#include #include #include #include #include "complex_normal.hpp" #include "p-spin.hpp" #include "dynamics.hpp" #include "stokes.hpp" #include "pcg-cpp/include/pcg_random.hpp" #include "randutils/randutils.hpp" #include "unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h" #define PSPIN_P 3 const int p = PSPIN_P; // polynomial degree of Hamiltonian using Complex = std::complex; using ComplexVector = Vector; using ComplexMatrix = Matrix; using ComplexTensor = Tensor; using Rng = randutils::random_generator; std::list> saddlesCloserThan(const std::unordered_map& saddles, Real δ) { std::list> pairs; for (auto it1 = saddles.begin(); it1 != saddles.end(); it1++) { for (auto it2 = std::next(it1); it2 != saddles.end(); it2++) { if ((it1->second - it2->second).norm() < δ) { pairs.push_back({it1->second, it2->second}); } } } return pairs; } template std::tuple matchImaginaryEnergies(const ComplexTensor& J0, const ComplexVector& z10, const ComplexVector& z20, Real ε, Real Δ, Generator& r) { Real σ = sqrt(factorial(p) / (2.0 * pow(z10.size(), p - 1))); complex_normal_distribution dJ(0, σ, 0); ComplexTensor J = J0; Complex H1, H2; ComplexVector z1, z2; std::tie(H1, std::ignore, std::ignore) = hamGradHess(J, z10); std::tie(H2, std::ignore, std::ignore) = hamGradHess(J, z20); Real prevdist = abs(imag(H1-H2)); Real γ = 0.1 * prevdist; std::function)> perturbJ = [&γ, &dJ, &r] (ComplexTensor& JJ, std::array ind) { Complex Ji = getJ(JJ, ind); setJ(JJ, ind, Ji + γ * dJ(r.engine())); }; while (true) { ComplexTensor Jp = J; iterateOver(Jp, perturbJ); try { z1 = findSaddle(Jp, z10, Δ); z2 = findSaddle(Jp, z20, Δ); Real dist = (z1 - z2).norm(); std::tie(H1, std::ignore, std::ignore) = hamGradHess(Jp, z1); std::tie(H2, std::ignore, std::ignore) = hamGradHess(Jp, z2); if (abs(imag(H1 - H2)) < prevdist && dist > 1e-2) { J = Jp; prevdist = abs(imag(H1 - H2)); γ = 0.1 * prevdist; std::cerr << prevdist << std::endl; if (abs(imag(H1 - H2)) < ε && dist > 1e-2) { break; } } } catch (std::exception& e) {} } return {J, z1, z2}; } int main(int argc, char* argv[]) { // model parameters unsigned N = 10; // number of spins Real T = 1; // temperature Real Rκ = 1; // real part of distribution parameter Real Iκ = 0; // imaginary part of distribution parameter // simulation parameters Real ε = 1e-12; Real εJ = 1e-5; Real δ = 1e-2; // threshold for determining saddle Real Δ = 1e-3; Real γ = 1e-2; // step size unsigned t = 1000; // number of Langevin steps unsigned M = 100; unsigned n = 100; int opt; while ((opt = getopt(argc, argv, "N:M:n:T:e:r:i:g:t:E:")) != -1) { switch (opt) { case 'N': N = (unsigned)atof(optarg); break; case 't': t = (unsigned)atof(optarg); break; case 'T': T = atof(optarg); break; case 'e': δ = atof(optarg); break; case 'E': ε = atof(optarg); break; case 'g': γ = atof(optarg); case 'r': Rκ = atof(optarg); break; case 'i': Iκ = atof(optarg); break; case 'n': n = (unsigned)atof(optarg); break; case 'M': M = (unsigned)atof(optarg); break; default: exit(1); } } Complex κ(Rκ, Iκ); Real σ = sqrt(factorial(p) / (2.0 * pow(N, p - 1))); Rng r; complex_normal_distribution d(0, 1, 0); ComplexTensor J = generateCouplings(N, complex_normal_distribution(0, σ, κ), r.engine()); ComplexVector z = normalize(randomVector(N, d, r.engine())); std::function energyNormGrad = [] (const ComplexTensor& J, const ComplexVector& z) { Real W; std::tie(W, std::ignore) = WdW(J, z); return W; }; std::unordered_map saddles; std::list> nearbySaddles; while (true) { // Until we find two saddles sufficiently close... std::tie(std::ignore, z) = metropolis(J, z, energyNormGrad, T, γ, M, d, r.engine()); try { ComplexVector zSaddleNext = findSaddle(J, z, ε); uint64_t saddleKey = round(1e2 * real(zSaddleNext(0))); auto got = saddles.find(saddleKey); if (got == saddles.end()) { saddles[saddleKey] = zSaddleNext; nearbySaddles = saddlesCloserThan(saddles, δ); if (nearbySaddles.size() > 0) { break; } std::cerr << "Found " << saddles.size() << " distinct saddles." << std::endl; } } catch (std::exception& e) { // std::cerr << "Could not find a saddle: " << e.what() << std::endl; } } std::cerr << "Found sufficiently nearby saddles, perturbing J to equalize Im H." << std::endl; ComplexVector z1 = nearbySaddles.front()[0]; ComplexVector z2 = nearbySaddles.front()[1]; std::tie(J, z1, z2) = matchImaginaryEnergies(J, z1, z2, 1e-14, ε, r); Rope stokes(10, z1, z2, J); for (unsigned i = 0; i < 9; i++) { stokes.relaxDiscreteGradient(J, 1e6, 0.1, 0); std::cout << stokes.n() << " " << stokes.cost(J) << std::endl; stokes = stokes.interpolate(); } return 0; }