From dd2e5767e8b7e63c5210fb4dad3ad5b5cf6fff81 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Thu, 24 Dec 2020 09:50:54 +0100 Subject: Removed incorrectly placed bibliographystyle directive and fixed capitalization of titles. --- bezout.tex | 1 - 1 file changed, 1 deletion(-) (limited to 'bezout.tex') diff --git a/bezout.tex b/bezout.tex index ff6fcdc..9e701f5 100644 --- a/bezout.tex +++ b/bezout.tex @@ -455,7 +455,6 @@ crucial role as it does in the real case. JK-D and JK are supported by the Simons Foundation Grant No.~454943. \end{acknowledgments} -\bibliographystyle{apsrev4-2} \bibliography{bezout} \end{document} -- cgit v1.2.3-54-g00ecf From d9701957da92a97eda685ac44864b12d665a285d Mon Sep 17 00:00:00 2001 From: "kurchan.jorge" Date: Tue, 29 Dec 2020 17:20:01 +0000 Subject: Update on Overleaf. --- bezout.bib | 53 +++++++++++++++++++++++++++++++++++++++++++++++++++++ bezout.tex | 50 ++++++++++++++++++++++++++++++++------------------ 2 files changed, 85 insertions(+), 18 deletions(-) (limited to 'bezout.tex') diff --git a/bezout.bib b/bezout.bib index f551ece..f791842 100644 --- a/bezout.bib +++ b/bezout.bib @@ -283,3 +283,56 @@ } +@article{cristoforetti2012new, + title={New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble}, + author={Cristoforetti, Marco and Di Renzo, Francesco and Scorzato, Luigi and AuroraScience Collaboration and others}, + journal={Physical Review D}, + volume={86}, + number={7}, + pages={074506}, + year={2012}, + publisher={APS} +} +@article{tanizaki2017gradient, + title={Gradient flows without blow-up for Lefschetz thimbles}, + author={Tanizaki, Yuya and Nishimura, Hiromichi and Verbaarschot, Jacobus JM}, + journal={Journal of High Energy Physics}, + volume={2017}, + number={10}, + pages={100}, + year={2017}, + publisher={Springer} +} + + +@article{scorzato2015lefschetz, + title={The Lefschetz thimble and the sign problem}, + author={Scorzato, Luigi}, + journal={arXiv preprint arXiv:1512.08039}, + year={2015} +} + +@article{witten2010new, + title={A new look at the path integral of quantum mechanics}, + author={Witten, Edward}, + journal={arXiv preprint arXiv:1009.6032}, + year={2010} +} + +@article{witten2011analytic, + title={Analytic continuation of Chern-Simons theory}, + author={Witten, Edward}, + journal={AMS/IP Stud. Adv. Math}, + volume={50}, + pages={347}, + year={2011} +} + +@article{behtash2015toward, + title={Toward Picard-Lefschetz theory of path integrals, complex saddles and resurgence}, + author={Behtash, Alireza and Dunne, Gerald V and Sch{\"a}fer, Thomas and Sulejmanpasic, Tin and Unsal, Mithat}, + journal={arXiv preprint arXiv:1510.03435}, + year={2015} +} + + diff --git a/bezout.tex b/bezout.tex index 9e701f5..8711dd6 100644 --- a/bezout.tex +++ b/bezout.tex @@ -72,26 +72,40 @@ constraint remains $z^2=N$. The motivations for this paper are of two types. On the practical side, there are indeed situations in which complex variables appear naturally in disordered -problems: such is the case in which they are \emph{phases}, as in random laser +problems: such is the case in which the variables are \emph{phases}, as in random laser problems \cite{Antenucci_2015_Complex}. Quiver Hamiltonians---used to model black hole horizons in the zero-temperature limit---also have a Hamiltonian very close to ours \cite{Anninos_2016_Disordered}. - -There is however a more fundamental reason for this study: we know from +A second reason is that we know from experience that extending a real problem to the complex plane often uncovers -underlying simplicity that is otherwise hidden. Consider, for example, the -procedure of starting from a simple, known Hamiltonian $H_{00}$ and studying -$\lambda H_{00} + (1-\lambda H_{0} )$, evolving adiabatically from $\lambda=0$ -to $\lambda=1$, as is familiar from quantum annealing. The $H_{00}$ is a -polynomial of degree $p$ chosen to have simple, known saddles. Because we are -working in complex variables, and the saddles are simple all the way (we shall -confirm this), we may follow a single one from $\lambda=0$ to $\lambda=1$, -while with real variables minima of functions appear and disappear, and this -procedure is not possible. The same idea may be implemented by performing -diffusion in the $J$s and following the roots, in complete analogy with Dyson's -stochastic dynamics \cite{Dyson_1962_A}. - -The spherical constraint is enforced using the method of Lagrange multipliers: +underlying simplicity that is otherwise hidden, and thus sheds light on the original real problem +(think, for example, in the radius of convergence of a series). + +Deforming a real integration in $N$ variables to a surface of dimension $N$ in +the $2N$ dimensional complex space has turned out to be necessary for correctly defining and analyzing path integrals with complex action (see \cite{witten2010new,witten2011analytic}), and as a useful palliative for the sign-problem \cite{cristoforetti2012new,tanizaki2017gradient,scorzato2015lefschetz}. +In order to do this correctly, the features of landscape of the action in complex space must be understood. Such landscapes are in general not random: here we propose to follow the strategy of Computer Science of understanding the generic features of random instances, expecting that this sheds light on the practical, nonrandom problems. + +%Consider, for example, the +%procedure of starting from a simple, known Hamiltonian $H_{00}$ and studying +%$\lambda H_{00} + (1-\lambda H_{0} )$, evolving adiabatically from $\lambda=0$ +%There is however a more fundamental reason for this study: +%we know from experience that extending a real problem to +%the complex plane often uncovers underlying simplicity that +%is otherwise hidden. Consider, for example, the procedure of +% +%$\lambda H_{00} + (1-\lambda) H_0$ evolving adiabatically from $\lambda=1$ to $\lambda=0$, as +%is familiar from quantum annealing. The $H_{00}$ is a polynomial +%of degree N chosen to have simple, known saddles. Because we +%are +%working in complex variables, and the saddles are simple all the way (we shall +%confirm this), we may follow a single one from $\lambda=0$ to $\lambda=1$, +%while with real variables minima of functions appear and disappear, and this +%procedure is not possible. The same idea may be implemented by performing +%diffusion in the $J$s and following the roots, in complete analogy with Dyson's +%stochastic dynamics \cite{Dyson_1962_A}. + +Returning to our problem, +the spherical constraint is enforced using the method of Lagrange multipliers: introducing $\epsilon\in\mathbb C$, our energy is \begin{equation} \label{eq:constrained.hamiltonian} H = H_0+\frac p2\epsilon\left(N-\sum_i^Nz_i^2\right). @@ -444,9 +458,9 @@ the complex case. The relationship between the threshold, i.e., where the gap appears, and the dynamics of, e.g., a minimization algorithm or physical dynamics, are a problem we hope to address in future work. -This paper provides a first step for the study of a complex landscape with + This paper provides a first step towards the study of a complex landscape with complex variables. The next obvious one is to study the topology of the -critical points and gradient lines of constant phase. We anticipate that the +critical points, their basins of attraction following gradient ascent (the Lefschetz thimbles), and descent (the anti-thimbles) \cite{witten2010new,witten2011analytic,cristoforetti2012new,behtash2015toward,scorzato2015lefschetz}, that act as constant-phase integrating `contours'. Locating and counting the saddles that are joined by gradient lines -- the Stokes points, that play an important role in the theory -- is also well within reach of the present-day spin-glass literature techniques. We anticipate that the threshold level, where the system develops a mid-spectrum gap, will play a crucial role as it does in the real case. -- cgit v1.2.3-54-g00ecf From 7bc5969c319a760c3259455e5bd24d1694ba1def Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Tue, 29 Dec 2020 19:15:47 +0100 Subject: Fixed citations. --- bezout.bib | 129 +++++++++++++++++++++++++++++++++++++------------------------ bezout.tex | 4 +- 2 files changed, 81 insertions(+), 52 deletions(-) (limited to 'bezout.tex') diff --git a/bezout.bib b/bezout.bib index f791842..c654568 100644 --- a/bezout.bib +++ b/bezout.bib @@ -13,7 +13,7 @@ @article{Antenucci_2015_Complex, author = {Antenucci, F. and Crisanti, A. and Leuzzi, L.}, - title = {Complex spherical $2+4$ spin glass: A model for nonlinear optics in random media}, + title = {Complex spherical {$2+4$} spin glass: A model for nonlinear optics in random media}, journal = {Physical Review A}, publisher = {American Physical Society (APS)}, year = {2015}, @@ -53,6 +53,19 @@ doi = {10.1214/13-aop862} } +@article{Behtash_2017_Toward, + author = {Behtash, Alireza and Dunne, Gerald V. and Schäfer, Thomas and Sulejmanpasic, Tin and Ünsal, Mithat}, + title = {Toward {Picard}–{Lefschetz} theory of path integrals, complex saddles and resurgence}, + journal = {Annals of Mathematical Sciences and Applications}, + publisher = {International Press of Boston}, + year = {2017}, + number = {1}, + volume = {2}, + pages = {95--212}, + url = {https://doi.org/10.4310%2Famsa.2017.v2.n1.a3}, + doi = {10.4310/amsa.2017.v2.n1.a3} +} + @book{Bezout_1779_Theorie, author = {Bézout, Etienne}, title = {Théorie générale des équations algébriques}, @@ -160,6 +173,20 @@ doi = {10.1051/jp1:1995164} } +@article{Cristoforetti_2012_New, + author = {Cristoforetti, Marco and Di Renzo, Francesco and Scorzato, Luigi}, + title = {New approach to the sign problem in quantum field theories: High density {QCD} on a {Lefschetz} thimble}, + journal = {Physical Review D}, + publisher = {American Physical Society (APS)}, + year = {2012}, + month = {10}, + number = {7}, + volume = {86}, + pages = {074506}, + url = {https://doi.org/10.1103%2Fphysrevd.86.074506}, + doi = {10.1103/physrevd.86.074506} +} + @article{Cugliandolo_1993_Analytical, author = {Cugliandolo, L. F. and Kurchan, J.}, title = {Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model}, @@ -268,6 +295,33 @@ doi = {10.2307/2371510} } +@inproceedings{Scorzato_2016_The, + author = {Scorzato, Luigi}, + title = {The {Lefschetz} thimble and the sign problem}, + publisher = {Sissa Medialab}, + year = {2016}, + month = {7}, + volume = {251}, + url = {https://doi.org/10.22323%2F1.251.0016}, + doi = {10.22323/1.251.0016}, + booktitle = {Proceedings of The 33rd International Symposium on Lattice Field Theory (LATTICE 2015)}, + series = {Proceedings of Science} +} + +@article{Tanizaki_2017_Gradient, + author = {Tanizaki, Yuya and Nishimura, Hiromichi and Verbaarschot, Jacobus J. M.}, + title = {Gradient flows without blow-up for {Lefschetz} thimbles}, + journal = {Journal of High Energy Physics}, + publisher = {Springer Science and Business Media LLC}, + year = {2017}, + month = {10}, + number = {10}, + volume = {2017}, + pages = {100}, + url = {https://doi.org/10.1007%2Fjhep10%282017%29100}, + doi = {10.1007/jhep10(2017)100} +} + @article{Weyl_1912_Das, author = {Weyl, Hermann}, title = {Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)}, @@ -282,57 +336,32 @@ doi = {10.1007/bf01456804} } - -@article{cristoforetti2012new, - title={New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble}, - author={Cristoforetti, Marco and Di Renzo, Francesco and Scorzato, Luigi and AuroraScience Collaboration and others}, - journal={Physical Review D}, - volume={86}, - number={7}, - pages={074506}, - year={2012}, - publisher={APS} -} -@article{tanizaki2017gradient, - title={Gradient flows without blow-up for Lefschetz thimbles}, - author={Tanizaki, Yuya and Nishimura, Hiromichi and Verbaarschot, Jacobus JM}, - journal={Journal of High Energy Physics}, - volume={2017}, - number={10}, - pages={100}, - year={2017}, - publisher={Springer} -} - - -@article{scorzato2015lefschetz, - title={The Lefschetz thimble and the sign problem}, - author={Scorzato, Luigi}, - journal={arXiv preprint arXiv:1512.08039}, - year={2015} -} - -@article{witten2010new, - title={A new look at the path integral of quantum mechanics}, - author={Witten, Edward}, - journal={arXiv preprint arXiv:1009.6032}, - year={2010} -} - -@article{witten2011analytic, - title={Analytic continuation of Chern-Simons theory}, - author={Witten, Edward}, - journal={AMS/IP Stud. Adv. Math}, - volume={50}, - pages={347}, - year={2011} +@article{Witten_2010_A, + author = {Witten, Edward}, + title = {A new look at the path integral of quantum mechanics}, + journal = {Surveys in Differential Geometry}, + publisher = {International Press of Boston}, + year = {2010}, + number = {1}, + volume = {15}, + pages = {345--420}, + url = {https://doi.org/10.4310%2Fsdg.2010.v15.n1.a11}, + doi = {10.4310/sdg.2010.v15.n1.a11} } -@article{behtash2015toward, - title={Toward Picard-Lefschetz theory of path integrals, complex saddles and resurgence}, - author={Behtash, Alireza and Dunne, Gerald V and Sch{\"a}fer, Thomas and Sulejmanpasic, Tin and Unsal, Mithat}, - journal={arXiv preprint arXiv:1510.03435}, - year={2015} +@incollection{Witten_2011_Analytic, + author = {Witten, Edward}, + title = {Analytic continuation of {Chern}-{Simons} theory}, + publisher = {American Mathematical Society}, + year = {2011}, + month = {7}, + volume = {50}, + pages = {347--446}, + url = {https://doi.org/10.1090%2Famsip%2F050%2F19}, + doi = {10.1090/amsip/050/19}, + booktitle = {Chern-Simons Gauge Theory: 20 Years After}, + editor = {Andersen, Jørgen E. and Boden, Hans U. and Hahn, Atle and Himpel, Benjamin}, + series = {AMS/IP Studies in Advanced Mathematics} } diff --git a/bezout.tex b/bezout.tex index 8711dd6..d496e52 100644 --- a/bezout.tex +++ b/bezout.tex @@ -82,7 +82,7 @@ underlying simplicity that is otherwise hidden, and thus sheds light on the orig (think, for example, in the radius of convergence of a series). Deforming a real integration in $N$ variables to a surface of dimension $N$ in -the $2N$ dimensional complex space has turned out to be necessary for correctly defining and analyzing path integrals with complex action (see \cite{witten2010new,witten2011analytic}), and as a useful palliative for the sign-problem \cite{cristoforetti2012new,tanizaki2017gradient,scorzato2015lefschetz}. +the $2N$ dimensional complex space has turned out to be necessary for correctly defining and analyzing path integrals with complex action (see \cite{Witten_2010_A, Witten_2011_Analytic}), and as a useful palliative for the sign-problem \cite{Cristoforetti_2012_New, Tanizaki_2017_Gradient, Scorzato_2016_The}. In order to do this correctly, the features of landscape of the action in complex space must be understood. Such landscapes are in general not random: here we propose to follow the strategy of Computer Science of understanding the generic features of random instances, expecting that this sheds light on the practical, nonrandom problems. %Consider, for example, the @@ -460,7 +460,7 @@ dynamics, are a problem we hope to address in future work. This paper provides a first step towards the study of a complex landscape with complex variables. The next obvious one is to study the topology of the -critical points, their basins of attraction following gradient ascent (the Lefschetz thimbles), and descent (the anti-thimbles) \cite{witten2010new,witten2011analytic,cristoforetti2012new,behtash2015toward,scorzato2015lefschetz}, that act as constant-phase integrating `contours'. Locating and counting the saddles that are joined by gradient lines -- the Stokes points, that play an important role in the theory -- is also well within reach of the present-day spin-glass literature techniques. We anticipate that the +critical points, their basins of attraction following gradient ascent (the Lefschetz thimbles), and descent (the anti-thimbles) \cite{Witten_2010_A, Witten_2011_Analytic, Cristoforetti_2012_New, Behtash_2017_Toward, Scorzato_2016_The}, that act as constant-phase integrating `contours'. Locating and counting the saddles that are joined by gradient lines -- the Stokes points, that play an important role in the theory -- is also well within reach of the present-day spin-glass literature techniques. We anticipate that the threshold level, where the system develops a mid-spectrum gap, will play a crucial role as it does in the real case. -- cgit v1.2.3-54-g00ecf From 9cec3f1cff603521aa4e948576b56f06d5902f39 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Tue, 29 Dec 2020 19:46:57 +0100 Subject: English and paragraph quadriture. --- bezout.tex | 89 +++++++++++++++++++++++++++++--------------------------------- 1 file changed, 41 insertions(+), 48 deletions(-) (limited to 'bezout.tex') diff --git a/bezout.tex b/bezout.tex index d496e52..9dffe65 100644 --- a/bezout.tex +++ b/bezout.tex @@ -72,49 +72,37 @@ constraint remains $z^2=N$. The motivations for this paper are of two types. On the practical side, there are indeed situations in which complex variables appear naturally in disordered -problems: such is the case in which the variables are \emph{phases}, as in random laser -problems \cite{Antenucci_2015_Complex}. Quiver Hamiltonians---used to model -black hole horizons in the zero-temperature limit---also have a Hamiltonian -very close to ours \cite{Anninos_2016_Disordered}. -A second reason is that we know from -experience that extending a real problem to the complex plane often uncovers -underlying simplicity that is otherwise hidden, and thus sheds light on the original real problem -(think, for example, in the radius of convergence of a series). - -Deforming a real integration in $N$ variables to a surface of dimension $N$ in -the $2N$ dimensional complex space has turned out to be necessary for correctly defining and analyzing path integrals with complex action (see \cite{Witten_2010_A, Witten_2011_Analytic}), and as a useful palliative for the sign-problem \cite{Cristoforetti_2012_New, Tanizaki_2017_Gradient, Scorzato_2016_The}. -In order to do this correctly, the features of landscape of the action in complex space must be understood. Such landscapes are in general not random: here we propose to follow the strategy of Computer Science of understanding the generic features of random instances, expecting that this sheds light on the practical, nonrandom problems. - -%Consider, for example, the -%procedure of starting from a simple, known Hamiltonian $H_{00}$ and studying -%$\lambda H_{00} + (1-\lambda H_{0} )$, evolving adiabatically from $\lambda=0$ -%There is however a more fundamental reason for this study: -%we know from experience that extending a real problem to -%the complex plane often uncovers underlying simplicity that -%is otherwise hidden. Consider, for example, the procedure of -% -%$\lambda H_{00} + (1-\lambda) H_0$ evolving adiabatically from $\lambda=1$ to $\lambda=0$, as -%is familiar from quantum annealing. The $H_{00}$ is a polynomial -%of degree N chosen to have simple, known saddles. Because we -%are -%working in complex variables, and the saddles are simple all the way (we shall -%confirm this), we may follow a single one from $\lambda=0$ to $\lambda=1$, -%while with real variables minima of functions appear and disappear, and this -%procedure is not possible. The same idea may be implemented by performing -%diffusion in the $J$s and following the roots, in complete analogy with Dyson's -%stochastic dynamics \cite{Dyson_1962_A}. - -Returning to our problem, -the spherical constraint is enforced using the method of Lagrange multipliers: -introducing $\epsilon\in\mathbb C$, our energy is +problems: such is the case in which the variables are \emph{phases}, as in +random laser problems \cite{Antenucci_2015_Complex}. Quiver Hamiltonians---used +to model black hole horizons in the zero-temperature limit---also have a +Hamiltonian very close to ours \cite{Anninos_2016_Disordered}. A second reason +is that, as we know from experience, extending a real problem to the complex +plane often uncovers underlying simplicity that is otherwise hidden, sheding +light on the original real problem, e.g., as in the radius of convergence of a +series. + +Deforming an integral in $N$ real variables to a surface of dimension $N$ in +$2N$-dimensional complex space has turned out to be necessary for correctly +defining and analyzing path integrals with complex action (see +\cite{Witten_2010_A, Witten_2011_Analytic}), and as a useful palliative for the +sign problem \cite{Cristoforetti_2012_New, Tanizaki_2017_Gradient, +Scorzato_2016_The}. In order to do this correctly, the features of landscape +of the action in complex space---like the relative position of its +saddles---must be understood. Such landscapes are in general not random: here +we propose to follow the strategy of computer science of understanding the +generic features of random instances, expecting that this sheds light on the +practical, nonrandom problems. + +Returning to our problem, the spherical constraint is enforced using the method +of Lagrange multipliers: introducing $\epsilon\in\mathbb C$, our energy is \begin{equation} \label{eq:constrained.hamiltonian} H = H_0+\frac p2\epsilon\left(N-\sum_i^Nz_i^2\right). \end{equation} - We choose to -constrain our model by $z^2=N$ rather than $|z|^2=N$ in order to preserve the -analyticity of $H$. The nonholomorphic constraint also has a disturbing lack of -critical points nearly everywhere: if $H$ were so constrained, then -$0=\partial^* H=-p\epsilon z$ would only be satisfied for $\epsilon=0$. +We choose to constrain our model by $z^2=N$ rather than $|z|^2=N$ in order to +preserve the analyticity of $H$. The nonholomorphic constraint also has a +disturbing lack of critical points nearly everywhere: if $H$ were so +constrained, then $0=\partial^* H=-p\epsilon z$ would only be satisfied for +$\epsilon=0$. The critical points are of $H$ given by the solutions to the set of equations \begin{equation} \label{eq:polynomial} @@ -122,12 +110,11 @@ The critical points are of $H$ given by the solutions to the set of equations = p\epsilon z_i \end{equation} for all $i=\{1,\ldots,N\}$, which for fixed $\epsilon$ is a set of $N$ -equations of degree $p-1$, to which one must add the constraint. -In this sense +equations of degree $p-1$, to which one must add the constraint. In this sense this study also provides a complement to the work on the distribution of zeroes of random polynomials \cite{Bogomolny_1992_Distribution}, which are for $N=1$ -and $p\to\infty$. -We see from \eqref{eq:polynomial} that at any critical point, $\epsilon=H/N$, the average energy. +and $p\to\infty$. We see from \eqref{eq:polynomial} that at any critical +point, $\epsilon=H/N$, the average energy. Since $H$ is holomorphic, any critical point of $\operatorname{Re}H$ is also a critical point of $\operatorname{Im}H$. The number of critical points of $H$ is @@ -459,10 +446,16 @@ appears, and the dynamics of, e.g., a minimization algorithm or physical dynamics, are a problem we hope to address in future work. This paper provides a first step towards the study of a complex landscape with -complex variables. The next obvious one is to study the topology of the -critical points, their basins of attraction following gradient ascent (the Lefschetz thimbles), and descent (the anti-thimbles) \cite{Witten_2010_A, Witten_2011_Analytic, Cristoforetti_2012_New, Behtash_2017_Toward, Scorzato_2016_The}, that act as constant-phase integrating `contours'. Locating and counting the saddles that are joined by gradient lines -- the Stokes points, that play an important role in the theory -- is also well within reach of the present-day spin-glass literature techniques. We anticipate that the -threshold level, where the system develops a mid-spectrum gap, will play a -crucial role as it does in the real case. + complex variables. The next obvious one is to study the topology of the + critical points, their basins of attraction following gradient ascent (the + Lefschetz thimbles), and descent (the anti-thimbles) \cite{Witten_2010_A, + Witten_2011_Analytic, Cristoforetti_2012_New, Behtash_2017_Toward, + Scorzato_2016_The}, which act as constant-phase integrating `contours.' + Locating and counting the saddles that are joined by gradient lines---the + Stokes points, which play an important role in the theory---is also well within + reach of the present-day spin-glass literature techniques. We anticipate + that the threshold level, where the system develops a mid-spectrum gap, will + play a crucial role as it does in the real case. \begin{acknowledgments} We wish to thank Alexander Altland, Satya Majumdar and Gregory Schehr for a useful suggestions. -- cgit v1.2.3-54-g00ecf From 3aa483b31c12d6a3afb1215ce6188aca8c314e72 Mon Sep 17 00:00:00 2001 From: "kurchan.jorge" Date: Wed, 30 Dec 2020 11:03:54 +0000 Subject: Update on Overleaf. --- bezout.bib | 7 +- bezout.tex | 6 +- cover.tex | 1358 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 1367 insertions(+), 4 deletions(-) create mode 100644 cover.tex (limited to 'bezout.tex') diff --git a/bezout.bib b/bezout.bib index c654568..8688ed2 100644 --- a/bezout.bib +++ b/bezout.bib @@ -294,7 +294,12 @@ url = {https://doi.org/10.2307%2F2371510}, doi = {10.2307/2371510} } - +@book{mezard2009information, + title={Information, physics, and computation}, + author={Mezard, Marc and Montanari, Andrea}, + year={2009}, + publisher={Oxford University Press} +} @inproceedings{Scorzato_2016_The, author = {Scorzato, Luigi}, title = {The {Lefschetz} thimble and the sign problem}, diff --git a/bezout.tex b/bezout.tex index 9dffe65..96ad257 100644 --- a/bezout.tex +++ b/bezout.tex @@ -44,7 +44,7 @@ Spin-glasses have long been considered the paradigm of many variable `complex landscapes,' a subject that includes neural networks and optimization problems, -most notably constraint satisfaction. The most tractable family of these +most notably constraint satisfaction \cite{mezard2009information}. The most tractable family of these are the mean-field spherical $p$-spin models \cite{Crisanti_1992_The} (for a review see \cite{Castellani_2005_Spin-glass}) defined by the energy \begin{equation} \label{eq:bare.hamiltonian} @@ -447,8 +447,8 @@ dynamics, are a problem we hope to address in future work. This paper provides a first step towards the study of a complex landscape with complex variables. The next obvious one is to study the topology of the - critical points, their basins of attraction following gradient ascent (the - Lefschetz thimbles), and descent (the anti-thimbles) \cite{Witten_2010_A, + critical points, the sets reached following gradient descent (the + Lefschetz thimbles), and ascent (the anti-thimbles) \cite{Witten_2010_A, Witten_2011_Analytic, Cristoforetti_2012_New, Behtash_2017_Toward, Scorzato_2016_The}, which act as constant-phase integrating `contours.' Locating and counting the saddles that are joined by gradient lines---the diff --git a/cover.tex b/cover.tex new file mode 100644 index 0000000..586fa38 --- /dev/null +++ b/cover.tex @@ -0,0 +1,1358 @@ + +\documentclass[12pt,reqno,a4paper,twoside]{article} +% \ProvidesPackage{makra} +\usepackage{amsmath,amsthm,amstext,amscd,amssymb,euscript} +%,showkeys} +%,times} +\usepackage{epsf} +\usepackage{color} +\usepackage{verbatim} +\usepackage{graphicx} +\usepackage{esint} +\usepackage{tikz} +\usepackage{setspace} +\usepackage{mathrsfs} + +\usepackage{todonotes} + +%\usepackage{natbib} + + + +\usepackage{bm} +\usepackage[normalem]{ulem} + + +\textwidth 6in +\topmargin -0.50in +\oddsidemargin 0in +\evensidemargin 0in +\textheight 9.00in +%\pagestyle{plain} +%%%%%%%%%%%%%%%%%% Macros %%%%%%%%%%% +\def\mybox #1{\fbox{\parbox{5.8in}{#1}}} +\newcommand{\m}[1]{{\marginpar{\scriptsize #1}}} + +\def\mep{\mathbf{mep}_{n}^{\delta}} +\def\r{{\mathbf r}} +\def\O{{\mathcal{O}}} + +\def\I{{\mathcal{I}}} +\def\fee{\mathcal{F}} + +\def\F{{\EuScript{F}}} + +\renewcommand{\phi}{\varphi} +\newcommand{\compose}{\circ} +\renewcommand{\subset}{\subseteq} +\renewcommand{\emptyset}{\varnothing} +\newcommand{\interval}{[\underline\alpha,\overline \alpha]} +\def\liminfn{\liminf_{n\to\infty}} +\def\limsupn{\limsup_{n\to\infty}} +\def\limn{\lim_{n\to\infty}} +\def\disagree{\not\longleftrightarrow} +\newcommand{\Zd}{\mathbb Z^d} +\newcommand{\kk}{\mathbf k} +\renewcommand{\Pr}{\mathbb P} +\newcommand{\dist}{\text{dist}} +\newcommand{\Cal}{\mathcal} +\def\1{ {\mathit{1} \!\!\>\!\! I} } +\newcommand\s{{\mathbf s}} + +\newcommand{\red}[1]{{\color{red} #1}} +\newcommand{\blue}[1]{{\color{blue} #1}} + +\newcommand{\eps}{\varepsilon} +\newcommand{\C}{{\mathcal C}} +\newcommand{\Y}{{\mathcal Y}} +\newcommand{\NN}{{\mathcal N}} +\newcommand{\grad}{\nabla} +\newcommand{\WW}{\mathbb W} +\newcommand{\D}{{\mathcal D}} +\newcommand{\HH}{{\mathcal H}} +\newcommand{\bol}[1]{{\boldsymbol{#1}}} + + +% \smallmatrix{ +% 0& \cr +% N&\ddots \cr +% &\ddots&\ddots \cr +% & & 1 & 0 \cr +% } +\newcommand{\ddp}[2]{\frac{\partial {#1}}{\partial {#2}}} + +\renewcommand{\brace}[1]{{ \bol{#1}}} + +\newcommand{\ket}[1]{|{#1}\rangle} + +\newcommand{\eq}{{\textnormal{eq}}} + +\renewcommand{\em}{\it} + +%%%%%%% FRANK'S MACROS + +\parskip=3pt plus 1pt minus 1pt + +\newcommand{\halmos}{\rule{1ex}{1.4ex}} + +\makeatletter +\@addtoreset{equation}{section} +\makeatother + +\renewcommand{\theequation}{\thesection.\arabic{equation}} + +\newtheorem{ittheorem}{Theorem} +\newtheorem{itlemma}{Lemma} +\newtheorem{itproposition}{Proposition} +\newtheorem{itdefinition}{Definition} +\newtheorem{itremark}{Remark} + +%\renewcommand{\theittheorem}{\thesection.\arabic{equation}} +%\renewcommand{\theitlemma}{\thesection.\arabic{equation}} +%\renewcommand{\theitproposition}{\thesection.\arabic{equation}} +%\renewcommand{\theitdefinition}{\thesection.\arabic{equation}} +%\renewcommand{\theitremark}{\thesection.\arabic{equation}} + +\newenvironment{theorem}{\addtocounter{equation}{1} +\begin{ittheorem}}{\end{ittheorem}} + +\newenvironment{lemma}{\addtocounter{equation}{1} +\begin{itlemma}}{\end{itlemma}} + +\newenvironment{proposition}{\addtocounter{equation}{1} +\begin{itproposition}}{\end{itproposition}} + +\newenvironment{definition}{\addtocounter{equation}{1} +\begin{itdefinition}}{\end{itdefinition}} + +\newenvironment{remark}{\addtocounter{equation}{1} +\begin{itremark}}{\end{itremark}} + +%\newenvironment{proof}{\noindent {\em Proof}.\,\,\,} +%{\hspace*{\fill}$\halmos$\medskip} + +\newcommand{\beq}{\begin{eqnarray}} +\newcommand{\eeq}{\end{eqnarray}} + +\newcommand{\be}{\begin{equation}} +\newcommand{\ee}{\end{equation}} + +\newcommand{\bl}{\begin{lemma}} +\newcommand{\el}{\end{lemma}} + +\newcommand{\br}{\begin{remark}} +\newcommand{\er}{\end{remark}} + +\newcommand{\bt}{\begin{theorem}} +\newcommand{\et}{\end{theorem}} + +\newcommand{\bd}{\begin{definition}} +\newcommand{\ed}{\end{definition}} + +\newcommand{\bp}{\begin{proposition}} +\newcommand{\ep}{\end{proposition}} + + + +\newcommand{\bc}{\begin{corollary}} +\newcommand{\ec}{\end{corollary}} + +\newcommand{\bpr}{\begin{proof}} +\newcommand{\epr}{\end{proof}} + +\newcommand{\bi}{\begin{itemize}} +\newcommand{\ei}{\end{itemize}} + +\newcommand{\ben}{\begin{enumerate}} +\newcommand{\een}{\end{enumerate}} + + +%%%%%%%%%%%%% SYMBOLS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newcommand{\Z}{\mathbb Z} +\newcommand{\R}{\mathbb R} +\newcommand{\N}{\mathbb N} +%\newcommand{\C}{\mathbb C} + +\newcommand{\Q}{\mathbb Q} +\newcommand{\E}{\mathbb E} +\newcommand{\T}{\mathbf T} +\newcommand{\M}{\mathbf M} +\newcommand{\ret}{\mathbf R} +\newcommand{\veee}{\mathbb V} +\newcommand{\veek}{\ensuremath{\mathcal{V}}} +\newcommand{\gee}{\ensuremath{\mathcal{G}}} +\newcommand{\pee}{\ensuremath{\mathbb{P}}} +\newcommand{\re}{\ensuremath{\mathcal{R}}} +\newcommand{\peee}{\ensuremath{\mathcal{P}}} +\newcommand{\ce}{\ensuremath{\mathcal{C}}} +\newcommand{\cee}{\ensuremath{{\bf \mathcal{C}_1}}} +\newcommand{\uu}{\ensuremath{\mathcal{U}}} +%\newcommand{\s}{\ensuremath{\mathcal{S}}} +\newcommand{\loc}{\ensuremath{\mathcal{L}}} +\newcommand{\iii}{\ensuremath{\mathcal{I}}} +\newcommand{\bee}{\ensuremath{\mathcal{B}}} +\newcommand{\weee}{\ensuremath{\mathbf W}} +\newcommand{\fe}{\ensuremath{\mathcal{F}}} +\newcommand{\mee}{\ensuremath{\mathcal{M}}} +\newcommand{\U}{\ensuremath{\mathcal{U}}} +\newcommand{\na}{\ensuremath{N^{t,x}_\varphi}} +\newcommand{\aaa}{\ensuremath{\mathcal{A}}} +\newcommand{\anepsi}{\ensuremath{{[A_n]^{\epsilon} }}} +\newcommand{\vi}{\ensuremath{\varphi}} +\newcommand{\La}{\ensuremath{\Lambda}} +\newcommand{\la}{\ensuremath{\Lambda}} +\newcommand{\si}{\ensuremath{\sigma}} +\newcommand{\om}{\ensuremath{\omega}} +\newcommand{\epsi}{\ensuremath{\epsilon}} +\newcommand{\gap}{\ensuremath{\Delta}} +\newcommand{\QED}{\hspace*{\fill}$\Box$\medskip} +\newcommand{\prodpee}{\ensuremath{\mathbb{P}\times\mathbb{P}}} +\newcommand{\prodE}{\ensuremath{\mathbb{E}\times\mathbb{E}}} +\newcommand{\tr}{\ensuremath{\mbox{Tr}}} +\newcommand{\caZ}{\ensuremath{\mathcal{Z}}} +\newcommand{\Ga}{\ensuremath{\Gamma}} +\newcommand{\ga}{\ensuremath{\gamma}} +\newcommand{\al}{\ensuremath{\alpha}} +\newcommand{\shit}{\ensuremath{[-\|X \|, \|X \|]}} +\newcommand{\haa}{\ensuremath{A+tB}} +\newcommand{\sas}{\ensuremath{\delta g}} +\newcommand{\lap}{\pee_{V_n|X_1,\ldots,X_{n-1}} (dx)} +\newcommand{\qak}{\mathbb{Q}} +\newcommand{\de}{\delta} +\newcommand{\pot}{\pee^{\scriptscriptstyle{[0,t]}}} +\newcommand{\pott}{\peet^{\scriptscriptstyle{[0,t]}}} + +\newcommand{\KK}{\mathbb{S}} + + +\def\vnim #1{ \begin{equation*}\boxed{\mbox{\Large #1}}\end{equation*} } +%%%%%%%%%%%%%%%%%% Current time %%% +\def\now{ +\ifnum\time<60 + 12:\ifnum\time<10 0\fi\number\time am + \else + \ifnum\time>719\chardef\a=`p\else\chardef\a=`a\fi + \hour=\time + \minute=\time + \divide\hour by 60 %\hour is the result of an integer divide + \ifnum\hour>12\advance\hour by -12\advance\minute by-720 \fi + \number\hour:% + \multiply\hour by 60 %Use is made of the integer divide here. + \advance\minute by -\hour + \ifnum\minute<10 0\fi\number\minute\a m\fi} +\newcount\hour +\newcount\minute +%%%%%%%%%%%%%%%%%% Environment %%%%%%% +\numberwithin{equation}{section} %%%% nomer uravnenia vkulchaet + %%%% nomer razdela, ex. (1.2) +\newtheorem{thm}{Theorem}[section] +\newtheorem{lem}[thm]{Lemma} +\newtheorem{defn}[thm]{Definition} +\theoremstyle{remark} +\newtheorem{rem}{Remark}[section] +\newtheorem{cor}[thm]{Corollary} +%%%%%%%%% + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HEADINGS + +\def\t{{\bf t}} %%%%%%%%%% hitting time +\def\r{{\bf r}} %%%%%%%%%% recurrence time +\def\w{{\bf w}} %%%%%%%%%% waiting time + +\newcommand{\caA}{{\mathcal A}} +\newcommand{\caB}{{\mathcal B}} +\newcommand{\caC}{{\mathcal C}} +\newcommand{\caD}{{\mathcal D}} +\newcommand{\caE}{{\mathcal E}} +\newcommand{\caF}{{\mathcal F}} +\newcommand{\caG}{{\mathcal G}} +\newcommand{\caH}{{\mathcal H}} +\newcommand{\caI}{{\mathcal I}} +\newcommand{\caJ}{{\mathcal J}} +\newcommand{\caK}{{\mathcal K}} +\newcommand{\caL}{{\mathcal L}} +\newcommand{\caM}{{\mathcal M}} +\newcommand{\caN}{{\mathcal N}} +\newcommand{\caO}{{\mathcal O}} +\newcommand{\caP}{{\mathcal P}} +\newcommand{\caQ}{{\mathcal Q}} +\newcommand{\caR}{{\mathcal R}} +\newcommand{\caS}{{\mathcal S}} +\newcommand{\caT}{{\mathcal T}} +\newcommand{\caU}{{\mathcal U}} +\newcommand{\caV}{{\mathcal V}} +\newcommand{\caW}{{\mathcal W}} +\newcommand{\caX}{{\mathcal X}} +\newcommand{\caY}{{\mathcal Y}} +\newcommand{\un}{\underline} +\newcommand{\Lt}{\tilde{L}} +\newcommand{\ct}{\tilde{c}} +\newcommand{\peet}{\tilde{\pee}} +\newcommand{\mut}{\tilde{\mu}} +\newcommand{\pt}{\tilde{p}} +\newcommand{\qaz}{\mathbb{L}} +\newcommand{\bix}{\vec{x}} +\newcommand{\muT}{\mu_{T_L,T_R}} +%%%%%%%%% + +% \usepackage{verbatim} +% \usepackage[active,tightpage]{preview} +% \setlength\PreviewBorder{5pt}% +% %%%> +% +% \usepackage{ifthen} +% \usepackage{amsmath} +\usetikzlibrary{arrows,calc,intersections} + + +\newcommand{\note}[1]{\todo[inline, color=white]{#1}} +\newcommand{\col}[1]{\color{magenta} {#1}} +\newcommand{\colo}[1]{\color{red} {#1}} + + + + +%%%%%%%%%%%%%%%%%%%%%%5 + +% \newcommand{\quiver}{ +% \begin{tikzpicture} +% \foreach \a in {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} { +% \begin{scope}[shift={(0.7*\a,0)}] +% \draw (0.3*\a,0) circle (0.3cm); +% \draw[black,thick] (0.3*\a+0.3,0)--(0.3*\a+0.7,0); +% \node [below] at (0.3*\a,-0.5) {$\a$}; +% \end{scope} +% } +% \draw (16,0) circle (0.3cm); +% \node [below] at (16,-0.5) {$16$}; +% \foreach \a in {10,9,8,7,6,5,4,3,2,1} { +% \begin{scope}[shift={(17-\a,0)}] +% \node at (0,0) {$\a$}; +% \end{scope} +% } +% \node at (1,0) {$4$}; +% \node at (2,0) {$8$}; +% \node at (3,0) {$9$}; +% \node at (4,0) {$10$}; +% \node at (5,0) {$10$}; +% \node at (6,0) {$10$}; +% \draw[black,thick] (2,0.3) -- (2,0.7); +% \draw (1.7,0.7) rectangle (2.3,1.3); +% \node at (2,1) {$3$}; +% \draw[black,thick] (4,0.3) -- (4,0.7); +% \draw (3.7,0.7) rectangle (4.3,1.3); +% \node at (4,1) {$1$}; +% \draw[black,thick] (7,0.3) -- (7,0.7); +% \draw (6.7,0.7) rectangle (7.3,1.3); +% \node at (7,1) {$1$}; +% \end{tikzpicture} +% } + +% \usepackage{pgfplots} + + +\newcommand{\graph}{ +\begin{tikzpicture}[scale=.7] +% \pgfplotsset{% +% width=.2\textwidth, +% height=0.5\textwidth +% } +\draw[gray, thick] (1,-1.5)--(0,0) -- (2,3)--(4,3.4)--(5.0,2)--(4.9,1)--(3.0,-1.2)--(1,-1.5); +\tikzstyle myBG=[line width=3.5pt,opacity=1.0] +% +\draw[white,myBG] (3.2,1.5) -- (5.2,3); +\draw[gray, thick] (3.2,1.5) -- (5.2,3); +% +\draw[gray, thick] (0,0)--(-1.5,0); +\draw[gray, thick] (3,-1.2)--(4,-2); +\draw[gray, thick] (4,3.4)--(4.3,4.6); +\draw[gray, thick] (1,-1.5)--(2,0.2)--(0,0); +\draw[gray, thick] (2,0.2)--(4.9,1); +\draw[gray, thick] (3,-1.2)--(2,0.2)--(3.2,1.5)--(2,3); +\draw[gray, thick] (3.2,1.5)--(4,3.4); +\draw[gray, thick] (3.2,1.5)--(5,2); +\draw[gray, thick] (4,3.4)--(5.2,3)--(5.7,2.2)--(5.7,1.3)--(4.9,1); +\draw[gray, thick] (5.7,2.2)--(5,2); +% +% +% +\filldraw[black!70] (0,0) circle (2pt); +\filldraw[black!70] (1,-1.5) circle (2pt); +\filldraw[black!70] (2,3) circle (2pt); +\filldraw[black!70] (4,3.4) circle (2pt); +\filldraw[black!70] (5,2) circle (2pt); +\filldraw[black!70] (4.9,1) circle (2pt); +\filldraw[black!70] (2,0.2) circle (2pt); +\filldraw[black!70] (3.2,1.5) circle (2pt); +% \filldraw[black!70] (5.7,1.3) circle (2pt); +\filldraw[black!70] (5.7,2.2) circle (2pt); +\filldraw[black!70] (5.2,3) circle (2pt); +\filldraw[black!70] (3,-1.2) circle (2pt); +% +% +\filldraw[black!70] (-1.5,0) circle (2pt) node[anchor=east] {$\Gamma_3,T_3$}; +\filldraw[white] (-1.5,0) circle (1pt); +\filldraw[black!70] (4,-2) circle (2pt) node[anchor=west] {$\Gamma_2,T_2$}; +\filldraw[white] (4,-2) circle (1pt); +\filldraw[black!70] (4.3,4.6) circle (2pt) node[anchor=west] {$\Gamma_1,T_1$}; +\filldraw[white] (4.3,4.6) circle (1pt) ; +\end{tikzpicture} +} +% + +\newcommand{\graphh}{ +\begin{tikzpicture}[scale=.7] +\draw[gray, thick] (1,-1.5)--(0,0) -- (2,3)--(4,3.4)--(5.0,2)--(4.9,1)--(3.0,-1.2)--(1,-1.5); +\tikzstyle myBG=[line width=3.5pt,opacity=1.0] +% +\draw[white,myBG] (3.2,1.5) -- (5.2,3); +\draw[gray, thick] (3.2,1.5) -- (5.2,3); +% +\draw[gray, thick] (0,0)--(-1.5,0); +\draw[gray, thick] (3,-1.2)--(4,-2); +\draw[gray, thick] (4,3.4)--(4.3,4.6); +\draw[gray, thick] (1,-1.5)--(2,0.2)--(0,0); +\draw[gray, thick] (2,0.2)--(4.9,1); +\draw[gray, thick] (3,-1.2)--(2,0.2)--(3.2,1.5)--(2,3); +\draw[gray, thick] (3.2,1.5)--(4,3.4); +\draw[gray, thick] (3.2,1.5)--(5,2); +\draw[gray, thick] (4,3.4)--(5.2,3)--(5.7,2.2)--(5.7,1.3)--(4.9,1); +\draw[gray, thick] (5.7,2.2)--(5,2); +% +% +% +\filldraw[black!70] (0,0) circle (2pt); +\filldraw[black!70] (1,-1.5) circle (2pt); +\filldraw[black!70] (2,3) circle (2pt); +\filldraw[black!70] (4,3.4) circle (2pt); +\filldraw[black!70] (5,2) circle (2pt); +\filldraw[black!70] (4.9,1) circle (2pt); +\filldraw[black!70] (2,0.2) circle (2pt); +\filldraw[black!70] (3.2,1.5) circle (2pt); +% \filldraw[black!70] (5.7,1.3) circle (2pt); +\filldraw[black!70] (5.7,2.2) circle (2pt); +\filldraw[black!70] (5.2,3) circle (2pt); +\filldraw[black!70] (3,-1.2) circle (2pt); +% +% +\filldraw[black!70] (-1.5,0) circle (2pt) node[anchor=east] {$\Gamma_3,T$}; +\filldraw[white] (-1.5,0) circle (1pt); +\filldraw[black!70] (4,-2) circle (2pt) node[anchor=west] {$\Gamma_2,T$}; +\filldraw[white] (4,-2) circle (1pt); +\filldraw[black!70] (4.3,4.6) circle (2pt) node[anchor=west] {$\Gamma_1,T$}; +\filldraw[white] (4.3,4.6) circle (1pt) ; +\end{tikzpicture} +} + +\setstretch{1.24} + +\begin{document} + +\title{{\bf COVER LETTER \\`Complex complex landscapes'}} +%\footnote{{\bf Key-words}: } +%}} + +\author{ +Jaron Kent-Dobias + and +Jorge Kurchan +} + +\maketitle + + + +\vspace{1.cm} + + +The subject of `Complex Landscapes', which started in the spin-glass literature, is concerned with functions (landscapes) of many variables, having a multiplicity of minimums, which are the objects of interest. Apart from its obvious interest for glassy systems, it has found a myriad applications in many domains: Computer Science, Ecology, Economics, Biology \cite{mezard2009information}. + +In the last few years, a renewed interest has developed for landscapes for which the variables are complex. There are a few reasons for this: {\em i)} in Computational Physics, there is the main obstacle of the `sign problem', and a strategy has emerged to attack it deforming the sampling space into complex variables. This is a most natural and promising path, and any progress made will have game-changing impact in solid state physics and lattice-QCD \cite{Cristoforetti_2012_New,Scorzato_2016_The}. +{\em ii)} At a more basic level, following the seminal work of E. Witten \cite{Witten_2010_A,Witten_2011_Analytic}, there has been a flurry of activity concerning the very definition of quantum mechanics, which requires also that one move into the complex plane. + +In all these cases, just like in the real case, one needs to know the structure of the `landscape', where are the saddle points and how they are connected, typical questions of `complexity'. +However, to the best of our knowledge, there are no studies extending the methods of the theory of +complexity to +complex variables. +We believe our paper will open a field that may find +numerous applications and will widen our theoretical view of complexity in general. + + +\bibliography{bezout} + + +\end{document} + + + + + + + + + + + + + + + +\section{The Kipnis-Marchioro-Presutti model} + +Consider the following process: +\begin{itemize} +\item +choose a pair of neighbouring sites and completely +exchange energy between them +\item +if the site is one of the borders, exchange completely energy with the bath. +\end{itemize} +each choice with probability $1/(N+1)$. From here onwards, we shall denote +$\tau$ a large time, sufficient for any two-site thermalisation. + +The evolution operator in one step is: +\begin{eqnarray} +U &=& \frac{1}{N+1} \left[ e^{-\tau L_1^*} + e^{-\tau L_N^*} + \sum_{i=1}^{N-1} e^{-\tau L^*_{i,i+1}} \right] +\nonumber \\ +&=& \frac{1}{N+1} \left[ e^{-2\tau (T_1 K^-_1 + K^o_1 + k) } + e^{-2\tau(T_L K^-_L + K^o_L +k) } + + \sum_{i=1}^{N-1} e^{ \frac{-\tau}{k} +(K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1} ++ 2k^2 )} \right] \nonumber \\ +~ +\end{eqnarray} +and the dynamics after $n$ steps is given by $U^n$. +Because we are considering large $\tau$, the terms in the sums are in fact projectors +onto the lowest eigenvalues of the exponents. We shall however keep the notation as it is +in order to stress the symmetry of the bulk terms. + +Let us now show that - at the level of energies - this dynamics yields the KMP process +{\em for $k=\frac{1}{2}$, that is $m=2$}. +Consider first a general $m$, and two neighbouring sites of coordinates $x = \{x_\alpha\}_{\alpha=1,\ldots,m}$, +$y=\{y_\alpha\}_{\alpha=1,\ldots,m}$. +If they are completely thermalised, it means that (cfr (\ref{bb}): +the joint probability density satisfies +\begin{equation} +\left(x_{\alpha} +\frac{\partial}{\partial y_{\beta}} - +y_{\beta}\frac{\partial}{\partial x_{\alpha}} + \right) p(x,y)=0 +\end{equation} +It is easy to see that this may happen if and only if +\begin{equation} +p(x,y)= p[ \sum_\alpha (x_\alpha^2+y_\alpha^2)] +\end{equation} +In particular let us consider the microcanonical measure +\begin{equation} +p(x,y)= \delta[ \sum_\alpha (x_\alpha^2+y_\alpha^2)-\epsilon ] +\end{equation} +Defining new random variables $\epsilon_1$ and $\epsilon_2$ +as the energies of the neighboring sites +\be +\epsilon_1 = \sum_\alpha x_\alpha^2 +\ee +\be +\epsilon_2 = \sum_\alpha y_\alpha^2 +\ee +then their joint probability density will be +\begin{equation} +p(\epsilon_1,\epsilon_2) = \frac{S_m^2}{4} \delta(\epsilon_1+\epsilon_2-\epsilon) +\epsilon_1^{\frac{1}{2}-1} \epsilon_2^{\frac{1}{2}-1} +\end{equation} +where $S_m$ denotes the surface of the unit sphere in $m$ dimension +\be +S_m = \frac{m \pi^{m/2}}{\Gamma(\frac{1}{2}+1)} +\ee +{\em This yields a flat distribution for $m=2$, i.e. the KMP model.} + + + + +\section{Dual model} + + +The expectation value of an observable at time $t$, starting from an initial +distribution $|init\rangle$ is: + + +\begin{equation} + = \langle - | O e^{-Ht} | init \rangle +\end{equation} +where $\langle - |$ is a constant. +Taking the adjoint $ x_i \to x_i$, $\partial_i \to -\partial_i$: +\begin{equation} + = \langle - | O e^{-Ht} | init \rangle= \langle init| e^{-H^\dag t} O |- \rangle +\end{equation} +where $H^\dag(K^\pm, K^o)=H( K^\pm, -K^o)$ (because of the change of signs of the derivatives) +\begin{eqnarray} +-H^\dag&=& \frac{4}{1} \sum_i \left( +K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1} ++ \frac{m^2}{8} \right) +\nonumber\\ +&+&2 \left(T_1 K^-_1 + K^o_1 + \frac{1}{4}\right) ++2 \left(T_L K^-_L + K^o_L +\frac{1}{4}\right) +\end{eqnarray} +In particular, for the generating function we had chosen + \begin{equation} + O |- \rangle = \Pi_i \frac{x_i^{2 \xi_i}}{(2\xi_i -1)!!}|-\rangle=|\xi_1,...,\xi_N\rangle +\end{equation} + +Considered as an operator acting on `particle number', as counted by $K^o$, $H^\dag$ does not +conserve the probability. +The trick we used can be expressed as follows: introduce the particle number $\xi_o$ and $\xi_{N+1}$ +and the operators $A^+_o$ and $A^+_{N+1}$, which create particles in boundary sites with unit rate. +We consider now the {\em enlarged} process generated by +\begin{eqnarray} +-H^{dual}&=& \frac{4}{1} \sum_i \left( +K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1} ++ \frac{m^2}{8} \right) +\nonumber\\ +&+&2 \left(A^+_o K^-_1 + K^o_1 - \frac{1}{4}\right) ++2 \left( A^+_{N+1} K^-_N + K^o_N -\frac{1}{4}\right) +\end{eqnarray} +which conserves ({\it seems}) particle number and probability. +We wish to prove that: + +\begin{eqnarray} + &=& \langle init| e^{-H^\dag t} |\xi_1,...,\xi_N \rangle \nonumber \\ +&=& \sum_{\xi_o,\xi_{N+1}} + T_1^{\xi_o} T_{L}^{\xi_{N+1}} \langle \xi_o \xi_{N+1} | \otimes \langle + init| e^{-H^{dual} t} |\xi_1,...,\xi_N \rangle \otimes + |\xi_o=0,\xi_{N+1}=0 \rangle \nonumber \\ +\label{ggg} +\end{eqnarray} + + +I think the proof is obvious, because developing the exponential of $H^{dual}$ all the $A^+$ can be +collected because they commute with everything else, and the experctation value +\begin{equation} +\sum_{\xi_o} T_1^{\xi_o} \langle \xi_o |[A^+_o]^r |\xi_o=0 \rangle = T_1^r + \end{equation} +just puts back as many $T$'s as necessary. + +I do not know exactly how to use (\ref{ggg}) in general, but in the large time limit the evolution +voids the chain of particles + + +\section{Dual of KMP} + +I think that the argument runs through without changes if we use $U$ defined for the KMP model. +We just have to note that each term corresponds to an evolution of two sites (or a site and the bath) +and so in the dual it corresponds to sharing the particles between those two sites, or emptying +the sites at the borders. + +{\bf: NOTE by Cristian} + +We can check that the duality function chosen in the original paper by KMP +do coincide with the duality function of our process for $m=2$ (and the random +variables are the energies). +Indeed we start from +\be +f(x,\xi) = \prod_i (\sum_{\alpha} x_{i,\alpha}^2)^{\xi} +\ee +When the bath have equal temperature (let's us choose T=1) then the stationary +measure is +\be +\pi(x) = \prod_i \frac{1}{(2\pi)^{m/2}} \exp\left(-\sum_{\alpha}\frac{x_{i,\alpha}^2}{2}\right) +\ee +Let us focus on a fixed $i$ (that is in this short computation we write $x$ for $x_i$). +We have +\begin{eqnarray} +\E(f(x,\xi)) +&=& +\int dx_1 \cdots \int dx_m (x_1^2+\ldots + x_m^2)^{\xi} \exp-\left(\frac{x_{1}^2}{2}+\ldots+\frac{x_{1}^2}{2}\right) +\nonumber \\ +& = & +\int dr S_m r^{2\xi} \exp-\left(\frac{r^2}{2}\right) +\nonumber \\ +& = & +\frac{\frac{1}{2}\Gamma(\frac{1}{2}+\xi)}{\Gamma(\frac{m}{2}+1)} 2^\xi +\nonumber \\ +\end{eqnarray} +Special cases: +\begin{itemize} +\item $m=1$ + +$$ +\E(f(x,\xi)) = (2\xi-1)!! +$$ +where one uses that $\Gamma(\frac{1}{2}+\xi)= \frac{\sqrt{\pi}(2\xi-1)!!}{2^{\xi}}$ and $\Gamma(\frac{3}{2}) = \frac{\sqrt{\pi}}{2}$ +\item $m=2$ + +$$ +\E(f(x,\xi)) = \xi! 2^\xi +$$ +where one uses that $\Gamma(1+\xi)= \xi!$ and $\Gamma(2) = 1$. +Thus, if one defines the energies as +$$ +\epsilon_i = \sum_{\alpha}\frac{x_{i,\alpha}^2}{2} +$$ +one recover the choice of KMP for the dual function +$$ +O(\epsilon_i,\xi) = \prod_i \frac{\epsilon_i^{\xi_i}}{\xi_i!} +$$ +\end{itemize} + + + + + + +\section{ Dual of SEP: here goes an outline of how to proceed for the SSEP} + + +\be +H=-L_{SEP}^* +\ee +\begin{eqnarray} +L^*_{SEP} &=& \frac{1}{j} + \sum_i \left(J^+_i J^-_{i+1} + J^-_i J^+_{i+1} + 2 J^o_i J^o_{i+1} + - 2 j^2 \right)\\ +&+&\alpha (J^-_1 - J^o_1-j) + \gamma (J^+_1 + J^o_1-j) ++ \delta (J^-_L - J^o_L-j) + \beta (J^+_L + J^o_L-j)\nonumber +\end{eqnarray} +The factor $1/j$ is analogous to the factor $1/m$ in (\ref{bb}). +The operators $J^+_i, J^-_i, J^o_i$ act on the Hilbert space + corresponding to $0 \le r \le n$ particles per site $\otimes_i |r\rangle_i$ +as follows: +\begin{eqnarray} +J^+_i |r\rangle_i &=& (2j-r) |r+1\rangle_i \nonumber \\ + J^-_i |r\rangle_i &=& r |r-1\rangle_i \nonumber \\ +J^o_i |r\rangle_i &=& (r-j) |r\rangle_i +\end{eqnarray} + +The conjugation properies are as follows. There is an operator $Q$, +{\em diagonal in this basis } (I give the expression below), such that: +\begin{equation} +[J^+_i]^\dag = Q[J^-_i]Q^{-1} \qquad [J^-_i]^\dag = Q[J^+_i]Q^{-1} +\end{equation} +while $[J^z_i]^\dag=J^z_i= Q[J^z_i]Q^{-1}$. + + + +The expectation value of an observable at time $t$, starting from an initial +distribution $|init\rangle$ is: + + +\begin{equation} + = \langle - | O e^{-Ht} | init \rangle +\end{equation} +where $\langle - |$ is a constant. +As before: +\begin{eqnarray} + &=& \langle - | O e^{-Ht} | init \rangle= +\langle init| e^{-H^\dag t} O |- \rangle= \nonumber \\ +& & \langle init|Q e^{-{\bar H} t} Q^{-1}O |- \rangle= +\langle init|Q \; e^{-{\bar H} t} Q^{-1}O Q Q^{-1} |- \rangle +\end{eqnarray} + + +{\em $ {\bar H}$ is the same operator as $H$ but with +$J^+$ substituted by $J^-$, and vice-versa.} +Our job is now to make the rotation that will eliminate the $J^+$'s in +the border terms of $ {\bar H}$. + + + + +The transformation is of the form +\begin{eqnarray} +e^{\mu J^+} J^+ e^{-\mu J^+}&=&J^+ \nonumber \\ +e^{\mu J^+} J^o e^{-\mu J^+} &=&J^o - \mu J^+ \nonumber \\ +e^{\mu J^+} J^- e^{-\mu J^+} &=& J^- + 2 \mu J^o - \mu^2 J^+ +\end{eqnarray} +for suitable $\mu$. +Putting $\mu=-1$, we get that {\bf the bulk term is left invariant, +precisely because of the SU(2) symmetry}. The boundary terms {\bf of $\bar H$} +transform further into: +\begin{eqnarray} +& e^{\mu J^+_1} \left[ \alpha (J^+_1 - J^o_1-j) + \gamma (J^-_1 + J^o_1-j) +\right] e^{-\mu J^+_1}= \nonumber \\ & \gamma(J^-_1 + 2 \mu J^o_1 - \mu^2 +J^+_1 +J^o_1 - \mu J^+_1 -j) + \alpha (J^+_1 - J^o_1 + \mu J^+_1 -j) += \nonumber \\ +& \alpha(- J^o_1 -j) + \gamma (J^-_1 -J^o_1 -j) +\label{trans} +\end{eqnarray} +which is of the same form we have in the $SU(1,1)$ model. +The same can be done in the other boundary term. + +We thus get: +\begin{eqnarray} + &=& \langle - | O e^{-Ht} | init \rangle= +\langle init|Q \; e^{-{\bar H} t} Q^{-1}O Q Q^{-1} |- \rangle \nonumber\\ +&= & \langle init|Q e^{ \sum_i J^+_i} e^{-{\bar H_{dual}} t} + e^{ -\sum_i J^+_i} Q^{-1}O Q Q^{-1} |- \rangle \nonumber \\ +&= & \langle init|Q e^{ \sum_i J^+_i} e^{-{\bar H_{dual}} t} + e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i J^+_i} + e^{ -\sum_i J^+_i} |- \rangle \nonumber \\ + &= & \langle init|Q Q^{-1} e^{ \sum_i J^+_i} e^{-{\bar H_{dual}} t} + e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i J^+_i} |-_{dual} \rangle +\end{eqnarray} +where we have defined $H_{dual}$ as the transformed Hamiltonian. + +We now have to study $ |-_{dual} \rangle \equiv e^{ -\sum_i J^+_i} + Q^{-1} |- \rangle$ +Because we know that terms like those proportional to $\gamma$ and $\alpha$ +anihilate the measure to the left: +\begin{eqnarray} +& & \langle - | (J^-_i - J^o_i-j) =0\nonumber \\ +& & \langle - | (J^+_i + J^o_i-j) =0 +\end{eqnarray} +this implies that in the new variables and following all the transformations +(cfr (\ref{trans})): +\begin{eqnarray} +& & (J^-_i -J^o_i -j)e^{ -\sum_i J^+_i} Q^{-1} |- \rangle= 0 \nonumber \\ +& & ( -J^o_i -j)e^{ -\sum_i J^+_i} Q^{-1} |- \rangle =0 +\end{eqnarray} +which implies that $( J^o_i +j) |-_{dual} \rangle= J^-_i |-_{dual} \rangle=0$, +and this means that +\begin{equation} +J^o_i |-_{dual} \rangle =-j |-_{dual} \rangle +\end{equation} +is the vacuum of particles in this base! + +All in all we are left with: +\begin{eqnarray} + &=& \langle init|Q \; e^{ \sum_i J^+_i} + e^{-{\bar H_{dual}} t} e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i J^+_i} + |-_{dual} \rangle \nonumber \\ + &=& \langle init|Q \; e^{ \sum_i J^+_i} + e^{-{\bar H_{dual}} t} {\hat O} + |-_{dual} \rangle +\end{eqnarray} +where $ {\hat O} \equiv e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i +J^+_i}$. We have to start with the +vacuum $ |-_{dual} \rangle$, then apply $ {\hat O} $, (which creates +particles because it contains many $J^+$'s), and then there is the +dual evolution. The final configuration has to be overlapped with +$\langle f| \equiv \langle init|Q \; e^{ \sum_i J^+_i}$. +For large times, there will be no particle left except in the two extra sites +in the borders. + +\section{Constructive approach} + +Here I would like to say the following: if I have a modle of transport +of which I do not know if it has a Dual one, I can proceed as follows. +I take a small version with no baths and a few sites. I write the +evolution operator and I diagonalise it numerically. If there is a +non abelian group, the eigenvalues will be in degenerate +multiplets. Hence, if I find multiplets, then very probably there is a +dual model, if I do not, then there cannot be one. It would be nice +to show it with the KMP model with two or three sites. + +Another thing is to consider higher groups. $SU(3)$ has already been studied +for two kinds of particles. We know how to map to a dual in that +case, if it has not been done yet. + +\newpage +{\bf THIS PART HAS BEEN WRITTEN BY CRISTIAN} + +The aim of this file is to set notation in the two languages. +Let us focus on duality for the case we already know: +SU(1,1) model with $k=1/4$. To fix ideas let us consider only +the bulk part of the system with periodic boundary conditions. + +\section{Probabilistic language} +We have two stochastic Markovian process with continuous time. +\begin{itemize} +\item +\underline{The first process $X(t) \in \R^N$} is given by the Fokker-Planck equation: +\be +\frac{dp(x,t)}{dt} = L^* p(x,t) +\ee +where $p(x,t)$ represents the probability density +for the process $X(t)$, that is +$$ +p(x,t)dx = Prob (X(t)\in (x,x+dx)) +$$ +and +\begin{eqnarray} +L^*p(x,t) +& = & +\sum_i L^*_{i,i+1} p(x,t) \noindent\\ +& = & +\sum_i \left(x_i\frac{\partial}{\partial x_{i+1}} -x_{i+1}\frac{\partial}{\partial x_{i}}\right)^2 p(x,t) +\end{eqnarray} +\item +\underline{The second process $\Xi(t) \in \N^N$} is characterized by the master equation +\be +\frac{dP(\xi,t)}{dt} = {\cal L^*} P(\xi,t) +\ee +where $P(\xi,t)$ represents the +probability mass function for the process $\Xi(t)$, that is +$$ +P(\xi,t) = Prob (\Xi(t) = \xi) +$$ +and +\begin{eqnarray} +{\cal L}^*P(\xi,t) +& = & +\sum_i {\cal L}^*_{i,i+1}P(\xi,t) \nonumber \\ +& = & +\sum_i 2\xi_i \left(1+ 2\xi_{i+1}\right) P(\xi^{i,i+1},t) ++ \left(1+2\xi_i\right)2\xi_{i+1} P(\xi^{i+1,i},t) \nonumber\\ +& & - 2\left(2\xi_i + \frac{1}{2}\right)\left(2\xi_{i+1} + \frac{1}{2}\right) P(\xi,t) ++ \frac{1}{2}P(\xi,t) +\end{eqnarray} +and $\xi^{i,j}$ denotes the configuration that is obtained by removing one particle +at $i$ and adding one particle at $j$. +\newpage +\item +\underline{In general, Duality means the following}: +there exists functions $O(x,\xi): \R^N \times \N^N \mapsto \R$ such that +the following equality between expectations for the two processes holds +\begin{center} +\fbox{\parbox{9cm}{ +\be +\E_x( O(X(t),\xi)) =\E_\xi(O(x,\Xi(t))) +\ee +}} +\end{center} +The subscripts in the expectations denote the initial conditions of the processes: +$X(0) =x$ on the left and $\Xi(0) = \xi$ on the right. +More explicitly we have: +\be +\int dy O(y,\xi) p(y,t; x,0) = \sum_{\eta} O(x,\eta) P(\eta,t; \xi,0) +\ee +To prove duality it is sufficient to show that +\be +\label{main} +L O(x,\xi) = {\cal L} O(x,\xi) +\ee +where $L$, that is working on $x$, is the adjoint of $L^*$ and ${\cal L}$, that is working on $\xi$, +is the adjoint of ${\cal L}^*$. +Indeed we have: +\begin{eqnarray} +\E_x( O(X(t),\xi)) +& = & +\int dy O(y,\xi) p(y,t; x,0) \\ +& = & +\sum_{\eta} \int dy O(y,\eta) p(y,t; x,0) \delta_{\eta,\xi} \\ +& = & +\sum_{\eta} \int dy O(y,\eta) e^{tL^*} \delta(y-x) \delta_{\eta,\xi} \\ +& = & +\sum_{\eta} \int dy e^{tL} O(y,\eta) \delta(y-x) \delta_{\eta,\xi} \\ +& = & +\sum_{\eta} \int dy e^{t{\cal L}} O(y,\eta) \delta(y-x) \delta_{\eta,\xi} \\ +& = & +\sum_{\eta} \int dy O(y,\eta) e^{t{\cal L}^*} \delta(y-x) \delta_{\eta,\xi} \\ +& = & +\sum_{\eta} \int dy O(y,\eta) P(\eta,t;\xi,0) \delta(y-x) \\ +& = & +\sum_{\eta} O(x,\eta) P(\eta,t;\xi,0) \\ +& = & +\E_\xi(O(x,\Xi(t))) +\end{eqnarray} +\newpage +\item +\underline{For the present case, the proper function to be considered are} +\be +\label{Oss} +O(x,\xi) = \prod_{i} \frac{x_i^{2\xi_i}}{(2\xi_i-1)!!} +\ee +Let us check Eq.(\ref{main}) on this choice. We have +\begin{eqnarray*} +&& +L_{i,i+1} O(x,\xi) += +\left(\prod_{k\not\in\{i,i+1\}} \frac{x_k^{2\xi_k}}{(2\xi_k -1)!!}\right) +\times +\\ +&&\left(2\xi_{i+1}(2\xi_{i+1}-1) \frac{x_i^{2\xi_i+2}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}-2}}{(2\xi_{i+1} -1)!!} +- 2\xi_{i}(2\xi_{i+1}+1) \frac{x_i^{2\xi_i}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}}}{(2\xi_{i+1} -1)!!} +\right. +\\ +&&\left.- 2\xi_{i+1}(2\xi_{i}+1) \frac{x_i^{2\xi_i}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}}}{(2\xi_{i+1} -1)!!} ++2\xi_{i}(2\xi_{i}-1) \frac{x_i^{2\xi_i-2}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}+2}}{(2\xi_{i+1} -1)!!} +\right) +\\ +\end{eqnarray*} +which implies +\begin{eqnarray*} +L_{i,i+1} O(x,\xi) +& = & +\Big(2\xi_{i+1}(2\xi_{i}+1) [O(x,\xi^{i+1,i})-O(x,\xi)] +\\ +&& +\;+\;2\xi_{i}(2\xi_{i+1}+1) [O(x,\xi^{i,i+1})-O(x,\xi)]\Big) +\\ +& = & +{\cal L}_{i,i+1} O(x,\xi) +\end{eqnarray*} + +\item \underline{How to find the proper normalization?} +Suppose that we are in the general following situation: +\begin{itemize} +\item We have a generator $L$ of a Markov process $X(t)$. +\item We know its stationary measure $\pi(x)$: +\be +L^* \pi(x) = 0 +\ee +\item We have functions $f(x,\xi)$ for which the following holds: +\be +\label{aaa} +L f(x,\xi) = \sum_{\eta} r(\xi,\eta) f(x,\eta) +\ee +with +\be +\label{bbb} +r(\xi,\eta) \ge 0 \qquad \mbox{if}\quad \xi \neq \eta +\ee +\be +\label{ccc} +r(\xi,\xi) \le 0 \qquad \mbox{if}\quad \xi = \eta +\ee +\end{itemize} +The matrix $r$ resembles the generator of a dual Markov process, +but it is not because it does not satisfy the condition +$\sum_{\eta} r(\xi,\eta) = 0$. +In order to find the generator of the dual process we proceed as +follows: +\begin{enumerate} +\item Define +\be +m(\xi) = \int f(x,\xi) \pi(x) dx +\ee +\item Define +\be +q(\xi,\eta)= m(\xi)^{-1} r(\xi,\eta) m(\eta) +\ee +\item Define +\be +O(x,\xi) = m(\xi)^{-1} f(x,\xi) +\ee +\end{enumerate} +Then the matrix $q$ can be seen as the generator of the dual Markov process $\Xi(t)$, that is +\be +L O(x,\xi) = \sum_{\eta} q(\xi,\eta) O(x,\eta) +\ee +with +\be +q(\xi,\eta) \ge 0 \qquad \mbox{if}\quad \xi \neq \eta +\ee +\be +q(\xi,\xi) \le 0 \qquad \mbox{if}\quad \xi = \eta +\ee +\be +\sum_{\eta} q(\xi,\eta) = 0 +\ee +Indeed we have: +\begin{eqnarray} +L O(x,\xi) +&=& +L m(\xi)^{-1} f(x,\xi) \nonumber \\ +&=& +m(\xi)^{-1} \sum_{\eta} r(\xi,\eta) f(x,\eta) \nonumber \\ +&=& +m(\xi)^{-1} \sum_{\eta} m(\xi)q(\xi,\eta) m(\eta)^{-1} m(\eta) O(x,\eta)\nonumber \\ +&=& +\sum_{\eta} q(\xi,\eta) O(x,\eta) +\end{eqnarray} +and +\begin{eqnarray} +\sum_{\eta} q(\xi,\eta) +&=& +\sum_{\eta} m(\xi)^{-1} r(\xi,\eta) m(\eta) \nonumber \\ +&=& +m(\xi)^{-1} \sum_{\eta} r(\xi,\eta) \int f(x,\eta) \pi(x) dx \nonumber \\ +&=& +m(\xi)^{-1} \int L f(x,\xi) \pi(x) dx \nonumber \\ +&=& +m(\xi)^{-1} \int f(x,\xi) L^* \pi(x) dx \nonumber \\ +&=& +0 +\end{eqnarray} + + + +\item \underline{Our case}. Among all the invariant measure +of the $X(t)$ process, namely the normalized function with +spherical symmetry $p(x) = p(\sum_i x_i^2)$, a special role is +played by the Gibbs measure +$$ +\pi(x) += \left(\frac{\beta}{2\pi}\right)^{(N/2)} e^{-\beta\sum_i \frac{x_i^2}{2}} += \left(\frac{\beta}{2\pi}\right)^{(N/2)} \prod_i e^{-\beta\frac{x_i^2}{2}} +$$ +which is selected as soon as the system is placed in contact with +thermal bath working at inverse temperature $\beta$. +Moreover: If $Z$ is a centered Gaussian, namely $Z\sim N(0,\sigma^2)$, +then +$$ +\E(Z^{2n}) = \sigma^{2n} (2n-1)!! +$$ +If one start from +$$ +f(x,\xi) = \prod_i x_i^{2\xi} +$$ +which satisfy (\ref{aaa}),(\ref{bbb}),(\ref{ccc}) and apply +the previous procedure, one arrives to (\ref{Oss}). + +{\bf Remark:} Note that, in applying the procedure, the +dependence on $\beta$ disappear!!!! +\end{itemize} + + +\section{Quantum language} + + +Here we start from a quantum spin chain +$$ +H = - 4 \sum_i \left( K^+_iK^-_{i+1} + K^-_iK^+_{i+1} -2 K^0_iK^0_{i+1} + \frac{1}{8}\right) +$$ +where the spin $K_i$'s satisfy the SU(1,1) algebra +\begin{eqnarray} +\label{commutatorsSU11} +[K_i^{0},K_i^{\pm}] &=& \pm K_i^{\pm} \nonumber \\ +{[}K_{i}^{-},K_{i}^{+}{]} &=& 2K_i^{0} +\end{eqnarray} +We are going to see the Schr\"odinger equation with imaginary time +\begin{equation} +\label{schroedinger} +\frac{d}{dt}|\psi(t) \rangle = -H |\psi(t)\rangle\;. +\end{equation} +as the evolution equation for the probability distribution of +a Markovian stochastic process. +\begin{itemize} +\item +\underline{The Hamiltonian possesses the SU(1,1) invariance}. If we define +\be +K^+ = \sum_{i} K_i^+ +\ee +\be +K^- = \sum_{i} K_i^- +\ee +\be +K^0 = \sum_{i} K_i^0 +\ee +we find that +\be +[H,K^+] = 0 +\ee +\be +[H,K^-] = 0 +\ee +\be +[H,K^0] = 0 +\ee +\item +\underline{Since $[H,K^+] = 0$} there exist a basis to study the stochastic process associated to +$H$ where \underline{$K^+$ is diagonal}. We might consider the following representation +\begin{eqnarray} +\label{Koper} +K^+_i &=& \frac{1}{2} x_{i}^2 \nonumber \\ +K^-_i &=& \frac{1}{2} \frac{\partial^2}{\partial x_{i}^2} \nonumber \\ +K^o_i &=& \frac{1}{4} \left\{\frac{\partial}{\partial x_{i}} x_{i} + + x_{i} \frac{\partial}{\partial x_{i}} \right \} +\end{eqnarray} +If we use this representation then +$$ +H = -L^* +$$ +and the probability density function for the $X(t)$ process is encoded in +the state $|\psi(t)\rangle$, namely +\begin{equation} +|\psi(t) \rangle = \int dx p(x,t) |x\rangle +\end{equation} +where we have introduced the notation $|x\rangle$ to denote a completely +localized state, that is a vector which together with its transposed +$\langle x|$ form a complete basis of a Hilbert space and its dual: +\begin{equation} +\langle x|x' \rangle = \delta(x-x') +\end{equation} +It immediately follows that +\begin{equation} +\langle x|\psi(t) \rangle = p(x,t) +\end{equation} +To compute expectation with respect to the $X(t)$ process +we introduce the flat state +\begin{equation} +\langle - | = \int dx \;\langle x| +\end{equation} +which is such that +\begin{equation} +\langle - | x\rangle = 1 +\end{equation} +Then for any observable $A = A(X(t))$ we have that its expectation value +at time $t$ can be written as +\begin{equation} +\langle A(t) \rangle_x = \int dy \,A(y)\, p(y,t;x,0) = \langle -|A| \psi(t) \rangle_x = \langle -|A e ^{-tH}| x\rangle +\end{equation} +\item +\underline{Since $[H,K^0] = 0$} there exist a basis to study the stochastic process associated to +$H$ where \underline{$K^0$ is diagonal}. We might consider the following representation +\begin{eqnarray} +\label{Koper2} +K^+_i|\xi\rangle &=& \left(\frac{1}{2} + \xi\right) |\xi+1\rangle\nonumber \\ +K^-_i|\xi\rangle &=& \xi |\xi-1\rangle\nonumber \\ +K^o_i|\xi\rangle &=& \left(\xi + \frac{1}{4}\right) |\xi\rangle +\end{eqnarray} +where $|\xi\rangle$ denotes a vector which together with its transposed +$\langle \xi|$ form a complete basis of a Hilbert space and its dual, that is +\begin{equation} +\langle \xi|\eta \rangle = \delta_{\xi,\eta} +\end{equation} +If we use this representation then +$$ +H = -{\cal L}^* +$$ +and the probability mass function for the $\Xi(t)$ process is encoded in +the state $|\phi(t)\rangle$, namely +\begin{equation} +|\phi(t) \rangle = \sum_{\xi} P(\xi,t) |\xi\rangle +\end{equation} +It immediately follows that +\begin{equation} +\langle \xi|\phi(t) \rangle = P(\xi,t) +\end{equation} +To compute expectation with respect to the $\Xi(t)$ process +we introduce the flat state +\begin{equation} +\langle -_{dual} | = \sum_{\xi} \;\langle \xi| +\end{equation} +which is such that +\begin{equation} +\langle -_{dual} | \xi\rangle = 1 +\end{equation} +Then for any observable $A=A(\Xi(t))$ we have that its expectation value +at time $t$ can be written as +\begin{equation} +\langle A(t) \rangle_\xi = \sum_{\eta}\,A(\eta)\, p(\eta,t;\xi,0) = \langle -_{dual}|A| \phi(t) \rangle_{\xi} = \langle -_{dual}|A e ^{-tH}| \xi\rangle +\end{equation} +\item +\underline{The claim is the following: Duality, in general, is going from the basis +where}\\ +\underline{one generator of the group is diagonal to a basis where another generator of}\\ +\underline{ the group is diagonal.} + +In our case we change from a basis where $K^+$ is diagonal to the base where $K^0$ is diagonal. + +\begin{eqnarray} +\langle - |\prod_i\frac{(2K_i^+)^{\xi_i}}{(2\xi_i-1)!!}|\psi(t)\rangle_x +& = & +\int dy \; \langle y |\prod_i\frac{(2K_i^+)^{\xi_i}}{(2\xi_i-1)!!} e^{tL^*}|x\rangle \nonumber \\ +& = & +\sum_{\eta} \int dy \; \langle y |\prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!}e^{tL^*}|x\rangle \langle \eta|\xi\rangle\nonumber \\ +& = & +\sum_{\eta} \int dy \; \langle y| \otimes \langle \eta| \prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!} e^{tL^*} | x\rangle \otimes|\xi\rangle\nonumber \\ +& = & +\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{tL} \prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta\rangle \nonumber \\ +& = & +\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{tL} \prod_i\frac{y^{2\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\ +& = & +\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{t{\cal L}} \prod_i\frac{y_i^{2\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\ +& = & +\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{t{\cal L}} \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\ +& = & +\sum_{\eta} \int dy \; \langle y| \otimes \langle \eta |\prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} e^{t{\cal L}^*} | x\rangle \otimes|\xi \rangle\nonumber \\ +& = & +\sum_{\eta} \int dy \; \langle \eta | \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} e^{t{\cal L}^*} |\xi \rangle \langle y | x\rangle \nonumber \\ +& = & +\sum_{\eta} \langle \eta | \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} |\phi(t)\rangle_{\xi} \nonumber \\ +& = & +\langle -_{dual} |\prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!}|\phi(t)\rangle_{\xi} +\end{eqnarray} + + +\end{itemize} + +\section{General k} + +A convenient $(2j+1)$-dimensional representation of the SU(2) algebra is given by +\begin{eqnarray} +J^+_i |n_i\rangle &=& (2j-n_i) |n_i+1\rangle \nonumber \\ +J^-_i |n_i\rangle &=& n_i |n_i-1\rangle \nonumber \\ +J^0_i |n_i\rangle &=& (n_i-j) |n_i\rangle +\end{eqnarray} +where the quantum numbers $n_i\in\{0,1,\ldots,2j\}$. +{\bf Note that in this representation the adjoint of $J^+_i$ is not +$J^-_i$, UNLESS $j=1/2$}. + +A matrix representation is: +$$ +J^+ = \left( +\begin{array}{cccc} + 0 & & & \\ + 2j & \ddots & & \\ + & \ddots & \ddots & \\ + & & 1 & 0\\ +\end{array}\right) +\qquad +J^- = \left( +\begin{array}{cccc} + 0 & 1 & & \\ + & \ddots & \ddots & \\ + & & \ddots & 2j \\ + & & & 0 \\ +\end{array}\right) +\qquad +J^0 = \left( +\begin{array}{cccc} + -j & & & \\ + & \ddots & & \\ + & & \ddots & \\ + & & & j\\ +\end{array}\right) +$$ + +In the SU(1,1) case one can use the infinite dimensional representation +\begin{eqnarray} +\label{newrepresentationsu11} +K^+_i |n_i\rangle &=& (2k+n_i) |n_i+1\rangle \nonumber \\ +K^-_i |n_i\rangle &=& n_i |n_i-1\rangle \nonumber \\ +K^0_i |n_i\rangle &=& (n_i+k) |n_i\rangle +\end{eqnarray} +where the quantum numbers $n_i\in\{0,1,2,\ldots\}$. +A matrix representation is: +$$ +K^+ = \left( +\begin{array}{cccc} + 0 & & & \\ + 2k & \ddots & & \\ + & 2k+1 & \ddots & \\ + & & \ddots & \ddots\\ +\end{array}\right) +\qquad +K^- = \left( +\begin{array}{cccc} + 0 & 1 & & \\ + & \ddots & 2 & \\ + & & \ddots & \ddots \\ + & & & \ddots \\ +\end{array}\right) +\qquad +K^0 = \left( +\begin{array}{cccc} + k & & & \\ + & k+1 & & \\ + & & k+2 & \\ + & & & \ddots\\ +\end{array}\right) +$$ +Let's check that in this representation the operator is stochastic. +I will do it for the bulk: +\begin{eqnarray} +L_{i,i+1}|n_i,n_{i+1}\rangle +&=& +(2k+n_i) n_{i+1}|n_i +1 ,n_{i+1}-1\rangle \nonumber\\ +&+& +n_i(2k+n_{i+1})|n_i -1 ,n_{i+1}+1\rangle \nonumber\\ +&+& +(-2(n_i+k)(n_{i+1}+k)+2k^2)|n_i,n_{i+1}\rangle +\end{eqnarray} +The sum of the rates is +$$ +(2k+n_i) n_{i+1}+ +n_i(2k+n_{i+1}) +-2(n_i+k)(n_{i+1}+k)+2k^2 =0 +$$ + + + + + + + + + +% \end{document} -- cgit v1.2.3-54-g00ecf From 57c597f34858eb256a1c681ab931cf0ec665cec3 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Wed, 30 Dec 2020 13:49:20 +0100 Subject: Letter format and bibliography updates. --- bezout.bib | 17 +- bezout.tex | 2 +- cover.tex | 1419 ++++-------------------------------------------------------- 3 files changed, 87 insertions(+), 1351 deletions(-) (limited to 'bezout.tex') diff --git a/bezout.bib b/bezout.bib index 8688ed2..9e600f0 100644 --- a/bezout.bib +++ b/bezout.bib @@ -267,6 +267,16 @@ doi = {10.1007/jhep11(2012)023} } +@book{Mezard_2009_Information, + author = {Mézard, Marc and Montanari, Andrea}, + title = {Information, physics, and computation}, + publisher = {Oxford University Press}, + year = {2009}, + address = {Great Clarendon Street, Oxford}, + isbn = {9780198570837}, + series = {Oxford Graduate Texts} +} + @article{Nguyen_2014_The, author = {Nguyen, Hoi H. and O'Rourke, Sean}, title = {The Elliptic Law}, @@ -294,12 +304,7 @@ url = {https://doi.org/10.2307%2F2371510}, doi = {10.2307/2371510} } -@book{mezard2009information, - title={Information, physics, and computation}, - author={Mezard, Marc and Montanari, Andrea}, - year={2009}, - publisher={Oxford University Press} -} + @inproceedings{Scorzato_2016_The, author = {Scorzato, Luigi}, title = {The {Lefschetz} thimble and the sign problem}, diff --git a/bezout.tex b/bezout.tex index 96ad257..d7f4dc7 100644 --- a/bezout.tex +++ b/bezout.tex @@ -44,7 +44,7 @@ Spin-glasses have long been considered the paradigm of many variable `complex landscapes,' a subject that includes neural networks and optimization problems, -most notably constraint satisfaction \cite{mezard2009information}. The most tractable family of these +most notably constraint satisfaction \cite{Mezard_2009_Information}. The most tractable family of these are the mean-field spherical $p$-spin models \cite{Crisanti_1992_The} (for a review see \cite{Castellani_2005_Spin-glass}) defined by the energy \begin{equation} \label{eq:bare.hamiltonian} diff --git a/cover.tex b/cover.tex index 586fa38..2d2fc10 100644 --- a/cover.tex +++ b/cover.tex @@ -1,1358 +1,89 @@ - -\documentclass[12pt,reqno,a4paper,twoside]{article} -% \ProvidesPackage{makra} -\usepackage{amsmath,amsthm,amstext,amscd,amssymb,euscript} -%,showkeys} -%,times} -\usepackage{epsf} -\usepackage{color} -\usepackage{verbatim} -\usepackage{graphicx} -\usepackage{esint} -\usepackage{tikz} -\usepackage{setspace} -\usepackage{mathrsfs} - -\usepackage{todonotes} - -%\usepackage{natbib} - - - -\usepackage{bm} -\usepackage[normalem]{ulem} - - -\textwidth 6in -\topmargin -0.50in -\oddsidemargin 0in -\evensidemargin 0in -\textheight 9.00in -%\pagestyle{plain} -%%%%%%%%%%%%%%%%%% Macros %%%%%%%%%%% -\def\mybox #1{\fbox{\parbox{5.8in}{#1}}} -\newcommand{\m}[1]{{\marginpar{\scriptsize #1}}} - -\def\mep{\mathbf{mep}_{n}^{\delta}} -\def\r{{\mathbf r}} -\def\O{{\mathcal{O}}} - -\def\I{{\mathcal{I}}} -\def\fee{\mathcal{F}} - -\def\F{{\EuScript{F}}} - -\renewcommand{\phi}{\varphi} -\newcommand{\compose}{\circ} -\renewcommand{\subset}{\subseteq} -\renewcommand{\emptyset}{\varnothing} -\newcommand{\interval}{[\underline\alpha,\overline \alpha]} -\def\liminfn{\liminf_{n\to\infty}} -\def\limsupn{\limsup_{n\to\infty}} -\def\limn{\lim_{n\to\infty}} -\def\disagree{\not\longleftrightarrow} -\newcommand{\Zd}{\mathbb Z^d} -\newcommand{\kk}{\mathbf k} -\renewcommand{\Pr}{\mathbb P} -\newcommand{\dist}{\text{dist}} -\newcommand{\Cal}{\mathcal} -\def\1{ {\mathit{1} \!\!\>\!\! I} } -\newcommand\s{{\mathbf s}} - -\newcommand{\red}[1]{{\color{red} #1}} -\newcommand{\blue}[1]{{\color{blue} #1}} - -\newcommand{\eps}{\varepsilon} -\newcommand{\C}{{\mathcal C}} -\newcommand{\Y}{{\mathcal Y}} -\newcommand{\NN}{{\mathcal N}} -\newcommand{\grad}{\nabla} -\newcommand{\WW}{\mathbb W} -\newcommand{\D}{{\mathcal D}} -\newcommand{\HH}{{\mathcal H}} -\newcommand{\bol}[1]{{\boldsymbol{#1}}} - - -% \smallmatrix{ -% 0& \cr -% N&\ddots \cr -% &\ddots&\ddots \cr -% & & 1 & 0 \cr -% } -\newcommand{\ddp}[2]{\frac{\partial {#1}}{\partial {#2}}} - -\renewcommand{\brace}[1]{{ \bol{#1}}} - -\newcommand{\ket}[1]{|{#1}\rangle} - -\newcommand{\eq}{{\textnormal{eq}}} - -\renewcommand{\em}{\it} - -%%%%%%% FRANK'S MACROS - -\parskip=3pt plus 1pt minus 1pt - -\newcommand{\halmos}{\rule{1ex}{1.4ex}} +\documentclass[a4paper]{letter} \makeatletter -\@addtoreset{equation}{section} +\newenvironment{thebibliography}[1] + {\list{\@biblabel{\@arabic\c@enumiv}}% + {\settowidth\labelwidth{\@biblabel{#1}}% + \leftmargin\labelwidth + \advance\leftmargin\labelsep + \usecounter{enumiv}% + \let\p@enumiv\@empty + \renewcommand\theenumiv{\@arabic\c@enumiv}}% + \sloppy + \clubpenalty4000 + \@clubpenalty \clubpenalty + \widowpenalty4000% + \sfcode`\.\@m} + {\def\@noitemerr + {\@latex@warning{Empty `thebibliography' environment}}% + \endlist} +\newcommand\newblock{\hskip .11em\@plus.33em\@minus.07em} \makeatother -\renewcommand{\theequation}{\thesection.\arabic{equation}} - -\newtheorem{ittheorem}{Theorem} -\newtheorem{itlemma}{Lemma} -\newtheorem{itproposition}{Proposition} -\newtheorem{itdefinition}{Definition} -\newtheorem{itremark}{Remark} - -%\renewcommand{\theittheorem}{\thesection.\arabic{equation}} -%\renewcommand{\theitlemma}{\thesection.\arabic{equation}} -%\renewcommand{\theitproposition}{\thesection.\arabic{equation}} -%\renewcommand{\theitdefinition}{\thesection.\arabic{equation}} -%\renewcommand{\theitremark}{\thesection.\arabic{equation}} - -\newenvironment{theorem}{\addtocounter{equation}{1} -\begin{ittheorem}}{\end{ittheorem}} - -\newenvironment{lemma}{\addtocounter{equation}{1} -\begin{itlemma}}{\end{itlemma}} - -\newenvironment{proposition}{\addtocounter{equation}{1} -\begin{itproposition}}{\end{itproposition}} - -\newenvironment{definition}{\addtocounter{equation}{1} -\begin{itdefinition}}{\end{itdefinition}} - -\newenvironment{remark}{\addtocounter{equation}{1} -\begin{itremark}}{\end{itremark}} - -%\newenvironment{proof}{\noindent {\em Proof}.\,\,\,} -%{\hspace*{\fill}$\halmos$\medskip} - -\newcommand{\beq}{\begin{eqnarray}} -\newcommand{\eeq}{\end{eqnarray}} - -\newcommand{\be}{\begin{equation}} -\newcommand{\ee}{\end{equation}} - -\newcommand{\bl}{\begin{lemma}} -\newcommand{\el}{\end{lemma}} - -\newcommand{\br}{\begin{remark}} -\newcommand{\er}{\end{remark}} - -\newcommand{\bt}{\begin{theorem}} -\newcommand{\et}{\end{theorem}} - -\newcommand{\bd}{\begin{definition}} -\newcommand{\ed}{\end{definition}} - -\newcommand{\bp}{\begin{proposition}} -\newcommand{\ep}{\end{proposition}} - - - -\newcommand{\bc}{\begin{corollary}} -\newcommand{\ec}{\end{corollary}} - -\newcommand{\bpr}{\begin{proof}} -\newcommand{\epr}{\end{proof}} - -\newcommand{\bi}{\begin{itemize}} -\newcommand{\ei}{\end{itemize}} - -\newcommand{\ben}{\begin{enumerate}} -\newcommand{\een}{\end{enumerate}} - - -%%%%%%%%%%%%% SYMBOLS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\newcommand{\Z}{\mathbb Z} -\newcommand{\R}{\mathbb R} -\newcommand{\N}{\mathbb N} -%\newcommand{\C}{\mathbb C} - -\newcommand{\Q}{\mathbb Q} -\newcommand{\E}{\mathbb E} -\newcommand{\T}{\mathbf T} -\newcommand{\M}{\mathbf M} -\newcommand{\ret}{\mathbf R} -\newcommand{\veee}{\mathbb V} -\newcommand{\veek}{\ensuremath{\mathcal{V}}} -\newcommand{\gee}{\ensuremath{\mathcal{G}}} -\newcommand{\pee}{\ensuremath{\mathbb{P}}} -\newcommand{\re}{\ensuremath{\mathcal{R}}} -\newcommand{\peee}{\ensuremath{\mathcal{P}}} -\newcommand{\ce}{\ensuremath{\mathcal{C}}} -\newcommand{\cee}{\ensuremath{{\bf \mathcal{C}_1}}} -\newcommand{\uu}{\ensuremath{\mathcal{U}}} -%\newcommand{\s}{\ensuremath{\mathcal{S}}} -\newcommand{\loc}{\ensuremath{\mathcal{L}}} -\newcommand{\iii}{\ensuremath{\mathcal{I}}} -\newcommand{\bee}{\ensuremath{\mathcal{B}}} -\newcommand{\weee}{\ensuremath{\mathbf W}} -\newcommand{\fe}{\ensuremath{\mathcal{F}}} -\newcommand{\mee}{\ensuremath{\mathcal{M}}} -\newcommand{\U}{\ensuremath{\mathcal{U}}} -\newcommand{\na}{\ensuremath{N^{t,x}_\varphi}} -\newcommand{\aaa}{\ensuremath{\mathcal{A}}} -\newcommand{\anepsi}{\ensuremath{{[A_n]^{\epsilon} }}} -\newcommand{\vi}{\ensuremath{\varphi}} -\newcommand{\La}{\ensuremath{\Lambda}} -\newcommand{\la}{\ensuremath{\Lambda}} -\newcommand{\si}{\ensuremath{\sigma}} -\newcommand{\om}{\ensuremath{\omega}} -\newcommand{\epsi}{\ensuremath{\epsilon}} -\newcommand{\gap}{\ensuremath{\Delta}} -\newcommand{\QED}{\hspace*{\fill}$\Box$\medskip} -\newcommand{\prodpee}{\ensuremath{\mathbb{P}\times\mathbb{P}}} -\newcommand{\prodE}{\ensuremath{\mathbb{E}\times\mathbb{E}}} -\newcommand{\tr}{\ensuremath{\mbox{Tr}}} -\newcommand{\caZ}{\ensuremath{\mathcal{Z}}} -\newcommand{\Ga}{\ensuremath{\Gamma}} -\newcommand{\ga}{\ensuremath{\gamma}} -\newcommand{\al}{\ensuremath{\alpha}} -\newcommand{\shit}{\ensuremath{[-\|X \|, \|X \|]}} -\newcommand{\haa}{\ensuremath{A+tB}} -\newcommand{\sas}{\ensuremath{\delta g}} -\newcommand{\lap}{\pee_{V_n|X_1,\ldots,X_{n-1}} (dx)} -\newcommand{\qak}{\mathbb{Q}} -\newcommand{\de}{\delta} -\newcommand{\pot}{\pee^{\scriptscriptstyle{[0,t]}}} -\newcommand{\pott}{\peet^{\scriptscriptstyle{[0,t]}}} - -\newcommand{\KK}{\mathbb{S}} - - -\def\vnim #1{ \begin{equation*}\boxed{\mbox{\Large #1}}\end{equation*} } -%%%%%%%%%%%%%%%%%% Current time %%% -\def\now{ -\ifnum\time<60 - 12:\ifnum\time<10 0\fi\number\time am - \else - \ifnum\time>719\chardef\a=`p\else\chardef\a=`a\fi - \hour=\time - \minute=\time - \divide\hour by 60 %\hour is the result of an integer divide - \ifnum\hour>12\advance\hour by -12\advance\minute by-720 \fi - \number\hour:% - \multiply\hour by 60 %Use is made of the integer divide here. - \advance\minute by -\hour - \ifnum\minute<10 0\fi\number\minute\a m\fi} -\newcount\hour -\newcount\minute -%%%%%%%%%%%%%%%%%% Environment %%%%%%% -\numberwithin{equation}{section} %%%% nomer uravnenia vkulchaet - %%%% nomer razdela, ex. (1.2) -\newtheorem{thm}{Theorem}[section] -\newtheorem{lem}[thm]{Lemma} -\newtheorem{defn}[thm]{Definition} -\theoremstyle{remark} -\newtheorem{rem}{Remark}[section] -\newtheorem{cor}[thm]{Corollary} -%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HEADINGS - -\def\t{{\bf t}} %%%%%%%%%% hitting time -\def\r{{\bf r}} %%%%%%%%%% recurrence time -\def\w{{\bf w}} %%%%%%%%%% waiting time - -\newcommand{\caA}{{\mathcal A}} -\newcommand{\caB}{{\mathcal B}} -\newcommand{\caC}{{\mathcal C}} -\newcommand{\caD}{{\mathcal D}} -\newcommand{\caE}{{\mathcal E}} -\newcommand{\caF}{{\mathcal F}} -\newcommand{\caG}{{\mathcal G}} -\newcommand{\caH}{{\mathcal H}} -\newcommand{\caI}{{\mathcal I}} -\newcommand{\caJ}{{\mathcal J}} -\newcommand{\caK}{{\mathcal K}} -\newcommand{\caL}{{\mathcal L}} -\newcommand{\caM}{{\mathcal M}} -\newcommand{\caN}{{\mathcal N}} -\newcommand{\caO}{{\mathcal O}} -\newcommand{\caP}{{\mathcal P}} -\newcommand{\caQ}{{\mathcal Q}} -\newcommand{\caR}{{\mathcal R}} -\newcommand{\caS}{{\mathcal S}} -\newcommand{\caT}{{\mathcal T}} -\newcommand{\caU}{{\mathcal U}} -\newcommand{\caV}{{\mathcal V}} -\newcommand{\caW}{{\mathcal W}} -\newcommand{\caX}{{\mathcal X}} -\newcommand{\caY}{{\mathcal Y}} -\newcommand{\un}{\underline} -\newcommand{\Lt}{\tilde{L}} -\newcommand{\ct}{\tilde{c}} -\newcommand{\peet}{\tilde{\pee}} -\newcommand{\mut}{\tilde{\mu}} -\newcommand{\pt}{\tilde{p}} -\newcommand{\qaz}{\mathbb{L}} -\newcommand{\bix}{\vec{x}} -\newcommand{\muT}{\mu_{T_L,T_R}} -%%%%%%%%% - -% \usepackage{verbatim} -% \usepackage[active,tightpage]{preview} -% \setlength\PreviewBorder{5pt}% -% %%%> -% -% \usepackage{ifthen} -% \usepackage{amsmath} -\usetikzlibrary{arrows,calc,intersections} - - -\newcommand{\note}[1]{\todo[inline, color=white]{#1}} -\newcommand{\col}[1]{\color{magenta} {#1}} -\newcommand{\colo}[1]{\color{red} {#1}} - - - - -%%%%%%%%%%%%%%%%%%%%%%5 - -% \newcommand{\quiver}{ -% \begin{tikzpicture} -% \foreach \a in {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} { -% \begin{scope}[shift={(0.7*\a,0)}] -% \draw (0.3*\a,0) circle (0.3cm); -% \draw[black,thick] (0.3*\a+0.3,0)--(0.3*\a+0.7,0); -% \node [below] at (0.3*\a,-0.5) {$\a$}; -% \end{scope} -% } -% \draw (16,0) circle (0.3cm); -% \node [below] at (16,-0.5) {$16$}; -% \foreach \a in {10,9,8,7,6,5,4,3,2,1} { -% \begin{scope}[shift={(17-\a,0)}] -% \node at (0,0) {$\a$}; -% \end{scope} -% } -% \node at (1,0) {$4$}; -% \node at (2,0) {$8$}; -% \node at (3,0) {$9$}; -% \node at (4,0) {$10$}; -% \node at (5,0) {$10$}; -% \node at (6,0) {$10$}; -% \draw[black,thick] (2,0.3) -- (2,0.7); -% \draw (1.7,0.7) rectangle (2.3,1.3); -% \node at (2,1) {$3$}; -% \draw[black,thick] (4,0.3) -- (4,0.7); -% \draw (3.7,0.7) rectangle (4.3,1.3); -% \node at (4,1) {$1$}; -% \draw[black,thick] (7,0.3) -- (7,0.7); -% \draw (6.7,0.7) rectangle (7.3,1.3); -% \node at (7,1) {$1$}; -% \end{tikzpicture} -% } - -% \usepackage{pgfplots} - - -\newcommand{\graph}{ -\begin{tikzpicture}[scale=.7] -% \pgfplotsset{% -% width=.2\textwidth, -% height=0.5\textwidth -% } -\draw[gray, thick] (1,-1.5)--(0,0) -- (2,3)--(4,3.4)--(5.0,2)--(4.9,1)--(3.0,-1.2)--(1,-1.5); -\tikzstyle myBG=[line width=3.5pt,opacity=1.0] -% -\draw[white,myBG] (3.2,1.5) -- (5.2,3); -\draw[gray, thick] (3.2,1.5) -- (5.2,3); -% -\draw[gray, thick] (0,0)--(-1.5,0); -\draw[gray, thick] (3,-1.2)--(4,-2); -\draw[gray, thick] (4,3.4)--(4.3,4.6); -\draw[gray, thick] (1,-1.5)--(2,0.2)--(0,0); -\draw[gray, thick] (2,0.2)--(4.9,1); -\draw[gray, thick] (3,-1.2)--(2,0.2)--(3.2,1.5)--(2,3); -\draw[gray, thick] (3.2,1.5)--(4,3.4); -\draw[gray, thick] (3.2,1.5)--(5,2); -\draw[gray, thick] (4,3.4)--(5.2,3)--(5.7,2.2)--(5.7,1.3)--(4.9,1); -\draw[gray, thick] (5.7,2.2)--(5,2); -% -% -% -\filldraw[black!70] (0,0) circle (2pt); -\filldraw[black!70] (1,-1.5) circle (2pt); -\filldraw[black!70] (2,3) circle (2pt); -\filldraw[black!70] (4,3.4) circle (2pt); -\filldraw[black!70] (5,2) circle (2pt); -\filldraw[black!70] (4.9,1) circle (2pt); -\filldraw[black!70] (2,0.2) circle (2pt); -\filldraw[black!70] (3.2,1.5) circle (2pt); -% \filldraw[black!70] (5.7,1.3) circle (2pt); -\filldraw[black!70] (5.7,2.2) circle (2pt); -\filldraw[black!70] (5.2,3) circle (2pt); -\filldraw[black!70] (3,-1.2) circle (2pt); -% -% -\filldraw[black!70] (-1.5,0) circle (2pt) node[anchor=east] {$\Gamma_3,T_3$}; -\filldraw[white] (-1.5,0) circle (1pt); -\filldraw[black!70] (4,-2) circle (2pt) node[anchor=west] {$\Gamma_2,T_2$}; -\filldraw[white] (4,-2) circle (1pt); -\filldraw[black!70] (4.3,4.6) circle (2pt) node[anchor=west] {$\Gamma_1,T_1$}; -\filldraw[white] (4.3,4.6) circle (1pt) ; -\end{tikzpicture} +\usepackage[utf8]{inputenc} % why not type "Bézout" with unicode? +\usepackage[T1]{fontenc} % vector fonts plz +\usepackage{newtxtext,newtxmath} % Times for PR +\usepackage[ + colorlinks=true, + urlcolor=purple, + citecolor=purple, + filecolor=purple, + linkcolor=purple +]{hyperref} % ref and cite links with pretty colors +\usepackage{xcolor} + +\signature{ + Jaron Kent-Dobias \& Jorge Kurchan } -% -\newcommand{\graphh}{ -\begin{tikzpicture}[scale=.7] -\draw[gray, thick] (1,-1.5)--(0,0) -- (2,3)--(4,3.4)--(5.0,2)--(4.9,1)--(3.0,-1.2)--(1,-1.5); -\tikzstyle myBG=[line width=3.5pt,opacity=1.0] -% -\draw[white,myBG] (3.2,1.5) -- (5.2,3); -\draw[gray, thick] (3.2,1.5) -- (5.2,3); -% -\draw[gray, thick] (0,0)--(-1.5,0); -\draw[gray, thick] (3,-1.2)--(4,-2); -\draw[gray, thick] (4,3.4)--(4.3,4.6); -\draw[gray, thick] (1,-1.5)--(2,0.2)--(0,0); -\draw[gray, thick] (2,0.2)--(4.9,1); -\draw[gray, thick] (3,-1.2)--(2,0.2)--(3.2,1.5)--(2,3); -\draw[gray, thick] (3.2,1.5)--(4,3.4); -\draw[gray, thick] (3.2,1.5)--(5,2); -\draw[gray, thick] (4,3.4)--(5.2,3)--(5.7,2.2)--(5.7,1.3)--(4.9,1); -\draw[gray, thick] (5.7,2.2)--(5,2); -% -% -% -\filldraw[black!70] (0,0) circle (2pt); -\filldraw[black!70] (1,-1.5) circle (2pt); -\filldraw[black!70] (2,3) circle (2pt); -\filldraw[black!70] (4,3.4) circle (2pt); -\filldraw[black!70] (5,2) circle (2pt); -\filldraw[black!70] (4.9,1) circle (2pt); -\filldraw[black!70] (2,0.2) circle (2pt); -\filldraw[black!70] (3.2,1.5) circle (2pt); -% \filldraw[black!70] (5.7,1.3) circle (2pt); -\filldraw[black!70] (5.7,2.2) circle (2pt); -\filldraw[black!70] (5.2,3) circle (2pt); -\filldraw[black!70] (3,-1.2) circle (2pt); -% -% -\filldraw[black!70] (-1.5,0) circle (2pt) node[anchor=east] {$\Gamma_3,T$}; -\filldraw[white] (-1.5,0) circle (1pt); -\filldraw[black!70] (4,-2) circle (2pt) node[anchor=west] {$\Gamma_2,T$}; -\filldraw[white] (4,-2) circle (1pt); -\filldraw[black!70] (4.3,4.6) circle (2pt) node[anchor=west] {$\Gamma_1,T$}; -\filldraw[white] (4.3,4.6) circle (1pt) ; -\end{tikzpicture} +\address{ + Laboratoire de Physique \\ + Ecole Normale Sup\'erieure \\ + 24, rue Lhomond \\ + 75005 Paris } -\setstretch{1.24} - \begin{document} - -\title{{\bf COVER LETTER \\`Complex complex landscapes'}} -%\footnote{{\bf Key-words}: } -%}} - -\author{ -Jaron Kent-Dobias - and -Jorge Kurchan +\begin{letter}{ + Editorial Office\\ + Physical Review Letters\\ + 1 Research Road\\ + Ridge, NY 11961 } -\maketitle - - - -\vspace{1.cm} - - -The subject of `Complex Landscapes', which started in the spin-glass literature, is concerned with functions (landscapes) of many variables, having a multiplicity of minimums, which are the objects of interest. Apart from its obvious interest for glassy systems, it has found a myriad applications in many domains: Computer Science, Ecology, Economics, Biology \cite{mezard2009information}. - -In the last few years, a renewed interest has developed for landscapes for which the variables are complex. There are a few reasons for this: {\em i)} in Computational Physics, there is the main obstacle of the `sign problem', and a strategy has emerged to attack it deforming the sampling space into complex variables. This is a most natural and promising path, and any progress made will have game-changing impact in solid state physics and lattice-QCD \cite{Cristoforetti_2012_New,Scorzato_2016_The}. -{\em ii)} At a more basic level, following the seminal work of E. Witten \cite{Witten_2010_A,Witten_2011_Analytic}, there has been a flurry of activity concerning the very definition of quantum mechanics, which requires also that one move into the complex plane. - -In all these cases, just like in the real case, one needs to know the structure of the `landscape', where are the saddle points and how they are connected, typical questions of `complexity'. -However, to the best of our knowledge, there are no studies extending the methods of the theory of -complexity to -complex variables. -We believe our paper will open a field that may find -numerous applications and will widen our theoretical view of complexity in general. - - +\opening{} + +The subject of `Complex Landscapes,' which started in the spin-glass +literature, is concerned with functions (landscapes) of many variables, having +a multiplicity of minimums, which are the objects of interest. Apart from its +obvious interest for glassy systems, it has found a myriad applications in +many domains: Computer Science, Ecology, Economics, Biology +\cite{Mezard_2009_Information}. + +In the last few years, a renewed interest has developed for landscapes for +which the variables are complex. There are a few reasons for this: {\em i)} in +Computational Physics, there is the main obstacle of the `sign problem', and a +strategy has emerged to attack it deforming the sampling space into complex +variables. This is a most natural and promising path, and any progress made +will have game-changing impact in solid state physics and lattice-QCD +\cite{Cristoforetti_2012_New,Scorzato_2016_The}. {\em ii)} At a more basic +level, following the seminal work of E. Witten +\cite{Witten_2010_A,Witten_2011_Analytic}, there has been a flurry of activity +concerning the very definition of quantum mechanics, which requires also that +one move into the complex plane. + +In all these cases, just like in the real case, one needs to know the structure +of the `landscape', where are the saddle points and how they are connected, +typical questions of `complexity'. However, to the best of our knowledge, +there are no studies extending the methods of the theory of complexity to +complex variables. We believe our paper will open a field that may find +numerous applications and will widen our theoretical view of complexity in +general. + +\closing{Sincerely,} +\end{letter} + +\bibliographystyle{unsrt} \bibliography{bezout} - \end{document} - - - - - - - - - - - - - - - -\section{The Kipnis-Marchioro-Presutti model} - -Consider the following process: -\begin{itemize} -\item -choose a pair of neighbouring sites and completely -exchange energy between them -\item -if the site is one of the borders, exchange completely energy with the bath. -\end{itemize} -each choice with probability $1/(N+1)$. From here onwards, we shall denote -$\tau$ a large time, sufficient for any two-site thermalisation. - -The evolution operator in one step is: -\begin{eqnarray} -U &=& \frac{1}{N+1} \left[ e^{-\tau L_1^*} + e^{-\tau L_N^*} + \sum_{i=1}^{N-1} e^{-\tau L^*_{i,i+1}} \right] -\nonumber \\ -&=& \frac{1}{N+1} \left[ e^{-2\tau (T_1 K^-_1 + K^o_1 + k) } + e^{-2\tau(T_L K^-_L + K^o_L +k) } - + \sum_{i=1}^{N-1} e^{ \frac{-\tau}{k} -(K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1} -+ 2k^2 )} \right] \nonumber \\ -~ -\end{eqnarray} -and the dynamics after $n$ steps is given by $U^n$. -Because we are considering large $\tau$, the terms in the sums are in fact projectors -onto the lowest eigenvalues of the exponents. We shall however keep the notation as it is -in order to stress the symmetry of the bulk terms. - -Let us now show that - at the level of energies - this dynamics yields the KMP process -{\em for $k=\frac{1}{2}$, that is $m=2$}. -Consider first a general $m$, and two neighbouring sites of coordinates $x = \{x_\alpha\}_{\alpha=1,\ldots,m}$, -$y=\{y_\alpha\}_{\alpha=1,\ldots,m}$. -If they are completely thermalised, it means that (cfr (\ref{bb}): -the joint probability density satisfies -\begin{equation} -\left(x_{\alpha} -\frac{\partial}{\partial y_{\beta}} - -y_{\beta}\frac{\partial}{\partial x_{\alpha}} - \right) p(x,y)=0 -\end{equation} -It is easy to see that this may happen if and only if -\begin{equation} -p(x,y)= p[ \sum_\alpha (x_\alpha^2+y_\alpha^2)] -\end{equation} -In particular let us consider the microcanonical measure -\begin{equation} -p(x,y)= \delta[ \sum_\alpha (x_\alpha^2+y_\alpha^2)-\epsilon ] -\end{equation} -Defining new random variables $\epsilon_1$ and $\epsilon_2$ -as the energies of the neighboring sites -\be -\epsilon_1 = \sum_\alpha x_\alpha^2 -\ee -\be -\epsilon_2 = \sum_\alpha y_\alpha^2 -\ee -then their joint probability density will be -\begin{equation} -p(\epsilon_1,\epsilon_2) = \frac{S_m^2}{4} \delta(\epsilon_1+\epsilon_2-\epsilon) -\epsilon_1^{\frac{1}{2}-1} \epsilon_2^{\frac{1}{2}-1} -\end{equation} -where $S_m$ denotes the surface of the unit sphere in $m$ dimension -\be -S_m = \frac{m \pi^{m/2}}{\Gamma(\frac{1}{2}+1)} -\ee -{\em This yields a flat distribution for $m=2$, i.e. the KMP model.} - - - - -\section{Dual model} - - -The expectation value of an observable at time $t$, starting from an initial -distribution $|init\rangle$ is: - - -\begin{equation} - = \langle - | O e^{-Ht} | init \rangle -\end{equation} -where $\langle - |$ is a constant. -Taking the adjoint $ x_i \to x_i$, $\partial_i \to -\partial_i$: -\begin{equation} - = \langle - | O e^{-Ht} | init \rangle= \langle init| e^{-H^\dag t} O |- \rangle -\end{equation} -where $H^\dag(K^\pm, K^o)=H( K^\pm, -K^o)$ (because of the change of signs of the derivatives) -\begin{eqnarray} --H^\dag&=& \frac{4}{1} \sum_i \left( -K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1} -+ \frac{m^2}{8} \right) -\nonumber\\ -&+&2 \left(T_1 K^-_1 + K^o_1 + \frac{1}{4}\right) -+2 \left(T_L K^-_L + K^o_L +\frac{1}{4}\right) -\end{eqnarray} -In particular, for the generating function we had chosen - \begin{equation} - O |- \rangle = \Pi_i \frac{x_i^{2 \xi_i}}{(2\xi_i -1)!!}|-\rangle=|\xi_1,...,\xi_N\rangle -\end{equation} - -Considered as an operator acting on `particle number', as counted by $K^o$, $H^\dag$ does not -conserve the probability. -The trick we used can be expressed as follows: introduce the particle number $\xi_o$ and $\xi_{N+1}$ -and the operators $A^+_o$ and $A^+_{N+1}$, which create particles in boundary sites with unit rate. -We consider now the {\em enlarged} process generated by -\begin{eqnarray} --H^{dual}&=& \frac{4}{1} \sum_i \left( -K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1} -+ \frac{m^2}{8} \right) -\nonumber\\ -&+&2 \left(A^+_o K^-_1 + K^o_1 - \frac{1}{4}\right) -+2 \left( A^+_{N+1} K^-_N + K^o_N -\frac{1}{4}\right) -\end{eqnarray} -which conserves ({\it seems}) particle number and probability. -We wish to prove that: - -\begin{eqnarray} - &=& \langle init| e^{-H^\dag t} |\xi_1,...,\xi_N \rangle \nonumber \\ -&=& \sum_{\xi_o,\xi_{N+1}} - T_1^{\xi_o} T_{L}^{\xi_{N+1}} \langle \xi_o \xi_{N+1} | \otimes \langle - init| e^{-H^{dual} t} |\xi_1,...,\xi_N \rangle \otimes - |\xi_o=0,\xi_{N+1}=0 \rangle \nonumber \\ -\label{ggg} -\end{eqnarray} - - -I think the proof is obvious, because developing the exponential of $H^{dual}$ all the $A^+$ can be -collected because they commute with everything else, and the experctation value -\begin{equation} -\sum_{\xi_o} T_1^{\xi_o} \langle \xi_o |[A^+_o]^r |\xi_o=0 \rangle = T_1^r - \end{equation} -just puts back as many $T$'s as necessary. - -I do not know exactly how to use (\ref{ggg}) in general, but in the large time limit the evolution -voids the chain of particles - - -\section{Dual of KMP} - -I think that the argument runs through without changes if we use $U$ defined for the KMP model. -We just have to note that each term corresponds to an evolution of two sites (or a site and the bath) -and so in the dual it corresponds to sharing the particles between those two sites, or emptying -the sites at the borders. - -{\bf: NOTE by Cristian} - -We can check that the duality function chosen in the original paper by KMP -do coincide with the duality function of our process for $m=2$ (and the random -variables are the energies). -Indeed we start from -\be -f(x,\xi) = \prod_i (\sum_{\alpha} x_{i,\alpha}^2)^{\xi} -\ee -When the bath have equal temperature (let's us choose T=1) then the stationary -measure is -\be -\pi(x) = \prod_i \frac{1}{(2\pi)^{m/2}} \exp\left(-\sum_{\alpha}\frac{x_{i,\alpha}^2}{2}\right) -\ee -Let us focus on a fixed $i$ (that is in this short computation we write $x$ for $x_i$). -We have -\begin{eqnarray} -\E(f(x,\xi)) -&=& -\int dx_1 \cdots \int dx_m (x_1^2+\ldots + x_m^2)^{\xi} \exp-\left(\frac{x_{1}^2}{2}+\ldots+\frac{x_{1}^2}{2}\right) -\nonumber \\ -& = & -\int dr S_m r^{2\xi} \exp-\left(\frac{r^2}{2}\right) -\nonumber \\ -& = & -\frac{\frac{1}{2}\Gamma(\frac{1}{2}+\xi)}{\Gamma(\frac{m}{2}+1)} 2^\xi -\nonumber \\ -\end{eqnarray} -Special cases: -\begin{itemize} -\item $m=1$ - -$$ -\E(f(x,\xi)) = (2\xi-1)!! -$$ -where one uses that $\Gamma(\frac{1}{2}+\xi)= \frac{\sqrt{\pi}(2\xi-1)!!}{2^{\xi}}$ and $\Gamma(\frac{3}{2}) = \frac{\sqrt{\pi}}{2}$ -\item $m=2$ - -$$ -\E(f(x,\xi)) = \xi! 2^\xi -$$ -where one uses that $\Gamma(1+\xi)= \xi!$ and $\Gamma(2) = 1$. -Thus, if one defines the energies as -$$ -\epsilon_i = \sum_{\alpha}\frac{x_{i,\alpha}^2}{2} -$$ -one recover the choice of KMP for the dual function -$$ -O(\epsilon_i,\xi) = \prod_i \frac{\epsilon_i^{\xi_i}}{\xi_i!} -$$ -\end{itemize} - - - - - - -\section{ Dual of SEP: here goes an outline of how to proceed for the SSEP} - - -\be -H=-L_{SEP}^* -\ee -\begin{eqnarray} -L^*_{SEP} &=& \frac{1}{j} - \sum_i \left(J^+_i J^-_{i+1} + J^-_i J^+_{i+1} + 2 J^o_i J^o_{i+1} - - 2 j^2 \right)\\ -&+&\alpha (J^-_1 - J^o_1-j) + \gamma (J^+_1 + J^o_1-j) -+ \delta (J^-_L - J^o_L-j) + \beta (J^+_L + J^o_L-j)\nonumber -\end{eqnarray} -The factor $1/j$ is analogous to the factor $1/m$ in (\ref{bb}). -The operators $J^+_i, J^-_i, J^o_i$ act on the Hilbert space - corresponding to $0 \le r \le n$ particles per site $\otimes_i |r\rangle_i$ -as follows: -\begin{eqnarray} -J^+_i |r\rangle_i &=& (2j-r) |r+1\rangle_i \nonumber \\ - J^-_i |r\rangle_i &=& r |r-1\rangle_i \nonumber \\ -J^o_i |r\rangle_i &=& (r-j) |r\rangle_i -\end{eqnarray} - -The conjugation properies are as follows. There is an operator $Q$, -{\em diagonal in this basis } (I give the expression below), such that: -\begin{equation} -[J^+_i]^\dag = Q[J^-_i]Q^{-1} \qquad [J^-_i]^\dag = Q[J^+_i]Q^{-1} -\end{equation} -while $[J^z_i]^\dag=J^z_i= Q[J^z_i]Q^{-1}$. - - - -The expectation value of an observable at time $t$, starting from an initial -distribution $|init\rangle$ is: - - -\begin{equation} - = \langle - | O e^{-Ht} | init \rangle -\end{equation} -where $\langle - |$ is a constant. -As before: -\begin{eqnarray} - &=& \langle - | O e^{-Ht} | init \rangle= -\langle init| e^{-H^\dag t} O |- \rangle= \nonumber \\ -& & \langle init|Q e^{-{\bar H} t} Q^{-1}O |- \rangle= -\langle init|Q \; e^{-{\bar H} t} Q^{-1}O Q Q^{-1} |- \rangle -\end{eqnarray} - - -{\em $ {\bar H}$ is the same operator as $H$ but with -$J^+$ substituted by $J^-$, and vice-versa.} -Our job is now to make the rotation that will eliminate the $J^+$'s in -the border terms of $ {\bar H}$. - - - - -The transformation is of the form -\begin{eqnarray} -e^{\mu J^+} J^+ e^{-\mu J^+}&=&J^+ \nonumber \\ -e^{\mu J^+} J^o e^{-\mu J^+} &=&J^o - \mu J^+ \nonumber \\ -e^{\mu J^+} J^- e^{-\mu J^+} &=& J^- + 2 \mu J^o - \mu^2 J^+ -\end{eqnarray} -for suitable $\mu$. -Putting $\mu=-1$, we get that {\bf the bulk term is left invariant, -precisely because of the SU(2) symmetry}. The boundary terms {\bf of $\bar H$} -transform further into: -\begin{eqnarray} -& e^{\mu J^+_1} \left[ \alpha (J^+_1 - J^o_1-j) + \gamma (J^-_1 + J^o_1-j) -\right] e^{-\mu J^+_1}= \nonumber \\ & \gamma(J^-_1 + 2 \mu J^o_1 - \mu^2 -J^+_1 +J^o_1 - \mu J^+_1 -j) + \alpha (J^+_1 - J^o_1 + \mu J^+_1 -j) -= \nonumber \\ -& \alpha(- J^o_1 -j) + \gamma (J^-_1 -J^o_1 -j) -\label{trans} -\end{eqnarray} -which is of the same form we have in the $SU(1,1)$ model. -The same can be done in the other boundary term. - -We thus get: -\begin{eqnarray} - &=& \langle - | O e^{-Ht} | init \rangle= -\langle init|Q \; e^{-{\bar H} t} Q^{-1}O Q Q^{-1} |- \rangle \nonumber\\ -&= & \langle init|Q e^{ \sum_i J^+_i} e^{-{\bar H_{dual}} t} - e^{ -\sum_i J^+_i} Q^{-1}O Q Q^{-1} |- \rangle \nonumber \\ -&= & \langle init|Q e^{ \sum_i J^+_i} e^{-{\bar H_{dual}} t} - e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i J^+_i} - e^{ -\sum_i J^+_i} |- \rangle \nonumber \\ - &= & \langle init|Q Q^{-1} e^{ \sum_i J^+_i} e^{-{\bar H_{dual}} t} - e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i J^+_i} |-_{dual} \rangle -\end{eqnarray} -where we have defined $H_{dual}$ as the transformed Hamiltonian. - -We now have to study $ |-_{dual} \rangle \equiv e^{ -\sum_i J^+_i} - Q^{-1} |- \rangle$ -Because we know that terms like those proportional to $\gamma$ and $\alpha$ -anihilate the measure to the left: -\begin{eqnarray} -& & \langle - | (J^-_i - J^o_i-j) =0\nonumber \\ -& & \langle - | (J^+_i + J^o_i-j) =0 -\end{eqnarray} -this implies that in the new variables and following all the transformations -(cfr (\ref{trans})): -\begin{eqnarray} -& & (J^-_i -J^o_i -j)e^{ -\sum_i J^+_i} Q^{-1} |- \rangle= 0 \nonumber \\ -& & ( -J^o_i -j)e^{ -\sum_i J^+_i} Q^{-1} |- \rangle =0 -\end{eqnarray} -which implies that $( J^o_i +j) |-_{dual} \rangle= J^-_i |-_{dual} \rangle=0$, -and this means that -\begin{equation} -J^o_i |-_{dual} \rangle =-j |-_{dual} \rangle -\end{equation} -is the vacuum of particles in this base! - -All in all we are left with: -\begin{eqnarray} - &=& \langle init|Q \; e^{ \sum_i J^+_i} - e^{-{\bar H_{dual}} t} e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i J^+_i} - |-_{dual} \rangle \nonumber \\ - &=& \langle init|Q \; e^{ \sum_i J^+_i} - e^{-{\bar H_{dual}} t} {\hat O} - |-_{dual} \rangle -\end{eqnarray} -where $ {\hat O} \equiv e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i -J^+_i}$. We have to start with the -vacuum $ |-_{dual} \rangle$, then apply $ {\hat O} $, (which creates -particles because it contains many $J^+$'s), and then there is the -dual evolution. The final configuration has to be overlapped with -$\langle f| \equiv \langle init|Q \; e^{ \sum_i J^+_i}$. -For large times, there will be no particle left except in the two extra sites -in the borders. - -\section{Constructive approach} - -Here I would like to say the following: if I have a modle of transport -of which I do not know if it has a Dual one, I can proceed as follows. -I take a small version with no baths and a few sites. I write the -evolution operator and I diagonalise it numerically. If there is a -non abelian group, the eigenvalues will be in degenerate -multiplets. Hence, if I find multiplets, then very probably there is a -dual model, if I do not, then there cannot be one. It would be nice -to show it with the KMP model with two or three sites. - -Another thing is to consider higher groups. $SU(3)$ has already been studied -for two kinds of particles. We know how to map to a dual in that -case, if it has not been done yet. - -\newpage -{\bf THIS PART HAS BEEN WRITTEN BY CRISTIAN} - -The aim of this file is to set notation in the two languages. -Let us focus on duality for the case we already know: -SU(1,1) model with $k=1/4$. To fix ideas let us consider only -the bulk part of the system with periodic boundary conditions. - -\section{Probabilistic language} -We have two stochastic Markovian process with continuous time. -\begin{itemize} -\item -\underline{The first process $X(t) \in \R^N$} is given by the Fokker-Planck equation: -\be -\frac{dp(x,t)}{dt} = L^* p(x,t) -\ee -where $p(x,t)$ represents the probability density -for the process $X(t)$, that is -$$ -p(x,t)dx = Prob (X(t)\in (x,x+dx)) -$$ -and -\begin{eqnarray} -L^*p(x,t) -& = & -\sum_i L^*_{i,i+1} p(x,t) \noindent\\ -& = & -\sum_i \left(x_i\frac{\partial}{\partial x_{i+1}} -x_{i+1}\frac{\partial}{\partial x_{i}}\right)^2 p(x,t) -\end{eqnarray} -\item -\underline{The second process $\Xi(t) \in \N^N$} is characterized by the master equation -\be -\frac{dP(\xi,t)}{dt} = {\cal L^*} P(\xi,t) -\ee -where $P(\xi,t)$ represents the -probability mass function for the process $\Xi(t)$, that is -$$ -P(\xi,t) = Prob (\Xi(t) = \xi) -$$ -and -\begin{eqnarray} -{\cal L}^*P(\xi,t) -& = & -\sum_i {\cal L}^*_{i,i+1}P(\xi,t) \nonumber \\ -& = & -\sum_i 2\xi_i \left(1+ 2\xi_{i+1}\right) P(\xi^{i,i+1},t) -+ \left(1+2\xi_i\right)2\xi_{i+1} P(\xi^{i+1,i},t) \nonumber\\ -& & - 2\left(2\xi_i + \frac{1}{2}\right)\left(2\xi_{i+1} + \frac{1}{2}\right) P(\xi,t) -+ \frac{1}{2}P(\xi,t) -\end{eqnarray} -and $\xi^{i,j}$ denotes the configuration that is obtained by removing one particle -at $i$ and adding one particle at $j$. -\newpage -\item -\underline{In general, Duality means the following}: -there exists functions $O(x,\xi): \R^N \times \N^N \mapsto \R$ such that -the following equality between expectations for the two processes holds -\begin{center} -\fbox{\parbox{9cm}{ -\be -\E_x( O(X(t),\xi)) =\E_\xi(O(x,\Xi(t))) -\ee -}} -\end{center} -The subscripts in the expectations denote the initial conditions of the processes: -$X(0) =x$ on the left and $\Xi(0) = \xi$ on the right. -More explicitly we have: -\be -\int dy O(y,\xi) p(y,t; x,0) = \sum_{\eta} O(x,\eta) P(\eta,t; \xi,0) -\ee -To prove duality it is sufficient to show that -\be -\label{main} -L O(x,\xi) = {\cal L} O(x,\xi) -\ee -where $L$, that is working on $x$, is the adjoint of $L^*$ and ${\cal L}$, that is working on $\xi$, -is the adjoint of ${\cal L}^*$. -Indeed we have: -\begin{eqnarray} -\E_x( O(X(t),\xi)) -& = & -\int dy O(y,\xi) p(y,t; x,0) \\ -& = & -\sum_{\eta} \int dy O(y,\eta) p(y,t; x,0) \delta_{\eta,\xi} \\ -& = & -\sum_{\eta} \int dy O(y,\eta) e^{tL^*} \delta(y-x) \delta_{\eta,\xi} \\ -& = & -\sum_{\eta} \int dy e^{tL} O(y,\eta) \delta(y-x) \delta_{\eta,\xi} \\ -& = & -\sum_{\eta} \int dy e^{t{\cal L}} O(y,\eta) \delta(y-x) \delta_{\eta,\xi} \\ -& = & -\sum_{\eta} \int dy O(y,\eta) e^{t{\cal L}^*} \delta(y-x) \delta_{\eta,\xi} \\ -& = & -\sum_{\eta} \int dy O(y,\eta) P(\eta,t;\xi,0) \delta(y-x) \\ -& = & -\sum_{\eta} O(x,\eta) P(\eta,t;\xi,0) \\ -& = & -\E_\xi(O(x,\Xi(t))) -\end{eqnarray} -\newpage -\item -\underline{For the present case, the proper function to be considered are} -\be -\label{Oss} -O(x,\xi) = \prod_{i} \frac{x_i^{2\xi_i}}{(2\xi_i-1)!!} -\ee -Let us check Eq.(\ref{main}) on this choice. We have -\begin{eqnarray*} -&& -L_{i,i+1} O(x,\xi) -= -\left(\prod_{k\not\in\{i,i+1\}} \frac{x_k^{2\xi_k}}{(2\xi_k -1)!!}\right) -\times -\\ -&&\left(2\xi_{i+1}(2\xi_{i+1}-1) \frac{x_i^{2\xi_i+2}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}-2}}{(2\xi_{i+1} -1)!!} -- 2\xi_{i}(2\xi_{i+1}+1) \frac{x_i^{2\xi_i}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}}}{(2\xi_{i+1} -1)!!} -\right. -\\ -&&\left.- 2\xi_{i+1}(2\xi_{i}+1) \frac{x_i^{2\xi_i}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}}}{(2\xi_{i+1} -1)!!} -+2\xi_{i}(2\xi_{i}-1) \frac{x_i^{2\xi_i-2}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}+2}}{(2\xi_{i+1} -1)!!} -\right) -\\ -\end{eqnarray*} -which implies -\begin{eqnarray*} -L_{i,i+1} O(x,\xi) -& = & -\Big(2\xi_{i+1}(2\xi_{i}+1) [O(x,\xi^{i+1,i})-O(x,\xi)] -\\ -&& -\;+\;2\xi_{i}(2\xi_{i+1}+1) [O(x,\xi^{i,i+1})-O(x,\xi)]\Big) -\\ -& = & -{\cal L}_{i,i+1} O(x,\xi) -\end{eqnarray*} - -\item \underline{How to find the proper normalization?} -Suppose that we are in the general following situation: -\begin{itemize} -\item We have a generator $L$ of a Markov process $X(t)$. -\item We know its stationary measure $\pi(x)$: -\be -L^* \pi(x) = 0 -\ee -\item We have functions $f(x,\xi)$ for which the following holds: -\be -\label{aaa} -L f(x,\xi) = \sum_{\eta} r(\xi,\eta) f(x,\eta) -\ee -with -\be -\label{bbb} -r(\xi,\eta) \ge 0 \qquad \mbox{if}\quad \xi \neq \eta -\ee -\be -\label{ccc} -r(\xi,\xi) \le 0 \qquad \mbox{if}\quad \xi = \eta -\ee -\end{itemize} -The matrix $r$ resembles the generator of a dual Markov process, -but it is not because it does not satisfy the condition -$\sum_{\eta} r(\xi,\eta) = 0$. -In order to find the generator of the dual process we proceed as -follows: -\begin{enumerate} -\item Define -\be -m(\xi) = \int f(x,\xi) \pi(x) dx -\ee -\item Define -\be -q(\xi,\eta)= m(\xi)^{-1} r(\xi,\eta) m(\eta) -\ee -\item Define -\be -O(x,\xi) = m(\xi)^{-1} f(x,\xi) -\ee -\end{enumerate} -Then the matrix $q$ can be seen as the generator of the dual Markov process $\Xi(t)$, that is -\be -L O(x,\xi) = \sum_{\eta} q(\xi,\eta) O(x,\eta) -\ee -with -\be -q(\xi,\eta) \ge 0 \qquad \mbox{if}\quad \xi \neq \eta -\ee -\be -q(\xi,\xi) \le 0 \qquad \mbox{if}\quad \xi = \eta -\ee -\be -\sum_{\eta} q(\xi,\eta) = 0 -\ee -Indeed we have: -\begin{eqnarray} -L O(x,\xi) -&=& -L m(\xi)^{-1} f(x,\xi) \nonumber \\ -&=& -m(\xi)^{-1} \sum_{\eta} r(\xi,\eta) f(x,\eta) \nonumber \\ -&=& -m(\xi)^{-1} \sum_{\eta} m(\xi)q(\xi,\eta) m(\eta)^{-1} m(\eta) O(x,\eta)\nonumber \\ -&=& -\sum_{\eta} q(\xi,\eta) O(x,\eta) -\end{eqnarray} -and -\begin{eqnarray} -\sum_{\eta} q(\xi,\eta) -&=& -\sum_{\eta} m(\xi)^{-1} r(\xi,\eta) m(\eta) \nonumber \\ -&=& -m(\xi)^{-1} \sum_{\eta} r(\xi,\eta) \int f(x,\eta) \pi(x) dx \nonumber \\ -&=& -m(\xi)^{-1} \int L f(x,\xi) \pi(x) dx \nonumber \\ -&=& -m(\xi)^{-1} \int f(x,\xi) L^* \pi(x) dx \nonumber \\ -&=& -0 -\end{eqnarray} - - - -\item \underline{Our case}. Among all the invariant measure -of the $X(t)$ process, namely the normalized function with -spherical symmetry $p(x) = p(\sum_i x_i^2)$, a special role is -played by the Gibbs measure -$$ -\pi(x) -= \left(\frac{\beta}{2\pi}\right)^{(N/2)} e^{-\beta\sum_i \frac{x_i^2}{2}} -= \left(\frac{\beta}{2\pi}\right)^{(N/2)} \prod_i e^{-\beta\frac{x_i^2}{2}} -$$ -which is selected as soon as the system is placed in contact with -thermal bath working at inverse temperature $\beta$. -Moreover: If $Z$ is a centered Gaussian, namely $Z\sim N(0,\sigma^2)$, -then -$$ -\E(Z^{2n}) = \sigma^{2n} (2n-1)!! -$$ -If one start from -$$ -f(x,\xi) = \prod_i x_i^{2\xi} -$$ -which satisfy (\ref{aaa}),(\ref{bbb}),(\ref{ccc}) and apply -the previous procedure, one arrives to (\ref{Oss}). - -{\bf Remark:} Note that, in applying the procedure, the -dependence on $\beta$ disappear!!!! -\end{itemize} - - -\section{Quantum language} - - -Here we start from a quantum spin chain -$$ -H = - 4 \sum_i \left( K^+_iK^-_{i+1} + K^-_iK^+_{i+1} -2 K^0_iK^0_{i+1} + \frac{1}{8}\right) -$$ -where the spin $K_i$'s satisfy the SU(1,1) algebra -\begin{eqnarray} -\label{commutatorsSU11} -[K_i^{0},K_i^{\pm}] &=& \pm K_i^{\pm} \nonumber \\ -{[}K_{i}^{-},K_{i}^{+}{]} &=& 2K_i^{0} -\end{eqnarray} -We are going to see the Schr\"odinger equation with imaginary time -\begin{equation} -\label{schroedinger} -\frac{d}{dt}|\psi(t) \rangle = -H |\psi(t)\rangle\;. -\end{equation} -as the evolution equation for the probability distribution of -a Markovian stochastic process. -\begin{itemize} -\item -\underline{The Hamiltonian possesses the SU(1,1) invariance}. If we define -\be -K^+ = \sum_{i} K_i^+ -\ee -\be -K^- = \sum_{i} K_i^- -\ee -\be -K^0 = \sum_{i} K_i^0 -\ee -we find that -\be -[H,K^+] = 0 -\ee -\be -[H,K^-] = 0 -\ee -\be -[H,K^0] = 0 -\ee -\item -\underline{Since $[H,K^+] = 0$} there exist a basis to study the stochastic process associated to -$H$ where \underline{$K^+$ is diagonal}. We might consider the following representation -\begin{eqnarray} -\label{Koper} -K^+_i &=& \frac{1}{2} x_{i}^2 \nonumber \\ -K^-_i &=& \frac{1}{2} \frac{\partial^2}{\partial x_{i}^2} \nonumber \\ -K^o_i &=& \frac{1}{4} \left\{\frac{\partial}{\partial x_{i}} x_{i} + - x_{i} \frac{\partial}{\partial x_{i}} \right \} -\end{eqnarray} -If we use this representation then -$$ -H = -L^* -$$ -and the probability density function for the $X(t)$ process is encoded in -the state $|\psi(t)\rangle$, namely -\begin{equation} -|\psi(t) \rangle = \int dx p(x,t) |x\rangle -\end{equation} -where we have introduced the notation $|x\rangle$ to denote a completely -localized state, that is a vector which together with its transposed -$\langle x|$ form a complete basis of a Hilbert space and its dual: -\begin{equation} -\langle x|x' \rangle = \delta(x-x') -\end{equation} -It immediately follows that -\begin{equation} -\langle x|\psi(t) \rangle = p(x,t) -\end{equation} -To compute expectation with respect to the $X(t)$ process -we introduce the flat state -\begin{equation} -\langle - | = \int dx \;\langle x| -\end{equation} -which is such that -\begin{equation} -\langle - | x\rangle = 1 -\end{equation} -Then for any observable $A = A(X(t))$ we have that its expectation value -at time $t$ can be written as -\begin{equation} -\langle A(t) \rangle_x = \int dy \,A(y)\, p(y,t;x,0) = \langle -|A| \psi(t) \rangle_x = \langle -|A e ^{-tH}| x\rangle -\end{equation} -\item -\underline{Since $[H,K^0] = 0$} there exist a basis to study the stochastic process associated to -$H$ where \underline{$K^0$ is diagonal}. We might consider the following representation -\begin{eqnarray} -\label{Koper2} -K^+_i|\xi\rangle &=& \left(\frac{1}{2} + \xi\right) |\xi+1\rangle\nonumber \\ -K^-_i|\xi\rangle &=& \xi |\xi-1\rangle\nonumber \\ -K^o_i|\xi\rangle &=& \left(\xi + \frac{1}{4}\right) |\xi\rangle -\end{eqnarray} -where $|\xi\rangle$ denotes a vector which together with its transposed -$\langle \xi|$ form a complete basis of a Hilbert space and its dual, that is -\begin{equation} -\langle \xi|\eta \rangle = \delta_{\xi,\eta} -\end{equation} -If we use this representation then -$$ -H = -{\cal L}^* -$$ -and the probability mass function for the $\Xi(t)$ process is encoded in -the state $|\phi(t)\rangle$, namely -\begin{equation} -|\phi(t) \rangle = \sum_{\xi} P(\xi,t) |\xi\rangle -\end{equation} -It immediately follows that -\begin{equation} -\langle \xi|\phi(t) \rangle = P(\xi,t) -\end{equation} -To compute expectation with respect to the $\Xi(t)$ process -we introduce the flat state -\begin{equation} -\langle -_{dual} | = \sum_{\xi} \;\langle \xi| -\end{equation} -which is such that -\begin{equation} -\langle -_{dual} | \xi\rangle = 1 -\end{equation} -Then for any observable $A=A(\Xi(t))$ we have that its expectation value -at time $t$ can be written as -\begin{equation} -\langle A(t) \rangle_\xi = \sum_{\eta}\,A(\eta)\, p(\eta,t;\xi,0) = \langle -_{dual}|A| \phi(t) \rangle_{\xi} = \langle -_{dual}|A e ^{-tH}| \xi\rangle -\end{equation} -\item -\underline{The claim is the following: Duality, in general, is going from the basis -where}\\ -\underline{one generator of the group is diagonal to a basis where another generator of}\\ -\underline{ the group is diagonal.} - -In our case we change from a basis where $K^+$ is diagonal to the base where $K^0$ is diagonal. - -\begin{eqnarray} -\langle - |\prod_i\frac{(2K_i^+)^{\xi_i}}{(2\xi_i-1)!!}|\psi(t)\rangle_x -& = & -\int dy \; \langle y |\prod_i\frac{(2K_i^+)^{\xi_i}}{(2\xi_i-1)!!} e^{tL^*}|x\rangle \nonumber \\ -& = & -\sum_{\eta} \int dy \; \langle y |\prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!}e^{tL^*}|x\rangle \langle \eta|\xi\rangle\nonumber \\ -& = & -\sum_{\eta} \int dy \; \langle y| \otimes \langle \eta| \prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!} e^{tL^*} | x\rangle \otimes|\xi\rangle\nonumber \\ -& = & -\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{tL} \prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta\rangle \nonumber \\ -& = & -\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{tL} \prod_i\frac{y^{2\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\ -& = & -\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{t{\cal L}} \prod_i\frac{y_i^{2\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\ -& = & -\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{t{\cal L}} \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\ -& = & -\sum_{\eta} \int dy \; \langle y| \otimes \langle \eta |\prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} e^{t{\cal L}^*} | x\rangle \otimes|\xi \rangle\nonumber \\ -& = & -\sum_{\eta} \int dy \; \langle \eta | \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} e^{t{\cal L}^*} |\xi \rangle \langle y | x\rangle \nonumber \\ -& = & -\sum_{\eta} \langle \eta | \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} |\phi(t)\rangle_{\xi} \nonumber \\ -& = & -\langle -_{dual} |\prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!}|\phi(t)\rangle_{\xi} -\end{eqnarray} - - -\end{itemize} - -\section{General k} - -A convenient $(2j+1)$-dimensional representation of the SU(2) algebra is given by -\begin{eqnarray} -J^+_i |n_i\rangle &=& (2j-n_i) |n_i+1\rangle \nonumber \\ -J^-_i |n_i\rangle &=& n_i |n_i-1\rangle \nonumber \\ -J^0_i |n_i\rangle &=& (n_i-j) |n_i\rangle -\end{eqnarray} -where the quantum numbers $n_i\in\{0,1,\ldots,2j\}$. -{\bf Note that in this representation the adjoint of $J^+_i$ is not -$J^-_i$, UNLESS $j=1/2$}. - -A matrix representation is: -$$ -J^+ = \left( -\begin{array}{cccc} - 0 & & & \\ - 2j & \ddots & & \\ - & \ddots & \ddots & \\ - & & 1 & 0\\ -\end{array}\right) -\qquad -J^- = \left( -\begin{array}{cccc} - 0 & 1 & & \\ - & \ddots & \ddots & \\ - & & \ddots & 2j \\ - & & & 0 \\ -\end{array}\right) -\qquad -J^0 = \left( -\begin{array}{cccc} - -j & & & \\ - & \ddots & & \\ - & & \ddots & \\ - & & & j\\ -\end{array}\right) -$$ - -In the SU(1,1) case one can use the infinite dimensional representation -\begin{eqnarray} -\label{newrepresentationsu11} -K^+_i |n_i\rangle &=& (2k+n_i) |n_i+1\rangle \nonumber \\ -K^-_i |n_i\rangle &=& n_i |n_i-1\rangle \nonumber \\ -K^0_i |n_i\rangle &=& (n_i+k) |n_i\rangle -\end{eqnarray} -where the quantum numbers $n_i\in\{0,1,2,\ldots\}$. -A matrix representation is: -$$ -K^+ = \left( -\begin{array}{cccc} - 0 & & & \\ - 2k & \ddots & & \\ - & 2k+1 & \ddots & \\ - & & \ddots & \ddots\\ -\end{array}\right) -\qquad -K^- = \left( -\begin{array}{cccc} - 0 & 1 & & \\ - & \ddots & 2 & \\ - & & \ddots & \ddots \\ - & & & \ddots \\ -\end{array}\right) -\qquad -K^0 = \left( -\begin{array}{cccc} - k & & & \\ - & k+1 & & \\ - & & k+2 & \\ - & & & \ddots\\ -\end{array}\right) -$$ -Let's check that in this representation the operator is stochastic. -I will do it for the bulk: -\begin{eqnarray} -L_{i,i+1}|n_i,n_{i+1}\rangle -&=& -(2k+n_i) n_{i+1}|n_i +1 ,n_{i+1}-1\rangle \nonumber\\ -&+& -n_i(2k+n_{i+1})|n_i -1 ,n_{i+1}+1\rangle \nonumber\\ -&+& -(-2(n_i+k)(n_{i+1}+k)+2k^2)|n_i,n_{i+1}\rangle -\end{eqnarray} -The sum of the rates is -$$ -(2k+n_i) n_{i+1}+ -n_i(2k+n_{i+1}) --2(n_i+k)(n_{i+1}+k)+2k^2 =0 -$$ - - - - - - - - - -% \end{document} -- cgit v1.2.3-54-g00ecf