From 96efa4aab61d26f673c725183d3da04a722da9ce Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Mon, 7 Dec 2020 18:52:17 +0100 Subject: Added a bunch of interesting equations with no context. --- bezout.tex | 35 +++++++++++++++++++++++++++++++++++ 1 file changed, 35 insertions(+) diff --git a/bezout.tex b/bezout.tex index 2b6512b..3b397e7 100644 --- a/bezout.tex +++ b/bezout.tex @@ -164,6 +164,41 @@ not be greater than the product over all singular values \cite{Weyl_1912_Das}. Therefore, the absence of zero eigenvalues implies the absence of zero singular values. +% This is kind of a boring definition... +\begin{equation} \label{eq:count.def.marginal} + \overline{\mathcal N}(\kappa,\epsilon) + =\int da\,\overline{\mathcal N}(\kappa,\epsilon,a) +\end{equation} + +\begin{equation} \label{eq:count.zero.energy} + \overline{\mathcal N}(\kappa,0,a) + =\left[(p-1)a^{p-1}\sqrt{\frac{1-a^{-2}}{a^{2(p-1)}-|\kappa|^2}}\right]^N +\end{equation} + +\begin{equation} + \overline{\mathcal N}(\kappa,\epsilon) + =\lim_{a\to\infty}\overline{\mathcal N}(\kappa,\epsilon,a) + =(p-1)^N +\end{equation} + +For $|\kappa|<1$, +\begin{equation} + \lim_{a\to1}\overline{\mathcal N}(\kappa,\epsilon,a) + =0 +\end{equation} + +\begin{equation} + \lim_{a\to1}\overline{\mathcal N}(1,0,a) + =(p-1)^{N/2} +\end{equation} + +\begin{equation} \label{eq:threshold.energy} + |\epsilon_{\mathrm{th}}|^2 + =\frac{p-1}{2p}\frac{(1-|\delta|^2)^2a^{p-2}} + {1+|\delta|^2-2|\delta|\cos(\arg\kappa+2\arg\epsilon)} +\end{equation} +for $\delta=\kappa a^{-(p-2)}$. + \bibliographystyle{apsrev4-2} \bibliography{bezout} -- cgit v1.2.3-70-g09d2