From eccc17d8d17c2069a0ef3cd5417f5def9614e8d2 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Mon, 7 Dec 2020 15:48:40 +0100 Subject: Added derivation of the spectrum of the Hessian. --- bezout.bib | 14 ++++++++++++++ bezout.tex | 24 +++++++++++++++++++++++- 2 files changed, 37 insertions(+), 1 deletion(-) diff --git a/bezout.bib b/bezout.bib index 0318f58..7f52032 100644 --- a/bezout.bib +++ b/bezout.bib @@ -7,4 +7,18 @@ address = {rue S. Jacques, Paris} } +@article{Nguyen_2014_The, + author = {Nguyen, Hoi H. and O'Rourke, Sean}, + title = {The Elliptic Law}, + journal = {International Mathematics Research Notices}, + publisher = {Oxford University Press (OUP)}, + year = {2014}, + month = {10}, + number = {17}, + volume = {2015}, + pages = {7620--7689}, + url = {https://doi.org/10.1093%2Fimrn%2Frnu174}, + doi = {10.1093/imrn/rnu174} +} + diff --git a/bezout.tex b/bezout.tex index 7d7d4ec..4fb5641 100644 --- a/bezout.tex +++ b/bezout.tex @@ -77,7 +77,29 @@ form = \int dx\,dy\,\delta(\mathop{\mathrm{Re}}\partial H)\delta(\mathop{\mathrm{Im}}\partial H) |\det\partial\partial H|^2. \end{equation} -$\langle|\partial_i\partial_j H_0|^2\rangle=p(p-1)|z|^2/2N$ and $\langle(\partial_i\partial_j H_0)^2\rangle=p(p-1)\kappa z^2/2N$ + +The Hessian of \eqref{eq:constrained.hamiltonian} is $\partial_i\partial_j +H=\partial_i\partial_j H_0-p\epsilon\delta_{ij}$, or the Hessian of +\eqref{eq:bare.hamiltonian} with a constant added to its diagonal. The +eigenvalue distribution $\rho$ of the constrained Hessian is therefore related +to the eigenvalue distribution $\rho_0$ of the unconstrained one by a similar +shift, or $\rho(\lambda)=\rho_0(\lambda+p\epsilon)$. The Hessian of +\eqref{eq:bare.hamiltonian} is +\begin{equation} \label{eq:bare.hessian} + \partial_i\partial_jH_0 + =\frac{p(p-1)}{p!}\sum_{k_1\cdots k_{p-2}}^NJ_{ijk_1\cdots k_{p-2}}z_{k_1}\cdots z_{k_{p-2}}, +\end{equation} +which makes its ensemble that of Gaussian complex symmetric matrices, whose +spectrum is constant inside the support of a certain ellipse and zero +everywhere else \cite{Nguyen_2014_The}. Given its variances +$\langle|\partial_i\partial_j H_0|^2\rangle=p(p-1)a^{p-2}/2N$ and +$\langle(\partial_i\partial_j H_0)^2\rangle=p(p-1)\kappa/2N$, $\rho_0(\lambda)$ is constant inside the ellipse +\begin{equation} \label{eq:ellipse} + \left(\frac{\mathop{\mathrm{Re}}(\lambda e^{i\theta})}{1+|\kappa|/a^{p-2}}\right)^2+ + \left(\frac{\mathop{\mathrm{Im}}(\lambda e^{i\theta})}{1-|\kappa|/a^{p-2}}\right)^2 + <\frac12p(p-1)a^{p-2} +\end{equation} +where $\theta=\frac12\arg\kappa$. \bibliographystyle{apsrev4-2} \bibliography{bezout} -- cgit v1.2.3-54-g00ecf