol x) & \cdots & \frac\partial{\partial\boldsymbol x}h^{\sigma_{D+1}}(\boldsymbol x) \\ -1 & \cdots & -1 \end{bmatrix} \right| \end{align*} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/max_size_zoom.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Practical considerations: treating the determinant} \begin{columns} \begin{column}{0.9\textwidth} \[ |\det M|=\sqrt{\det MM^T} =\int\frac{d\boldsymbol s}{(2\pi)^{D/2}}\,d\bar{\boldsymbol\eta}\,d\boldsymbol\eta\, e^{-\frac12\boldsymbol s^TMM^T\boldsymbol s-\bar{\boldsymbol\eta}^TMM^T\boldsymbol\eta} \] \begin{align*} &\#_r = \int\frac{d\boldsymbol x\,d\boldsymbol s}{(2\pi)^{D/2}}d\bar{\boldsymbol\eta}\,d\boldsymbol\eta \sum_{\substack{\sigma\subset[M]\\|\sigma|=D}} \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg) \\ &\hspace{8em} \times \bigg( \prod_{\mu\in\sigma} \delta\big(h^\mu(\boldsymbol x)-r\big) e^{ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2 -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] } \bigg) \end{align*} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Practical considerations: treating the sum over subsets} \begin{columns} \begin{column}{0.9\textwidth} \begin{align*} &\#_r = \int\frac{d\boldsymbol x\,d\boldsymbol s}{(2\pi)^{D/2}}d\bar{\boldsymbol\eta}\,d\boldsymbol\eta \\ &\times \sum_{\substack{\sigma\subset[M]\\|\sigma|=D}} \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg) \bigg( \prod_{\mu\in\sigma} \delta\big(h^\mu(\boldsymbol x)-r\big) e^{ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2 -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] } \bigg) \end{align*} \begin{align*} &\#_r = \lim_{\omega\to\infty}\int\frac{d\boldsymbol x\,d\boldsymbol s}{(2\pi)^{D/2}}d\bar{\boldsymbol\eta}\,d\boldsymbol\eta \\ & \times\prod_{\mu=1}^M\bigg(\omega\theta\big(h^\mu(\boldsymbol x)-r\big) + \omega^{1-\frac MD}\delta\big(h^\mu(\boldsymbol x)-r\big) e^{ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2 -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] } \bigg) \end{align*} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Practical considerations: treating the sum over subsets} \begin{columns} \begin{column}{0.9\textwidth} Why does this work? Expand the product: \begin{align*} &\prod_{\mu=1}^M \bigg( \omega\theta\big(h^\mu(\boldsymbol x)-r\big) + \omega^{1-\frac MD}\delta\big(h^\mu(\boldsymbol x)-r\big) e^{ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2 -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] } \bigg) \\ &=\sum_{d=0}^M\omega^{M(1-\frac dD)} \sum_{\substack{\sigma\subset[M]\\|\sigma|=d}} \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg) \\ & \hspace{8em}\times\bigg( \prod_{\mu\in\sigma} \delta\big(h^\mu(\boldsymbol x)-r\big) e^{ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2 -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)] } \bigg) \end{align*} Our term is $d=D$, giving $\omega^0$. For the undesired terms: \begin{itemize} \item $d>D$: $\omega$ raised to a negative power, limit kills term \item $d{$\kappa < 0$ : spherical obstacles have positive curvature} \medskip \alert<3>{$\kappa = 0$ : spherical obstacles have zero curvature} \medskip \alert<4>{$\kappa > 0$ : spherical obstacles have negative curvature} \bigskip \alert<5>{$N\to\infty$ gives asymptotically zero curvature for all $\kappa$} \end{column} \begin{column}{0.27\textwidth} \begin{overprint} \onslide<1-2>\includegraphics[width=\textwidth]{figs/curvature_demo_1.pdf} \onslide<3,5>\includegraphics[width=\textwidth]{figs/curvature_demo_2.pdf} \onslide<4>\includegraphics[width=\textwidth]{figs/curvature_demo_3.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Application to the spherical perceptron} \begin{columns} \begin{column}{0.95\textwidth} Typical statistics of wedged spheres given by \[ \frac1N\overline{\log\#_0} =\lim_{n\to0}\frac\partial{\partial n}\operatorname{extr}_{Q\alert<2>{,\rho}}\mathcal S_0(Q\alert<2>{,\rho}) \] for effective action \[ \hspace{-2em} \mathcal S_0(Q\alert<2>{,\rho})= \frac12\log\det Q\alert<2>{-\frac n2\log\frac{\rho^2}{2\pi}}+\alpha\log\bigg( e^{\frac12\sum_{ab} Q_{ab}\frac{\partial^2}{\partial y_a\partial y_b} } \prod_{a=1}^n \big[ \theta(y_a) \alert<2>{+ \rho\delta(y_a)} \big] \bigg|_{y_a=-\kappa} \bigg) \] depending on \[ Q_{ab}=\frac1N\boldsymbol x_a\cdot\boldsymbol x_b \hspace{3em} \rho =\frac1{\sqrt N}\lim_{\omega\to\infty}\omega^{-\alpha}\sqrt{\boldsymbol s_a^T\boldsymbol s_a} =\frac1{\sqrt N}\lim_{\omega\to\infty}\omega^{-\alpha}\sqrt{\boldsymbol\eta^T_a\bar{\boldsymbol\eta}_a} \] \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Application to the spherical perceptron} \begin{columns} \begin{column}{0.7\textwidth} \includegraphics[width=\textwidth]{figs/phase_diagram_rs.pdf} \end{column} \begin{column}{0.3\textwidth} \includegraphics[width=\textwidth]{figs/fixed_size_zoom_points.pdf} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Application to the spherical perceptron} \begin{columns} \begin{column}{0.7\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/phase_diagram_inscribed.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/phase_diagram_detail_1.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/phase_diagram_detail_2.pdf} \end{overprint} \end{column} \begin{column}{0.3\textwidth} \vspace{-5.5em} \[\hspace{-2em}\overline{\log\#_\text{insc}}=\max_{r\geq0}\overline{\log\#_r(\kappa)}\] \includegraphics[width=\textwidth]{figs/max_size_zoom.pdf} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Application to the spherical perceptron} \begin{columns} \begin{column}{0.5\textwidth} Why does the structure of the distribution of wedged points differ from that of all solutions? \medskip `Equilibrium' calculations averages over solutions at all larger margin with diverse, inequivalent geometries \medskip \alert<2>{Sphere-counting isolates properties of the solution set at each specific margin} \medskip \alert<3>{Relationship between $\#_r$, $\#_\text{insc}$, and solution topology} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/margin_rainbow.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/margin_rainbow_points.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/margin_rainbow_points-2.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Other landscape applications without RMT} \begin{columns} \begin{column}{0.5\textwidth} \includegraphics[width=\textwidth]{figs/folena_new.pdf} \tiny\fullcite{Kent-Dobias_2025_On} \end{column} \begin{column}{0.5\textwidth} \vspace{2.5em} \includegraphics[width=\textwidth]{figs/walk.pdf} \tiny\fullcite{Kent-Dobias_2025_Very} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Understanding the flat parts of random landscapes} \begin{columns} \begin{column}{0.33\textwidth} \textbf{Nearly flat parts} \vspace{-0.75em} \rule{\columnwidth}{1pt} Conditioning stationary point complexity on marginal optima \bigskip \centering \includegraphics[height=10pc]{figs/msg_marg_spectra.pdf} \smallskip\raggedright\tiny \fullcite{Kent-Dobias_2024_Conditioning} \end{column} \begin{column}{0.66\textwidth} \textbf{Really flat parts} \vspace{-0.75em} \rule{\columnwidth}{1pt} \smallskip \begin{minipage}{0.49\columnwidth} \raggedright Topology of solution manifolds via the average Euler characteristic \bigskip \centering \includegraphics[height=10pc]{figs/function_2.png} \smallskip\raggedright\tiny \fullcite{Kent-Dobias_2025_On} \end{minipage} \hfill \begin{minipage}{0.49\columnwidth} \raggedright Geometry of solution sets via the statistics of wedged and inscribed spheres \bigskip \centering \includegraphics[height=10pc]{figs/max_size_zoom.pdf} \smallskip\raggedright\tiny Work in progress, expect something on the arXiv in the coming weeks!\\ \vspace{10pt} \end{minipage} \end{column} \end{columns} \end{frame} \end{document}