#include #include #include #include #include "Eigen/Dense" #include "Eigen/src/Eigenvalues/ComplexEigenSolver.h" #include "Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h" #include "complex_normal.hpp" #include "p-spin.hpp" #include "dynamics.hpp" #include "stokes.hpp" #include "pcg-cpp/include/pcg_random.hpp" #include "randutils/randutils.hpp" #include "unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h" #define PSPIN_P 3 const int p = PSPIN_P; // polynomial degree of Hamiltonian using Complex = std::complex; using RealVector = Vector; using RealMatrix = Matrix; using RealTensor = Tensor; using ComplexVector = Vector; using ComplexMatrix = Matrix; using ComplexTensor = Tensor; using Rng = randutils::random_generator; int main(int argc, char* argv[]) { // model parameters unsigned N = 10; // number of spins Real T = 1; // temperature Real Rκ = 0; // real part of distribution parameter Real Iκ = 0; // imaginary part of distribution parameter // simulation parameters Real ε = 1e-15; Real εJ = 1e-5; Real δ = 1; // threshold for determining saddle Real Δ = 1e-3; Real γ = 1e-1; // step size unsigned t = 1000; // number of Langevin steps unsigned M = 100; unsigned n = 100; int opt; while ((opt = getopt(argc, argv, "N:M:n:T:e:r:i:g:t:E:")) != -1) { switch (opt) { case 'N': N = (unsigned)atof(optarg); break; case 't': t = (unsigned)atof(optarg); break; case 'T': T = atof(optarg); break; case 'e': δ = atof(optarg); break; case 'E': ε = atof(optarg); break; case 'g': γ = atof(optarg); case 'r': Rκ = atof(optarg); break; case 'i': Iκ = atof(optarg); break; case 'n': n = (unsigned)atof(optarg); break; case 'M': M = (unsigned)atof(optarg); break; default: exit(1); } } Rng r; // pSpinModel pSpin({J2, J4}); pSpinModelpSpin(N, r.engine(), 1, 0.1); std::normal_distribution Red(0, 1); RealVector zMin = randomMinimum(pSpin, Red, r, ε); Real Hr; RealVector dHr; RealMatrix ddHr; std::tie(Hr, dHr, ddHr, std::ignore) = pSpin.hamGradHess(zMin); Eigen::EigenSolver> eigenS(ddHr - (dHr * zMin.transpose() + zMin.dot(dHr) * Matrix::Identity(zMin.size(), zMin.size()) + (ddHr * zMin) * zMin.transpose()) / (Real)zMin.size() + zMin * zMin.transpose() / (Real)N); for (unsigned i = 0; i < N; i++) { RealVector zNew = normalize(zMin + 1e-3 * eigenS.eigenvectors().col(i).real()); std::cout << eigenS.eigenvalues()(i) << " " << 2.0 * (pSpin.getHamiltonian(zNew) - Hr) / 1e-6 << " " << real(eigenS.eigenvectors().col(i).dot(zMin)) << " " << eigenS.eigenvectors().col(0).dot(eigenS.eigenvectors().col(i)) << std::endl; } std::cout << std::endl; getchar(); complex_normal_distribution d(0, 1, 0); pSpinModel complexPSpin = pSpin.cast();; ComplexVector zSaddle = zMin.cast(); ComplexVector zSaddleNext; bool foundSaddle = false; while (!foundSaddle) { ComplexVector z0 = normalize(zSaddle + δ * randomVector(N, d, r.engine())); try { zSaddleNext = findSaddle(complexPSpin, z0, ε); Real saddleDistance = (zSaddleNext - zSaddle).norm(); if (saddleDistance / N > 1e-2) { std::cout << saddleDistance << std::endl; foundSaddle = true; } } catch (std::exception& e) {} } Complex H1 = complexPSpin.getHamiltonian(zSaddle); Complex H2 = complexPSpin.getHamiltonian(zSaddleNext); Real φ = atan2( H2.imag() - H1.imag(), H1.real() - H2.real()); std::cerr << (zSaddle - zSaddleNext).norm() / (Real)N << " " << φ << " " << H1 * exp(Complex(0, φ)) << " " << H2 * exp(Complex(0, φ)) << std::endl; complexPSpin *= exp(Complex(0, φ)); Cord test(complexPSpin, zSaddle, zSaddleNext, 3); test.relaxNewton(10, 1, 1e4); std::cout << test.totalCost(10) << " " << test.totalCost(20) << std::endl; return 0; }