From a30cca363958cd8bb4de480432b791a3711614a4 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Thu, 10 Dec 2020 15:25:18 +0100 Subject: Nudging Figure 1 around to minimize blank space... --- bezout.tex | 45 ++++++++++++++++++++++----------------------- 1 file changed, 22 insertions(+), 23 deletions(-) diff --git a/bezout.tex b/bezout.tex index 949a55b..bfabdec 100644 --- a/bezout.tex +++ b/bezout.tex @@ -228,29 +228,6 @@ z$, or alternatively the magnitude $y^2$ of the imaginary part. The latter vanishes as $a\to1$, where we should recover known results for the real $p$-spin. -\begin{figure}[htpb] - \centering - - \includegraphics{fig/spectra_0.0.pdf} - \includegraphics{fig/spectra_0.5.pdf}\\ - \includegraphics{fig/spectra_1.0.pdf} - \includegraphics{fig/spectra_1.5.pdf} - - \caption{ - Eigenvalue and singular value spectra of the matrix $\partial\partial H$ - for $p=3$, $a=\frac54$, and $\kappa=\frac34e^{-i3\pi/4}$ with (a) - $\epsilon=0$, (b) $\epsilon=-\frac12|\epsilon_{\mathrm{th}}|$, (c) - $\epsilon=-|\epsilon_{\mathrm{th}}|$, and (d) - $\epsilon=-\frac32|\epsilon_{\mathrm{th}}|$. The shaded region of each inset - shows the support of the eigenvalue distribution. The solid line on each - plot shows the distribution of singular values, while the overlaid - histogram shows the empirical distribution from $2^{10}\times2^{10}$ complex - normal matrices with the same covariance and diagonal shift as - $\partial\partial H$. - } \label{fig:spectra} -\end{figure} - - The Hessian of \eqref{eq:constrained.hamiltonian} is $\partial\partial H=\partial\partial H_0-p\epsilon I$, or the Hessian of \eqref{eq:bare.hamiltonian} with a constant added to its diagonal. The @@ -285,6 +262,28 @@ knowledge a closed form is not in the literature. We have worked out an implici this spectrum using the saddle point of a replica symmetric calculation for the Green function. +\begin{figure}[htpb] + \centering + + \includegraphics{fig/spectra_0.0.pdf} + \includegraphics{fig/spectra_0.5.pdf}\\ + \includegraphics{fig/spectra_1.0.pdf} + \includegraphics{fig/spectra_1.5.pdf} + + \caption{ + Eigenvalue and singular value spectra of the matrix $\partial\partial H$ + for $p=3$, $a=\frac54$, and $\kappa=\frac34e^{-i3\pi/4}$ with (a) + $\epsilon=0$, (b) $\epsilon=-\frac12|\epsilon_{\mathrm{th}}|$, (c) + $\epsilon=-|\epsilon_{\mathrm{th}}|$, and (d) + $\epsilon=-\frac32|\epsilon_{\mathrm{th}}|$. The shaded region of each inset + shows the support of the eigenvalue distribution. The solid line on each + plot shows the distribution of singular values, while the overlaid + histogram shows the empirical distribution from $2^{10}\times2^{10}$ complex + normal matrices with the same covariance and diagonal shift as + $\partial\partial H$. + } \label{fig:spectra} +\end{figure} + Introducing replicas to bring the partition function to the numerator of the Green function \cite{Livan_2018_Introduction} gives \begin{widetext} -- cgit v1.2.3-70-g09d2