From 3bfcc79839e9311f9ca8d1ffac439922c542be86 Mon Sep 17 00:00:00 2001
From: "kurchan.jorge" <kurchan.jorge@gmail.com>
Date: Tue, 8 Dec 2020 10:34:32 +0000
Subject: Update on Overleaf.

---
 bezout.tex | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/bezout.tex b/bezout.tex
index a7db520..8115df9 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -213,12 +213,12 @@ for $\delta=\kappa a^{-(p-2)}$.
 
 Another instrument we have to study this problem is to compute the following partition function:
 
-\begin{equation}
+\begin{eqnarray}
     Z= \int \Pi_i dx_i dy_i \; e^{-\beta_{R} \Re H_0 -\beta_I \Im H_0}
     \delta(\sum_i z_i^2-N) \delta\left(\sum_i y_i^2 -N \frac{a-1}{2}\right) 
 \end{equation}
 The energy $\Re H_0, \Im H_0$ are in a one-to one relation with the temperatures $\beta_R,\beta_I$. The entropy $S(a,H_0) = \ln Z+ +\beta_{R} \langle \Re H_0 \rangle +\beta_I \langle \Im H_0\rangle$
-is the logarithm of the number of configurations of a given 
+is the logarithm of the number of configurations of a given $(a,H_0)$.
 
 }
 \bibliographystyle{apsrev4-2}
-- 
cgit v1.2.3-70-g09d2