#include #include #include #include #include #include #include #include #include #include #include #include "pcg-cpp/include/pcg_random.hpp" #include "randutils/randutils.hpp" #include "complex_normal.hpp" #include "tensor.hpp" #define P_SPIN_P 3 const unsigned p = P_SPIN_P; using Scalar = std::complex; using Vector = Eigen::VectorXcd; using Matrix = Eigen::MatrixXcd; using Tensor = Eigen::Tensor; using Rng = randutils::random_generator; Vector initializeVector(unsigned N, Rng& r) { Vector z(N); complex_normal_distribution<> dist(0, 1, 0); for (unsigned i = 0; i < N; i++) { z(i) = dist(r.engine()); } z *= sqrt(N) / sqrt(z.dot(z)); return z; } std::tuple, Vector, Matrix> hamGradHess(const Tensor& J, const Vector& z) { Matrix Jz = contractDown(J, z); Vector Jzz = Jz * z; Matrix hessian = ((p - 1) * (double)p / factorial(p)) * Jz; Vector gradient = ((double)p / factorial(p)) * Jzz; Scalar hamiltonian = (1.0 / factorial(p)) * Jzz.dot(z); return {hamiltonian, gradient, hessian}; } std::tuple WdW(const Tensor& J, const Vector& z) { Vector gradient; Matrix hessian; std::tie(std::ignore, gradient, hessian) = hamGradHess(J, z); Vector projectedGradient = gradient - (gradient.dot(z) / (double)z.size()) * z; double W = projectedGradient.cwiseAbs2().sum(); Vector dW = hessian.conjugate() * projectedGradient; return {W, dW}; } Vector langevin(const Tensor& J, const Vector& z0, double T, double γ0, std::function quit, Rng& r) { Vector z = z0; double W; Vector dW; std::tie(W, dW) = WdW(J, z); unsigned steps = 0; complex_normal_distribution<> d(0, T, 0); while (!quit(W, steps)) { double γ = pow(r.variate(0, γ0), 2); Vector η(z.size()); for (unsigned i = 0; i < z.size(); i++) { η(i) = d(r.engine()); } Vector zNext = z - γ * dW + η; zNext *= sqrt(zNext.size()) / sqrt(zNext.dot(zNext)); double WNext; Vector dWNext; std::tie(WNext, dWNext) = WdW(J, zNext); if (exp((W - WNext) / T) > r.uniform(0.0, 1.0)) { z = zNext; W = WNext; dW = dWNext; } } return z; } int main(int argc, char* argv[]) { // model parameters unsigned N = 10; // number of spins double T = 1; // temperature double Rκ = 1; // real part of distribution parameter double Iκ = 0; // imaginary part of distribution parameter // simulation parameters double δ = 1e-2; // threshold for determining saddle double γ = 1e-2; // step size unsigned t = 1000; // number of Langevin steps int opt; while ((opt = getopt(argc, argv, "N:T:e:r:i:g:t:")) != -1) { switch (opt) { case 'N': N = (unsigned)atof(optarg); break; case 't': t = (unsigned)atof(optarg); break; case 'T': T = atof(optarg); break; case 'e': δ = atof(optarg); break; case 'g': γ = atof(optarg); case 'r': Rκ = atof(optarg); break; case 'i': Iκ = atof(optarg); break; default: exit(1); } } std::complex κ(Rκ, Iκ); double σ = sqrt(factorial(p) / (2.0 * pow(N, p - 1))); Rng r; complex_normal_distribution<> d(0, σ, κ); Tensor J = generateCouplings, p>(N, d, r.engine()); Vector z = initializeVector(N, r); std::function findSaddle = [δ](double W, unsigned) { std::cout << W << std::endl; return W < δ; }; Vector zm = langevin(J, z, T, γ, findSaddle, r); std::complex H; Vector dH; std::tie(H, dH, std::ignore) = hamGradHess(J, zm); Vector constraint = dH - ((double)p * H / (double)N) * zm; std::cout << std::endl << zm.dot(zm) << std::endl; std::cout << constraint.cwiseAbs2().sum() << std::endl; }