From 9aa887b6e9cf240de5efbd26411d6a2aad834366 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Fri, 12 Mar 2021 15:18:53 +0100 Subject: Started converting a to r where relevant. --- fig/complexity.pdf | Bin 12732 -> 12775 bytes fig/desert.pdf | Bin 14593 -> 14218 bytes 2 files changed, 0 insertions(+), 0 deletions(-) (limited to 'fig') diff --git a/fig/complexity.pdf b/fig/complexity.pdf index b68f2cf..f9336bb 100644 Binary files a/fig/complexity.pdf and b/fig/complexity.pdf differ diff --git a/fig/desert.pdf b/fig/desert.pdf index e19484a..08d8f41 100644 Binary files a/fig/desert.pdf and b/fig/desert.pdf differ -- cgit v1.2.3-70-g09d2 From 49201233c5d8164f5d1633d13a3442f231e76d3d Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Fri, 12 Mar 2021 16:38:34 +0100 Subject: New figure that may replace egg plots. --- fig/threshold.pdf | Bin 0 -> 10063 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 fig/threshold.pdf (limited to 'fig') diff --git a/fig/threshold.pdf b/fig/threshold.pdf new file mode 100644 index 0000000..538d3d8 Binary files /dev/null and b/fig/threshold.pdf differ -- cgit v1.2.3-70-g09d2 From 29cae4315ff61a3124e77ff91fe401874e120612 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Mon, 15 Mar 2021 15:51:58 +0100 Subject: Big rewrite for clarity. --- bezout.tex | 394 +++++++++++++++++++++++++++-------------------------- fig/complexity.pdf | Bin 12775 -> 12765 bytes fig/desert.pdf | Bin 14218 -> 14242 bytes 3 files changed, 202 insertions(+), 192 deletions(-) (limited to 'fig') diff --git a/bezout.tex b/bezout.tex index f950b8c..f050707 100644 --- a/bezout.tex +++ b/bezout.tex @@ -42,11 +42,11 @@ \maketitle -Spin-glasses have long been considered the paradigm of many variable `complex -landscapes,' a subject that includes neural networks and optimization problems, -most notably constraint satisfaction \cite{Mezard_2009_Information}. The most tractable family of these -are the mean-field spherical $p$-spin models \cite{Crisanti_1992_The} (for a -review see \cite{Castellani_2005_Spin-glass}) defined by the energy +Spin-glasses are the paradigm of many-variable `complex landscapes,' a category +that also includes neural networks and optimization problems like constraint +satisfaction \cite{Mezard_2009_Information}. The most tractable family of +these are the mean-field spherical $p$-spin models \cite{Crisanti_1992_The} +(for a review see \cite{Castellani_2005_Spin-glass}) defined by the energy \begin{equation} \label{eq:bare.hamiltonian} H_0 = \frac1{p!}\sum_{i_1\cdots i_p}^NJ_{i_1\cdots i_p}z_{i_1}\cdots z_{i_p}, \end{equation} @@ -58,11 +58,10 @@ from several angles: the replica trick to compute the Boltzmann--Gibbs distribution \cite{Crisanti_1992_The}, a Kac--Rice \cite{Kac_1943_On, Rice_1939_The, Fyodorov_2004_Complexity} procedure (similar to the Fadeev--Popov integral) to compute the number of saddle-points of the energy -function \cite{Crisanti_1995_Thouless-Anderson-Palmer}, and the -gradient-descent---or more generally Langevin---dynamics staring from a -high-energy configuration \cite{Cugliandolo_1993_Analytical}. Thanks to the -simplicity of the energy, all these approaches yield analytic results in the -large-$N$ limit. +function \cite{Crisanti_1995_Thouless-Anderson-Palmer}, and gradient-descent +(or more generally Langevin) dynamics starting from a high-energy configuration +\cite{Cugliandolo_1993_Analytical}. Thanks to the simplicity of the energy, all +these approaches yield analytic results in the large-$N$ limit. In this paper we extend the study to complex variables: we shall take $z\in\mathbb C^N$ and $J$ to be a symmetric tensor whose elements are @@ -77,7 +76,7 @@ random laser problems \cite{Antenucci_2015_Complex}. Quiver Hamiltonians---used to model black hole horizons in the zero-temperature limit---also have a Hamiltonian very close to ours \cite{Anninos_2016_Disordered}. A second reason is that, as we know from experience, extending a real problem to the complex -plane often uncovers underlying simplicity that is otherwise hidden, sheding +plane often uncovers underlying simplicity that is otherwise hidden, shedding light on the original real problem, e.g., as in the radius of convergence of a series. @@ -86,15 +85,16 @@ $2N$-dimensional complex space has turned out to be necessary for correctly defining and analyzing path integrals with complex action (see \cite{Witten_2010_A, Witten_2011_Analytic}), and as a useful palliative for the sign problem \cite{Cristoforetti_2012_New, Tanizaki_2017_Gradient, -Scorzato_2016_The}. In order to do this correctly, the features of landscape +Scorzato_2016_The}. In order to do this correctly, features of landscape of the action in complex space---like the relative position of its saddles---must be understood. Such landscapes are in general not random: here we propose to follow the strategy of computer science of understanding the -generic features of random instances, expecting that this sheds light on the +generic features of random instances, expecting that this sheds light on practical, nonrandom problems. Returning to our problem, the spherical constraint is enforced using the method -of Lagrange multipliers: introducing $\epsilon\in\mathbb C$, our energy is +of Lagrange multipliers: introducing $\epsilon\in\mathbb C$, our constrained +energy is \begin{equation} \label{eq:constrained.hamiltonian} H = H_0+\frac p2\epsilon\left(N-\sum_i^Nz_i^2\right). \end{equation} @@ -102,35 +102,35 @@ One might balk at the constraint $z^Tz=N$---which could appropriately be called a \emph{hyperbolic} constraint---by comparison with $z^\dagger z=N$. The reasoning behind the choice is twofold. -First, we seek draw conclusions from our model that would be applicable to -generic holomorphic functions without any symmetry. Samples of $H_0$ nearly -provide this, save for a single anomaly: the value of the energy and its -gradient at any point $z$ correlate along the $z$ direction, with -$\overline{H_0\partial H_0}\propto \overline{H_0(\partial H_0)^*}\propto z$. This -anomalous direction must be neglected if we are to draw conclusions about -generic functions, and the constraint surface $z^Tz=N$ is the unique surface +First, we seek draw conclusions from our model that are applicable to generic +holomorphic functions without any symmetry. Samples of $H_0$ nearly provide +this, save for a single anomaly: the value of the energy and its gradient at +any point $z$ correlate along the $z$ direction, with $\overline{H_0\partial +H_0}\propto \overline{H_0(\partial H_0)^*}\propto z$. This anomalous direction +must be neglected, and the constraint surface $z^Tz=N$ is the unique surface whose normal is parallel to $z$ and which contains the configuration space of the real $p$-spin model as a subspace. Second, taking the constraint to be the level set of a holomorphic function means the resulting configuration space is a \emph{bone fide} complex manifold, and therefore permits easy generalization of the integration techniques -referenced above. The same cannot be said for the space defined by $z^\dagger z=N$, -which is topologically the $(2N-1)$-sphere and cannot admit a complex +referenced above. The same cannot be said for the space defined by $z^\dagger +z=N$, which is topologically the $(2N-1)$-sphere and cannot admit a complex structure. A consequence of the constraint is that the model's configuration space is not -compact, nor is its energy bounded. This is not necessarily a problem, as many +compact, nor is its energy bounded. This is not necessarily problematic, as many related problems have similar properties but are concerned with subspaces on -which the energy is bounded. (In fact, identifying the appropriate subspace on -which to define one's model often requires the study of critical points in the -whole space.) Where it might be a problem, we introduce the additional -constraint $z^\dagger z\leq Nr^2$. The resulting configuration space is a complex -manifold with boundary. We shall see that the `radius' $r$ proves an insightful -knob in our present problem, revealing structure as it is varied. Note -that taking $r=1$ reduces the problem to that of the ordinary $p$-spin. - -The critical points are of $H$ given by the solutions to the set of equations +which the energy is bounded. (In fact, identifying the appropriate subspace +often requires the study of critical points in the whole space.) Where it might +become problematic, we introduce an additional constraint that bounds the +`radius' per spin $r^2\equiv z^\dagger z/N\leq R^2$. The resulting +configuration space is a complex manifold with boundary. We shall see that the +`radius' $r$ and its upper bound $R$ prove to be insightful knobs in our present +problem, revealing structure as they are varied. Note that taking $R=1$ reduces +the problem to that of the ordinary $p$-spin. + +The critical points are of $H$ given by the solutions to \begin{equation} \label{eq:polynomial} \frac{p}{p!}\sum_{j_1\cdots j_{p-1}}^NJ_{ij_1\cdots j_{p-1}}z_{j_1}\cdots z_{j_{p-1}} = p\epsilon z_i @@ -140,7 +140,7 @@ equations of degree $p-1$, to which one must add the constraint. In this sense this study also provides a complement to the work on the distribution of zeroes of random polynomials \cite{Bogomolny_1992_Distribution}, which are for $N=1$ and $p\to\infty$. We see from \eqref{eq:polynomial} that at any critical -point $\epsilon=H/N$, the average energy. +point $\epsilon=H_0/N$, the average energy. Since $H$ is holomorphic, any critical point of $\operatorname{Re}H$ is also one of $\operatorname{Im}H$, and therefore of $H$ itself. Writing $z=x+iy$ for @@ -149,7 +149,7 @@ function of $2N$ real variables. The number of critical points of $H$ is thus gi usual Kac--Rice formula applied to $\operatorname{Re}H$: \begin{equation} \label{eq:real.kac-rice} \begin{aligned} - \mathcal N&(\kappa,\epsilon,r) + \mathcal N&(\kappa,\epsilon,R) = \int dx\,dy\,\delta(\partial_x\operatorname{Re}H)\delta(\partial_y\operatorname{Re}H) \\ &\hspace{6pc}\times\left|\det\begin{bmatrix} \partial_x\partial_x\operatorname{Re}H & \partial_x\partial_y\operatorname{Re}H \\ @@ -157,11 +157,18 @@ usual Kac--Rice formula applied to $\operatorname{Re}H$: \end{bmatrix}\right|. \end{aligned} \end{equation} -The Cauchy--Riemann equations may be used to write this in a manifestly complex -way. With the Wirtinger derivative $\partial=\frac12(\partial_x-i\partial_y)$, -one can write $\partial_x\operatorname{Re}H=\operatorname{Re}\partial H$ and +This expression is to be averaged over $J$ to give the complexity $\Sigma$ as +$N \Sigma= \overline{\log\mathcal N}$, a calculation that involves the replica +trick. In most of the parameter space that we shall study here, the +\emph{annealed approximation} $N \Sigma \sim \log \overline{ \mathcal N}$ is +exact. + +The Cauchy--Riemann equations may be used to write \eqref{eq:real.kac-rice} in +a manifestly complex way. With the Wirtinger derivative +$\partial\equiv\frac12(\partial_x-i\partial_y)$, one can write +$\partial_x\operatorname{Re}H=\operatorname{Re}\partial H$ and $\partial_y\operatorname{Re}H=-\operatorname{Im}\partial H$. Carrying these -transformations through, we have +transformations through, one finds \begin{equation} \label{eq:complex.kac-rice} \begin{aligned} \mathcal N&(\kappa,\epsilon,r) @@ -177,8 +184,9 @@ transformations through, we have \end{aligned} \end{equation} This gives three equivalent expressions for the determinant of the Hessian: as -that of a $2N\times 2N$ real matrix, that of an $N\times N$ Hermitian matrix, -or the norm squared of that of an $N\times N$ complex symmetric matrix. +that of a $2N\times 2N$ real symmetric matrix, that of the $N\times N$ Hermitian +matrix $(\partial\partial H)^\dagger\partial\partial H$, or the norm squared of +that of the $N\times N$ complex symmetric matrix $\partial\partial H$. These equivalences belie a deeper connection between the spectra of the corresponding matrices. Each positive eigenvalue of the real matrix has a @@ -189,52 +197,13 @@ Hessian is therefore the same as the distribution of singular values of $\partial\partial H$, or the distribution of square-rooted eigenvalues of $(\partial\partial H)^\dagger\partial\partial H$. -The expression \eqref{eq:complex.kac-rice} is to be averaged over $J$ to give -the complexity $\Sigma$ as $N \Sigma= \overline{\log\mathcal N}$, a calculation -that involves the replica trick. In most of the parameter-space that we shall -study here, the \emph{annealed approximation} $N \Sigma \sim \log \overline{ -\mathcal N}$ is exact. - A useful property of the Gaussian $J$ is that gradient and Hessian at fixed -$\epsilon$ are statistically independent \cite{Bray_2007_Statistics, +energy $\epsilon$ are statistically independent \cite{Bray_2007_Statistics, Fyodorov_2004_Complexity}, so that the $\delta$-functions and the Hessian may -be averaged independently. The $\delta$-functions are converted to exponentials -by the introduction of auxiliary fields $\hat z=\hat x+i\hat y$. The average -of those factors over $J$ can then be performed. A generalized -Hubbard--Stratonovich allows a change of variables from the $4N$ original -and auxiliary fields to eight bilinears defined by $Na=z^\dagger z$, $N\hat a=\hat z^\dagger\hat z$, $N\hat c=\hat z^T\hat z$, $Nb=\hat z^\dagger z$, and $Nd=\hat z^Tz$ (and their -conjugates). The result, to leading order in $N$, is -\begin{equation} \label{eq:saddle} - \overline{\mathcal N}(\kappa,\epsilon,r) - = \int da\,d\hat a\,db\,db^*d\hat c\,d\hat c^*dd\,dd^*e^{Nf(a,\hat a,b,\hat c,d)}, -\end{equation} -where the argument of the exponential is -\begin{widetext} - \begin{equation} - f=2+\frac12\log\det\frac12\begin{bmatrix} - 1 & a & d & b \\ - a & 1 & b^* & d^* \\ - d & b^* & \hat c & \hat a \\ - b & d^* & \hat a & \hat c^* - \end{bmatrix} - +\int d\lambda\,\rho(\lambda)\log|\lambda|^2 - +p\operatorname{Re}\left\{ - \frac18\left[\hat aa^{p-1}+(p-1)|d|^2a^{p-2}+\kappa(\hat c^*+(p-1)b^2)\right]-\epsilon b - \right\}. - \end{equation} - The integral of the distribution $\rho$ of eigenvalues of $\partial\partial - H$ comes from the Hessian and is dependant on $a$ alone. This function has an - extremum in $\hat a$, $b$, $\hat c$, and $d$ at which its value is - \begin{equation} \label{eq:free.energy.a} - f(a)=1+\frac12\log\left(\frac4{p^2}\frac{a^2-1}{a^{2(p-1)}-|\kappa|^2}\right)+\int d\lambda\,\rho(\lambda)\log|\lambda|^2 - -2C_+[\operatorname{Re}(\epsilon e^{-i\theta})]^2-2C_-[\operatorname{Im}(\epsilon e^{-i\theta})]^2, - \end{equation} -\end{widetext} -where $\theta=\frac12\arg\kappa$ and -\begin{equation} - C_{\pm}=\frac{a^p(1+p(a^2-1))\mp a^2|\kappa|}{a^{2p}\pm(p-1)a^p(a^2-1)|\kappa|-a^2|\kappa|^2}. -\end{equation} -This leaves a single parameter, $a$, which dictates the norm of $z$. +be averaged independently. First we shall compute the spectrum of the Hessian, +which can in turn be used to compute the determinant. Then we will treat the +$\delta$-functions and the resulting saddle point equations. The results of +these calculations begin around \eqref{eq:bezout}. The Hessian $\partial\partial H=\partial\partial H_0-p\epsilon I$ is equal to the unconstrained Hessian with a constant added to its diagonal. The eigenvalue @@ -246,28 +215,28 @@ Hessian of the unconstrained Hamiltonian is =\frac{p(p-1)}{p!}\sum_{k_1\cdots k_{p-2}}^NJ_{ijk_1\cdots k_{p-2}}z_{k_1}\cdots z_{k_{p-2}}, \end{equation} which makes its ensemble that of Gaussian complex symmetric matrices, when the -direction along the constraint is neglected. Given its variances -$\overline{|\partial_i\partial_j H_0|^2}=p(p-1)a^{p-2}/2N$ and +anomalous direction normal to the constraint surface is neglected. Given its variances +$\overline{|\partial_i\partial_j H_0|^2}=p(p-1)r^{p-2}/2N$ and $\overline{(\partial_i\partial_j H_0)^2}=p(p-1)\kappa/2N$, $\rho_0(\lambda)$ is constant inside the ellipse \begin{equation} \label{eq:ellipse} - \left(\frac{\operatorname{Re}(\lambda e^{i\theta})}{a^{p-2}+|\kappa|}\right)^2+ - \left(\frac{\operatorname{Im}(\lambda e^{i\theta})}{a^{p-2}-|\kappa|}\right)^2 - <\frac{p(p-1)}{2a^{p-2}} + \left(\frac{\operatorname{Re}(\lambda e^{i\theta})}{r^{p-2}+|\kappa|}\right)^2+ + \left(\frac{\operatorname{Im}(\lambda e^{i\theta})}{r^{p-2}-|\kappa|}\right)^2 + <\frac{p(p-1)}{2r^{p-2}} \end{equation} where $\theta=\frac12\arg\kappa$ \cite{Nguyen_2014_The}. The eigenvalue spectrum of $\partial\partial H$ is therefore constant inside the same ellipse translated so that its center lies at $-p\epsilon$. Examples of these distributions are shown in the insets of Fig.~\ref{fig:spectra}. -The eigenvalue spectrum of the Hessian of the real part is different from the -spectrum $\rho(\lambda)$ of $\partial\partial H$, but rather equivalent to the +The eigenvalue spectrum of the Hessian of the real part is not the +spectrum $\rho(\lambda)$ of $\partial\partial H$, but instead the square-root eigenvalue spectrum of $(\partial\partial H)^\dagger\partial\partial H$; in other words, the singular value spectrum $\rho(\sigma)$ of $\partial\partial H$. When $\kappa=0$ and the elements of $J$ are standard complex normal, this is a complex Wishart distribution. For $\kappa\neq0$ the problem changes, and to our knowledge a closed form is not in the literature. We have worked out an -implicit form for this spectrum using the replica method. +implicit form for the singular value spectrum using the replica method. Introducing replicas to bring the partition function into the numerator of the Green function \cite{Livan_2018_Introduction} gives @@ -280,25 +249,24 @@ Green function \cite{Livan_2018_Introduction} gives \right] \right\}, \end{equation} - with sums taken over repeated Latin indices. The average is then made over + with sums taken over repeated Latin indices. The average is then made over $J$ and Hubbard--Stratonovich is used to change variables to the replica matrices - $N\alpha_{\alpha\beta}=(\zeta^{(\alpha)})^*\cdot\zeta^{(\beta)}$ and - $N\chi_{\alpha\beta}=\zeta^{(\alpha)}\cdot\zeta^{(\beta)}$ and a series of - replica vectors. The replica-symmetric ansatz leaves all off-diagonal - elements and vectors zero, and - $\alpha_{\alpha\beta}=\alpha_0\delta_{\alpha\beta}$, + $N\alpha_{\alpha\beta}=(\zeta^{(\alpha)})^\dagger\zeta^{(\beta)}$ and + $N\chi_{\alpha\beta}=(\zeta^{(\alpha)})^T\zeta^{(\beta)}$, and a series of + replica vectors. The replica-symmetric ansatz leaves all replica vectors + zero, and $\alpha_{\alpha\beta}=\alpha_0\delta_{\alpha\beta}$, $\chi_{\alpha\beta}=\chi_0\delta_{\alpha\beta}$. The result is \begin{equation}\label{eq:green.saddle} \overline G(\sigma)=N\lim_{n\to0}\int d\alpha_0\,d\chi_0\,d\chi_0^*\,\alpha_0 \exp\left\{nN\left[ - 1+\frac{p(p-1)}{16}a^{p-2}\alpha_0^2-\frac{\alpha_0\sigma}2+\frac12\log(\alpha_0^2-|\chi_0|^2) + 1+\frac{p(p-1)}{16}r^{p-2}\alpha_0^2-\frac{\alpha_0\sigma}2+\frac12\log(\alpha_0^2-|\chi_0|^2) +\frac p4\operatorname{Re}\left(\frac{(p-1)}8\kappa^*\chi_0^2-\epsilon^*\chi_0\right) \right]\right\}. \nonumber % He's too long, and we don't cite him (now)! \end{equation} \end{widetext} -\begin{figure}[b] +\begin{figure} \centering \includegraphics{fig/spectra_0.0.pdf} @@ -307,25 +275,27 @@ Green function \cite{Livan_2018_Introduction} gives \includegraphics{fig/spectra_1.5.pdf} \caption{ - Eigenvalue and singular value spectra of the matrix $\partial\partial H$ - for $p=3$, $a=\frac54$, and $\kappa=\frac34e^{-i3\pi/4}$ with (a) - $\epsilon=0$, (b) $\epsilon=-\frac12|\epsilon_{\mathrm{th}}|$, (c) + Eigenvalue and singular value spectra of the Hessian $\partial\partial H$ + of the $3$-spin model with $\kappa=\frac34e^{-i3\pi/4}$. Pictured + distributions are for critical points at `radius' $r=\sqrt{5/4}$ and with + energy per spin (a) $\epsilon=0$, (b) + $\epsilon=-\frac12|\epsilon_{\mathrm{th}}|$, (c) $\epsilon=-|\epsilon_{\mathrm{th}}|$, and (d) - $\epsilon=-\frac32|\epsilon_{\mathrm{th}}|$. The shaded region of each inset - shows the support of the eigenvalue distribution. The solid line on each - plot shows the distribution of singular values, while the overlaid - histogram shows the empirical distribution from $2^{10}\times2^{10}$ complex - normal matrices with the same covariance and diagonal shift as - $\partial\partial H$. + $\epsilon=-\frac32|\epsilon_{\mathrm{th}}|$. The shaded region of each + inset shows the support of the eigenvalue distribution \eqref{eq:ellipse}. + The solid line on each plot shows the distribution of singular values + \eqref{eq:spectral.density}, while the overlaid histogram shows the + empirical distribution from $2^{10}\times2^{10}$ complex normal matrices + with the same covariance and diagonal shift as $\partial\partial H$. } \label{fig:spectra} \end{figure} The argument of the exponential has several saddles. The solutions $\alpha_0$ are the roots of a sixth-order polynomial, and the root with the smallest value -of $\operatorname{Re}\alpha_0$ in all the cases we studied gives the correct -solution. A detailed analysis of the saddle point integration is needed to -understand why this is so. Given such $\alpha_0$, the density of singular -values follows from the jump across the cut, or +of $\operatorname{Re}\alpha_0$ gives the correct solution in all the cases we +studied. A detailed analysis of the saddle point integration is needed to +understand why this is so. Evaluated at such a solution, the density of +singular values follows from the jump across the cut, or \begin{equation} \label{eq:spectral.density} \rho(\sigma)=\frac1{i\pi N}\left( \lim_{\operatorname{Im}\sigma\to0^+}\overline G(\sigma) @@ -335,70 +305,109 @@ values follows from the jump across the cut, or Examples can be seen in Fig.~\ref{fig:spectra} compared with numeric experiments. -The transition from a one-cut to two-cut singular value spectrum naturally -corresponds to the origin leaving the support of the eigenvalue spectrum. -Weyl's theorem requires that the product over the norm of all eigenvalues must -not be greater than the product over all singular values \cite{Weyl_1912_Das}. -Therefore, the absence of zero eigenvalues implies the absence of zero singular -values. The determination of the threshold energy -- the energy at which the -distribution of singular values becomes gapped -- is then reduced to a -geometry problem, and yields +The formation of a gap in the singular value spectrum naturally corresponds to +the origin leaving the support of the eigenvalue spectrum. Weyl's theorem +requires that the product over the norm of all eigenvalues must not be greater +than the product over all singular values \cite{Weyl_1912_Das}. Therefore, the +absence of zero eigenvalues implies the absence of zero singular values. The +determination of the threshold energy---the energy at which the distribution +of singular values becomes gapped---is reduced to the geometry problem of +determining when the boundary of the ellipse defined in \eqref{eq:ellipse} +intersects the origin, and yields \begin{equation} \label{eq:threshold.energy} |\epsilon_{\mathrm{th}}|^2 - =\frac{p-1}{2p}\frac{(1-|\delta|^2)^2a^{p-2}} + =\frac{p-1}{2p}\frac{(1-|\delta|^2)^2r^{p-2}} {1+|\delta|^2-2|\delta|\cos(\arg\kappa+2\arg\epsilon)} \end{equation} -for $\delta=\kappa a^{-(p-2)}$. +for $\delta=\kappa r^{-(p-2)}$. Notice that the threshold depends on both the +energy per spin $\epsilon$ on the `radius' $r$ of the saddle. + +We will now address the $\delta$-functions of \eqref{eq:complex.kac-rice}. +These are converted to exponentials by the introduction of auxiliary fields +$\hat z=\hat x+i\hat y$. The average over $J$ can then be performed. A +generalized Hubbard--Stratonovich allows a change of variables from the $4N$ +original and auxiliary fields to eight bilinears defined by $Nr=z^\dagger z$, +$N\hat r=\hat z^\dagger\hat z$, $Na=\hat z^\dagger z$, $Nb=\hat z^Tz$, and +$N\hat c=\hat z^T\hat z$ (and their conjugates). The result, to leading order +in $N$, is +\begin{equation} \label{eq:saddle} + \overline{\mathcal N}(\kappa,\epsilon,R) + = \int dr\,d\hat r\,da\,da^*db\,db^*d\hat c\,d\hat c^*e^{Nf(r,\hat r,a,b,\hat c)}, +\end{equation} +where the argument of the exponential is +\begin{widetext} + \begin{equation} + f=2+\frac12\log\det\frac12\begin{bmatrix} + 1 & r & b & a \\ + r & 1 & a^* & b^* \\ + b & a^* & \hat c & \hat r \\ + a & b^* & \hat r & \hat c^* + \end{bmatrix} + +\int d\lambda\,d\lambda^*\rho(\lambda)\log|\lambda|^2 + +p\operatorname{Re}\left\{ + \frac18\left[\hat rr^{p-1}+(p-1)|b|^2r^{p-2}+\kappa(\hat c^*+(p-1)a^2)\right]-\epsilon a + \right\}. + \end{equation} + The spectrum $\rho$ is given in \eqref{eq:ellipse} and is dependant on $r$ alone. This function has an + extremum in $\hat r$, $a$, $b$, and $\hat c$ at which its value is + \begin{equation} \label{eq:free.energy.a} + f=1+\frac12\log\left(\frac4{p^2}\frac{r^2-1}{r^{2(p-1)}-|\kappa|^2}\right)+\int d\lambda\,\rho(\lambda)\log|\lambda|^2 + -2C_+[\operatorname{Re}(\epsilon e^{-i\theta})]^2-2C_-[\operatorname{Im}(\epsilon e^{-i\theta})]^2, + \end{equation} +\end{widetext} +where $\theta=\frac12\arg\kappa$ and +\begin{equation} + C_{\pm}=\frac{r^p(1+p(r^2-1))\mp r^2|\kappa|}{r^{2p}\pm(p-1)r^p(r^2-1)|\kappa|-r^2|\kappa|^2}. +\end{equation} +Notice that level sets of $f$ in energy $\epsilon$ also give ellipses, but of +different form from the ellipse in \eqref{eq:ellipse}. -Given $\rho$, the integral in \eqref{eq:free.energy.a} may be preformed for -arbitrary $a$. The resulting expression is maximized for $a=r^2$ for all -values of $\kappa$ and $\epsilon$. Evaluating the complexity at this saddle, in -the limit of unbounded spins, gives +This expression is maximized for $r=R$, its value at the boundary, for +all values of $\kappa$ and $\epsilon$. Evaluating the complexity at this +saddle, in the limit of unbounded spins, gives \begin{equation} \label{eq:bezout} - \lim_{r\to\infty}\log\overline{\mathcal N}(\kappa,\epsilon,r) + \lim_{R\to\infty}\log\overline{\mathcal N}(\kappa,\epsilon,R) =N\log(p-1). \end{equation} -This is, to this order, precisely the Bézout bound, the maximum number of -solutions that $N$ equations of degree $p-1$ may have -\cite{Bezout_1779_Theorie}. That we saturate this bound is perhaps not -surprising, since the coefficients of our polynomial equations -\eqref{eq:polynomial} are complex and have no symmetries. Reaching Bézout in -\eqref{eq:bezout} is not our main result, but it provides a good check. -Analogous asymptotic scaling has been found for the number of pure Higgs states -in supersymmetric quiver theories \cite{Manschot_2012_From}. +This is, to leading order, precisely the Bézout bound, the maximum number of +solutions to $N$ equations of degree $p-1$ \cite{Bezout_1779_Theorie}. That we +saturate this bound is perhaps not surprising, since the coefficients of our +polynomial equations \eqref{eq:polynomial} are complex and have no symmetries. +Reaching Bézout in \eqref{eq:bezout} is not our main result, but it provides a +good check. Analogous asymptotic scaling has been found for the number of pure +Higgs states in supersymmetric quiver theories \cite{Manschot_2012_From}. \begin{figure}[htpb] \centering \includegraphics{fig/complexity.pdf} \caption{ - The complexity of the 3-spin model at $\epsilon=0$ as a function of - the maximum `radius' $r$ at several values of $\kappa$. The dashed line - shows $\frac12\log(p-1)$, while the dotted shows $\log(p-1)$. + The complexity of the 3-spin model as a function of the maximum `radius' + $R$ at zero energy and several values of $\kappa$. The dashed line shows + $\frac12\log(p-1)$, while the dotted shows $\log(p-1)$. } \label{fig:complexity} \end{figure} -For finite $r$, everything is analytically tractable at $\epsilon=0$, giving +For finite $R$, everything is analytically tractable at $\epsilon=0$: \begin{equation} \label{eq:complexity.zero.energy} - \Sigma(\kappa,0,r) - =\log(p-1)-\frac12\log\left(\frac{1-|\kappa|^2r^{-4(p-1)}}{1-r^{-4}}\right). + \Sigma(\kappa,0,R) + =\log(p-1)-\frac12\log\left(\frac{1-|\kappa|^2R^{-4(p-1)}}{1-R^{-4}}\right). \end{equation} -This is plotted as a function of $r$ for -several values of $\kappa$ in Fig.~\ref{fig:complexity}. For any $|\kappa|<1$, -the complexity goes to negative infinity as $r\to1$, i.e., as the spins are -restricted to the reals. This is natural, given that the $y$ contribution to -the volume shrinks to zero as that of an $N$-dimensional sphere $\sum_i y_i^2=N(r^2-1)$ with volume -$\sim(r^2-1)^N$. However, when the result is analytically continued to +This is plotted as a function of $R$ for several values of $\kappa$ in +Fig.~\ref{fig:complexity}. For any $|\kappa|<1$, the complexity goes to +negative infinity as $R\to1$, i.e., as the spins are restricted to the reals. +This is natural, since volume of configuration space vanishes in this limit +like $(R^2-1)^N$. However, when the result is analytically continued to $\kappa=1$ (which corresponds to real $J$) something novel occurs: the -complexity has a finite value at $r=1$. Since the $r$-dependence gives a -cumulative count, this implies a $\delta$-function density of critical points -along the line $y=0$. The number of critical points contained within is +complexity has a finite value at $R=1$. This implies a $\delta$-function +density of critical points on the $r=1$ (or $y=0$) boundary. The number of +critical points contained there is \begin{equation} - \lim_{r\to1}\lim_{\kappa\to1}\log\overline{\mathcal N}(\kappa,0,r) + \lim_{R\to1}\lim_{\kappa\to1}\log\overline{\mathcal N}(\kappa,0,R) = \frac12N\log(p-1), \end{equation} half of \eqref{eq:bezout} and corresponding precisely to the number of critical -points of the real $p$-spin model (note the role of conjugation symmetry, -already underlined in \cite{Bogomolny_1992_Distribution}). The full +points of the real $p$-spin model. (Note the role of conjugation symmetry, +already underlined in \cite{Bogomolny_1992_Distribution}.) The full $\epsilon$-dependence of the real $p$-spin is recovered by this limit as $\epsilon$ is varied. @@ -406,7 +415,7 @@ $\epsilon$ is varied. \centering \includegraphics{fig/desert.pdf} \caption{ - The value of `radius' $r$ for which $\Sigma(\kappa,\epsilon,r)=0$ as a + The value of bounding `radius' $R$ for which $\Sigma(\kappa,\epsilon,R)=0$ as a function of (real) energy per spin $\epsilon$ for the 3-spin model at several values of $\kappa$. Above each line the complexity is positive and critical points proliferate, while below it the complexity is negative and @@ -416,25 +425,25 @@ $\epsilon$ is varied. } \label{fig:desert} \end{figure} -In the thermodynamic limit \eqref{eq:complexity.zero.energy} implies that most -critical points are concentrated at infinite radius, i.e., at complex vectors with -very large squared norm. For finite $N$ the average radius of critical points is likewise finite. By differentiating $\overline{\mathcal N}$ with -respect to $r$ and normalizing, one has the distribution -of critical points as a function of $r$. The average radius this yields is -$\propto N^{1/4}+O(N^{-3/4})$. One therefore expects typical -critical points to have a norm that grows modestly with system size. +In the thermodynamic limit, \eqref{eq:complexity.zero.energy} implies that most +critical points are concentrated at infinite radius $r$. For finite $N$ the +average radius of critical points is likewise finite. By differentiating +$\overline{\mathcal N}$ with respect to $R$ and normalizing, one obtains the +distribution of critical points as a function of $r$. This yields an average +radius proportional to $N^{1/4}$. One therefore expects typical critical +points to have a norm that grows modestly with system size. These qualitative features carry over to nonzero $\epsilon$. In -Fig.~\ref{fig:desert} we show that for $\kappa<1$ there is always a gap of $r$ -close to one for which there are no solutions. When $\kappa=1$---the analytic -continuation to the real computation---the situation is more interesting. In -the range of energies where there are real solutions this gap closes, which is -only possible if the density of solutions diverges at $r=1$. Another -remarkable feature of this limit is that there is still a gap without solutions -around `deep' real energies where there is no real solution. A moment's thought -tells us that this is a necessity: otherwise a small perturbation of the $J$s -could produce an unusually deep solution to the real problem, in a region where -this should not happen. +Fig.~\ref{fig:desert} we show that for $\kappa<1$ there is always a gap in $r$ +close to one in which solutions are exponentially suppressed. When +$\kappa=1$---the analytic continuation to the real computation---the situation +is more interesting. In the range of energies where there are real solutions +this gap closes, which is only possible if the density of solutions diverges at +$r=1$. Outside this range, around `deep' real energies where real solutions are +exponentially suppressed, the gap remains. A moment's thought tells us that +this is necessary: otherwise a small perturbation of the $J$s could produce +an unusually deep solution to the real problem, in a region where this should +not happen. \begin{figure}[t] \centering @@ -447,37 +456,38 @@ this should not happen. \caption{ Energies at which states exist (green shaded region) and threshold energies (black solid line) for the 3-spin model with - $\kappa=\frac34e^{-i3\pi/4}$ and (a) $a=2$, (b) $a=1.325$, (c) $a=1.125$, - and (d) $a=1$. No shaded region is shown in (d) because no states exist at + $\kappa=\frac34e^{-i3\pi/4}$ and (a) $r=\sqrt2$, (b) $r=\sqrt{1.325}$, (c) $r=\sqrt{1.125}$, + and (d) $r=1$. No shaded region is shown in (d) because no states exist at any energy. } \label{fig:eggs} \end{figure} The relationship between the threshold and ground, or extremal, state energies -is richer than in the real case. In Fig.~\ref{fig:eggs} these are shown in the +is richer than in the real case. In Fig.~\ref{fig:eggs} these are shown in the complex-$\epsilon$ plane for several examples. Depending on the parameters, the -threshold might always come at smaller magnitude than the extremal state, or -always come at larger magnitude, or cross as a function of complex argument. -For sufficiently large $r$ the threshold always comes at larger magnitude than -the extremal state. If this were to happen in the real case, it would likely -imply our replica symmetric computation is unstable, since having a ground -state above the threshold implies a ground state Hessian with many negative -eigenvalues, a contradiction. However, this is not an obvious contradiction in -the complex case. The relationship between the threshold, i.e., where the gap -appears, and the dynamics of, e.g., a minimization algorithm or physical -dynamics, are a problem we hope to address in future work. - - This paper provides a first step towards the study of a complex landscape with - complex variables. The next obvious one is to study the topology of the +threshold might have a smaller or larger magnitude than the extremal state, or +cross as a function of complex argument. For sufficiently large $r$ the +threshold is always at a larger magnitude. If this were to happen in the real +case, it would likely imply our replica symmetric computation were unstable, +since having a ground state above the threshold implies a ground state Hessian +with many negative eigenvalues, a contradiction. However, this is not an +contradiction in the complex case, where the energy is not bounded from below. +The relationship between the threshold, i.e., where the gap appears, and the +dynamics of, e.g., a minimization algorithm, deformed integration cycle, or +physical dynamics, are a problem we hope to address in future work. + + This paper provides a first step towards the study of complex landscapes with + complex variables. The next obvious step is to study the topology of the critical points, the sets reached following gradient descent (the Lefschetz thimbles), and ascent (the anti-thimbles) \cite{Witten_2010_A, Witten_2011_Analytic, Cristoforetti_2012_New, Behtash_2017_Toward, Scorzato_2016_The}, which act as constant-phase integrating `contours.' Locating and counting the saddles that are joined by gradient lines---the Stokes points, which play an important role in the theory---is also well within - reach of the present-day spin-glass literature techniques. We anticipate - that the threshold level, where the system develops a mid-spectrum gap, will - play a crucial role as it does in the real case. + reach of the present-day spin-glass literature techniques. We anticipate + that the threshold level, where the system develops a mid-spectrum gap, plays + a crucial role in determining whether these Stokes points proliferate under + some continuous change of parameters. \begin{acknowledgments} We wish to thank Alexander Altland, Satya Majumdar and Gregory Schehr for a useful suggestions. diff --git a/fig/complexity.pdf b/fig/complexity.pdf index f9336bb..cd4864d 100644 Binary files a/fig/complexity.pdf and b/fig/complexity.pdf differ diff --git a/fig/desert.pdf b/fig/desert.pdf index 08d8f41..c9e03df 100644 Binary files a/fig/desert.pdf and b/fig/desert.pdf differ -- cgit v1.2.3-70-g09d2 From 4acec137eb81c9b4f80d6822ed4edc08ca0cd0b7 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Fri, 2 Apr 2021 13:56:48 +0200 Subject: Changed figure fonts to satisfy editors. --- fig/complexity.pdf | Bin 12765 -> 12765 bytes fig/desert.pdf | Bin 14242 -> 14242 bytes fig/spectra_0.0.pdf | Bin 13106 -> 12743 bytes fig/spectra_0.5.pdf | Bin 13611 -> 13238 bytes fig/spectra_1.0.pdf | Bin 14073 -> 13692 bytes fig/spectra_1.5.pdf | Bin 14000 -> 13628 bytes fig/threshold_1.000.pdf | Bin 11450 -> 11455 bytes fig/threshold_1.125.pdf | Bin 14169 -> 14123 bytes fig/threshold_1.325.pdf | Bin 14562 -> 14521 bytes fig/threshold_2.000.pdf | Bin 15334 -> 15292 bytes figs.nb | 12784 ++++++++++++++++++++++++++++++++++++++++++++++ 11 files changed, 12784 insertions(+) create mode 100644 figs.nb (limited to 'fig') diff --git a/fig/complexity.pdf b/fig/complexity.pdf index cd4864d..93b16ce 100644 Binary files a/fig/complexity.pdf and b/fig/complexity.pdf differ diff --git a/fig/desert.pdf b/fig/desert.pdf index c9e03df..c0be63f 100644 Binary files a/fig/desert.pdf and b/fig/desert.pdf differ diff --git a/fig/spectra_0.0.pdf b/fig/spectra_0.0.pdf index ca4ea49..6fb798a 100644 Binary files a/fig/spectra_0.0.pdf and b/fig/spectra_0.0.pdf differ diff --git a/fig/spectra_0.5.pdf b/fig/spectra_0.5.pdf index 205d964..b4cc9d3 100644 Binary files a/fig/spectra_0.5.pdf and b/fig/spectra_0.5.pdf differ diff --git a/fig/spectra_1.0.pdf b/fig/spectra_1.0.pdf index 8eb9cb2..e76e078 100644 Binary files a/fig/spectra_1.0.pdf and b/fig/spectra_1.0.pdf differ diff --git a/fig/spectra_1.5.pdf b/fig/spectra_1.5.pdf index 256c2f0..254aeb0 100644 Binary files a/fig/spectra_1.5.pdf and b/fig/spectra_1.5.pdf differ diff --git a/fig/threshold_1.000.pdf b/fig/threshold_1.000.pdf index 9192481..e8106c6 100644 Binary files a/fig/threshold_1.000.pdf and b/fig/threshold_1.000.pdf differ diff --git a/fig/threshold_1.125.pdf b/fig/threshold_1.125.pdf index 1c7a075..39d2912 100644 Binary files a/fig/threshold_1.125.pdf and b/fig/threshold_1.125.pdf differ diff --git a/fig/threshold_1.325.pdf b/fig/threshold_1.325.pdf index ad68068..0542916 100644 Binary files a/fig/threshold_1.325.pdf and b/fig/threshold_1.325.pdf differ diff --git a/fig/threshold_2.000.pdf b/fig/threshold_2.000.pdf index 50e6e5a..f295890 100644 Binary files a/fig/threshold_2.000.pdf and b/fig/threshold_2.000.pdf differ diff --git a/figs.nb b/figs.nb new file mode 100644 index 0000000..e919a37 --- /dev/null +++ b/figs.nb @@ -0,0 +1,12784 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.2' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 603659, 12776] +NotebookOptionsPosition[ 551178, 12212] +NotebookOutlinePosition[ 551578, 12228] +CellTagsIndexPosition[ 551535, 12225] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ + +Cell[CellGroupData[{ +Cell["Parameters", "Section", + CellChangeTimes->{{3.826346842822365*^9, + 3.826346844518276*^9}},ExpressionUUID->"f2ef6e23-5472-4b4f-a90e-\ +ac0485cbf8ed"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + "baseDir", "=", "\"\<~/doc/research/complex_complex/papers/bezout\>\""}], + ";"}]], "Input", + CellChangeTimes->{{3.8263465207538357`*^9, 3.82634653446467*^9}}, + CellLabel->"In[27]:=",ExpressionUUID->"9ffdb55e-aca2-47fa-be79-d3a8081af909"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"\[Kappa]s", "=", + RowBox[{ + RowBox[{ + RowBox[{"1", "-", + SuperscriptBox["4", + RowBox[{"-", "#"}]]}], "&"}], "/@", + RowBox[{"Range", "[", + RowBox[{"0", ",", "3"}], "]"}]}]}], ";"}], + RowBox[{"(*", " ", + RowBox[{"For", " ", "figures", " ", "2", " ", "and", " ", "3."}], " ", + "*)"}]}]], "Input", + CellChangeTimes->{{3.816504444194421*^9, 3.816504456896353*^9}, { + 3.8165055584179497`*^9, 3.816505558948534*^9}, {3.81650564545068*^9, + 3.8165056456813517`*^9}, {3.826346857166748*^9, 3.826346865550774*^9}, { + 3.8263472064690037`*^9, + 3.826347206900959*^9}},ExpressionUUID->"45156528-d88e-48c0-93b6-\ +ce2fda8493c9"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"fS", "=", "10"}], ";", " ", + RowBox[{"(*", " ", + RowBox[{"Font", " ", "size"}], " ", "*)"}]}]], "Input", + CellChangeTimes->{{3.82634721170298*^9, 3.8263472326533747`*^9}, { + 3.826352994262322*^9, + 3.826352998406221*^9}},ExpressionUUID->"abab33df-81ec-4dd2-add4-\ +0b73aac6af97"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Definitions", "Section", + CellChangeTimes->{{3.8164903869260597`*^9, 3.8164903897651052`*^9}, { + 3.826346348701366*^9, + 3.826346351357354*^9}},ExpressionUUID->"1cd74f7b-8e8d-4a93-a429-\ +93df31bd82de"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"ellipse", "[", "p_", "]"}], "[", + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{"TransformedRegion", "[", + RowBox[{ + RowBox[{"Disk", "[", + RowBox[{ + RowBox[{ + RowBox[{"-", "p"}], " ", + RowBox[{"ReIm", "[", "\[Epsilon]", "]"}]}], ",", + RowBox[{ + RowBox[{"Sqrt", "[", + FractionBox[ + RowBox[{"p", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}]}], "2"], "]"}], + RowBox[{"Sqrt", "[", + SuperscriptBox["a", + RowBox[{"p", "-", "2"}]], "]"}], + RowBox[{"{", + RowBox[{ + RowBox[{"1", "+", + RowBox[{ + RowBox[{"Abs", "[", "\[Kappa]", "]"}], "/", + SuperscriptBox["a", + RowBox[{"p", "-", "2"}]]}]}], ",", + RowBox[{"1", "-", + RowBox[{ + RowBox[{"Abs", "[", "\[Kappa]", "]"}], "/", + SuperscriptBox["a", + RowBox[{"p", "-", "2"}]]}]}]}], "}"}]}]}], "]"}], ",", + RowBox[{"RotationTransform", "[", + RowBox[{ + RowBox[{ + RowBox[{"Arg", "[", "\[Kappa]", "]"}], "/", "2"}], ",", + RowBox[{ + RowBox[{"-", "p"}], " ", + RowBox[{"ReIm", "[", "\[Epsilon]", "]"}]}]}], "]"}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.816428358067066*^9, 3.816428359154089*^9}, { + 3.8164283944027576`*^9, 3.8164284441798058`*^9}, {3.816429327371475*^9, + 3.816429327595447*^9}, 3.816429411620963*^9, {3.816433650904652*^9, + 3.81643365840891*^9}}, + CellLabel->"In[29]:=",ExpressionUUID->"1be5f0c7-80bc-4e55-a0e2-7e29ac8cedc1"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"fLogDet", "[", "p_", "]"}], "[", + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{ + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"x", ",", "y"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + FractionBox["1", + RowBox[{"\[Pi]", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"p", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}]}], "2"], + SuperscriptBox["a", + RowBox[{"p", "-", "2"}]]}], ")"}], + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"Abs", "[", "\[Kappa]", "]"}], "/", + SuperscriptBox["a", + RowBox[{"p", "-", "2"}]]}], ")"}], "2"]}], ")"}]}]], + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{"Log", "[", + RowBox[{ + SuperscriptBox["x", "2"], "+", + SuperscriptBox["y", "2"]}], "]"}], ",", + RowBox[{ + RowBox[{"{", + RowBox[{"x", ",", "y"}], "}"}], "\[Element]", + RowBox[{ + RowBox[{"ellipse", "[", "p", "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]", ",", "\[Kappa]"}], "]"}]}]}], + "]"}]}]}], "\[IndentingNewLine]", "]"}], "/;", + RowBox[{"(", + RowBox[{ + RowBox[{"NumericQ", "[", "\[Epsilon]", "]"}], "&&", + RowBox[{"NumericQ", "[", "\[Kappa]", "]"}], "&&", + RowBox[{"NumericQ", "[", "a", "]"}]}], ")"}]}]}]], "Input", + CellChangeTimes->{{3.815923788920561*^9, 3.815923999546838*^9}, { + 3.815924036772983*^9, 3.81592405524186*^9}, {3.815924111408195*^9, + 3.8159241463359833`*^9}, {3.815924740129622*^9, 3.8159247559109983`*^9}, { + 3.815936039240149*^9, 3.815936043252236*^9}, {3.815936206535288*^9, + 3.81593621435671*^9}, {3.8159362463459063`*^9, 3.8159363077627707`*^9}, { + 3.815936468453075*^9, 3.8159364708412952`*^9}, {3.8159365753705063`*^9, + 3.8159365781636353`*^9}, {3.815936673153776*^9, 3.815936679276032*^9}, + 3.815937537585898*^9, {3.8159382129393044`*^9, 3.815938230685999*^9}, { + 3.8159384335751963`*^9, 3.81593851959309*^9}, {3.815971776454103*^9, + 3.8159717766407213`*^9}, {3.815971817867949*^9, 3.815971821470685*^9}, { + 3.8159719007748613`*^9, 3.8159719283217907`*^9}, {3.815971987906789*^9, + 3.815972000794279*^9}, {3.8159739823813543`*^9, 3.81597407793349*^9}, { + 3.8159741632582293`*^9, 3.815974167960534*^9}, {3.815974238354245*^9, + 3.815974306514188*^9}, {3.8159745779982243`*^9, 3.815974591197274*^9}, { + 3.815974665382855*^9, 3.8159746722299337`*^9}, {3.815975753401066*^9, + 3.8159757757231293`*^9}, {3.815975863793826*^9, 3.815975883393137*^9}, { + 3.8159760384076366`*^9, 3.81597604562397*^9}, {3.81597642266604*^9, + 3.8159764383425713`*^9}, {3.8159764907631702`*^9, 3.815976500847621*^9}, { + 3.815976713188797*^9, 3.815976762180496*^9}, {3.8159842542824173`*^9, + 3.8159843044995193`*^9}, {3.8159845714894123`*^9, 3.815984583257218*^9}, { + 3.815984761644136*^9, 3.8159848104289007`*^9}, {3.815984862262615*^9, + 3.8159848641261263`*^9}, {3.815984916359132*^9, 3.815984935567296*^9}, + 3.8159850846346397`*^9, {3.815985135276142*^9, 3.815985138099937*^9}, { + 3.815985276798523*^9, 3.8159852838061047`*^9}, 3.8159853364629917`*^9, { + 3.8159857335506268`*^9, 3.8159857420459003`*^9}, {3.815986034691577*^9, + 3.8159860703801517`*^9}, {3.815986231784066*^9, 3.81598624947278*^9}, { + 3.815986315960642*^9, 3.8159863513689137`*^9}, {3.815986582117222*^9, + 3.8159866360326023`*^9}, {3.815996148105177*^9, 3.815996149801078*^9}, { + 3.815996182217856*^9, 3.8159961900101137`*^9}, {3.816066822492353*^9, + 3.816066825795862*^9}, 3.816066866862382*^9, {3.816087001995448*^9, + 3.816087004615296*^9}, {3.816316573601247*^9, 3.816316583326597*^9}, { + 3.816316654145857*^9, 3.816316694884419*^9}, {3.8164897552261333`*^9, + 3.816489824792395*^9}, {3.816489916175559*^9, 3.816490073096807*^9}, { + 3.816490322919524*^9, 3.816490338343575*^9}}, + CellLabel->"In[30]:=",ExpressionUUID->"0ffb55f5-368f-4a96-94e4-1cb8fb3ea71a"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"fDeltas", "[", "p_", "]"}], "[", + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"2", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["a", + RowBox[{"2", + RowBox[{"(", + RowBox[{"p", "-", "2"}], ")"}]}]], " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["a", "2"]}], ")"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "p"}], ")"}]}], "-", "p"}], ")"}], + " ", "p"}]}], ")"}]}], "-", + SuperscriptBox[ + RowBox[{"Abs", "[", "\[Kappa]", "]"}], "2"]}], " ", ")"}], " ", + RowBox[{"Re", "[", + RowBox[{ + SuperscriptBox["\[Epsilon]", "2"], + RowBox[{"\[Kappa]", "\[Conjugate]"}]}], "]"}]}], "+", + RowBox[{ + SuperscriptBox["a", "p"], + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["a", + RowBox[{"2", + RowBox[{"(", + RowBox[{"p", "-", "2"}], ")"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}], "-", + RowBox[{"p", " ", + SuperscriptBox["a", "2"]}]}], ")"}]}], " ", "+", + SuperscriptBox[ + RowBox[{"Abs", "[", "\[Kappa]", "]"}], "2"]}], ")"}], + SuperscriptBox[ + RowBox[{"Abs", "[", "\[Epsilon]", "]"}], "2"]}]}], ")"}], "/", + RowBox[{"(", + RowBox[{ + SuperscriptBox["a", + RowBox[{"4", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}]}]], "+", + SuperscriptBox[ + RowBox[{"Abs", "[", "\[Kappa]", "]"}], "4"], "-", " ", + RowBox[{ + SuperscriptBox["a", + RowBox[{"2", + RowBox[{"(", + RowBox[{"p", "-", "2"}], ")"}]}]], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}], "2"], "-", + RowBox[{"p", + RowBox[{"(", + RowBox[{ + RowBox[{"2", "p"}], "-", "4"}], ")"}], " ", + SuperscriptBox["a", "2"]}], "+", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}], "2"], " ", + SuperscriptBox["a", "4"]}]}], ")"}], + SuperscriptBox[ + RowBox[{"Abs", "[", "\[Kappa]", "]"}], "2"]}]}], ")"}]}]}], "+", "1", + "+", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"Log", "[", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["a", "2"]}], ")"}]}], + RowBox[{ + SuperscriptBox["p", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["a", + RowBox[{"2", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}]}]], "-", + SuperscriptBox[ + RowBox[{"Abs", "[", "\[Kappa]", "]"}], "2"]}], ")"}]}]], + "]"}]}]}]}]], "Input", + CellChangeTimes->{{3.815997471183755*^9, 3.815997558081411*^9}, { + 3.815997623402391*^9, 3.815997639290495*^9}, 3.815997763981062*^9, { + 3.81599779638922*^9, 3.8159978150138073`*^9}, {3.815997862175205*^9, + 3.8159979700644903`*^9}, {3.815998022673749*^9, 3.815998024065712*^9}, { + 3.81599826682259*^9, 3.81599830479112*^9}, {3.815998348551723*^9, + 3.815998368112915*^9}, {3.8159984155688963`*^9, 3.815998425465062*^9}, { + 3.81599849625031*^9, 3.8159985066187477`*^9}, {3.815998609373024*^9, + 3.815998614365259*^9}, {3.815998666830813*^9, 3.815998673327079*^9}, { + 3.8159988145289583`*^9, 3.815998847913475*^9}, {3.815999090285741*^9, + 3.8159991458948183`*^9}, {3.815999304129418*^9, 3.8159993244416*^9}, + 3.815999382981165*^9, {3.81599942776388*^9, 3.8159994675488157`*^9}, + 3.815999558281633*^9, {3.815999629911888*^9, 3.815999651488804*^9}, { + 3.815999684345438*^9, 3.815999694952888*^9}, {3.815999729089967*^9, + 3.815999815962823*^9}, {3.815999956981881*^9, 3.815999969901432*^9}, { + 3.8160001968668413`*^9, 3.816000286355363*^9}, {3.8160007441718693`*^9, + 3.816000779316326*^9}, {3.8160008341912813`*^9, 3.816000860254737*^9}, { + 3.8160009234885693`*^9, 3.8160009266091213`*^9}, {3.816000995704597*^9, + 3.816001074138081*^9}, {3.8160011814121933`*^9, 3.816001241733577*^9}, { + 3.816001289718299*^9, 3.816001369207398*^9}, {3.816001406159923*^9, + 3.8160014301282663`*^9}, {3.816001564563467*^9, 3.81600161630758*^9}, { + 3.816001965954804*^9, 3.816001993626539*^9}, {3.8160020551725817`*^9, + 3.8160020940606203`*^9}, {3.816087225745167*^9, 3.81608723483112*^9}, { + 3.8164897784760838`*^9, 3.816489783100685*^9}, {3.8164909945854273`*^9, + 3.816490996143875*^9}}, + CellLabel->"In[31]:=",ExpressionUUID->"85551351-1090-41c3-b770-6368d457fb6f"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalSigma]\[Epsilon]0", "[", "p_", "]"}], "[", + RowBox[{"r_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{"Log", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}], + SuperscriptBox["r", + RowBox[{"2", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}]}]], + RowBox[{"Sqrt", "[", + FractionBox[ + RowBox[{"1", "-", + SuperscriptBox["r", + RowBox[{"-", "4"}]]}], + RowBox[{ + SuperscriptBox["r", + RowBox[{"4", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}]}]], "-", + SuperscriptBox[ + RowBox[{"Abs", "[", "\[Kappa]", "]"}], "2"]}]], "]"}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.816318601324045*^9, 3.816318662391423*^9}, { + 3.8163190083857822`*^9, 3.816319037288748*^9}, {3.816490858796747*^9, + 3.816490872155546*^9}, {3.81649093324119*^9, 3.816490943335479*^9}, { + 3.8164909865209503`*^9, 3.816491149431498*^9}, {3.816491297762141*^9, + 3.816491300107212*^9}, {3.816491736837564*^9, 3.816491744306966*^9}, { + 3.8164950893704767`*^9, 3.816495168386099*^9}, {3.8164952942194633`*^9, + 3.816495310441093*^9}, {3.82454484250469*^9, 3.824544862184828*^9}, { + 3.826346655675058*^9, 3.826346656251089*^9}}, + CellLabel->"In[32]:=",ExpressionUUID->"352c82de-844c-482d-a8a6-50227506de98"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalSigma]", "[", "p_", "]"}], "[", "\[Epsilon]_", "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"fLogDet", "[", "p", "]"}], "[", "\[Epsilon]", "]"}], "+", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "+", + RowBox[{"2", " ", "p"}], "+", + RowBox[{"2", " ", + SuperscriptBox["\[Epsilon]", "2"]}], "-", + RowBox[{"3", " ", "p", " ", + SuperscriptBox["\[Epsilon]", "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "p"}], ")"}], " ", + RowBox[{"Log", "[", + FractionBox["4", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "p"}], ")"}], " ", + SuperscriptBox["p", "2"]}]], "]"}]}]}], + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "p"}], ")"}]}]]}]}]], "Input", + CellChangeTimes->{{3.816495173166027*^9, 3.816495341041154*^9}}, + CellLabel->"In[33]:=",ExpressionUUID->"c1a8def6-a87d-4838-8456-cc15d1b3b9f4"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"\[Epsilon]Ground3", "=", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"0", "==", + RowBox[{ + RowBox[{"\[CapitalSigma]", "[", "3", "]"}], "[", "\[Epsilon]", "]"}]}], + ",", + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", "1"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "20"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.816495359002555*^9, 3.816495440953623*^9}, { + 3.816495651563694*^9, 3.8164956555155563`*^9}, {3.816504811496995*^9, + 3.816504814209897*^9}, 3.8263466841799994`*^9}, + CellLabel->"In[34]:=",ExpressionUUID->"57fa20f7-5d21-4691-97ab-92b697541677"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + "\[Epsilon]", "\[Rule]", "1.16875784682015745249090626764933366996`20."}], + "}"}]], "Output", + CellChangeTimes->{{3.8164954028293533`*^9, 3.816495410232574*^9}, + 3.816495441812183*^9, 3.81649565611261*^9, 3.816504815317152*^9, + 3.816514964079101*^9, 3.8165223177615957`*^9, 3.816593294125104*^9, + 3.816602445916368*^9, 3.816676290637484*^9, 3.8245453184968033`*^9, + 3.824801464680997*^9, 3.826345850653561*^9, 3.826346999360105*^9}, + CellLabel->"Out[34]=",ExpressionUUID->"00a82b45-c8dc-42e0-9601-d72727bc6a25"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalSigma]", "[", "p_", "]"}], "[", + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"fDeltas", "[", "p", "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]", ",", "\[Kappa]"}], "]"}], "+", + RowBox[{ + RowBox[{"fLogDet", "[", "p", "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]", ",", "\[Kappa]"}], "]"}]}]}]], "Input", + CellChangeTimes->{{3.816087688396344*^9, 3.816087741901081*^9}, { + 3.816253888309916*^9, 3.816253917419841*^9}, {3.816490815171389*^9, + 3.816490827857506*^9}, {3.8263466924361134`*^9, 3.826346692787746*^9}}, + CellLabel->"In[35]:=",ExpressionUUID->"6525b0fa-5295-4e36-831d-af4ab2f404e1"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"\[Epsilon]th", "[", "p_", "]"}], "[", + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Delta]", "=", + RowBox[{"\[Kappa]", " ", + SuperscriptBox["a", + RowBox[{"-", + RowBox[{"(", + RowBox[{"p", "-", "2"}], ")"}]}]]}]}], "}"}], ",", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Arg", "[", "\[Epsilon]", "]"}]}], "]"}], + RowBox[{"Sqrt", "[", + RowBox[{ + FractionBox["1", + RowBox[{"2", "p"}]], + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}], + SuperscriptBox["a", + RowBox[{"p", "-", "2"}]], + FractionBox[ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox[ + RowBox[{"Abs", "[", "\[Delta]", "]"}], "2"]}], ")"}], "2"], + RowBox[{"1", "+", + SuperscriptBox[ + RowBox[{"Abs", "[", "\[Delta]", "]"}], "2"], "-", + RowBox[{"2", " ", + RowBox[{"Abs", "[", "\[Delta]", "]"}], + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"Arg", "[", "\[Delta]", "]"}], "+", + RowBox[{"2", + RowBox[{"Arg", "[", "\[Epsilon]", "]"}]}]}], "]"}]}]}]]}], + "]"}]}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.816255884456482*^9, 3.81625599587738*^9}, { + 3.8162566928987093`*^9, 3.816256697195315*^9}, 3.816257709338934*^9, + 3.816490683878632*^9, {3.816515786675592*^9, 3.816515789075638*^9}, { + 3.816515827380227*^9, 3.816515829052198*^9}, 3.8165159233741827`*^9, { + 3.8165160272975187`*^9, 3.816516031487977*^9}}, + CellLabel->"In[36]:=",ExpressionUUID->"a927e624-5d13-4a21-a4d0-428f89543d5f"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"spectrumSaddle", "[", "p_", "]"}], "[", + RowBox[{"a_", ",", "c_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], + "[", + RowBox[{"\[Alpha]_", ",", "\[Chi]_"}], "]"}], "[", "\[Lambda]_", "]"}], ":=", + RowBox[{"1", "+", + FractionBox[ + RowBox[{"p", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}], " ", + SuperscriptBox["a", + RowBox[{"p", "-", "2"}]], " ", + SuperscriptBox["\[Alpha]", "2"]}], "16"], "-", + FractionBox[ + RowBox[{"\[Alpha]", " ", "\[Lambda]"}], "2"], "-", + RowBox[{ + FractionBox["p", "4"], " ", "\[Chi]", " ", + RowBox[{"Conjugate", "[", "\[Epsilon]", "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"p", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}]}], "32"], " ", + SuperscriptBox["c", + RowBox[{"p", "-", "2"}]], " ", + SuperscriptBox["\[Chi]", "2"], " ", + RowBox[{"Conjugate", "[", "\[Kappa]", "]"}]}], "-", + RowBox[{ + FractionBox["p", "4"], " ", "\[Epsilon]", " ", + RowBox[{"Conjugate", "[", "\[Chi]", "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"p", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}]}], "32"], " ", "\[Kappa]", " ", + SuperscriptBox[ + RowBox[{"Conjugate", "[", "c", "]"}], + RowBox[{"p", "-", "2"}]], " ", + SuperscriptBox[ + RowBox[{"Conjugate", "[", "\[Chi]", "]"}], "2"]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"Log", "[", + FractionBox["1", + RowBox[{ + SuperscriptBox["\[Alpha]", "2"], "-", + RowBox[{"\[Chi]", " ", + RowBox[{"Conjugate", "[", "\[Chi]", "]"}]}]}]], "]"}]}]}]}]], "Input",\ + + CellChangeTimes->{{3.815824919210039*^9, 3.815824946139304*^9}, { + 3.815825007490842*^9, 3.81582501494687*^9}, {3.815825203070251*^9, + 3.81582522009476*^9}, {3.815825257239655*^9, 3.81582528934414*^9}, { + 3.816343295890834*^9, 3.816343314122259*^9}, {3.816343388512636*^9, + 3.81634340503246*^9}, {3.816343935558928*^9, 3.8163439459667*^9}, { + 3.816344009655559*^9, 3.8163440301528893`*^9}, {3.816344245769916*^9, + 3.816344259226141*^9}, {3.816344389092309*^9, 3.8163443926042633`*^9}, { + 3.816344495326017*^9, 3.816344497229827*^9}, {3.816410800708263*^9, + 3.81641080110378*^9}, {3.816490411188113*^9, 3.816490419521929*^9}}, + CellLabel->"In[37]:=",ExpressionUUID->"67cbde8b-a062-4be0-a2ec-3c4eba39ffb4"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"spectrumG", "[", "3", "]"}], "=", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], "\[Alpha]"}], "/.", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"0", "\[Equal]", + RowBox[{"D", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"spectrumSaddle", "[", "3", "]"}], "[", + RowBox[{"a", ",", "1", ",", "\[Epsilon]", ",", "\[Kappa]"}], + "]"}], "[", + RowBox[{"\[Alpha]", ",", "\[Chi]"}], "]"}], "[", "\[Lambda]", + "]"}], ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{"\[Chi]", ",", + RowBox[{"\[Chi]", "\[Conjugate]"}], ",", "\[Alpha]"}], "}"}], + "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Chi]", ",", + RowBox[{"\[Chi]", "\[Conjugate]"}], ",", "\[Alpha]"}], "}"}]}], + "]"}]}]}], ";"}]], "Input", + CellChangeTimes->{{3.815487768525565*^9, 3.815487777074082*^9}, { + 3.8164102013724737`*^9, 3.8164102465595016`*^9}, {3.816410808599163*^9, + 3.816410814605749*^9}, {3.816412228504506*^9, 3.8164122425253477`*^9}, { + 3.816428242032268*^9, 3.816428271960556*^9}, {3.8164904238766003`*^9, + 3.816490447465075*^9}, {3.826346389774609*^9, 3.826346390318452*^9}}, + CellLabel->"In[38]:=",ExpressionUUID->"10425118-57f3-4136-bdb2-5eaf5c0536f3"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[Rho]", "[", "p_", "]"}], "[", + RowBox[{"aa_", ",", "\[Epsilon]\[Epsilon]_", ",", "\[Kappa]\[Kappa]_"}], + "]"}], "[", "\[Lambda]\[Lambda]_Real", "]"}], ":=", + RowBox[{"With", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{"func", "=", + RowBox[{ + RowBox[{ + RowBox[{"spectrumG", "[", "p", "]"}], "/", + RowBox[{"(", + RowBox[{"2", "\[Pi]"}], ")"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Epsilon]", "\[Rule]", "\[Epsilon]\[Epsilon]"}], ",", + RowBox[{"a", "\[Rule]", "aa"}], ",", + RowBox[{"\[Lambda]", "\[Rule]", "\[Lambda]\[Lambda]"}], ",", + RowBox[{"\[Kappa]", "\[Rule]", "\[Kappa]\[Kappa]"}]}], "}"}]}]}], + "}"}], ",", "\[IndentingNewLine]", + RowBox[{"2", + RowBox[{"Abs", "[", + RowBox[{"Im", "[", + RowBox[{"First", "@", + RowBox[{"MaximalBy", "[", + RowBox[{ + RowBox[{"MinimalBy", "[", + RowBox[{ + RowBox[{"Round", "[", + RowBox[{ + RowBox[{"Select", "[", + RowBox[{"func", ",", + RowBox[{ + RowBox[{ + RowBox[{"Abs", "[", "#", "]"}], "<", + SuperscriptBox["10", "6"]}], "&"}]}], "]"}], ",", + SuperscriptBox["10.", + RowBox[{"-", "6"}]]}], "]"}], ",", + RowBox[{ + RowBox[{ + RowBox[{"Sign", "[", "\[Lambda]\[Lambda]", "]"}], " ", + RowBox[{"Re", "[", "#", "]"}]}], "&"}]}], "]"}], ",", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"Im", "[", "#", "]"}], "]"}], "&"}]}], "]"}]}], "]"}], + "]"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", + CellChangeTimes->{{3.815139763906878*^9, 3.815139825063335*^9}, { + 3.815139884636106*^9, 3.815139933335577*^9}, {3.815139968383243*^9, + 3.8151399771072083`*^9}, {3.815140018295587*^9, 3.815140025281067*^9}, { + 3.815140114256325*^9, 3.8151401218694677`*^9}, {3.815140187451696*^9, + 3.815140191787282*^9}, {3.815140286090007*^9, 3.815140286542273*^9}, { + 3.81514032749139*^9, 3.8151403330725*^9}, {3.815140430935584*^9, + 3.815140447879446*^9}, {3.8151405655280724`*^9, 3.815140568754627*^9}, { + 3.815140837544971*^9, 3.815140844654435*^9}, {3.815141491072197*^9, + 3.815141492000057*^9}, {3.815141603249548*^9, 3.8151416035874243`*^9}, { + 3.815142313379651*^9, 3.815142313748701*^9}, {3.81546911722784*^9, + 3.815469122211773*^9}, {3.815718947612432*^9, 3.815718948029046*^9}, { + 3.8157189963068132`*^9, 3.815719007322255*^9}, 3.816343528477316*^9, { + 3.8163435821109047`*^9, 3.816343585798361*^9}, {3.816410210271594*^9, + 3.816410217312529*^9}, {3.816490459156579*^9, 3.816490460340295*^9}}, + CellLabel->"In[39]:=",ExpressionUUID->"b91cf78f-6b6f-499f-8527-47228c8aa02b"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{ + "Technology", " ", "for", " ", "generating", " ", "structured", " ", + "random", " ", + RowBox[{"matrices", "."}]}], " ", "*)"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"matrix", "[", "n_", "]"}], "[", "p_", "]"}], "[", + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{"M", "=", + RowBox[{ + RowBox[{"p", " ", "\[Epsilon]", " ", + RowBox[{"IdentityMatrix", "[", "n", "]"}]}], "+", + RowBox[{"Symmetrize", "@", + RowBox[{"Map", "[", + RowBox[{ + RowBox[{ + RowBox[{"#", ".", + RowBox[{"{", + RowBox[{"1", ",", "\[ImaginaryI]"}], "}"}]}], "&"}], ",", + RowBox[{"RandomVariate", "[", + RowBox[{ + RowBox[{"MultinormalDistribution", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{ + RowBox[{"N", "[", + FractionBox[ + RowBox[{"p", + RowBox[{"(", + RowBox[{"p", "-", "1"}], ")"}]}], + RowBox[{"2", "n"}]], "]"}], + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["a", + RowBox[{"p", "-", "2"}]], "+", + RowBox[{"Re", "[", "\[Kappa]", "]"}]}], ",", + RowBox[{"Im", "[", "\[Kappa]", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"Im", "[", "\[Kappa]", "]"}], ",", + RowBox[{ + SuperscriptBox["a", + RowBox[{"p", "-", "2"}]], "-", + RowBox[{"Re", "[", "\[Kappa]", "]"}]}]}], "}"}]}], + "}"}]}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", "2", "}"}]}], "]"}]}]}]}], "\[IndentingNewLine]", + "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"M", "\[ConjugateTranspose]"}], ".", "M"}]}], + "\[IndentingNewLine]", "]"}]}]}]], "Input", + CellChangeTimes->{{3.8136473415123*^9, 3.813647574850799*^9}, { + 3.8136476251583977`*^9, 3.813647730845479*^9}, {3.8136477609094048`*^9, + 3.8136478017567863`*^9}, {3.8136478342918177`*^9, + 3.8136478460899677`*^9}, {3.8136478769285383`*^9, 3.813647880392766*^9}, { + 3.813647972118979*^9, 3.813648019167779*^9}, {3.813648170104498*^9, + 3.8136481773186483`*^9}, {3.8136483903545303`*^9, + 3.8136483996590967`*^9}, {3.813648519328496*^9, 3.813648519491796*^9}, { + 3.813648569258978*^9, 3.8136485694581003`*^9}, 3.813648659455783*^9, + 3.813648943236889*^9, {3.813648987853732*^9, 3.8136489895726357`*^9}, { + 3.8136492201601477`*^9, 3.813649220448098*^9}, {3.813649266690599*^9, + 3.8136492841182413`*^9}, {3.81367204047152*^9, 3.813672079311157*^9}, { + 3.813672245552251*^9, 3.8136722629653788`*^9}, {3.813672714816658*^9, + 3.813672728152114*^9}, {3.813672835311264*^9, 3.813672836237316*^9}, { + 3.813674436030271*^9, 3.813674438865052*^9}, {3.813674504411222*^9, + 3.813674511810309*^9}, {3.813735697848357*^9, 3.813735771019809*^9}, { + 3.813735803426466*^9, 3.813735826643587*^9}, {3.813736248249913*^9, + 3.8137363864912663`*^9}, {3.8137365039768333`*^9, 3.813736538192618*^9}, { + 3.813736987998749*^9, 3.813737083067997*^9}, {3.813737119312249*^9, + 3.813737166649352*^9}, {3.813737318404668*^9, 3.813737319283306*^9}, { + 3.813737468495202*^9, 3.813737481802137*^9}, {3.813737542773397*^9, + 3.813737552772407*^9}, {3.813737790871417*^9, 3.8137378069780807`*^9}, { + 3.813739430812318*^9, 3.813739437186174*^9}, {3.8137401393723783`*^9, + 3.8137401713815527`*^9}, 3.81374028223458*^9, {3.814013767611223*^9, + 3.814013794849269*^9}, {3.814607310927829*^9, 3.814607451498453*^9}, { + 3.814788292624688*^9, 3.81478832023239*^9}, {3.814790460294273*^9, + 3.814790603556889*^9}, {3.8147906367762938`*^9, 3.814790718735299*^9}, { + 3.814790762624117*^9, 3.814790807370572*^9}, 3.814809623003491*^9, { + 3.814809656753508*^9, 3.814809804269186*^9}, {3.8148098368749*^9, + 3.814809862408773*^9}, {3.814810427476325*^9, 3.814810431177054*^9}, { + 3.814810679179159*^9, 3.8148106795039454`*^9}, {3.8148107692877274`*^9, + 3.814810781414809*^9}, {3.814810840911722*^9, 3.814810860374542*^9}, { + 3.814810938351514*^9, 3.8148109449727*^9}, {3.814811066251039*^9, + 3.814811094076188*^9}, {3.816407407199641*^9, 3.816407409750216*^9}, { + 3.816407555912064*^9, 3.816407576107842*^9}, {3.816407623657991*^9, + 3.816407641714872*^9}, {3.816408307742482*^9, 3.81640835788025*^9}, { + 3.816408438195963*^9, 3.816408482637989*^9}, {3.816408535423971*^9, + 3.816408552748723*^9}, {3.8164086644608173`*^9, 3.816408685010551*^9}, { + 3.8164090756277237`*^9, 3.816409076374308*^9}, {3.816409122935528*^9, + 3.816409290336215*^9}, {3.816409349007599*^9, 3.81640935376377*^9}, { + 3.816409428536662*^9, 3.816409452025216*^9}, {3.816409588153943*^9, + 3.816409588360622*^9}, {3.816409870007491*^9, 3.816409883539789*^9}, { + 3.8164109380950537`*^9, 3.8164109673268843`*^9}, {3.816411168810618*^9, + 3.816411187326886*^9}, {3.81641193542179*^9, 3.816411971795146*^9}, { + 3.816412013115728*^9, 3.8164120254134912`*^9}, {3.816497273862967*^9, + 3.816497274780905*^9}}, + CellLabel->"In[40]:=",ExpressionUUID->"25f8328e-f8cb-469c-82c1-ef8c84175dee"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{"Technology", " ", "for", " ", "generating", " ", "random", " ", + RowBox[{"(", "valid", ")"}], " ", "parameters", " ", "and", " ", + "plottings", " ", "PDFs", " ", "and", " ", + RowBox[{"histograms", "."}]}], " ", "*)"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"testPDF", "[", + RowBox[{"p_", ",", + RowBox[{"\[CapitalDelta]x_", ":", "50"}]}], "]"}], "[", + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"2", + RowBox[{ + RowBox[{ + RowBox[{"\[Rho]", "[", "p", "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]", ",", "\[Kappa]"}], "]"}], "[", + "\[Lambda]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Lambda]", ",", "0", ",", "\[CapitalDelta]x"}], "}"}], ",", + RowBox[{"PlotRange", "\[Rule]", "All"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "20"}], ",", + RowBox[{"AxesLabel", "\[Rule]", + RowBox[{"{", + RowBox[{"\[Lambda]", ",", + RowBox[{"\[Rho]", "[", "\[Lambda]", "]"}]}], "}"}]}]}], "]"}]}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"testHist", "[", + RowBox[{"N_", ",", "n_", ",", + RowBox[{"\[CapitalDelta]x_", ":", "6"}]}], "]"}], "[", "p_", "]"}], + "[", + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{"Histogram", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Flatten", "[", + RowBox[{"ParallelTable", "[", + RowBox[{ + RowBox[{"Sqrt", "@", + RowBox[{"Eigenvalues", "[", + RowBox[{ + RowBox[{ + RowBox[{"matrix", "[", "n", "]"}], "[", "p", "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]", ",", "\[Kappa]"}], "]"}], "]"}]}], + ",", + RowBox[{"{", "N", "}"}]}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "\[CapitalDelta]x", ",", + RowBox[{"\[CapitalDelta]x", "/", "40"}]}], "}"}], ",", + "\"\\""}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"testComp", "[", + RowBox[{"N_", ",", "n_", ",", "let_", ",", + RowBox[{"\[CapitalDelta]x_", ":", "6"}], ",", + RowBox[{"range_", ":", "Automatic"}], ",", + RowBox[{"lab_", ":", + RowBox[{"{", + RowBox[{"\[Sigma]", ",", + RowBox[{"\[Rho]", "[", "\[Sigma]", "]"}]}], "}"}]}], ",", + RowBox[{"blank_", ":", "False"}]}], "]"}], "[", "p_", "]"}], "[", + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{"Show", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"testHist", "[", + RowBox[{"N", ",", "n", ",", "\[CapitalDelta]x"}], "]"}], "[", "p", + "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]", ",", "\[Kappa]"}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"testPDF", "[", + RowBox[{"p", ",", "\[CapitalDelta]x"}], "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]", ",", "\[Kappa]"}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"AxesLabel", "\[Rule]", "lab"}], ",", + RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", + RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "]"}]}], ",", + RowBox[{"TicksStyle", "->", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", + RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"Ticks", "\[Rule]", + RowBox[{"{", + RowBox[{"Automatic", ",", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"#", ",", "\"\<\>\"", ",", + RowBox[{"{", + RowBox[{"0.01", ",", "0"}], "}"}]}], "}"}], "&"}], "/@", + RowBox[{"Range", "[", + RowBox[{"0", ",", "0.35", ",", "0.02"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0.1", ",", "0.1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.2", ",", "0.2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.3", ",", "0.3"}], "}"}]}], "}"}]}], "]"}]}], "}"}]}], + ",", "\[IndentingNewLine]", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{"0", ",", "0.35"}], "}"}]}], ",", + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"246", " ", + RowBox[{"10", "/", "15"}]}]}], " ", ",", "\[IndentingNewLine]", + RowBox[{"Epilog", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Inset", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"testEllipse", "[", + RowBox[{"range", ",", "blank"}], "]"}], "[", "p", "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]", ",", "\[Kappa]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"4.9", ",", "0.32"}], "}"}]}], "]"}], ",", + RowBox[{"Text", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + RowBox[{"\"\<(\>\"", "<>", "let", "<>", "\"\<)\>\""}], ",", + "Bold", ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.6"}], ",", + RowBox[{"-", "0.04"}]}], "}"}]}], "]"}]}], "}"}]}]}], + "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"testEllipse", "[", + RowBox[{ + RowBox[{"range_", ":", "Automatic"}], ",", + RowBox[{"blank_", ":", "False"}]}], "]"}], "[", "p_", "]"}], "[", + RowBox[{"a_", ",", "\[Epsilon]p_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{"Graphics", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"ColorData", "[", "97", "]"}], "[", "3", "]"}], ",", + RowBox[{ + RowBox[{"ellipse", "[", "p", "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]p", ",", "\[Kappa]"}], "]"}]}], "}"}], + ",", + RowBox[{"Axes", "\[Rule]", "True"}], ",", + RowBox[{"AxesOrigin", "\[Rule]", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], ",", + RowBox[{"AxesLabel", "\[Rule]", + RowBox[{"If", "[", + RowBox[{"blank", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + RowBox[{"Re", "[", "\[Lambda]", "]"}], ",", "White"}], "]"}], + ",", + RowBox[{"Style", "[", + RowBox[{ + RowBox[{"Im", "[", "\[Lambda]", "]"}], ",", "White"}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"Re", "[", "\[Lambda]", "]"}], ",", + RowBox[{"Im", "[", "\[Lambda]", "]"}]}], "}"}]}], "]"}]}], ",", + RowBox[{"AxesStyle", "\[Rule]", + RowBox[{"{", "Black", "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"Black", ",", + RowBox[{"FontSize", "\[Rule]", "fS"}], ",", + RowBox[{"FontFamily", "\[Rule]", "\"\\""}]}], "}"}]}], ",", + RowBox[{"PlotRange", "\[Rule]", "range"}], ",", + RowBox[{"ImageSize", "\[Rule]", "95"}], ",", + RowBox[{"Ticks", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "4"}], "}"}], ",", + RowBox[{"{", "2", "}"}]}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"testSet", "[", + RowBox[{"N_", ",", "n_", ",", + RowBox[{"\[CapitalDelta]x_", ":", "6"}], ",", + RowBox[{"range_", ":", "Automatic"}]}], "]"}], "[", "p_", "]"}], "[", + + RowBox[{"a_", ",", "\[Epsilon]_", ",", "\[Kappa]_"}], "]"}], ":=", + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Epsilon]t", "=", + RowBox[{ + RowBox[{"\[Epsilon]th", "[", "p", "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]", ",", "\[Kappa]"}], "]"}]}], "}"}], + ",", "\[IndentingNewLine]", + RowBox[{"List", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"testComp", "[", + RowBox[{ + "N", ",", "n", ",", "\"\\"", ",", "\[CapitalDelta]x", ",", + "range", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{"\[Sigma]", ",", "White"}], "]"}], ",", + RowBox[{"\[Rho]", "[", "\[Sigma]", "]"}]}], "}"}], ",", + "True"}], "]"}], "[", "p", "]"}], "[", + RowBox[{"a", ",", "0", ",", "\[Kappa]"}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"testComp", "[", + RowBox[{ + "N", ",", "n", ",", "\"\\"", ",", "\[CapitalDelta]x", ",", + "range"}], "]"}], "[", "p", "]"}], "[", + RowBox[{"a", ",", + RowBox[{"0.5", "\[Epsilon]t"}], ",", "\[Kappa]"}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"testComp", "[", + RowBox[{ + "N", ",", "n", ",", "\"\\"", ",", "\[CapitalDelta]x", ",", + "range", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{"\[Sigma]", ",", "White"}], "]"}], ",", + RowBox[{"Style", "[", + RowBox[{ + RowBox[{"\[Rho]", "[", "\[Sigma]", "]"}], ",", "White"}], + "]"}]}], "}"}], ",", "True"}], "]"}], "[", "p", "]"}], "[", + RowBox[{"a", ",", "\[Epsilon]t", ",", "\[Kappa]"}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"testComp", "[", + RowBox[{ + "N", ",", "n", ",", "\"\\"", ",", "\[CapitalDelta]x", ",", + "range", ",", + RowBox[{"{", + RowBox[{"\[Sigma]", ",", + RowBox[{"Style", "[", + RowBox[{ + RowBox[{"\[Rho]", "[", "\[Sigma]", "]"}], ",", "White"}], + "]"}]}], "}"}], ",", "True"}], "]"}], "[", "p", "]"}], "[", + RowBox[{"a", ",", + RowBox[{"1.5", "\[Epsilon]t"}], ",", "\[Kappa]"}], "]"}]}], + "\[IndentingNewLine]", "]"}]}], "]"}]}]}]}]], "Input", + CellChangeTimes->{{3.813653007020094*^9, 3.8136531566362123`*^9}, { + 3.813653189908123*^9, 3.813653586768764*^9}, {3.813653709338006*^9, + 3.813653709545826*^9}, {3.8136537580773*^9, 3.813653810897161*^9}, { + 3.813654286640408*^9, 3.813654288601534*^9}, {3.813654700180442*^9, + 3.813654724967897*^9}, {3.813654766168158*^9, 3.8136547854266653`*^9}, { + 3.8136548746486998`*^9, 3.813654874821353*^9}, {3.813658122234028*^9, + 3.8136581283065367`*^9}, {3.813659004929785*^9, 3.8136590526450863`*^9}, { + 3.813661116373077*^9, 3.813661123605467*^9}, {3.8136715249468613`*^9, + 3.81367159753922*^9}, {3.813672299975564*^9, 3.8136724140837393`*^9}, { + 3.813672678210948*^9, 3.8136726861226387`*^9}, {3.813672922437232*^9, + 3.81367292587614*^9}, {3.813674371653767*^9, 3.813674387222578*^9}, { + 3.813678891400573*^9, 3.813678891550445*^9}, {3.813679080855782*^9, + 3.813679098890656*^9}, {3.813737575468755*^9, 3.8137375756289587`*^9}, { + 3.813737609464983*^9, 3.8137376350612497`*^9}, 3.813737682092214*^9, { + 3.8137377201028967`*^9, 3.813737720428529*^9}, {3.8137387175067997`*^9, + 3.8137388576886663`*^9}, {3.8137388888311167`*^9, 3.813738889149777*^9}, { + 3.8137391280649223`*^9, 3.813739128462946*^9}, {3.8137393830118504`*^9, + 3.81373940366578*^9}, {3.8137394984618673`*^9, 3.8137394989526997`*^9}, + 3.813739643766631*^9, {3.813739824445231*^9, 3.813739827268487*^9}, { + 3.813911819724989*^9, 3.8139118198786783`*^9}, {3.813913013431719*^9, + 3.8139130755057707`*^9}, {3.81391317581672*^9, 3.813913179438203*^9}, { + 3.813996381988168*^9, 3.813996463565189*^9}, {3.813996532587126*^9, + 3.813996532871497*^9}, {3.814013804326396*^9, 3.814013829839767*^9}, { + 3.814013990788248*^9, 3.8140140407164288`*^9}, {3.814014075961749*^9, + 3.814014112023265*^9}, {3.814593284419935*^9, 3.814593294237294*^9}, { + 3.814607526244369*^9, 3.814607531403071*^9}, {3.8146076392862883`*^9, + 3.814607640052382*^9}, {3.814624831298225*^9, 3.814624846198105*^9}, { + 3.814624961162807*^9, 3.814624961472515*^9}, {3.814625094664619*^9, + 3.814625108135002*^9}, {3.814625199645988*^9, 3.814625208292012*^9}, { + 3.814625311163705*^9, 3.814625318081584*^9}, {3.8146269048616877`*^9, + 3.814626905364129*^9}, {3.814628600787546*^9, 3.8146286010572243`*^9}, { + 3.814628809766123*^9, 3.814628810030023*^9}, {3.8146288750486917`*^9, + 3.814628875323881*^9}, {3.814629340251381*^9, 3.8146293407676973`*^9}, { + 3.814788739616027*^9, 3.8147888080890503`*^9}, {3.814788889593226*^9, + 3.814788906752894*^9}, {3.814788967990285*^9, 3.8147889793720083`*^9}, { + 3.814789022783564*^9, 3.81478911695912*^9}, {3.814789294917945*^9, + 3.8147892955737333`*^9}, {3.814789559123744*^9, 3.8147895730560713`*^9}, { + 3.814789608112656*^9, 3.81478964502137*^9}, {3.814789686562584*^9, + 3.814789727740556*^9}, {3.814789763852906*^9, 3.814789803221428*^9}, { + 3.814791205632148*^9, 3.8147912383011627`*^9}, {3.8147914288958*^9, + 3.814791445977319*^9}, {3.814791482866024*^9, 3.814791504920794*^9}, { + 3.814791563715036*^9, 3.814791577470585*^9}, {3.8147916378994207`*^9, + 3.814791643737503*^9}, {3.814792932786528*^9, 3.8147929523832197`*^9}, { + 3.814793258359809*^9, 3.814793287258318*^9}, {3.814793331065152*^9, + 3.814793368583454*^9}, {3.81479355803152*^9, 3.814793672544641*^9}, { + 3.814809954719452*^9, 3.814809998848116*^9}, {3.814810042260092*^9, + 3.814810042794756*^9}, {3.814810220016745*^9, 3.814810226699555*^9}, { + 3.814810263048843*^9, 3.8148102685741463`*^9}, {3.8148103024167356`*^9, + 3.81481030305823*^9}, {3.8148103810448437`*^9, 3.814810413296771*^9}, { + 3.814812199695668*^9, 3.814812200091001*^9}, {3.814852488014389*^9, + 3.814852490681789*^9}, {3.814852521923571*^9, 3.8148526286966553`*^9}, { + 3.8148527714173927`*^9, 3.814852796037692*^9}, {3.8148530732621098`*^9, + 3.814853075658629*^9}, {3.814853224198009*^9, 3.814853226434214*^9}, { + 3.8148629566743727`*^9, 3.814863055949602*^9}, {3.8148631032324257`*^9, + 3.8148632826021137`*^9}, {3.814863374582918*^9, 3.8148633748736258`*^9}, { + 3.8148634117432528`*^9, 3.814863412055027*^9}, {3.814863445928918*^9, + 3.814863500985111*^9}, {3.814863618240704*^9, 3.8148636222701473`*^9}, { + 3.814863796568199*^9, 3.814863799474366*^9}, {3.814863875776102*^9, + 3.814863898452901*^9}, {3.8148639503381147`*^9, 3.8148639529262*^9}, { + 3.8148640270831738`*^9, 3.814864033659788*^9}, {3.814864080582281*^9, + 3.814864098166259*^9}, {3.814864331404907*^9, 3.814864333279914*^9}, { + 3.814864417484057*^9, 3.814864441762031*^9}, {3.8148705618720713`*^9, + 3.8148705702871027`*^9}, {3.8148706444176407`*^9, 3.814870654299727*^9}, { + 3.814870803648452*^9, 3.814870882742605*^9}, {3.814871209320281*^9, + 3.8148712096959352`*^9}, {3.8148712600709877`*^9, 3.814871274203727*^9}, { + 3.814871348134625*^9, 3.8148713904825983`*^9}, {3.814871505090255*^9, + 3.814871523361648*^9}, {3.814871645375247*^9, 3.814871679221615*^9}, { + 3.8148717266537523`*^9, 3.814871741285219*^9}, {3.814877820842016*^9, + 3.8148778211352167`*^9}, {3.81487903116503*^9, 3.814879031821175*^9}, { + 3.814879068998343*^9, 3.814879091590374*^9}, {3.8148791626176033`*^9, + 3.814879295281672*^9}, {3.814879560743972*^9, 3.814879599592984*^9}, { + 3.8148796483016787`*^9, 3.814879676688076*^9}, {3.815116273278433*^9, + 3.815116364681965*^9}, {3.81511640244263*^9, 3.815116410948402*^9}, { + 3.815116487423258*^9, 3.8151165090936003`*^9}, {3.815118071537969*^9, + 3.815118144985528*^9}, {3.8151182832505608`*^9, 3.815118297026156*^9}, { + 3.815118510722522*^9, 3.815118512802389*^9}, 3.8151185637368937`*^9, { + 3.815118601822554*^9, 3.815118612267337*^9}, {3.815118818865163*^9, + 3.815118847026883*^9}, {3.8151192213791847`*^9, 3.815119258969912*^9}, { + 3.815119385264102*^9, 3.815119388431576*^9}, {3.815119427290547*^9, + 3.815119431709144*^9}, {3.815119489326233*^9, 3.81511949263171*^9}, { + 3.815119550188312*^9, 3.815119551416102*^9}, {3.815119667933413*^9, + 3.815119670242923*^9}, {3.81511970337744*^9, 3.8151197112927837`*^9}, { + 3.816409626348318*^9, 3.816409658756768*^9}, {3.816409689733838*^9, + 3.816409710780332*^9}, {3.8164098345179996`*^9, 3.816410082310646*^9}, { + 3.8164102681273603`*^9, 3.816410268337234*^9}, {3.816410318744266*^9, + 3.816410324215488*^9}, {3.816410828012044*^9, 3.8164108281811247`*^9}, { + 3.816410858974496*^9, 3.81641085926422*^9}, {3.81641097259726*^9, + 3.816410978045002*^9}, {3.816411038233378*^9, 3.816411041356578*^9}, { + 3.816411073418174*^9, 3.816411073555464*^9}, {3.816411135161374*^9, + 3.816411149439569*^9}, {3.8164113548023453`*^9, 3.816411355240246*^9}, { + 3.816411415669125*^9, 3.816411416314953*^9}, {3.816411461720344*^9, + 3.816411468590171*^9}, {3.816411514184388*^9, 3.8164115151733522`*^9}, { + 3.816411673846387*^9, 3.8164116918287153`*^9}, {3.816411776499837*^9, + 3.816411802521755*^9}, {3.816412073826394*^9, 3.816412116280395*^9}, { + 3.816412265396225*^9, 3.816412265709551*^9}, {3.816428295713656*^9, + 3.8164282962491198`*^9}, {3.8164295896962147`*^9, + 3.8164297441788473`*^9}, {3.8164298024840183`*^9, 3.81642983710072*^9}, { + 3.816429888213769*^9, 3.8164298914855213`*^9}, {3.816429966999147*^9, + 3.8164299787216*^9}, {3.816430269436386*^9, 3.816430279644607*^9}, { + 3.8164303220378723`*^9, 3.8164303541819897`*^9}, {3.816430466143865*^9, + 3.8164306392687197`*^9}, {3.8164306881318827`*^9, 3.816430690371765*^9}, { + 3.816430778965416*^9, 3.816430840470724*^9}, {3.8164309549605513`*^9, + 3.816430968784729*^9}, {3.816431236885845*^9, 3.816431288456121*^9}, { + 3.816431577339752*^9, 3.8164316330285273`*^9}, {3.816431869553815*^9, + 3.81643187498561*^9}, {3.816431907987093*^9, 3.8164319162818336`*^9}, { + 3.8164320973973*^9, 3.8164321030293627`*^9}, {3.816432138902293*^9, + 3.816432245048073*^9}, {3.816432280353064*^9, 3.816432480988244*^9}, { + 3.81643251917321*^9, 3.8164326045824223`*^9}, {3.816432645920018*^9, + 3.816432646015348*^9}, {3.816432683399735*^9, 3.816432731848394*^9}, { + 3.81643283284271*^9, 3.816432845859016*^9}, 3.816432901356044*^9, { + 3.816432940100857*^9, 3.816433069319083*^9}, {3.816433102424116*^9, + 3.816433102679579*^9}, {3.8164331416728086`*^9, 3.816433141848382*^9}, { + 3.8164331961053762`*^9, 3.8164332140096292`*^9}, {3.8164333008837*^9, + 3.816433309355344*^9}, {3.816433378020759*^9, 3.816433416997257*^9}, { + 3.816433459709873*^9, 3.8164334756539783`*^9}, {3.816433588024445*^9, + 3.8164335928081703`*^9}, {3.8164337185947247`*^9, 3.816433920062126*^9}, { + 3.8164339525669928`*^9, 3.816433952790419*^9}, {3.8164339853355713`*^9, + 3.816433985575275*^9}, {3.8164343833666286`*^9, 3.816434383486178*^9}, { + 3.816434414623101*^9, 3.816434434239217*^9}, {3.816435064442533*^9, + 3.816435120371448*^9}, {3.816435301191091*^9, 3.816435301374707*^9}, { + 3.816497380363172*^9, 3.816497410589909*^9}, {3.8164974721593237`*^9, + 3.8164976094360533`*^9}, {3.816497660098715*^9, 3.816497662728519*^9}, { + 3.816497708218451*^9, 3.8164977907595787`*^9}, {3.816497862875834*^9, + 3.8164979580648746`*^9}, {3.816497989736067*^9, 3.816498059899818*^9}, { + 3.816498108050294*^9, 3.8164981084586077`*^9}, {3.81649814700463*^9, + 3.816498147405396*^9}, {3.816498259808539*^9, 3.816498260148157*^9}, { + 3.8164983092348633`*^9, 3.81649833038629*^9}, {3.8164984230542088`*^9, + 3.816498453183764*^9}, {3.8164984864522552`*^9, 3.816498548460944*^9}, { + 3.816498970371376*^9, 3.816499059094081*^9}, {3.816499095195652*^9, + 3.8164990962417927`*^9}, {3.816499146914366*^9, 3.816499147382159*^9}, { + 3.816499204298349*^9, 3.8164992047430887`*^9}, {3.8164992857800083`*^9, + 3.816499308182431*^9}, {3.816499341512218*^9, 3.816499344415197*^9}, { + 3.81649938544284*^9, 3.8164994151028843`*^9}, {3.816499461583797*^9, + 3.8164994630796413`*^9}, {3.8164994942904387`*^9, 3.816499515708181*^9}, { + 3.816499559278627*^9, 3.816499561804991*^9}, {3.816499612570321*^9, + 3.816499613273157*^9}, {3.816499654940341*^9, 3.816499656361063*^9}, { + 3.816499687310622*^9, 3.8164996877677402`*^9}, {3.8165150135748*^9, + 3.816515014261921*^9}, {3.816677380537718*^9, 3.816677413722505*^9}, { + 3.816677447483396*^9, 3.816677496083828*^9}, {3.8166778066096973`*^9, + 3.816677842282333*^9}, {3.816678107151442*^9, 3.8166781244314737`*^9}, { + 3.816678162664559*^9, 3.816678163528043*^9}, {3.8263471953344727`*^9, + 3.826347201309771*^9}, {3.826347241014995*^9, 3.82634725653482*^9}, { + 3.826347459283122*^9, 3.826347460434844*^9}, {3.8263475115720577`*^9, + 3.826347512619761*^9}, {3.8263475508926697`*^9, 3.826347551356464*^9}, { + 3.8263476239098597`*^9, 3.82634763855007*^9}, {3.8263519871432133`*^9, + 3.826352053254393*^9}, {3.8263521038395853`*^9, 3.82635210691118*^9}, { + 3.826352144152152*^9, 3.826352170024424*^9}, {3.8263522845807667`*^9, + 3.826352321300992*^9}, {3.826352353836025*^9, 3.8263523539795647`*^9}, { + 3.8263524350936127`*^9, 3.826352435205215*^9}, {3.826352466374075*^9, + 3.826352466525708*^9}, {3.826352514896193*^9, 3.826352514998486*^9}, { + 3.826352571695813*^9, 3.8263525741197042`*^9}, 3.8263528937895823`*^9}, + CellLabel-> + "In[206]:=",ExpressionUUID->"710c9a27-f370-4b49-87ba-b6a2e503e1a1"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Figures", "Section", + CellChangeTimes->{{3.8154859185725727`*^9, 3.8154859331338987`*^9}, { + 3.815486191762444*^9, 3.8154861919387197`*^9}, {3.826346487535878*^9, + 3.826346488311784*^9}},ExpressionUUID->"0311d823-3095-416b-85be-\ +e13c2fd81883"], + +Cell[CellGroupData[{ + +Cell["Figure 1", "Subsection", + CellChangeTimes->{{3.826346431662855*^9, + 3.826346433094747*^9}},ExpressionUUID->"121916cc-376c-4307-a08e-\ +81b75c069760"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"test", "=", + RowBox[{"{", + RowBox[{"1.25", ",", + RowBox[{"-", "1"}], ",", + RowBox[{"0.75", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + RowBox[{"\[Pi]", "/", "4"}]}], "]"}]}]}], "}"}]}], ";"}]], "Input", + CellChangeTimes->{{3.816411555553933*^9, 3.816411565357039*^9}, + 3.816411655052144*^9, {3.8164292559304457`*^9, 3.8164292581240597`*^9}, { + 3.816429446853876*^9, 3.816429448549487*^9}, {3.81643011729771*^9, + 3.816430117921386*^9}, {3.8164310703386602`*^9, 3.8164311325791407`*^9}, { + 3.81643116628456*^9, 3.816431206292406*^9}, {3.8164335068223753`*^9, + 3.8164335395263042`*^9}, {3.81649729376326*^9, 3.816497299737434*^9}, + 3.816497346789597*^9, 3.816499174194536*^9, 3.82634700512236*^9}, + CellLabel->"In[47]:=",ExpressionUUID->"777ea0ab-464e-4cea-847a-2fa1209a8190"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"figure", "=", + RowBox[{ + RowBox[{ + RowBox[{"testSet", "[", + RowBox[{"8", ",", + SuperscriptBox["2", "10"], ",", "6.5", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "3"}], ",", "5.5"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], "]"}], "[", "3", + "]"}], "@@", "test"}]}]], "Input", + CellChangeTimes->{{3.816430647035591*^9, 3.8164306587707243`*^9}, { + 3.816430852318706*^9, 3.8164308525262623`*^9}, {3.8164312952864857`*^9, + 3.81643131495835*^9}, {3.816431346855323*^9, 3.81643134720689*^9}, { + 3.816431461545424*^9, 3.816431479881194*^9}, {3.816433018653893*^9, + 3.816433022469213*^9}, {3.8164335530796013`*^9, 3.8164335565685787`*^9}, { + 3.816434006103469*^9, 3.816434006774694*^9}, {3.816435070242421*^9, + 3.816435073513618*^9}, {3.816435399087771*^9, 3.816435399295457*^9}, { + 3.816497303521049*^9, 3.816497333075838*^9}, {3.816498614878577*^9, + 3.816498616211803*^9}, 3.816499063208625*^9, {3.8164995643981752`*^9, + 3.8164995651565647`*^9}, {3.8164997370178957`*^9, 3.816499737461911*^9}, + 3.8166774215858793`*^9, {3.816677870602387*^9, 3.816677870785582*^9}, + 3.816678110751055*^9, {3.8166782324245462`*^9, 3.816678233432249*^9}, { + 3.8263472962793493`*^9, 3.8263472971186934`*^9}, {3.826352441388637*^9, + 3.826352441443996*^9}, {3.826352553638637*^9, 3.8263525540862627`*^9}}, + CellLabel-> + "In[211]:=",ExpressionUUID->"f8eeb461-e5d9-4c90-a4d6-8a61ccd9095c"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + GraphicsBox[{{ + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], + EdgeForm[{Opacity[0.40599999999999997`], Thickness[Small]}], {}, + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], + EdgeForm[{Opacity[0.40599999999999997`], Thickness[Small]}], + RectangleBox[{0., 0}, {0.1625, 0.32752403846153844}, + RoundingRadius->0], + RectangleBox[{0.1625, 0}, {0.325, 0.33052884615384615}, + RoundingRadius->0], + RectangleBox[{0.325, 0}, {0.48750000000000004, 0.3275240384615384}, + RoundingRadius->0], + RectangleBox[{0.48750000000000004, 0}, {0.65, 0.3207632211538462}, + RoundingRadius->0], + RectangleBox[{0.65, 0}, {0.8125, 0.32451923076923084}, + RoundingRadius->0], + RectangleBox[{0.8125, 0}, {0.9750000000000001, 0.32001201923076905}, + RoundingRadius->0], + RectangleBox[{0.9750000000000001, 0}, {1.1375, 0.3125000000000002}, + RoundingRadius->0], + RectangleBox[{1.1375, 0}, {1.3, 0.31325120192307676}, + RoundingRadius->0], + RectangleBox[{1.3, 0}, {1.4625000000000001, 0.3072415865384614}, + RoundingRadius->0], + RectangleBox[{1.4625000000000001, 0}, {1.625, 0.3027343750000002}, + RoundingRadius->0], + RectangleBox[{1.625, 0}, {1.7875, 0.29371995192307676}, + RoundingRadius->0], + RectangleBox[{1.7875, 0}, {1.9500000000000002, 0.2884615384615383}, + RoundingRadius->0], + RectangleBox[{1.9500000000000002, 0}, {2.1125000000000003, 0.2824519230769229}, + + RoundingRadius->0], + RectangleBox[{2.1125000000000003, 0}, {2.275, 0.2704326923076929}, + RoundingRadius->0], + RectangleBox[{2.275, 0}, {2.4375, 0.2614182692307691}, + RoundingRadius->0], + RectangleBox[{2.4375, 0}, {2.6, 0.2486478365384614}, + RoundingRadius->0], + RectangleBox[{2.6, 0}, {2.7625, 0.23888221153846143}, + RoundingRadius->0], + RectangleBox[{2.7625, 0}, {2.9250000000000003, 0.22085336538461528}, + RoundingRadius->0], + RectangleBox[{2.9250000000000003, 0}, {3.0875, 0.20733173076923123}, + RoundingRadius->0], + RectangleBox[{3.0875, 0}, {3.25, 0.18704927884615374}, + RoundingRadius->0], + RectangleBox[{3.25, 0}, {3.4125, 0.1690204326923076}, + RoundingRadius->0], + RectangleBox[{3.4125, 0}, {3.575, 0.14197716346153838}, + RoundingRadius->0], + RectangleBox[{3.575, 0}, {3.7375000000000003, 0.10366586538461534}, + RoundingRadius->0], + RectangleBox[{3.7375000000000003, 0}, {3.9000000000000004, 0.05333533653846151}, + + RoundingRadius-> + 0]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJxN1Xk4Vd33AHBk5p4GouF9zSpJpFQia9OrIqUiGVKUOYrLV72GuhlTSkqi +DEllnmWernkezzUVKiJjKCJD39Pv+f3u+Z1/9vN5zrPXs9Ze5+wlfvn6WUs2 +FhYWAVYWlj/ryfbAxImmO2ppnDsoSrwMaDLQFW/Vp8H/2Z/V6FCN/iOm152v +Yr906TEsWioclSIclrynZd42hGkxtqjwhy6hTMef57XYdjuMaYUU190lAc/h +SNXB2wKE89gGF86FRDCNDHUrJqOimB7q7Ksu138JD6TU89j+xGMVTMaMY5i2 +36UdbHzpFdMK52muby1ioctba2aGhwE/7uSYzNq+ZjoveQKpXX8D4oNndn4i +7NElse2ey1um2eWCpsVvx8NVDeMrrYRrz1cxHHwSICfmckQp4UCvpYL8gESm +T6fseckRlAQsrFcZqYQFu619z4QkM93NFmUXGZ4C2mbOWBThCDlcdzQqFUJK +3Y89IGxmyKuk9DqN6cfqYg/K9NOhX8SH5vEnf4PC21Zd6bDjVmD+VcIG9gZU +fuMMpvPuzFhkfsgAal/IrDHhLc8CzxteyoQi1UhZ7T/1JW/XXv2UCZwRbyyU +CffTy1VfW2QxjbpM5bVHsuD0UkrkDsKvJhbEp22z4blxTqfwn/NgCxEMnciG +ofyStVyErYTluVSvv4Pdm2uOz3MzYKeG5YS/Sw5UdHUV4IQzn7XliN7Og3H9 +xahgwoIp9glVrPmglM3aTSPsWs4VcdUnH4jmrnck3N316uF6rgKoo27QvkT4 +0OThO7kBBSDQvsX7FOEIth5nU/5CMN0jWXSY8Kqwi9WaoEKIeyQ7t4uwmdxa +o4T1RaCiq2rNR7hcI/GEbkgR+Kb+8/IXFwOkDDXV5oSKoZVysmeUsJ/DR4UX +4cWwxeHchh7CX73cJdX/KoFUWSufXMLaYUJCI1ElsHDvWvFbwskpGdwPxEtB +Y8x1/ilhrEJnSfF1KXTG+9u4ED448d3VXqAMxLgfxVwhPOqq7liqXwZ21mG9 +Zwm388xjwS/KYFU6QWcP4aKIxJTLn8vguG+GrxjhN/KXdPbJ0KHvSPnPVU4G +PCwXGOdwpIMTW4dtH+Eb52oDunLoUGj+/lUjYbOvHjsSVuigKzYhmERYy31P +jds/5TDYv+wXQFgRG7bUuV8OcmocZTcJu725Z9JDrwSfDi9hTw4GXDkIvxK5 +q2DT4ycBJoR1Gr6HeehWQfLp10vKhEVmLnSK9lUBo6lqYJ6dARWq8mesFqpB +upY73pEwP95x9PvuOjBxj07UWMOAOau7Xyr/UwfflNP/Eifcv6jqE1pUB03n +62qm2BhQEzgjYbOmHsyFepWbCKeLvqUra9fDHD6WlET43NWbqjTLBuh9oDa8 +hnAU29+KlIgmmLo49SSWhbh/nra19n9ugkYPLnAi7LjD73q6TDMkPhcbUyOs +cepbsl5uM1h1nkW9v3EYCadvf97eAk+nUrPECYdtynr4hL0N2lRpmrdWcMic +tYiPlW6DNOPw6ROEmxqFyrOOtsGDm5kvNhNmu+M213G3DbSzh2ayl3GwH1W/ +IEhphwpZrajxJRzUC1plnm7sAK0eCdsDv3AYM5mqDN3GgL1nvyVEzOPAvv9l +/9tjDDBpWffQiLDourMLOTYM8NZRpAoR1q98J9uVyIB7I/asMXM4lOzyfCws +3wmyH2aDQ37g8HiFzyzsQBdIWs3/GziLg0q0zFL48R7wM9huvWMKh2aOOH52 +2x5YUDzjg0/iYGYvJXItoAfE06k2wYT9lEXVNep7oJCnxPbXBA6tHYL+Yyd6 +YbpI375xHAcLbhYBFd33YCLp5eQ4ikOgU+fOD+f6ILaRM9xiCAeRbj3Vo659 +sDFBIWcd4Qy1tpPpoX3g72vcUTSIQydfo6NPVx/kROYcZScs9paes8uoH2hr +LxZmf8IhuzdZw/PCAMRlFAv96MdhKkZdLijjI1i3vx0T6cFBU9h4QLLiI0hi +PaigG4eIQGpwHv4RPmrxPTtH+MSN2LlPPz9CrNhND/cuHOJ1OEr2qX2CgWta +WDcDhys/a0/11n+Csbrl2OvtOHTrnHaUHvoMLhceTGg34ED/eTGrUOgLnPl+ +bjajkOifUiyv1PYv8GoyrECWsJDziHnggS8Qf7dDK6cAB7up6+tMDb8Ai8iZ +mIJ8HAS/0BxWw79A6nGd0xW5OFi1v9qu/vcw6K9oj1Rk4cCbMvyiWnIE6gZt +F+8kEf28fM2nTWEURq+oibWG48B/md83XGMUmv56bLyDcKV5oq+5/ihkMr6E +0MJwUDIf9pu5MQp7vvq0qj8j8jG7GLC+dBTc7BtoWSE49Jieenjm5BgY4GZb +/IJwuGi0O6zNdhxotHd2XT442JyeSmp7NQnuNqKyCw7E9zN83YqbZQaW32h6 +PlYhzivNPOIvnu8QoCZqWcmBg17B/RVptTmIyuLw6azoANOW3eyvT/4Enbj/ +bMVvdcBI0j1/+tlFYN/aVTq+twMU60X2495LcJXyZl6itx36ZmXvmQStgF9V +/NVJz3bQMnXi6a7+DXLg+HT7unZ4XpPL9muRBRW606YawtugzNJZr3yFFdmV +vhOQFm+DaqkGZV/hNejfYJ4FpcetsGwzQPUSYUcSn4f1FVlaYUNzkLqbCgei +nJ0WpL5phtHQiGZ1PU60Lc7VL0GuCb4NWaYeMeRCx6rtvv9ObIBOvQZJ5MyN +kqs3dFZ318HksclxV3ceFN7+y4RtugYqo69SPW/xotkQhsvhtiqI4/ng+smL +FxnZFQ/Y1FTBPWcdd01/XlQGb7RDiqvg9DE5H8ojXpRjHcoen1AF76emnkbG +8KKY3Js3W+5Uwexhan5xJS86UjeENytUgdiHmyyrvHxIaE5rKj2gEtw3+T28 +9YwPvRey3F8rVQFUF3WPZy/40ODH9j0jmyvArnXZNj2aD40nIjnOtRVgfNdZ +83McH/ozzVgXy+HggtmyZh4fKjIxepXVWA4/ulTsKD18aCDASN6PWg7Xns1o +RmzhRwl9aWweuXSw+p68950IPxo2zmZxSKKDqa6NeLMEP5Lszls1jaaDDtfA +8u+d/EgxuN1exJ8Osjcas66o8CM+OBh9yIAOXw3ixGUv8COHqtVM99kyuCxk +upIfyY/mMyezlSTKoO/zNcbOV8T+cwo7E4i5ZphGS3nxlh+x5XivX2Ivg1PH +X5t6pvEjzW/6ZYdbSkHFbbwY0fnRR/PeAz/Pl4Jg/7+3aob4UT8bzz3RKyVQ +/Sb0Ny5LQV3r/e3FTItAnRrfpalAQVKS1ua6KkVQpFaQlrOPgp5n2BxS2VwE +mV19l8IOU1DKiQetLXghRPNIl5noUtCf6RCpVQg3HbJon6kUtFex1tRHpgBk +lFpZp/Mp6PZ7AamcwlzY5/x+k04JBRVKK5udf5ILahnD8vHlFCQ2eZv4g3Lh +rNyKqVkDBWX9KXdTLrhJ7yxo/UBBQ1rtSk+u50D9Rh9qxm8KulP3QOIq5R3g +ekEBFHYM7WM8WTw2kA39wc9f2nJj6H+uu/RsmKVkNIuvx1DQp4zoqrPZsJWz +f+djCQzt2h7zw/dRFtjPHxikamJoeZNz14bZDHDdd+RXsxaG8uriFQMLM4BG +PbVe9hSGJmc0Dqn6ZEDIlAUMGmAoXNbbzlsgA4qHg1/o2WBoQnE5buuOdKiV +isxMs8dQn1pSY0hnGrRfjq/jc8KQ61Kyop5xGgz3l/ys+BdDTSqn2oIvpALW +Na637z6G3AIydEr/SYZNG3/aPQrCEONpy6xqXhJI6LF5TTzBULmvqtdWmSTY +37Ip/XUEhsIWsVufWRIBUaRqWGIwRPN0Gau3TgDtE/L9F94Q+XbMhN2pj4dL +NZr8G1MxxL46/X3AOw7sOM5IOmVi6HT1goJ7z1twOXLhUFMOhujnolC3zFu4 +W0q18S3FEGf+fQXN/NfEvPO8/akCQ43uEbbl87EQoRIQergWQ9qj4Rcv74qF +9NzoyrlWDM2HUku63WOgZWSukpOBoR92tPbTsS9hSlinSrgHQ5duStc5e0YD +5firqh19RH0jdrLzzyJh182FKuVPGGqZ/0r5GfwCTsSfqtb+QsRTO+fLeTkc +7LpfV5uMYkj5iFPNi+VQuMu9VG0/iaHx/fErnadCIO7gmRrPGQwppuYd3Hkg +GKpt4moezmHoT3WuvfdgKGylJnoRQ+b0FRoXJw3W1OnVpq9giOV/H4nFhFo6 +61qm1WVY6to5SJsZGdQN8pCOymer59hAunjUsF5IiPSHzWn127eQ3uJm0qAl +QfrpoezGB4qkAwstWzbqkU4aL2zZdp50/dYNrQdMSHN7lLQaXSHtrSrcHulM +2q24FpcOIW1dKturxCDNa9ZdGdVDOpnFN42rn/S0er9Pz/D/i1f5SN5zgXT1 +kJvGZ8o6pntGB57J7CH9+3uCRt4N0oPaEXTqEum4jiLRpx7rmX5vn1Sbzb2B +fH984bnTfdKD+wTyZDcLMJ17JXDVK5L01cq9UhqigkwHKSWErCaRPjHqsdtQ +fiPTN1JEBNKKSXvHTnU6aAkxvf3DX5V1DaRVpTcvSxgJM/013dl0cx9pl2vL +kTcubmLaSVVPpmOMNOdJ7v4Gh81MLwTZpwo6kh5vb71lSiXdahgu+s2V9HOL +neYbaKTlPXSGDB+TNkx6NPYlh7T21I+C3fmkD+8xun+jkLRErvgunjLSk+WZ +DrvqSHv14tPU96Rd/lamF/aRtjaLDGb/SFpn2FIxdIi00Oy8c/4kaW4lk3/Y +pkkv3SgVPDFL+uOK/7sP86Q70ISv9CLpau/TBteWSOdVZ2/LXSGdxLP55+/f +pP8L3wxF/g== + "]]}, + Annotation[#, "Charting`Private`Tag$170370#1"]& ]}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{ + FormBox[ + StyleBox["\[Sigma]", + GrayLevel[1], StripOnInput -> False], TraditionalForm], + FormBox[ + RowBox[{"\[Rho]", "(", "\[Sigma]", ")"}], TraditionalForm]}, + AxesOrigin->{-0.13, 0}, + AxesStyle->GrayLevel[0], + Epilog->{ + InsetBox[ + GraphicsBox[{ + RGBColor[0.560181, 0.691569, 0.194885], + InterpretationBox[ + GeometricTransformationBox[ + + DiskBox[{0, 0}], {{{2.8778430317408668`, + 0.}, {-1.1056824434981842`, 0.8339579238789092}}, {0., 0.}}], + + Ellipsoid[{0., 0.}, {{ + 8.281980515339464, -3.1819805153394642`}, {-3.1819805153394642`, + 1.9180194846605358`}}]]}, Axes -> True, AxesOrigin -> {0, 0}, + AxesLabel -> { + FormBox[ + StyleBox[ + RowBox[{"Re", "(", "\[Lambda]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm], + FormBox[ + StyleBox[ + RowBox[{"Im", "(", "\[Lambda]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm]}, + AxesStyle -> { + GrayLevel[0]}, LabelStyle -> { + GrayLevel[0], FontSize -> 10, FontFamily -> "Times"}, + PlotRange -> {{-3, 5.5}, {-2, 2}}, ImageSize -> 95, Ticks -> {{{2, + FormBox["2", TraditionalForm]}, {4, + FormBox["4", TraditionalForm]}}, {{2, + FormBox["2", TraditionalForm]}}}], {4.9, 0.32}], + InsetBox[ + FormBox[ + StyleBox["\"(a)\"", Bold, FontSize -> 10, StripOnInput -> False], + TraditionalForm], {-0.6, -0.04}]}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->164, + LabelStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10], + PlotRange->{0, 0.35}, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Ticks->{Automatic, {{0., + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.02, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.04, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.06, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.08, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.1, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.12, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.14, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.16, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.18, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.2, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.22, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.24, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.26, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.28, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.3, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.32, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.34, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.1, + FormBox["0.1`", TraditionalForm]}, {0.2, + FormBox["0.2`", TraditionalForm]}, {0.3, + FormBox["0.3`", TraditionalForm]}}}, + TicksStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]], ",", + GraphicsBox[{{ + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], + EdgeForm[{Opacity[0.40599999999999997`], Thickness[Small]}], {}, + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], + EdgeForm[{Opacity[0.40599999999999997`], Thickness[Small]}], + RectangleBox[{0., 0}, {0.1625, 0.283203125}, + RoundingRadius->0], RectangleBox[{0.1625, 0}, {0.325, 0.29296875}, + RoundingRadius->0], + RectangleBox[{0.325, 0}, {0.48750000000000004, 0.29972956730769224}, + RoundingRadius->0], + RectangleBox[{0.48750000000000004, 0}, {0.65, 0.30573918269230776}, + RoundingRadius->0], + RectangleBox[{0.65, 0}, {0.8125, 0.30799278846153855}, + RoundingRadius->0], + RectangleBox[{0.8125, 0}, {0.9750000000000001, 0.3049879807692306}, + RoundingRadius->0], + RectangleBox[{0.9750000000000001, 0}, {1.1375, 0.3072415865384618}, + RoundingRadius->0], + RectangleBox[{1.1375, 0}, {1.3, 0.3019831730769229}, + RoundingRadius->0], + RectangleBox[{1.3, 0}, {1.4625000000000001, 0.2952223557692306}, + RoundingRadius->0], + RectangleBox[{1.4625000000000001, 0}, {1.625, 0.29371995192307715}, + RoundingRadius->0], + RectangleBox[{1.625, 0}, {1.7875, 0.28620793269230754}, + RoundingRadius->0], + RectangleBox[{1.7875, 0}, {1.9500000000000002, 0.27644230769230754}, + RoundingRadius->0], + RectangleBox[{1.9500000000000002, 0}, {2.1125000000000003, 0.2689302884615383}, + + RoundingRadius->0], + RectangleBox[{2.1125000000000003, 0}, {2.275, 0.25916466346153905}, + RoundingRadius->0], + RectangleBox[{2.275, 0}, {2.4375, 0.24263822115384603}, + RoundingRadius->0], + RectangleBox[{2.4375, 0}, {2.6, 0.23061899038461525}, + RoundingRadius->0], + RectangleBox[{2.6, 0}, {2.7625, 0.2185997596153845}, + RoundingRadius->0], + RectangleBox[{2.7625, 0}, {2.9250000000000003, 0.2050781249999999}, + RoundingRadius->0], + RectangleBox[{2.9250000000000003, 0}, {3.0875, 0.18629807692307734}, + RoundingRadius->0], + RectangleBox[{3.0875, 0}, {3.25, 0.1727764423076922}, + RoundingRadius->0], + RectangleBox[{3.25, 0}, {3.4125, 0.16075721153846145}, + RoundingRadius->0], + RectangleBox[{3.4125, 0}, {3.575, 0.14197716346153838}, + RoundingRadius->0], + RectangleBox[{3.575, 0}, {3.7375000000000003, 0.13146033653846148}, + RoundingRadius->0], + RectangleBox[{3.7375000000000003, 0}, {3.9000000000000004, 0.11868990384615379}, + + RoundingRadius->0], + RectangleBox[{3.9000000000000004, 0}, {4.0625, 0.10216346153846176}, + RoundingRadius->0], + RectangleBox[{4.0625, 0}, {4.2250000000000005, 0.0871394230769228}, + RoundingRadius->0], + RectangleBox[{4.2250000000000005, 0}, {4.3875, 0.057091346153846284}, + RoundingRadius->0], + RectangleBox[{4.3875, 0}, {4.55, 0.015024038461538495}, + RoundingRadius-> + 0]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJxF2Hk4lN/bAHBEIdUMIvUtS6u1UiqS+yElSyG7shWilCVRyZolJVuyq6zZ +s69ZE9HGPCJ7dsYY+1LC7+h6XzP/zPW5zjPXOec+93Ofc4b/mvVlMwY6Ojpz +ejq6te+LJL9Uyld3mbcv5fjCTpHAXnv7MyYtY/h/69NLT/Rq2sDVE1LDb5Ef +6ozvkHW9D+ytRzOLkL9qq/I3arrBJ0fBe/XI3fSHClYtPcFlB790OzI1nU75 +sOsTIOsRGpaQV3TaegxD/IBNemGPmCQJfOj1pOo0A+G+81C6KjJB5yOjkVEw +RBp9pfdADk8/+n3eMgRKZfO085D5GF5F+NuHwouaYLsF5GQdVtMDruGQn/Sg +TlCKBEcyHMTKfSNBrkE11Rm5iKF/USskGnZeFKutRB5o6aqt1nwDEiHtzyxO +o9/Tc6Zv1Y+FB7rJEl+RrUSUgvSN4mDTo7UZkGDWveDKtGUCyCcSjy0hF6VT +MBnrRDjD2hpvc4YEj1oFDjy1T4KT1tGcQ8iMogGT/K7J8KttT1mvDAk+6Xz8 +cdszBQJ6OmZvAAn8PJZKin1TQWYwXISKzPnzhpd6SDqwiDMI/SdLgmBZvueV +mllQmVH6IPUs6l+71NW8NQs60a8vy5NA20rbjk0/GzI6N39hPUeCnWF+OrpG +OaCarjHodJ4EcZRF/knLPLD6VnUsVhGNhyGEM5SSBzPaBj43lUhgzn14k7R1 +Phxxm4yVVyaBkJwZxce+AFJJXK2LKiTICWsq4HUtAoc/sgYJamh8GVYpH+mL +gdeshumNOgkcqjdF3/Ishk/fz2dGXSaB1PgZ90LfEtiZqLwarEmCarlUZdWQ +9/CSdKysRpcEow6yNhWalXD6WJVNpgkJSCzzW4OiKuE9n4DE+DUSvI9OzbjW +VwkzmQ8rpU1J4F/NMcZkUwXGn4VbO8xJIL51yEzlWTUknXMOPm2F8i/x6ZW2 +qhrohS7M3ZEEbM34+Rmxetg99HlzVgDKlx25/i8Ym8B8bmvh2Q9oPtOmyfH7 +m6Dc7FLYxxqUr1+4qnPPNwF3y3NHhVoSMLg/nMOfNEFdAdsp5Xq0/qOyVzm3 +kKBnB4Pb9e8kkC1pFHy5HQfKH6ZSkw4SkK9Qa0IP/ADtYrXfrdMovifedCcp +/IDFJ+HsirMk4CVcXiyw+AFRur+ES+ZIoFmTL9ya+gN6FqwNoxdJUC7iHMx9 +uAWWZ19LwApa7+XNxuEnW+FrBkH7OgsOp18LLkVcaIPD84aPmvbg8I3pLRuj +ZRtk9VdgBD4cjK327bnj2wbDtju+GPHj4C3JKyvX0AYjKu2aXXtxaMQ5fcjK +7UBmMDT/eQgHU2Y6jtOqHbCD4n37mTgOfrYtQp1aXWDIfuNcszwOe35qSJ93 +6AK78p9OU+dwyJZpupgV2gUoWXK2KuDQsvmLjWdrFyzxn9A9pYgDX1JVgYhe +N4hMbu96eBGHvPZ0OeerPVDIstDwXgsHaqysaED2L2CYVE1hN8PhHLd+z94P +vyBNn6S+1RyHaD+7oKLmX6D5UfMPyw0clB3j53oXfkFSpJ4yvSUOySpM5cdl +eqF7g73RNyscri98utTe0AuVOaQETnscSqx66aw7e2G5w6yCisze9ztnA7UX +pJh+t326h0PlFyFuUWIf3FzkQiuM5hfn1+Oq0wfJf289GHyIw08VNZv9A30Q +9i+BcDhcbSFQMtcHFvX9lr+RvU+6N1/a1A8T6q5l1R44SAjknLov1A8Xqstj +5D1xCF7goP9s0w/PTS41HvDBQSWuNchmuR9gdwBPsh8O8dyTZ5m2DYC+6eke +1ec4/PFjno/gG4AK1smuIeQUR0n9D2cHYD78guWJABw2XowS4Ho6ALI4u3B8 +EA5VC4a5pVyDUGBWqacUioOVRDzrvoOD8K7Bq6ECmevusInfyUEwapRjOB+G +w02qNcFAdxCYT39MlQ3HgXPQ7fZKxCAkWJOOH4rEwZwUd1B29xAwam8VzYnB +gUAYdkkRHQKFnZ0tXK9QPC8KtxBlhkDWNVbBD3lbfa5nn+EQfNp0JkrrNQ5F +FTW9j98MAd/9R06tb3BgzRiKqt07DO8cOIeT49H6k4VmxI4Pw5lIcv1fZMND +1kph8sPwuawyXS0Bh9z4hcUbZsNwxPRe2jDy1UhmbZa3w7CU1Z28PQnN/6dK +hm3hMPwrF8jZ24MY2+uGwVjnxdv0tfYgntzUkWHYZqDWI/4Wh3c+QgQVoREo +qiP5iCXjoP/xzo08qREIVMqOt0Vm3JBb/p/yCOSIhC/GI+u6nL49fmsE0oIM +LHlScGC4p9LgnzEC4jt/v+9DTs8J5F8oGwHNvz3E7ak4aE823zf6NgIO3bXm +Csh0YjyNdd0jEP6vIOOQdsvg4JGJESiJCyGkrz2fEusSvjoC+wcev/q69vzw +4A86wigo1N6cWUVO3Sckask3Crmb9N3503DQvHbHs+nIKPwYxVo0kNmusXlF +yI2CrPBahHCoMUn1MtEchQwr3ulQ5EcmF7wFzUfh26WNCvXIEiZD3lOOoyAV +ONdMRqYae/oU+45CUtPANbZ0HJKMBZ64R40CO0fzpCiyoXHlE8WMUXDR/OCi +isxlbOhLrBgF8sscNlvkb0Z/fdsaR+HNiVTcHdnHKPJpbN8obL4fYRKPjBmd +emY5OwqOxU8mapAXDVueHd1IBlF9t4IfyFmG9n6/ucnQ/8cR7eA4WBiyP68S +JENElLX8AjKfYdZz39NkYOoyJO3IwKHN4JK/+kUylDprRwgiBxtQ/HmMyGC7 +55KxFLKSwdOAXhsyHKw4d1AZmcHgUGCKB80lV2sDbUPI0GV0hnoF2e6qaZBk +Ehle0EnkWyELX2UIpi+ieeDKm+D6epqjr8i8COogw4VYkUfOyGxXHobwr9Ls +rF/wMltgbN0n9DVDHxynmao3HSp7nuYkvcAwFl2aDfXEwpssx9b749L7Eh7h +RPM33ZsRJs/H1sfvrcscKfh6bH1+oJsUOZVF86KOfFRx9dh6fLJ0+qLcm8fW +42eh4xatODS2Hl8+nT0xxMUxUJW+sZkZ+af2+5g2Fsr6+gRp67+K3UVZXz8G +7dDXR4Gyvt4lWsff/FajgFZrbGQwsp0W6U3VNcp6vghp2cT62lPW86lfc2uc +ujcFPuV+LpRBjtZMj+MJp8BVu07B3ciamkrxvSkUmDwyHrW0lu+aI/EppRTw +nFje0r6W7xreCbZfKXBtC3fx27V819iXKNlDgYXPB4W91/JdozqRfooCz56e +ijFdy/fLxkn1DONgmax+QRw56fJKUhDnOCybXyshIBtejn6rd2AcOjydzLrR ++8d1WSqZ/9Q42Jz1a32P/E39Z/Ko4jhcMkn0eIrso+6Qkn1lHERcy0V1kS3U +qGlNceOQOC/Q7o/qw1Uuu+TzeePwmFPa6yqyWudcQunH8fV6Ih/3IPZI6zg8 +/VcQcZC0WI5JHBkHi68BFXnIrG5sgQ/EqFDxb4I4rJwL9KMCFYZ7xJbuIc9s +5vS9rk5dr2+dYbs8LtpT1+tfxjshe/4SKiin8dsGJOIQdy/TJvQzFe4eOqul +ghx6Wvz25i4qDDHetltE9dWlTtJ8bpUKboZFd02Q1Xou6NafmwClRqMRIqrP +01tvSNs2TUBpU90jDNXzoWbyqaG+CRDNnIqgoHrfEXlH4srsBJBH9076IF/j +OB0Wt3kSrps8iS5H+4PSa7lAP7FJ0FRTnxNG+8l/heoexvaTkMq6pSYnAofy +IWtzZrop+D4/smUB7Wd9GQqFIsxTwDsl3GKDzHSPl1mdMAUH/MzNlgLR/rnh +e0oE3xTUuVHmqGg/7OAVGxeSnVrfLxd1KXcvekyBvzRBL8EXh2OfLdyDGach +gTt/ScsN1d9gjFTANg2+jcwnMl1xeKi3Y28H5zTsE9I8yY1cPVxXs3f/NMRL +z9j9dEbxYDzInH9uGiiVknuVnHC4c2bQv9V7GohPWuc2O6DzxzuT6P9YZuDf +8fAmDrjOUNUkcQZUmTpn/qLzycrqzeGanTPwCUXvGLKGmr34bZEZKL7F8vsN +Os+sTHp/KlOdgaPM6f/pm6J28fRZw9AZWDFk3RZpgNrz5lVi987Cp317b5io +ovaSZ8v7ZeZgTqw7oOMw6v980tz183PAYKaROSmGw19S5XjspTnQ+9PINCeK +Q8LYXNduoznYtP9L3rIwDrP/GZdvd5uDjLYG5ZWDKB9cj7syVc+BP33bWBcv +ev/lu+gGz83DWComunEbDgbfxRgTLi7AVtMz+X/IJBhOe+pTdfk3DG1giFGM +Qufthj0nmh8vgezEc346dF/rmhZ+eiVgGbSNP5G1vzeBooEty8/aVdB/vKBV +rNYEkXWFDH9+02Hdw4sWtrWNUGl2V6N6mR4rj51skzrVCLX7Pkt6cW/Anh/g +vm68+zv8teix89jDiNktDb7Y/uErsH8LkH14mgkz/pjSUi3yBUZDo7/JamzE +JK+mnaF4NcDEgFnmWd1NWHvvu/qdc5+gRePzXuwuM6bI7in8Rq0OxhXGxxyc +WDCB4x7Px3o+Qs3rW3bOLqzYPboag7KnNeC0w9vfJWwztiHEe6fXvg9wjctg +uTiGDfvX/Y8qEJRopJ8s3oKZSRio2htUQlbh65q5xq1YTovazcNxZXCjQrhd +4sc2TLqEyLXdtgRYjX/WvGrbhrHtMlsrOZBO5/VuU/c2rMupaKBIowQmZbs9 +24a2YYklbmE8J0rgYU3gYefFbZhRvnhv2J9iqB14KNe3hYBRuNyzy92LoW20 +J0zwKAE7tyXJZPFJEazOpMgVORKwUCYOV857BaBflihS94CA6WodrsBNC6DA +O5arxYmAyQnc7lfVLIA7PBHkGVcCRpWpU3h2rAA6ZZ4EH35CwComet6fmsqH +Il/zvqRwArZWnU/ezAdb3r0eL4sJWFPD2gEtD76M7LFKKCVgGd41Z0Jl8uBQ +zk7t3DICll1BeSUtkge/5NmFmqoIWFDeLucvm/Lg0k16ElsDAdtF4M+MLssF +ofwefs92AiYl0JPYvD8X+pWiq+yWCNho1PEtT4eyYeNXTmXHZQK2SVYBXQGy +QUj1ebPTKgG7eN1JdKQsG2w0XIY9NxCxDfuZuCpDsuHvFeMtYZuJ2NaYV47X +ZbOB8/Y+vdJdRMy+KXDq0MssOBeQPrlBmogJWBf/yVbMBAvi/ofMMkTshuHW +0okdmeD3ImbDFoyIZfzrIANIYf5cXPJErI3vhV+0VwYYvrGRPqRCxAojWKcu +vE8Hh+zjT1SuEjGHGv5dF7jTIOJYBlHdkIiJ39NxqPqVCu/z90dpGROx8f3P +m6RSU4GhhCvT0JSILd5UsPWXSkX31UXcxoqI9VdxoS05Bd7i73lfPkLjkVv7 +h+ItsPkbv/roQsTi9dpkBkTfgs0Fxt3zbkTM1SxRUXAkCaTKlHfqeBExJ3NF +t0j9JPiW1M7J40/EjMYu7509lgjHTFxeKAYSMY0MLz2L4QQI3yXA/jCYiI1e +l+FrjEgAk0DLbR2hRGwhU9bo4VI8zD5YZIl5TcR+hJju9s+MA73j0U++xhKx +7YOkRS+dOCinwqaVeCJ2fh+r6NhKLPhc92E0SiZivKZ6R6YUYmHnRa5Vvmwi +JpntM5/t8RpcN5U4q+cSse5BgXKO3FcwUGXw1z2fiCX3XtE92R0DmScSf/cV +o3jRV5wP5osGjqkL9zneE7EXPNbCZSei4H4aZf5sORFbbrkU4ikfCbJ8x2cT +qonYEaEUjkb5cEhqb7X7UUPE1m73AsfCgPWl0xRTHVof54A/Y9tDwVqV1+ZE +PcqPXLkg6nAINLN8oJp/JmIMBzsqdye/AMka89thX4lYRCFZSlMjGF65sFLq +vhOxw9t3zUj1BcIGycybi01ErHkL5/2Dr/3BYkZ99FAzEZuaYml7sOsZunfP +3dBrIWID2za+ctrmA+IWEUO+P4mYf/pf8R17PSBU4IxZSTsRUzd/rCJu5wBL +nb/6yZ1EjO7/PsZhntd29dBco36oV7mXZv9a6+70QZpn3DgMuoZp1j1d2LGF +TDN/1srPO1Sa8yKe40cWaO6wSvuUx8y+bqU3s6UVrDSX4GfeNbDRHC7V+PIX +gWZN5rlrbDw0f4uXWb4uSHNVe9NRDiWa315YjLR9RnP/cY4iYR6OdRde91vx +iKH5Vs2xfXK8nOsOkEgJWUmjWXn0kZju4e3rdszYw/GujObH8dSW24pc6z7Y ++V9N/Weapffz/BXQ4173SNZdA54umu3v/I1xNNyxbltpDUGcTPPGi8zdn2/z +rHsxwCqT04bmMVKji4EdzY26EbwTDjRHmgqZsLvRfPiRyoBuMM26aYHkwQKa +laizJWLFNJ85qvfMsZRmgUJ+EZZKmserc26L1NPs0d48addBs/1uyarSLppv +GMcEMf6iWWXITDx0gGau6fm7xeM0M0tckWeYpHnJsYJTeZrmX8s++Z3zNOMY +xWv/b5prH6tp31miuag270DhMs1pLDwLq6s0/w/FjjIc + "]]}, + Annotation[#, "Charting`Private`Tag$171079#1"]& ]}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{ + FormBox["\[Sigma]", TraditionalForm], + FormBox[ + RowBox[{"\[Rho]", "(", "\[Sigma]", ")"}], TraditionalForm]}, + AxesOrigin->{-0.13, 0}, + AxesStyle->GrayLevel[0], + Epilog->{ + InsetBox[ + GraphicsBox[{ + RGBColor[0.560181, 0.691569, 0.194885], + InterpretationBox[ + GeometricTransformationBox[ + + DiskBox[{0, 0}], {{{2.8778430317408668`, + 0.}, {-1.1056824434981842`, 0.8339579238789092}}, { + 0.8664724102077166, 0.}}], + + Ellipsoid[{0.8664724102077166, 0.}, {{ + 8.281980515339464, -3.1819805153394642`}, {-3.1819805153394642`, + 1.9180194846605358`}}]]}, Axes -> True, AxesOrigin -> {0, 0}, + AxesLabel -> { + FormBox[ + RowBox[{"Re", "(", "\[Lambda]", ")"}], TraditionalForm], + FormBox[ + RowBox[{"Im", "(", "\[Lambda]", ")"}], TraditionalForm]}, + AxesStyle -> { + GrayLevel[0]}, LabelStyle -> { + GrayLevel[0], FontSize -> 10, FontFamily -> "Times"}, + PlotRange -> {{-3, 5.5}, {-2, 2}}, ImageSize -> 95, Ticks -> {{{2, + FormBox["2", TraditionalForm]}, {4, + FormBox["4", TraditionalForm]}}, {{2, + FormBox["2", TraditionalForm]}}}], {4.9, 0.32}], + InsetBox[ + FormBox[ + StyleBox["\"(b)\"", Bold, FontSize -> 10, StripOnInput -> False], + TraditionalForm], {-0.6, -0.04}]}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->164, + LabelStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10], + PlotRange->{0, 0.35}, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Ticks->{Automatic, {{0., + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.02, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.04, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.06, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.08, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.1, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.12, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.14, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.16, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.18, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.2, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.22, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.24, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.26, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.28, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.3, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.32, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.34, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.1, + FormBox["0.1`", TraditionalForm]}, {0.2, + FormBox["0.2`", TraditionalForm]}, {0.3, + FormBox["0.3`", TraditionalForm]}}}, + TicksStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]], ",", + GraphicsBox[{{ + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], + EdgeForm[{Opacity[0.40599999999999997`], Thickness[Small]}], {}, + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], + EdgeForm[{Opacity[0.40599999999999997`], Thickness[Small]}], + RectangleBox[{0., 0}, {0.1625, 0.13296274038461536}, + RoundingRadius->0], + RectangleBox[{0.1625, 0}, {0.325, 0.19681490384615383}, + RoundingRadius->0], + RectangleBox[{0.325, 0}, {0.48750000000000004, 0.23512620192307687}, + RoundingRadius->0], + RectangleBox[{0.48750000000000004, 0}, {0.65, 0.24789663461538466}, + RoundingRadius->0], + RectangleBox[{0.65, 0}, {0.8125, 0.26367187500000006}, + RoundingRadius->0], + RectangleBox[{0.8125, 0}, {0.9750000000000001, 0.27193509615384603}, + RoundingRadius->0], + RectangleBox[{0.9750000000000001, 0}, {1.1375, 0.2704326923076925}, + RoundingRadius->0], + RectangleBox[{1.1375, 0}, {1.3, 0.27418870192307676}, + RoundingRadius->0], + RectangleBox[{1.3, 0}, {1.4625000000000001, 0.2659254807692306}, + RoundingRadius->0], + RectangleBox[{1.4625000000000001, 0}, {1.625, 0.26442307692307715}, + RoundingRadius->0], + RectangleBox[{1.625, 0}, {1.7875, 0.25240384615384603}, + RoundingRadius->0], + RectangleBox[{1.7875, 0}, {1.9500000000000002, 0.24338942307692296}, + RoundingRadius->0], + RectangleBox[{1.9500000000000002, 0}, {2.1125000000000003, 0.2343749999999999}, + + RoundingRadius->0], + RectangleBox[{2.1125000000000003, 0}, {2.275, 0.2216045673076928}, + RoundingRadius->0], + RectangleBox[{2.275, 0}, {2.4375, 0.21935096153846143}, + RoundingRadius->0], + RectangleBox[{2.4375, 0}, {2.6, 0.20582932692307682}, + RoundingRadius->0], + RectangleBox[{2.6, 0}, {2.7625, 0.20808293269230757}, + RoundingRadius->0], + RectangleBox[{2.7625, 0}, {2.9250000000000003, 0.19981971153846143}, + RoundingRadius->0], + RectangleBox[{2.9250000000000003, 0}, {3.0875, 0.19080528846153888}, + RoundingRadius->0], + RectangleBox[{3.0875, 0}, {3.25, 0.184795673076923}, + RoundingRadius->0], + RectangleBox[{3.25, 0}, {3.4125, 0.17728365384615374}, + RoundingRadius->0], + RectangleBox[{3.4125, 0}, {3.575, 0.17427884615384606}, + RoundingRadius->0], + RectangleBox[{3.575, 0}, {3.7375000000000003, 0.1690204326923076}, + RoundingRadius->0], + RectangleBox[{3.7375000000000003, 0}, {3.9000000000000004, 0.15775240384615377}, + + RoundingRadius->0], + RectangleBox[{3.9000000000000004, 0}, {4.0625, 0.15099158653846187}, + RoundingRadius->0], + RectangleBox[{4.0625, 0}, {4.2250000000000005, 0.14047475961538416}, + RoundingRadius->0], + RectangleBox[{4.2250000000000005, 0}, {4.3875, 0.13596754807692338}, + RoundingRadius->0], + RectangleBox[{4.3875, 0}, {4.55, 0.12319711538461565}, + RoundingRadius->0], + RectangleBox[{4.55, 0}, {4.7125, 0.11192908653846118}, + RoundingRadius->0], + RectangleBox[{4.7125, 0}, {4.875, 0.0939002403846156}, + RoundingRadius->0], + RectangleBox[{4.875, 0}, {5.0375000000000005, 0.07512019230769207}, + RoundingRadius->0], + RectangleBox[{5.0375000000000005, 0}, {5.2, 0.052584134615384734}, + RoundingRadius->0], + RectangleBox[{5.2, 0}, {5.3625, 0.0075120192307692474}, + RoundingRadius-> + 0]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}}}, {{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJxN2Hk8VV+0AHBzQqUcjaZCEaGQZFiHRBmTmQhFSDIThWSIzCRTEZJkyjwl +ZJ661xDKmJD5uub5nX7vfbrv/uPz/ayPu9fZe+21z74nTR/eNKMgIyPzJycj ++/tXpSMoY6btqXT5o4wrNn4G4KjN/IJayxgmee2fl4i/A31yyfkRTVuIJZ5M +P/45A9x0Zo/KeLoC7fifBff4bGjTVjuJ0/SCFA7Xx+49uTBIzlO0a+kDs8XO +yVxceTCXSaYk6PkcQqh9ZWLl82FHp2/IKCoIYvxGOE0VC8CfXO9yg2YYsFIo +UOy7WAiMOnVUt29HwEruEbre/UUQk3n+24plFBy7lPSOr7cI0nXo7p72jAHa +LH9BpqslIJTlLFAZEAdJNQdTb86UQAnF6JpWVAJYbsx4TQeWwu/vA/U1mklQ +QSlpOZJXBunkSOZ+/beQOsz7W1GqHKz5FcP1byfDJ5/C88415bD0tMiAaJkK +jrk730wqK4DqXCjhpGc6OPtK69b7VUKjTl33A58PQOfpJ3afUAlB3ptlpQEZ +cP4WK5mdzhdAeu/5qkdlglBi5tHs/VUQIcMRXKWZC8GzhUmr9VWwpF3uaY7N +04O6nTx3YhVoW2vbM+h/Av3OilGEtRqOvwrS0b2dB8KIS0XTw2pInlk7SbAs +gC3bMMYx+hrIe4UvYvcsgcunht51cX8FJMv6Qx156f/N71dwrtmTcN+nFN5w +GQqvm3+Fy7NST4sDyoAlsm5bIe0r1MhmKKlFVcBHV87FRvZamHSWsf2iWQXu +3rXOq2R10LF3ZX94fBXwlRvbtrHWQUVCRpbpryqgsmNTNb5cByE1TNPUttUw +FSrEoGtfBxf2j5spv6iB6Xe8FAmDdeD2LtCgr7oWHlzi37eVXg93LsFGBm0d +EKU4Dx6vrgfllsWYx2p1kFQlsb7UWw9sC7e+sw/UwbBHFSUlbQN8lRRUN1+r +h+eveR2N7jQAQ1en/KJAE5ifo07dPtAIy+bPx2qdmmA1OEcqn6sRBtclfaIr +moA1y+q6gngj5LKnVYsrNoNyqkh8g0kjaN13lfQyawG9z19ncbmN8IaC9cK+ +hDag+u8fmiDmaH5IJBUeQsXWz13Wa4Y84t30FG48ROv5mPJZNENb6+GafHk8 +vHE/8IrFpRkonrotdz7Hg+WmjnZcVDNYT8rcQvZ1wMVsz5577c0gU4bjfcnc +CROpfzNsgSmDudro093A8ItSYoe+FaguJg2mKXSDRNpcs8DRVmBnvLlWZNEN +VlZ9+re5WkGztpCvJ6MbngmM4AwkW6GS/0nEEcHvsOeTsG/7/VaI2KY3jhHr +gZxvCcu8Da0gkci7GXutD+7seVkSYtcG7dTvGags+8DCIeGnj3sbGFtzsdkE +9AH5mwJbPd828BNnl5Ft7gORxd9xFLFtgOtE/KeUfsBB5oz4F1/a4C4tGZOE +2k9oeWKPcNC1Q5Dd97P9WgOgfTY9feNlO7D1akjKOw+Asq8rl9GbdvgkjVfJ +jR6Anjd6h5LS2uE7fautT88APA3jN6YobgeOtOoifr1BiMihumna0w4FPzJl +n9waguXvVdp7D3+Dubcy50I/DYMjjpvF7cU3uHpEf4jz6zCMJuvLIZHfICHI +PrykaxgmhJMGg+K+gZJLyvLI6jDMa/ExeXz4BunK1JUi0iOgGuUj96P+G9xZ +bVT90TwCFRIXtON3v0Gv8g1b7t+/QLKvLchDBAeCNRanypZ/gd6mxM8UMRz4 +iT3tUt0zCk6sGbxNl3EgeirvkuvZUQjyTLQbQXEQscpE3mI7CtQpEZfJVXCg +nNwTbrs9CqqeK5xX7+KgetUov/zwGIgQH9VphOLAWjSFjuvMGDS/UK7KCcfB +YYcJkyCxMbjNzV5OH4UDq7mHjIa6YxCoW5v7NQYHyJjXg53YMaCVFPIivMWB +eUfyGRnWcfhTbqCXnI8Duqzx+HrOCcAZHrp3tQsHBVNnFwVEJsA6gn2B7zsO +jHgeKr6Sm4DKe1yynL04yE9ZXbtnNgGokELo0E8c3Iqj1d77fgJCOF6aKozi +IMf/LKPy2T9Qq/+YzmsBB5qmNj54oUkYj/KK8aHHA4Mpg2+s7CRkyOfQ8OzD +Q61Jhq+J5iTYrA04tuzHg6jJuN+CyySg5VcCyQ/h4bCxUcDBL5Pgtst+Rvko +HvoMVUPUVaYAh/LHi3PhIcJwJuTY7Sn4/PDxbCy2rxQNA0NHbKfgNtTS0J/B +Q9mt+jC7qCm49PruxxZePCQYSEeG/5wCkZKsc5KCeDDSE4jBW06DAU3Cu7vi +2Hh6rTGx7tPQv7hlmXIZD+26VrEmwdPwHjW/h5fAA+imxS3kToPkj0um56Tx +wKHD9vrg2jRstsw1fZXFw6jm/mR1vxkwtMjuvKaEjaeZmXwsZgYqHHiuaCnj +QVNTMWXkwwyYDWZM31DBnl/DL9WubQaK83Mkr6nhIe3mTlo4MgvijzsCqDTw +YHFj7iM+eRaupN/M36OPh1uH7dPlC2ahWWiOBo/5Rv9yanndLNwsDdCPM8CD +uMX263d/ZsG4uYr8nCEe6LwYwh4JzIEB3bVNdmM87FwNC5qDOeAnTvv3Yl6k +RwLuqM+BgniMipcJHvpfnfBWcZwDEYs/icOmeMjKOet4smwO3vrEFnma4SHZ +Kds2umUOKlquPj5jjvUxiQsP6Afm4KT9hlslZo8GcfPl3TmYqbzjOnMPy2/o +mm7T1XloKZbOFLPCg9y7Vk1pnXlw/7w5+hnzpfs31PMt5uHs15ITcvfxcHJV +R/H1i3noPCdRC9Z4IO6/J2mHn4eHptdUT9vgYbxr6tL4r3mwbNj3JR7zzzgb +UYOleTDl7xQ8+BAPpkwSr5LpCZCoZa44jfnWymNmQ4QAo8dEltRs8aDdVxl5 +hJUApwf/diysXhJlw4IECJBl/nrhiR2Wn7fPfgUxAiycvR//C7O0WX0QOUoA +T1UZj4v2eBDmUwxwVidA3MvZK4OYWYrVvY0dCXDimSotqyNWP3GRZCeeECA9 +jWvaFjPjk26Pbl8CePFS7inATHVFz13xFQEEBaukLzth68Edv06VRAD1g+8j +rTGv0Q64fEknAG+Ub04O5tl2Y0eRMgKcWlfk4HbGw59PycS5GgLI/TzvpIP5 +V9Rv2w8tBDD/fLQ5AHO/y+n5O10EeJ64y1aB+bu+xQO2AQIsDc9lDmDGSWVM +944RgPlrNzmjCx6aOWYsI+cI8JSqLvQ85lpKgT8qqwSYvVrAqoG5cvyhOS3Z +Auj5p3x0xPwrS6GYn3YB6hojxKMxUzux06ozLsB5Ou+GYsw8kqu6TkcXYCLj +UUgjZmXKbx9iORbg5owFyxRm2+a0jc88C0AbbDy6gTkq3EPpl9ACVJ7TzaB3 +xUOJrnYCjfgCOLar2bFg/skuMHtWZgHOPlS4dA7zzji1tNr1BRg+ALtSmE9l +D4Q4qJMs71Q49EpvAaJzL9arYraSDBaqMCE5hNLs6bAlyZ+aJTuo7BdAWV0g ++DbmrnCEk9eNFF/TnXFQ8SaZhaO21i6QZHQinjk6guS72Q7mZXGkfPydlIoH +k0n5Z0hy0lJ+JLmdclP3TD7peYnNHR+UyknzcTgiY+PhV9J8XdbzVopqWYAE +JTutPsyGHPoJJZ2k+faaOD/b/3MB3C0Dyd5jTs3eK03+m7RejU4jIdwzpPWc +kSwdur608G+9GanChWy2Fv7Vg3CLxdMIKuK/etGOQDuKGIjw4em4wxxWT256 +Rzl/IsR/9faGg+Cwy0IEFiPG8DjMNRMNtZzcRNhw55W0wDyench87RwRemNl +J0Qx73V2MbcWJYK1roYegplfSq04TIoISs7WVL+w+r9BdYa28CoRHBaD/7zB +7Niyo9unQvy3X2Iivn/Y1iL+209DHH5K8uZEuNi80VaL7TeKP4YJVjZEMFJg +yXuK+XSO6GyIMxH8aqWipTHbSI2F9PgRoafSy6jEATtPqD4PbYYQYVciWdYJ +c2FLlBDHKyLwlH49fQHzlp5ch8V7ItQcOsATj+3/F84pzBsNRJDlzr5zC+sX +2VLu5mw4IuwYD5euYv2lg0qjWLaXCLZSdD0pmI9HUui9+EP815/Sc0wSWPYu +gsLYaStLrJ916oxXEw4uAuVJvSoqzDu7VhO1xxeBriJSLfQBHjRuOF54wL8I +R4i0NqlYf9wh+DV+Vlv81095YunnwnUX4anuRYdrmDVkwpjMTRah4+YjiRpL +bLzwWKP9DovgoLDbUmiBxS9kLhlFLwJZGNPpoL/9+4fQceHERYibNDqzjPX7 +dO9C2JO+CKJXMniMMO90VAbmlC6C1QrKJ3QXizvgOcgGFoG9wtnyK3Z+7BSs +KL/lXII+mb8TguVj6G7vxL8EnzdcsVcObDxqspjrokswc6jbgBJzutbe0QX5 +JVC8EiwboYfFV048krVagljT/d4h2lhcTObdaO4SZDy5zCZ8A4uXvdjmll4G +xysazhsyWFw+bfmO/DKIHa8y4MC81VE1+1Z1GeRuiLqJolj9Ty8PsN5eBqMK +9uLb2Hm9xGJcyey1DBFRS0IF2Pke7SniSV2zDEVeOLe1C3jolRsgG7u6AqIM +7Ac1TmH1iF9dO6W6AhzGWT9ET2L7y/DQgrH2CtAXSKQe5cCez1lhpN98BUYM +dMUGWfHw6P2n6i7/Feili4vWPYatN52fd23TCsyPSYvTMWL79ZsAVarKKtxQ +Y38KWzjASUu6lWitAg67DJJt4kA2+zqh1XAV1BwN16rXcXA6+G7/8oNViFlL +SRdexcGcYlyBQsgqOBqLy9IQceBVT2023b4Ke1WfcDyawEHy5/66CzfWIKjS +W+QOHgcTHwP9q2+uw3/lgL3/GW/JdfgarMPgqDJTUSIOfijvsijeXYe74X9P +RBy0zjrkdTitg+1Mn0NsHA5yBQ0HRmPW4YTJ3x2HA7d8QWGaoXXALj9Cnr44 +YCjvGlS8vwGG9+c1tCxwcKGZ7WLXs02oC0tQ7j+LgwEiX6BB6DYw2MoU8d/+ +BtcN7fb21u/Ch1VNVXfFdohrKKbYWCdDz+sraDHJtUGVmYNGzTY5+qf3bwG1 +Qj1Xi7jvEUq0xSzFwSOwBbYshuy92ajQFbfVBvfuZjjUHirjJkGNDqXBZvip +ZpiMTmiX0aBBOf57gW+C+d9m2Vd096CJE2onuicb4btGCyfqQIuWWTS6Rik2 +wqzC7LSz+14UyyVAqqABahPv2z/xoEOvm14v3WRpAPejfiEer+hRdfNnyhfs +68H0sOF26WsGdKTteEVOcx3wiuLICaX70HUzIXkuujrILU6sXcbtR7HLdtMY +1MK9L3w/RLsPoIH/NZSvsLv4QbbEhRHt51vUNvSvgVHFhGr7TUY0MCvJMuBl +NbzvrGB/+fggqpNzKoUyogp+Wn9sLKA9hAZPDy3H5lfC+2trcXYvDqG+n3w5 +9nBXwKgIUwnfMSb0ncCxhmsrJfDm2DlmqRNMqAGnt53tZAno78jbq7IyoQeP +Tp+I6S8BXIMbv91JJjTNY1AztaYEKvV/JRXxMqHs8rShF0NKIMbrU4DMZSa0 +X57SlZ6rBFRa1Qx0DJjQyrVkKaNrxVB8J2jH+zUTWkDe60VrVwiXyTk3AxKZ +0O2+UCTcpBAq3pSuhr1lQtlET9feulkINX3jhDfvmFB/C0fsilkI7Woyo2VZ +TOjHJg3tzuUC+C2x0kD8zITmzHhXi7oUwEHEONx0kAl1u/R0ssAmH6I+rQRb +DmPj7ZJ/zzDMh8NqwYG2v5jQ+XrvmiTlfGAJLHvmMc6EFqo13KE5mw88ZMzO +cXNMaIRBpI3S7zyQnmnS79hhQj2VyHZ4tfLgfq0wlyw7gi5ud7lOnv4EQnHL +zE4nETT/1YP3WQc/wdLD4j3pnAgal32mTGArFzxOSEzv40HQiP+94EOYvWxe +nxCCOrz5JNjnmgsFHOqonSyCvm+7tE/dNwdcVw5dSJVD0L+nz0ntHJBq7eLs +kUfQnc59iOuZHKh30d0jpYSgCk0fHRgas6G3/XY7rSaC7guqyAygzobtxza3 +kswQVN9kw+iKbSbU3BRS7byHoF08XLHdEpngx0MEGisEfTMVFj9CkwmMXU6c +1jZY3JQgNBv/EU7xPZkSc0FQs+MqAvVVGSDf98L123MEJfc5wK1PTAe6HBUr +ihcIKrzCfeJAUTp88zlwSzQYQYtMPfukHqWDrlAkxIdj+XJJu3hvvwcr/zia +e3EIGqM6fTF9Ow1CRT9E7XxEUObtt7FnelLByIdxkz4bQXPZTZ/5RqYCf6eL +ybFcBJU8P113QzUVmm3lBUQKEHRCTFnkWnUK0GSONlhWIGhLhVbP27hk6N5Q +FHCpRNADj1q6Q1WSIfV6XpRPFYK+E/RJWN19C7ITXiaJtQi6fCdy6/ntt+Bx +im2zqxVBp3dZxlvok0DFztfkVzuCut8r0Lp+NxFYqmYa5nEISplVFdad9QbK +DMuj6LoR1C84z0P4/GsIyDy1eaQHQb14Ys5T308A3c0AE+4+BE0KPFEckxgP +KzG6AugAgkYG7zGYWYmFuokvUSpDCHqdgYLP/3AsRF08s6k/gqAW//3AEgMX +upYbnMawfM0PFFBciQZyTkOBZxMISq08/H1A8iXg7GqjwiYR9GIE1QgdTxQ8 +OBBp8nEWQc/Rjj1haQsHSaONhpJ5BN3ux0W99gjD7uMmAvULCPpqu6zz9ZkQ +6NtsjOpcRNDm1SA5C6oXkK4otDm8jKALXnm8Oq7+4BL7ymRuFUFxc2GmXnLP +QP7PTsPmOoLuxd4OwgvcgVnMXGDvFjYfLxfmhQVuwW/ftqjDOwhK9n+f/C6R +TU4y5n/25kwwOU9BMke1lYAyDcm3tvY0Pt1PMp/SQ4FQRpI3Yr9HJRwiOUbs +nUnxYZK77GU3Z9hIVpp8LKAr+P++3/ZAYPh5kq1X3441C5McQt2QIHWJZNzJ +g/ScMiRr67+bmL1JsklLW9IzZ5JdstiYcj6T/Cxl7vuD64f/+Uw/S21TC8mS +3Me2Tukd+ec/uQ6GxwZIdrTZeu1idPSf7SQ1eDunSKZRoR1seXDsn9dCrbMR +W5KnO3AehvYk43Rj2eedSY67e9bkkBfJgo+Vf+tGkKz7MWxqrIhkxbmlMoFS +kqXO671wKSf5VPFJ/r1VJM/W5D3gbyLZ+0cXwf4nyY6s4tXlAyTfM34dTjVM +svK42YXo3yQfJq44lM6STCtqIEdBIHnT5QuiRCR5eNu/sH+F5E50xpd7neT6 +Zze0bTZJLqkvOF28TfLHvcdWd3dJ/h8moyp2 + "]]}, + Annotation[#, "Charting`Private`Tag$171964#1"]& ]}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{ + FormBox[ + StyleBox["\[Sigma]", + GrayLevel[1], StripOnInput -> False], TraditionalForm], + FormBox[ + StyleBox[ + RowBox[{"\[Rho]", "(", "\[Sigma]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm]}, + AxesOrigin->{-0.13, 0}, + AxesStyle->GrayLevel[0], + Epilog->{ + InsetBox[ + GraphicsBox[{ + RGBColor[0.560181, 0.691569, 0.194885], + InterpretationBox[ + GeometricTransformationBox[ + + DiskBox[{0, 0}], {{{2.8778430317408668`, + 0.}, {-1.1056824434981842`, 0.8339579238789092}}, { + 1.7329448204154332`, 0.}}], + + Ellipsoid[{1.7329448204154332`, 0.}, {{ + 8.281980515339464, -3.1819805153394642`}, {-3.1819805153394642`, + 1.9180194846605358`}}]]}, Axes -> True, AxesOrigin -> {0, 0}, + AxesLabel -> { + FormBox[ + StyleBox[ + RowBox[{"Re", "(", "\[Lambda]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm], + FormBox[ + StyleBox[ + RowBox[{"Im", "(", "\[Lambda]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm]}, + AxesStyle -> { + GrayLevel[0]}, LabelStyle -> { + GrayLevel[0], FontSize -> 10, FontFamily -> "Times"}, + PlotRange -> {{-3, 5.5}, {-2, 2}}, ImageSize -> 95, Ticks -> {{{2, + FormBox["2", TraditionalForm]}, {4, + FormBox["4", TraditionalForm]}}, {{2, + FormBox["2", TraditionalForm]}}}], {4.9, 0.32}], + InsetBox[ + FormBox[ + StyleBox["\"(c)\"", Bold, FontSize -> 10, StripOnInput -> False], + TraditionalForm], {-0.6, -0.04}]}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->164, + LabelStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10], + PlotRange->{0, 0.35}, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Ticks->{Automatic, {{0., + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.02, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.04, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.06, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.08, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.1, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.12, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.14, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.16, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.18, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.2, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.22, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.24, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.26, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.28, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.3, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.32, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.34, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.1, + FormBox["0.1`", TraditionalForm]}, {0.2, + FormBox["0.2`", TraditionalForm]}, {0.3, + FormBox["0.3`", TraditionalForm]}}}, + TicksStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]], ",", + GraphicsBox[{{ + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], + EdgeForm[{Opacity[0.40599999999999997`], Thickness[Small]}], {}, + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], + EdgeForm[{Opacity[0.40599999999999997`], Thickness[Small]}], + RectangleBox[{0.1625, 0}, {0.325, 0.024038461538461536}, + RoundingRadius->0], + RectangleBox[{0.325, 0}, {0.48750000000000004, 0.11944110576923074}, + RoundingRadius->0], + RectangleBox[{0.48750000000000004, 0}, {0.65, 0.1615084134615385}, + RoundingRadius->0], + RectangleBox[{0.65, 0}, {0.8125, 0.18629807692307696}, + RoundingRadius->0], + RectangleBox[{0.8125, 0}, {0.9750000000000001, 0.20658052884615374}, + RoundingRadius->0], + RectangleBox[{0.9750000000000001, 0}, {1.1375, 0.2155949519230771}, + RoundingRadius->0], + RectangleBox[{1.1375, 0}, {1.3, 0.22010216346153835}, + RoundingRadius->0], + RectangleBox[{1.3, 0}, {1.4625000000000001, 0.21935096153846143}, + RoundingRadius->0], + RectangleBox[{1.4625000000000001, 0}, {1.625, 0.22085336538461556}, + RoundingRadius->0], + RectangleBox[{1.625, 0}, {1.7875, 0.21634615384615374}, + RoundingRadius->0], + RectangleBox[{1.7875, 0}, {1.9500000000000002, 0.2185997596153845}, + RoundingRadius->0], + RectangleBox[{1.9500000000000002, 0}, {2.1125000000000003, 0.21108774038461528}, + + RoundingRadius->0], + RectangleBox[{2.1125000000000003, 0}, {2.275, 0.2118389423076928}, + RoundingRadius->0], + RectangleBox[{2.275, 0}, {2.4375, 0.20808293269230757}, + RoundingRadius->0], + RectangleBox[{2.4375, 0}, {2.6, 0.2088341346153845}, + RoundingRadius->0], + RectangleBox[{2.6, 0}, {2.7625, 0.20582932692307682}, + RoundingRadius->0], + RectangleBox[{2.7625, 0}, {2.9250000000000003, 0.20282451923076913}, + RoundingRadius->0], + RectangleBox[{2.9250000000000003, 0}, {3.0875, 0.20132211538461584}, + RoundingRadius->0], + RectangleBox[{3.0875, 0}, {3.25, 0.1983173076923076}, + RoundingRadius->0], + RectangleBox[{3.25, 0}, {3.4125, 0.19756610576923067}, + RoundingRadius->0], + RectangleBox[{3.4125, 0}, {3.575, 0.1885516826923076}, + RoundingRadius->0], + RectangleBox[{3.575, 0}, {3.7375000000000003, 0.1923076923076922}, + RoundingRadius->0], + RectangleBox[{3.7375000000000003, 0}, {3.9000000000000004, 0.17803485576923067}, + + RoundingRadius->0], + RectangleBox[{3.9000000000000004, 0}, {4.0625, 0.18329326923076963}, + RoundingRadius->0], + RectangleBox[{4.0625, 0}, {4.2250000000000005, 0.1780348557692302}, + RoundingRadius->0], + RectangleBox[{4.2250000000000005, 0}, {4.3875, 0.169771634615385}, + RoundingRadius->0], + RectangleBox[{4.3875, 0}, {4.55, 0.16150841346153882}, + RoundingRadius->0], + RectangleBox[{4.55, 0}, {4.7125, 0.15925480769230718}, + RoundingRadius->0], + RectangleBox[{4.7125, 0}, {4.875, 0.15024038461538494}, + RoundingRadius->0], + RectangleBox[{4.875, 0}, {5.0375000000000005, 0.14122596153846106}, + RoundingRadius->0], + RectangleBox[{5.0375000000000005, 0}, {5.2, 0.13596754807692338}, + RoundingRadius->0], + RectangleBox[{5.2, 0}, {5.3625, 0.1186899038461541}, + RoundingRadius->0], + RectangleBox[{5.3625, 0}, {5.525, 0.10967548076923041}, + RoundingRadius->0], + RectangleBox[{5.525, 0}, {5.6875, 0.09915865384615406}, + RoundingRadius->0], + RectangleBox[{5.6875, 0}, {5.8500000000000005, 0.0728665865384613}, + RoundingRadius->0], + RectangleBox[{5.8500000000000005, 0}, {6.0125, 0.052584134615384734}, + RoundingRadius->0], + RectangleBox[{6.0125, 0}, {6.175, 0.008263221153846173}, + RoundingRadius-> + 0]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}, {}, {}, {}, {}}}, {{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJxF2Hc8Vf//AHCKQoqMe28yM7JCxqdhvA4hoSgjPpJRCg0rlBaV0TArISQU +MrJ3RNe4g+wkpKyQeRdSfqfP4/u79/5zH8/H+33O6/1+n9d7nCPl6nXCbQMb +G9ttdja2v/9Hux69+dkWosf2v98VW+GHnDbO8P/+l11n/pu1N9NtthZSHdbB +TIez2x9ssY5heqxvqLnROo3pOH3JyPfWhUxPBeh711u/Z7qLm74t9jnLtclv +8l2/sxzVKDjD6d3AtPq2CTfzh41MB7164PC5Ac80b0+3MUWFwDTtXMQ43p/l +4RWde/G1LBdKvG44YEpk2ubCVZ1gNxLTqRvE1Lcmt7H6+7SzY/g7y97yYV6F +Cu1MGxybz7OqYHkysWF3UtdHpt0x2qNlvB1MDzk9LRZXY/lEznxIuBXLzUtH +ji8EdICdaPua5zZvOKiTKWmf1AEXEnlbKDti4G3on/mGdx3wdYgokOIWDzIf +7eoVv3UAZ/putxOHnkMCriTqMUcnvFQ5Ib/F6QUUL53NzpDthJKg8C8vXV5C +GxnTWGLcCX9LnWbSYUNIEK07ohOGxyp+nM15BaIOynxjOZ3Q4fRje8bka9in +NSxPJXaCrETNlidC2XBxSv+U0NYuSCX1yFw99AbCPlD8ZVS6QG9i44aUI7nw +MuVVtKZFFwTdLzKvN8yDvuPcH6xju+B01fA/VlIFoF/dofBUuBtKSq38qhoK +4dSTO4de/dMNotfpp17LFUHAZU3HspPdgJP9oUqNKIK8XQkxvYndYJFnNX7d +uBgwD50YwuI94KJuo6aYUwLTDnP4eLleSL+ZN1IhVQ4c/6QNvz7cC7GJW06J +XygHCf4Ty+XuveCbqaG2VFwO1vgypU9veqElpathFSqgTvlmHFa1D9Y32+UG +HK2EuN9bnBP2fYLujJxUMlRD3qd317LtPkGc5Cn20KBqaCnyelx57RMEiaiZ +rJZWw5pbd3N/zScYXJSrN9pdA+fak/bsQPqB+3hdWihHLWi/UPiVaPIZDntL +uz3MfAftnFm8HB6fQfHPfARP7ztwvigjfvn+Z9DiHo4x5qyDsAMS+gbEz/BT +ENlbfLYOOrqFwqfNBqBjeoy3SaweznKxCWpbfIGP7rlxrXrv4ZFPn+KgzRA8 +VDOq0rzVAOL9VjrGAUPgFPTLrzOmAYr0Oo8Wxg+BBr5I5XJGA/RtIXvf+zQE +iidcLkq1NoDk64ZyZfth2OJ4H6HxNULpQJ7BzVNfwVCz+m5/YiPMvdTfE100 +AskrvaKSCR/ACPvvV+kPIzCQUzXonP0Bkh/5xlb2jADu35Tkl5UfwCwwg/aN +MQLjpVljyf0fINucs05T7xtIOhlwhmPxcIbRemyA+A1qgoR3iMXgod/c0lt2 +7DscfFtkZu3VBKqN7ruqad+h5RbGLPZGE4TtC+k5tnkUpngf1ebdbwKtXcX7 +ryqOgvXrhLtpGU0QxxBkJ3mPQqYlpq6urwnM0z/Fev8eBc0q3MaZ/c3QwDhd +UoMZB2zZL5vg+Wa4qJXBI7N7HCJclzYlrDQDxm/S5dG+cVjhm6p4u7EFPOe8 ++B3txmHjD8bv59gWEBoPvvQncRzWLD3wZL0WONeVvltfbAKEm3LzLj1oAZ78 +iefN0pOwA785YA3bCqXTihQVzUngl+hfdJJshdPyXqbPDCdhc1D2pQ/yrVCS +wVg+7zYJYvmeRw4faIVTSVy23FmTwGkhdXLavhXehivymyv+gNyDuZz0hFaw +dr18r1NtCuL91+0ithGA15U3NNFgCjaZaIbswhAA7/Im1MV6CvxFPHJqxQig +5TIRthg4Bdt/cVg+UiYAxvn0/e31U+Bz4HTIjyME+Ox4LOr40WlQ/XLMQfoO +AU7bqyR0eszAkTvenELTaH17ckLi9RnAhDoK6S4QoN3OM9ElcgYCjR2eGtIJ +AHavkxYLZ+AgwfaZ1QYiSJ4UT9m+PAP8hJgzMzuIMGq9Lf142E/o05zfb3SY +CO6Wc7md6bPgdP3ckeAkIpzC+GYbl84CbX6VbP+CCJaDtMyaplmQlE5r3J5J +hAPuv1Ne/ZiFgPvT+SH5ROAJ5o25pjIHvpaN5l/qiZD/VvGKVPUctGxT9BEb +JUK6f4F3PGkODHQEVC0miRCvrX5py9Ac1Hms/gyeIcKtlgPnaOtzUIonuo9R +0HhfTewIRvNAuVIgL8tBgqVt53V8OueBzKkSrSVNgome6f0T3+chYY+98Dc5 +EnxJuqzlQJ2Hjng/hQJFErgKaj9L37IA7hMELU51Epi+MIh5pLIA1g3ZmccQ +EohWHL/jfGUBHmaJe3g7kKBuwuscF9siGFUSstUfkeB7/uEKZa5FKO4Jqu+M +IgGnvwTXcf5FKHmrY2IRSwLzjR9zEiUXIepHqn9kPBpfQmVWUX8RHv+X8CRY +tvvpd/TOIuhJaXudKUHjSeLxPg8W4fw18cGUMhIgk8+F4+MWIbaT/Uh/BQnC +/c0qhtMX4Sry+YlSLQkwcW9WvT4swmHxCOUuPAk0SO4hcRxLkG8W2fGxhwS2 +cUhXOe8SrEvGSbX0kSDIHif9RWjpf/OZBI2TLXhp2SUQE29c9hgkgSXHbq4y +oyU4oqwQ+GKUBJd1x6M+hS1Bwa2LcRKLJIjjePf1V9QS1EZnHCheIkEZ6Yma +5LMlIKUNjBhSSbBmb9jlnrUE10PsX5owSPAwIEN4tWUJhgxO7rL8TYLsty7J +otwUQKr7S09wkaH75ETDwnYKjN6XbP/ATYY/656TeBEKhNq7T2puIYOV5RX1 +S8oUWPLf8ad7K1q+ENb6zoICbQXXlQQEySCfuGUu1o4Cz36NySNCaH39GMFz +LhRov69bGi1MhuzYxNPb/ChwRpr/7QwWLVfPo56Op0B5d1+EsygZbg2oiWi8 +oECIJBIWJYbWv1MGm7MpMKJUTUsSR+N11T14W0WBVIOCnhJJtNyvU5JtiAL6 +sxUB6TJo+3faGveMU0CzwsAuUhat/2HgQvYcBXaHtB24KofGExort2Sjwstu +ymVlebS8lG7+UpoK8f89QLT9jtd9/ZWpIMY+qHxaGa3PyZZwRIsKmfcDg3fv +QePZcI8uGlPB2L4+MUEFLafvvGbgSQWJCic9+71o+1PTUjF+VND+s4WDXR2t +byyLn75OBdv/EhSNF6/C9ziSCo+6+W2WNdDyffqvRgupUK5EbVD/B23/1yZi +RRUV3PYWrVSi/hNuuvCwkQrC+y7vhX1ovH4rbc0eKnCxrwgo7kfjBfc7cw1R +oWJTuWkh6mx5x7DBcSr8It6lCh1Ar796rvMegwpzT7b1raOWl5qh27HRYK/9 +4O2zB9H7EbxE93DTwF/sjQIB9S0fqj67AA2OpkUY8Wqj99tx7XyvCA1iztrO +e6O2qn74W1aPBi1LBUHvdf727zXtjDENXqCzaaMuGda63s++PEaDgOULxcao +LZ2+jH+1pcGx66ZoCpAhc4Y2JOZEA7k/8tNk1MuB/H0O52kQB7irc6jNOZTa +E71o4NFIf7xXjwxpMUbNnwJp0LtxQsoKNVXUuU44mAb5YXjdeNQmOUHlVhE0 +2NFaQqpAnaz1tCA2hgah3Bn2n1EbHSOmbn1Jg1OPQvxFgQxJA2PxZjk0aG3z +3qiHeu7cetT9Ihpo8jnHOqE2oOwIb6miQZqlhUQI6vjbmrc5G2nAG6eXn456 +eotF4CEiy3oJHl4hXTS42r1HG486Tube+foBlicKU51+f6fBqJAYYRx1FKHb +4hqF5X3fuRDaRjrTI6u6aj5CLEcI+knOyrA8+CISp7SHzry/mnI2v4cWy/cq +G7mydOnM9vUbDrGNG7Gs3MlY3nWMzuxfsKPAorMtndn/ninlqdTTLMsHHP42 +eI7OHK8bG1w/i3jRmePZEXWj0y6QDgumcZOr6HjL7HxGiL9NZ47/tayihp5w +OvP5tGuQqwRi6KBv1Pv2Cupd7yeKLBPozOdL7N+ZTs6mM/NB3O2fJJ4iOjNf +fBct40yq6Mx8ar554UFYA52ZbyI8YXfwBDrwVNyQkUV9OT4taEMXHTQ0U7m+ +o/nauKvGFxmgg0NR/c9U1Be0F1xrp+mQl7uhDIf6fQuPw+oSHXrkZRJ70XwX +spa12v+LDmuvjG7GoXYfAbOAjQyQkT7vYoG69uK/h0q3MJjzhX/livaSIIM5 +n86GRmuoiTKY8403FS+dp8wAjIBadS06Hx0/qnBkHmXAyN1PKpfQ+duhpxNU +acOA5HruUC7UBgVHFsiODMDrKHk0ofO/VOzkuW9uDAi56ljvjFou8uwg7RID +/q6ua+h6MWeaVHo4igGqGXaXPbTQ59vM6TbTzmCuR0tagl/W+xjwcPkYOQhd +r86+kjwu9JUB/x13UJvc09bVnWeAjScdUVIjw3YDH+FovmXY+HRxXgNd79Lf +DTapWy5D+Hlu9Q2K6PjsmdY+bLcM/S7mq9cVyBCWzChycF4GhVPRjTR0ffW8 +LpB6z3sZTvPJNbXsJoPGAZOAvphl5vqMLy2RC+pcZq7nk7kPwhtOrMBUx9S1 +fRgyOK8ZdoU6rDD3jwHzdVHTsytwmD3duRndX8izfsVd/iuQufffwzbo/lOo +6jg0mrACEXw/l1X5yRBUoqqx6esK1PCuT23iQce/pmfY9MIq7NFNmiaskUCd +KP5Pz91f4N0e0TU8QoKhJaUHDtG/4cY1dnpnDgmOOPpw9zevA1H97wGfBEkt +FRtWV9gQzW20mkItErx387Nq/M2OWL46x1e6gQTNMqQDodiNiGb3u2PTJCKs +uX/1vSPOgbw86+t5PoEIAu3R+kHanEiepgLn0GkiTMUnt+tbbUKi8tbUcdJE +mB9zKzhktxmRUIxM+DxJgD4rkjTix4XAqtzRu+kEmD08OxNwnRsxvCukE3oK +PZ++uOB78xYP4pqi+FVDgADXcWFRt55tQcJf/6TerW4FV4zj76oUXmTE1Wjr +a5dWUNDqYF+o2oq4F+ZQspdboLDiBZ7WsQ2ZudgKGhEtcL5eaUCrlw858DyK +7TKmBdYpOQaVgfzI/j1XO0/GNMOoaXKD7y9+ZGLq1HFTrmbI6q6VeHpjO5Js +5mPzObAJvlzMbS3lEkCsbdwl49vwkGWynOTzUADhuZfi2iuJh1FNwUqlHYKI +U2LF9EHrD1Bx5tGfOymCiMsfnkSlu41wAa8hYyAhhGBvcno0pzdAtFbOkz+5 +Qkg0Trei4+l7MJu6oWKnKoy8uuds826tDgLzxQXfvhNGhKIfem4/Xgt3M+b6 +Lh3BIFkt5bz7zarg3KkM40AzDDJuWMOjAFVgImxXHnwUg5jCt5996lWwLbzh +6ePjGERYc0+RukgVJHg+sa6yxyA9SRNiWT8qIW/vwS4OTwwiMsB2EblXCb31 +oW3PH2CQ+m3JGumlFbB7UBRPIGGQ27Un882Xy8C8bU1+vQ2DLGzfKxv3owy8 +6wYjNTswyIMxpZAn/WVQmZZ88kUPBnnKy2YzWFkGpm6iM1eGMMiVdgsf0atl +cHFup4DkPAbx1/67g5dCMdtO5wABLMIRmWj4bqQE+hZX8blCWKSSdGtoqr0E +Vr8PKHzDYJEn4aH/dteWwKGmJIrZTiwifcfHeyqhBHrui4RLyWAR3qkF/maL +EmAIiBSQtbDI368PmOpi0JHdsbbLHovskSUdkb9ZBBeiU3vVHbBI14lr2o0e +RZC0Iv3WwBGL/D39nLItAkabiqurCxaZtntFNVctguIAw9aXHljE54+c0K6R +Qtjd6vVEMgiLtEVOcZvpFILAhWZl8edYpO7saAOmJh/0e802qaSg9dHWUR7l +gzd0ftV9gUVkbsx7dZzOhzbBwTjHDCxCvrEZfNjyIaJ2cTk5F4usOxCiIpE8 ++L1VrGlnLRbB2aujR5A38KPQz3HHEBbRzlE109bKguFu/z7xr+j1cu8L11Ze +Qw890ELmGxYpSH08vK/uNTTo3NBXHcciJf+9cL2GpNZ7skazWKS1/Uv/T5NX +EDMTlmo6j0VuC/Js9+Z6BWHb7mMtF7HIJ/O6zxPNmeBrHcntQMMiF1IqRd8i +mWA28nTW+zcWUWlR4tdVyACDjQnnAtaxSEq5McfoSDrsl0v6ep0dhxQkTUbc +eJYOMhdTO8M4cYi1ln7PTbZ0WGO8LkveikME3rd9b2pMgyWRHJV0Phwitv+8 +oYdXGvzQzc3K2o5Ddr4g/Lkmkga9d98mFgvjEJzjsGhBbyoU8FXebBXDIQxb +Gbnsb88hU72a3iaBQwLwUjtNsM8hyabWq1sKh9TMGvilGCdB+PP3LsOyOETH +PWDIITYBbtU1DozuxiHV6U/48948gyvf8FZTCjjke4C73aPqeHDeTTCi7sEh +J0val+sqn4CtKaluRRWHTHBc8l3OfAzml9r2re/FIRFpnlTP4DgwiPlYyKGJ +QyTO2qstHo6F/SWdCjz/4JAzhukdxXPRoNLXnc63H4e0HPr7hS0SZFZ6dwof +xCHG5J8U3Ph9EBHtfyKig/rv67B+GGyHga2Sejjko6pph9OPEOByHQyTRXAI +vXi2VGvXVfhzb3hd0QCH/P/3PWrWyFU1Q5anid8XtYxZHpkd89Q2YbmPf3IU +MWW50Xam1+wYy5XXZo8dt2S5IHm+xfYEy8+/U6pcbFm+cnktJfA0y3kEBd4c +Z5bHZE4GDbiybP2lyFb3PMuaJuf5NnqzTJHqCo4KYdm3N+vMq0yWfXSsFLqn +Wd50lGuYdGkH08vRFwuEvFme6eq45ejLcoddosR8AMtJZxVdBIJZVr1hPmYX +x7Jdbsz0eDnLpnPUapUqlnX32j8MrGF5V4WUMvd7lmcbiy8pE1i+M9Cz4PuF +5StiBxpqhlg+75wSyzHCsvmEm3r8GMuYJbpf1SzLXFoOhhsWWP4VWC9ktsTy +yO/wskE6y93Iz1DZFZab71raXv7FcmVzqVzFb5ZzuXcw1tdZ/j9Mup75 + "]]}, + Annotation[#, "Charting`Private`Tag$172923#1"]& ]}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{ + FormBox["\[Sigma]", TraditionalForm], + FormBox[ + StyleBox[ + RowBox[{"\[Rho]", "(", "\[Sigma]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm]}, + AxesOrigin->{-0.13, 0}, + AxesStyle->GrayLevel[0], + Epilog->{ + InsetBox[ + GraphicsBox[{ + RGBColor[0.560181, 0.691569, 0.194885], + InterpretationBox[ + GeometricTransformationBox[ + + DiskBox[{0, 0}], {{{2.8778430317408668`, + 0.}, {-1.1056824434981842`, 0.8339579238789092}}, { + 2.5994172306231498`, 0.}}], + + Ellipsoid[{2.5994172306231498`, 0.}, {{ + 8.281980515339464, -3.1819805153394642`}, {-3.1819805153394642`, + 1.9180194846605358`}}]]}, Axes -> True, AxesOrigin -> {0, 0}, + AxesLabel -> { + FormBox[ + StyleBox[ + RowBox[{"Re", "(", "\[Lambda]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm], + FormBox[ + StyleBox[ + RowBox[{"Im", "(", "\[Lambda]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm]}, + AxesStyle -> { + GrayLevel[0]}, LabelStyle -> { + GrayLevel[0], FontSize -> 10, FontFamily -> "Times"}, + PlotRange -> {{-3, 5.5}, {-2, 2}}, ImageSize -> 95, Ticks -> {{{2, + FormBox["2", TraditionalForm]}, {4, + FormBox["4", TraditionalForm]}}, {{2, + FormBox["2", TraditionalForm]}}}], {4.9, 0.32}], + InsetBox[ + FormBox[ + StyleBox["\"(d)\"", Bold, FontSize -> 10, StripOnInput -> False], + TraditionalForm], {-0.6, -0.04}]}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->164, + LabelStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10], + PlotRange->{0, 0.35}, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Ticks->{Automatic, {{0., + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.02, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.04, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.06, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.08, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.1, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.12, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.14, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.16, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.18, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.2, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.22, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.24, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.26, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.28, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.3, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.32, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.34, + FormBox["\"\"", TraditionalForm], {0.01, 0}}, {0.1, + FormBox["0.1`", TraditionalForm]}, {0.2, + FormBox["0.2`", TraditionalForm]}, {0.3, + FormBox["0.3`", TraditionalForm]}}}, + TicksStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.816430663462185*^9, {3.816430697159658*^9, 3.816430767548462*^9}, + 3.8164308608791113`*^9, {3.816430928995845*^9, 3.8164309432375517`*^9}, { + 3.816430981208997*^9, 3.816431017956829*^9}, 3.816431058950992*^9, { + 3.8164311197598467`*^9, 3.8164311455397663`*^9}, {3.816431177666754*^9, + 3.8164312172330523`*^9}, 3.816431324847846*^9, 3.816431357281659*^9, { + 3.816431470273549*^9, 3.816431494347118*^9}, 3.816431601589855*^9, + 3.816432086455368*^9, {3.816432193456077*^9, 3.816432214128702*^9}, { + 3.81643226892975*^9, 3.816432294063468*^9}, {3.816432351342551*^9, + 3.816432493225315*^9}, 3.816432531494259*^9, {3.816432566425359*^9, + 3.816432616560636*^9}, 3.8164326604629183`*^9, 3.816432743987936*^9, { + 3.816433032427506*^9, 3.8164330818981733`*^9}, 3.816433114817747*^9, + 3.816433154595701*^9, 3.8164332277445498`*^9, {3.816433314041864*^9, + 3.81643332817248*^9}, 3.816433394232709*^9, 3.8164334298562717`*^9, + 3.816433487783937*^9, {3.8164335182179832`*^9, 3.8164335661641817`*^9}, + 3.816433669321567*^9, {3.816433788040038*^9, 3.816433816955667*^9}, + 3.81643384699619*^9, {3.816433877006013*^9, 3.8164339044816637`*^9}, { + 3.816433934721092*^9, 3.816433964586329*^9}, {3.816433997494782*^9, + 3.8164340203694267`*^9}, {3.816434398614036*^9, 3.8164344276252747`*^9}, + 3.816434458466476*^9, 3.816435084696555*^9, 3.816435133703143*^9, + 3.816435316770844*^9, 3.816435454438629*^9, {3.8164973171330013`*^9, + 3.816497358790436*^9}, 3.8164975604712563`*^9, 3.816497623148842*^9, + 3.816497676169132*^9, {3.816497737472471*^9, 3.816497757633453*^9}, + 3.816497804407713*^9, 3.816497917201618*^9, 3.816498006446652*^9, + 3.816498074443913*^9, 3.81649812415753*^9, 3.8164981636126003`*^9, + 3.816498277410309*^9, 3.816498344101838*^9, 3.8164984674078827`*^9, + 3.816498514496558*^9, 3.81649856134643*^9, 3.816498676777793*^9, + 3.8164990739710007`*^9, 3.8164991095489283`*^9, {3.8164991608777323`*^9, + 3.816499186367866*^9}, {3.816499218155834*^9, 3.816499241347251*^9}, { + 3.81649927274407*^9, 3.816499322647843*^9}, 3.816499357738243*^9, { + 3.8164993992075443`*^9, 3.816499428231668*^9}, 3.816499476298395*^9, { + 3.8164995093326273`*^9, 3.816499529255447*^9}, 3.816499576435809*^9, + 3.816499626998185*^9, 3.816499670129959*^9, 3.8164997012943087`*^9, + 3.816499792817934*^9, 3.8165150734595737`*^9, 3.816677431433001*^9, + 3.8166774646625643`*^9, 3.816677507739356*^9, 3.81667785337601*^9, + 3.816677925756168*^9, {3.816678120485775*^9, 3.816678135690721*^9}, + 3.8166781755333652`*^9, 3.816678287776081*^9, 3.8263470813480988`*^9, { + 3.826347293925338*^9, 3.826347308397859*^9}, 3.826347473184188*^9, + 3.826347528569277*^9, 3.826347564072495*^9, 3.826347651256998*^9, { + 3.826352037715683*^9, 3.826352066228359*^9}, 3.8263521201334763`*^9, { + 3.826352157424506*^9, 3.826352183123191*^9}, {3.826352321204105*^9, + 3.826352336436049*^9}, 3.826352372118558*^9, {3.826352451774844*^9, + 3.826352478738924*^9}, 3.8263525273040113`*^9, 3.826352569422044*^9, + 3.826352640093669*^9, 3.82635295651891*^9}, + CellLabel-> + "Out[211]=",ExpressionUUID->"f3323a54-56e7-4004-8476-c25089ff9d68"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], "]"}], + ",", + RowBox[{"figure", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], "]"}], + ",", + RowBox[{"figure", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], "]"}], + ",", + RowBox[{"figure", "[", + RowBox[{"[", "3", "]"}], "]"}]}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], "]"}], + ",", + RowBox[{"figure", "[", + RowBox[{"[", "4", "]"}], "]"}]}], "]"}], ";"}]}], "Input", + CellChangeTimes->{{3.816434118649899*^9, 3.816434194626174*^9}, { + 3.8164344518386497`*^9, 3.816434518087821*^9}, {3.8164353083507557`*^9, + 3.816435312622003*^9}, {3.816497838787601*^9, 3.816497843906981*^9}, { + 3.816498073532735*^9, 3.816498092001882*^9}, {3.826346934680231*^9, + 3.82634695318451*^9}, {3.826347348231691*^9, 3.826347400368676*^9}}, + CellLabel-> + "In[212]:=",ExpressionUUID->"888ab8f2-1a64-47d4-85a8-7211f006b3a6"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Figure 2", "Subsection", + CellChangeTimes->{{3.826346470551483*^9, + 3.826346471327465*^9}},ExpressionUUID->"d8cc5be2-3bc2-4459-abac-\ +4909817fd602"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"complexityPlot", "=", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalSigma]\[Epsilon]0", "[", "3", "]"}], "[", + RowBox[{"r", ",", "#"}], "]"}], "&"}], "/@", + RowBox[{"Append", "[", + RowBox[{"\[Kappa]s", ",", "1"}], "]"}]}], "]"}], ",", + RowBox[{ + FractionBox["1", "2"], + RowBox[{"Log", "[", "2", "]"}]}], ",", + RowBox[{"Log", "[", "2", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "1", ",", "2"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"PlotLegends", "\[Rule]", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", "0", "}"}], ",", + RowBox[{"N", "[", + RowBox[{"Rest", "[", "\[Kappa]s", "]"}], "]"}], ",", + RowBox[{"{", "1", "}"}]}], "]"}], ",", + RowBox[{"LegendLabel", "\[Rule]", "\[Kappa]"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", + RowBox[{"FontSize", "\[Rule]", "fS"}], ",", "Black"}], "}"}]}]}], + "]"}]}], ",", "\[IndentingNewLine]", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{"0", ",", "Automatic"}], "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{ + RowBox[{"ColorData", "[", "97", "]"}], "/@", + RowBox[{"Range", "[", "5", "]"}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"Black", ",", "Dashed"}], "}"}], ",", + RowBox[{"{", + RowBox[{"Black", ",", "Dotted"}], "}"}]}], "}"}]}], "]"}]}], + "\[IndentingNewLine]", ",", + RowBox[{"AxesLabel", "\[Rule]", + RowBox[{"{", + RowBox[{"R", ",", + RowBox[{"\[CapitalSigma]", "[", + RowBox[{"\[Kappa]", ",", "0", ",", "R"}], "]"}]}], "}"}]}], ",", + RowBox[{"ImageSize", "\[Rule]", "246"}], " ", ",", + RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"FontSize", "\[Rule]", "10"}], ",", "Black", ",", + RowBox[{"FontFamily", "\[Rule]", "\"\\""}]}], "]"}]}], ",", + RowBox[{"TicksStyle", "->", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", + RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}]}]], "Input", + CellChangeTimes->{{3.816503530573276*^9, 3.816503894464437*^9}, { + 3.816504324901102*^9, 3.816504405796505*^9}, {3.816504675154151*^9, + 3.816504688793583*^9}, {3.8165048988939943`*^9, 3.8165049021249447`*^9}, { + 3.81650494540655*^9, 3.8165049726274023`*^9}, {3.816505664873313*^9, + 3.816505665166836*^9}, {3.816506144750059*^9, 3.816506145053796*^9}, { + 3.8165971175173197`*^9, 3.8165971258456287`*^9}, {3.816597339466022*^9, + 3.816597339569448*^9}, {3.816597409426959*^9, 3.816597410858601*^9}, { + 3.816598267107032*^9, 3.8165982781862164`*^9}, {3.8166766005231113`*^9, + 3.816676629195566*^9}, {3.816676695029399*^9, 3.816676696524979*^9}, { + 3.8166779004753237`*^9, 3.816677908212202*^9}, {3.816678022261363*^9, + 3.816678022524995*^9}, {3.824544896106626*^9, 3.824544917410087*^9}, { + 3.8248015010869102`*^9, 3.824801504525763*^9}, {3.826352684057417*^9, + 3.826352688441154*^9}}, + CellLabel-> + "In[191]:=",ExpressionUUID->"9a858868-22d4-4032-8c16-522279cca440"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.368417, 0.506779, 0.709798]], + LineBox[CompressedData[" +1:eJwtzQs0lAkYBmC6YtOWbZR7SGpV6ErkjSRZsk2bW7lkTRtarSgWiaQoJaVN +kahZiWw3GimXhpjRbGYWTbXEmP/fsqv0D0YuM//OnrPfOd95z3PO957PNPQA +kzVFTU0tVLX/5Qqcsku0paD2/wis2bX81RQqmV6idRcP4ivyrNMTdwofj9WY +DC+8BlkcO0bXg4IXo5PB+rEIf2jVlP70DQUbas9qx63FOGdD6lhso2CuEdDF +UVzH7CSHd2d2qPrHZ601DyiBxlfvs4ODKEwaBevd7LsN5UZnyZRYCq31Us6M +okp0t/voBh6ikGTbm7+OrsSTvfu/4RymYFKzx0ERWIXErEtVkT9TUJ/O6diq +/xCfxR8yO5JV/y19ZivPcDAUdWVlSSaFX2rn8uNDa/C+YCht6zUKV1MiE9Kb +6tHH3FWYVUTBcI63SEezAX9qNFa3FVO4VNl2oda6AS9iz3/YyaYQqcycw05q +wANPW9/QWxTCultdHs97iuTJqK8TH1C4UYOKTU5cMHb/LbzdQsFnw8umZfFN +cDGQGM35RGGas5rxiRwemqu9N0dRFO5a3gw0e8CDh0/dfoGMgv1iyrGog4cd +OfmPM0YorDz36ZTzfD7CZvr4q09QeJmlvsgkn4+TQ625sukyvL28yzTyaisE +zyu/6DSQoVw75K9dZwTwTcoYu7xFBiXjru2KuUIYLrWpo9xl0GWXsNONhejt +FB/b6iHDgH/dzT+shNhnbTlrzFOGR6wLOV5uQsT3PTP2Y8qwwOjRTl6CEHnu +U111A2UI9k79oUsixKt5yWfPH5RB34p5T1gqgn9FjPnpqzKc1PWadDRsRy/7 +XXHVBxmY7oOnDVM6YXaUEXrDdQgmVpWNhQ/F6DcRHG69OAT/qr0yMvk1Cs41 +v/Yjh5C1/1TCwIw/oUUkJJc5DMO4OGe66ZEuKBScuDVZw6jqZR3Sv9+N8vHf +7qdJhyHZdT3cqOst3Fr6HeztR8Bq4h0henvACqjQW5I5glVJXEV3YC82Cr+2 +f9MzgrHKxjVf8HtxbZZtxTMbOZTjTNGv5hLUWFGhsRlyhP3m4NGRJMFT/ZG9 +p97K8UK7viVEIIGXMLX+9YpRyH+1dNw0pw+5+3j+A+mjKNC2Ofp4Rx9CWi65 +24lH0WzIs8w904cF8rL0fxZ/Rs6W0osjT/twemb8tNAjn7H7trVTpLwPaT2/ +i+e++AxWcLnmbXMp1l3pHjhuMQb10R8EOtulEC+y/TY4cQypJ465bUuQYvKQ +tkbM8zG4Rucum10oRdetG+oeZuNIoPkuZlwpnNlc74CYcQzYhA+mSKQ4H2Ux +IOKOQ2ScpuWmlKLQwKV1lt4ENvAVrrEGBKyz302mhE/ggMOGV/+sJpBIukVX +N0xgZb2Td9M2Ap5TrNcv1ZnE+iGzGSEsAlqDAdvVQyexv9HWzi6BQFrdxrKC +6klE3PUMO5xNIPW7O77RmgqoBYpO6l0nsP53sZvmHgWcFtYSC6oI9DBcj2tw +FDBvKH5+rZmApoW9rvNMJVx7uC1aLwl81H3f7xikxHBibbWQJODXZqJz8I4S +AmrvNM4QgTu++RmzaSUKylfFFqqReMoVbozaSUPEj1jSrU3Cb/is18wSGsLl +ZEy2HonmFy42B27SaKsu8OCqvPqWXEdcSiPQOoIxovKXQUGvSspplBZ9dzJA +X3Xfsvx7t3s07PNbuhYZkFiTL4hPf0LD39VsO8eQhI6LFntqO42yDd5x7SYk +UgzrTkR20HC87CuetpDER3l0eHsnjeQKidValfnlr1fceEXDalnG/TyVUxi3 +Hrm8peESl7A20JTE4Pstban9NGrthAaEGYndjRP3+v+mIZclPZtnTqL16p3c +7QM0WBd6vt+scglzfoDpII2Fke3JJSoHPfmLaBimUX+obfm+RSQEv1xpWSKn +YRKefiRP5fXR28rOjdKI+6jF5anMWPzwQMg4DY2fcpYutSBxTC2CyZugMbU1 +z9Nf5U9vjNbYKGgkRieFZaocVCWan6ekkXce0Y9UFmSnj9M0jQg/8mC/yv8C +GNoi8A== + "]]}, Annotation[#, "Charting`Private`Tag$168250#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.880722, 0.611041, 0.142051]], + LineBox[CompressedData[" +1:eJwt0Ak01IsXB/BJvWdJmyKlPQo9S14l6fWVV0ilTIkU76VSKkuZSnmUNbvy +WlGKyS4tpOz0LDEZgzGy1DAzL1v5/Yax8/vPO+d/z7nnns8533PuPXe1kzv9 +tAyNRvOR9n8zUjd4vlEKAdr/q1bBJyha6j61K49npJuDn0yfz00lsObd8oLb +2ucxZKoZtzSdgMz6hmsMNS+s8G58+TyTQCBftFHsGgyPPq32glcEChYsHV1o +dQ8qrGaD7gICGpWscIMtTGw4m1mkU0Sg2zSNu+H4c5jM8rfwLCaw7O22409v +JMNlu47jdCmBD3L38leVpKIwMyB0USUBdd17dt6rs+AUqc83qSdQoXBJ73LR +a1zV+vl8MIeAz5fSsIM73iCiok1S20DgiEdeoXbxG+ROBc+25UrvM+y17snP +gZxbxxbXVgJeTju9+lLf4oVVWOQjIQE/X3/3nKP5GJsn3CYeJWBpQtLjbpfC +qkDstHGcQP/7et/y8lIkOs8I95ggEKk4/vf9oVJYFq1o+zFFQCswWnuPbRni +zx317pMhsaJfcz6pWg6TiroCoSKJ8vtbPspFfUDw9ffbeatI0N/Mcn+2qxKt +GtWnVNaQ+Kz38xmxayX0OM0RNmtJ6Pz4dUj2QSVa1g+1N2qQyA8rUwvoroQW +V9enXptEirvZwY8hVWDpMYs+biLRZKafoVhSjYWiqB2FFiSy5fuNOT/VQnyV +6aliSSLC445z0oZaNCjkp3rsJWGrZB+207oWt/VFShpWJAbJV1mCuFrM/cv4 +W+QhEl6ZvXEsXRbkFnZH/+FI4mr/xZZ7ez9h2mRnpwyDxLzmhguCk2x0NB5R +cbhMIj1zc558IBuFzhf25l0hkXmXzZVjsuEd8SD3/DUS4f/YtccI2BjlfQ9t +8iXxZKLCy12/HoNusQbJoSQmFBak7E+vR3f8YMCeBBJn9trE77vDQRf92JOI +pyTe7ihcbfGEgza5D+/Yz0gYmJ9w2ZLBQR0j5rsNU/qfhN7Hff9w8GbfRlun +NBJjuxPVC0Y48J100/Z+Q2KuK89A5lgDlI/31mdWkQiktdSVqTbCVK1z+XyC +RNQL+V+nGE2ofHdgtxtJQsWm++XKm02wPFJ8gSUm8fd9g07D8CYcuhNXECIh +sZ3Fj9vzrAmnZI8cnTFB4jJz0e4hVhNuDdbcFf8kxskpNwvGGi5YtTmzuWpi +9IrGZt2q5ML2r5CxR+ZiPNq0+WmjpBnLtPSLSQsxAmvGUlKmm8Hn8vz3WIpR +tIrTzpDl4azeesWxfWKcjg0Rj6vy4NVVscKOLoZZs6D2rTEPDy1m7lJxEIO6 +ktg3dIOHlkW+UTGXpO5O0KuY2YKjWZ5rwx+LIceL8bMbbwGf+e1Z7ncxHnxT +Wl8b04o1N5SdknYNwqFmfF7d/Hb0rGRdqbk3CMai0w/3W3Qg/nblZzvRIGSE +5zwu2X6BgvC6b7rxEJ5zDYIHHb5iairv6uaIITR6hhYSy/jIGH/xOkAwhOsv +6fw7IXyYVfUYGxlJIDeiEr+hm4/T9llLNEMl+C2VWH/LqBMm9dpGrV8l+IVZ +anIgrBMJihuzKvSHYZ/kUerP7kT+BtKJETIMwwMPZG8u6kLZUolz2JdhmLce +s+bQu7C/3q/ks+4IJIY+tMchXbh7tvpof9AICubQJBnFXfiz6oHFVt4I9GSn ++P7fu6A6nB7Ut24UrV5pJ2xUBQiX9Zrl5DOKVbH9ZMLvAgR8/cRbUDeK/kPR +VlYuAhjGdvQHaoxhODfbyj1aAJ76xoN/eI+hLYdmbf9agMnLc+Q8a8dgITRN +bKsXoD0taYblmnHsCqn52DEgwE5m+QF7z3GkIypu5mwhYtw0+jnl47C71kxf +oC7EEzXTGsUlE8iRaTmV+JsQetHfJm+6TKDATyBZeFgIb5HZxXelE7hul+Ew +cU6IfTJ627SUJqFb6Juw8oYQCgP21jOcJjEv8XpE9R0hAopN0uPfTYKRUV4k +YArhdzjb9qL8FGoO5zjm5wqx7RPPTP7EFDTL9xiNVArxVXlXoFzeFAovTSYO +NAshr2GkslN2GrGGt9rkRUL8UOnu2e44DaXhAxWBg0LYsVcqXcqeRmbo01o6 +TYRs27iQudQ0nplqvoeiCGXl9SZuNhSq2Xqqt1RFsBuK2i+bTGG1TtfeM2tF +qKwz1XdPoeC6uCbxvtSb0oaVeKkUTLx0Byqknufo2JKcQSGJf/Wsuro0X6Vz +0uwVBQZxrIMv9eY4lldQIYXo3W0NtutEUDJVYM5spFBycylth5YIN5cVB59v +orBVTTL7gtQ/hi+6NHIpSB4y58RK/THjs25SC4WBBZFiyX955bT3pl8orLjL +Ns3SFmGg25zt10NhqYhBLflFhOMfJl719FIQlvFdzKWueZx917qfQp7bvhqG +1Mn0xfarByhYNeu4sqV2LPxXWDpEoZRyMg7UEYF1P7ZKc5jCsqDFR15Jve2i +VfrtEQpptE7nL1Irr3vr/uc4hQKHonNbdUXwp52jV09I9/lyHU5LTbQu36w/ +RSFEeY55jNSOuZzFD6cpuJc4ryuRmhUdNE5RFMKXiCb6pP4fQIkbJw== + "]]}, + Annotation[#, "Charting`Private`Tag$168250#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.560181, 0.691569, 0.194885]], + LineBox[CompressedData[" +1:eJwt0Xk41PsXB3CpX9IiydKeSEmJSgvK2xZpytV0u6JCWrUobbqWUjI3IS3a +cENNQpQWXRFZCjGWmTGMLYOZ4kY+X1kyM3x/83ue33me85zn9ZzznD/OWeB9 +gnlAWUlJKUKR/6u/nq2bor2OQOn/sShLEL9lPUFHSE7wO34M7jowV1/fQKCm +RsnU7sZivLCqstqKwGpegtRWJxESaeko04ZAYP4wPvPME7Ctc7zcHAjE3517 +Xrq/gCZvzXCsI8GGH2Zzptdl4sq+1zebNxGYvVExOzX0EvtY6UWeDAL540Jf +J4M30OM8XHjQheDW1P4/082yMWejXnnRNoIpXhlv91q9g07+kxPztxOwf3si +LrHJweTM9BzhDgLmD5fl99e8x9DtHBfGLgJ/G+vdx758QN9kq8Gnuwn6SrLs +OvcUoDusMG6cB4G6ST7TvrwA7f5lX/O8CLxi28K3xBeCs6suyPQgwbBjkmbq +4mKU1LrpRR0ikFpamuWHFaNwa0tp12GCSRr5mNRejLcQazw+SlB3pGAy685H +JOn3pWj5Ecybl3f/WNcnnPs+RSANVHiTrqzGuQwn998McA1W3O9j6CKlu2U4 +2qKp++YCwYk4J83pzWXwqp599PglAiS+slY+8BmM10vGiFgEyatu/PX5SDl0 +Azcaf7pJsCpKV+TO4GB2fxlvwW2C51PvPKgK5UD7+JbzF2IIVObG+V3J5WCS +5/bitfcIEk+GtJcaVmLQdq9bWryir5S4TFdWiYqJwWHRTwlW+Hi+drxcDVEy +U12QQtC5eZ3wfkY1+m0N42alEeQnvd1zVliNeYH8zCfpBO4tvhnHtGtw8vuS +5tyXBA0s40a7wzXQ5tSt7Mwl4PbOsolR5mLp4fQ84zyCZxvG+KhpcWE97vKm +0/kEHzkD4/Ys5sJnvbHHaAFBwFDe9QAGF+/TQ8M1SwiMgjQyy29y4R1lKrKu +IXBaetzPRYcH/yXjj7K4BK+a9m/xXsxD5KemgQoeQU+sciZzLQ9ZI6xJrgIC +nWVBC7h/8DDBt2XN8UaCDznRYcwYHp47X4t6ICZIzfctq1TlY3iq2KLvF0FE +cIP74TY+nHP7vFdIFf/2qFna2sPHo4NjIk7KCHI5craNlI/NefOafowQ2G9k +3i/XqEX8EbfA78oUWD3KwT9ta2H9qSpXPJlCyl15uCChFqyAd+vrdSlk856m +MLYK0GhQtl9bj8LuCTZX2K4CmHDrInfoU3CzW/Rn714BhIv7m/kGFC50cpx2 +nxNgiWB5cI2RYj/790d3HgrAMWHnfTajcKh6zobkbgGmS65bvd9EQdPR7dbc +kDr0+bNPa2+mYC/VS8gJrwNvYk7KSQaFPNeCr4zbdbhhKtEwcKZg6UMnMZLr +oBZk+S1qO4VFXHX14oo6TJjeGe3pQUGEyKQ0zXqMWtu0KZ+h0P1HgdvUhHp0 +xv8MdUqgcNiiSbsoVoh25q6HkYkUFvKLC1KThGiaUJxdnUQh2oaZGpEiRNWZ +Wz072BQGLTbutXorxOstK1y9Uym4sNbc8uIKcUHuaxT4mgJfp7k0cXwDtHb/ +W5NeSiHilNX9bccbYDu7ba46oeBUv6N/lXEjXIOuDj9w7IOdp2hvU1wT3DJO +60f83YeA2HNj/+I1Q8T+lpTV04eYwpYQBr8Fehe1vB/b/8SuabP5dpVf0DWf +c678zk+MfTLJ+nFiK+JvlDTslPxE/ZeV99aaiDBRHHAhzbIffZr+jsVRIoyM +/OO/OrIfIm7KoSmtIjyTPn8V2tGPijLXlCDTNjiUdlmamw+gVbVgaH9AGw64 +Z8w0DB/AmvowmX9OG6xrjMwbWxX9LkGfkawNCZNXZHwyHUSI4y6j06vakbOU +8j5zdRCiW8svuh1rR+GsgYPXvgzCPvJRy7HEdmytufShYfkQjF2XlUkq2xFz +uMytO2wIu6JVNkyXt8Or9N6mdfVDeHX58sqAhR2YMZgW9n3RLxx69h+nXKcO +RKicH+cd/AvlV5RYr090ILS1sn5a1S8MrMrzVrrZgbWxLd1XDIaxYfE2Zu+r +DtQvXOHiGTgMq7Z1a9bxOiA/O2XC6Yph8H22Z7/t6UBz6uMxm/WkODojbhlX +VQwbdtFv7qel2FOQURqpJ8YtX4NubpEU9ftHDQPNxXg427Z88kwZxkTOfSh3 +EcMk+ps8xEeGb2rTdmQdECNQ4uCXXSDDodw8ZxIgxhZlE4slGnK4W5hlZkSJ +MbHXfdsYbzl6d8omzUwQIzTfOi0+Ww7LRkbnSKYYl35/4eqnOoKGWblnqwvE +sKisd1DdO4KpQ0WaU7hitGrZX5nwzwiyazeK9EViqBqYa9uojCI5U+XqxR4x +fmh3dq33GMXC3sa1kImxs3q+xqkXo2B5dVf4qkjwwjXuqho9ii8r2wyrNCQo +LKqx9t1BY8B1dk34PAl29l/fqpJMg2FS6vnTUIKSKlvTE09pSCdK3usukcAs +dVCjPoUGAjarOys81cNDmPyMhvr3gQcpCpeUGu9zeEnDkDfdfI+RBKvjOOfD +3ivm7aNTPi6VQMN2Inssn8YM/aA9kcslCJmTzzpaS0P7lN3VbIV/DPr58AU0 +7LITUsUKf37WsPyxkMa4FN2a9SaKea3Ud7ZfaAR6stK7Fe7tdKy+1EXDwZ5i +b14hwe5i2cuuf2nI3fUtzilc/veLmG3dNGZOUy9JUjiZqeO+oJdGbYZe0S+F +Pd5/FRf001j28TgjeaUEnLuxpYaDNK4NZN3lKmzh55x2Y4jGbbcKoVxhrUVv +T3hJaVwePGizfZUEl5WOMMtkNMw51KELCpPGuatNR2iYqW0PS1XYI4urc3+U +hqlq1INahTnRYVKapmGr+ohNK/xfD8yBjA== + "]]}, + Annotation[#, "Charting`Private`Tag$168250#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.922526, 0.385626, 0.209179]], + LineBox[CompressedData[" +1:eJwt0wk41dkbB/Dybyg0QpZispQG809S2pSvpS6TJWQJjXWiMrakTKQkRhpJ +SaOohCztIyVLWYZruXbXvVRyuXesjXPtruX+f/M8//M85znP5znnvM9z3vO+ +al6BdsdFli1blkLNf9cb/ik6IVIEy/4/etsaq+zXEBy2WJG+4loCbH4+dCxF +muCiffPDIvpDlE/VTLJkCO5KWDFyd+dB9zfThHVrCY5nzbrt9H+Jh4rlGq5y +BFu0a9WO8AqwJn/f+zR5guA6i6biNW9xyeCdY48CgWyUfafr3DuMMfTHVNYR +3PFQNwvLKYWb25+/ea4nqDpZ/HxR7QOaxnRUM5UIGkUm5rzfluO5jKbt5g0E +YsJU6Z11ldiQlTXkq0Kwrehi9oOiKiToq13OUyWo1t3uYJz6F345ur7gvxsJ +blx62HBnew0+DaVYBGwiWOf++9q7YzWwDJflvtAgGNZ7/zI8g44f7kvKbdck +2CUI0Px+uBZ3t159dkaLIMrUXM3tch3EK76hvdEmOBlKu2wvW4/h/qWze7YQ +VHqWR6erNcAlNFwqXIfA7nbh654HDagTnc0p3UpQ2Dwa8UGRgVwtPht6BJE/ +GXQz5hlQLPEPjtpOcNsyQDrNpxFxlsOrqnYQ2D9LZNs2NsI3sH8vbReBpaeU +clBiEzYXMtMs9xG4VVY4e482I4Vmp399P4G54fElww0tEGU3NTYbEiyIRkeL +HmwBT0BfsjMm0NIpWRJLbEGWUbGHM43gcntjXLB8K9a27Zy7a0bwKSR0cFq/ +FVe8C5I+mRME+Dh9zbRvhXfs00p3C4L99TlWaYmtUGfc3+RjQ/BOVPmUYKEV +ygfV6yttCZpan/PYim1QeJ8dqHKE4L6b5THRHW2QfPm0mO1A4HRxXtX/RBtm +bhXbWLgSWJk/tteub8O4pOF0zjGCReHkzQOcNozGVNxb4UaQN1VlzZlpQ9+5 +2r/LPAjof8fTCze2g+HaGaHrQxAucrPz4Nl21HQ4qyf4Enz+MLeBf7UdFVaf +6UMnCFoeS0gbpbfjDbgymX4ErjoTPGZlOzI2jufKBROMMaert4t34OzIaqYg +nODRtJgh71oHgn5OOu90gfrvcKMwiXsd8Pu8VvV1JIFD1xHafF4HPJqV/Pyj +KP9Km91P74BFgdby3lgCH9elyjBhB1TDD26pTiKwddTP6PVlQmmytk3tFkGN +WSrT+AwT8v6WYZHJVD7kGAqXLjEh4X6katcdArX9A4Z3/mBi2sTTOT+NoD18 +BYNGZ6JB/EJMYg7B5E+x9hYqneh9bLeGmUsQtlkqQUOrE5MmmvfW51P1UmHa +N6zXiQ3h7S+znxKEekkn7aZ1ImhE61PJK4L1b8pVRvw6Ic/o1BssofrPI9pu +saATXgm6vUYtBDfjdIwHdrNwTkvUL7aV4EN88RLdiIXfqz9ONbQRnMjr/jbd +nIXCxVgJJyZVf335/ZuOsrAy4PNO/26CKfcN1i/PsvDcOj4hlUvgW3ogsPsV +C3NS3L3js1R/tIwYhKixYV0y7rVNQFDy4yYjMU02HvksvxY0TyCofa2TrMPG +obINH/9ZJKgbVtRINWAj7ZRz+IgIH6xxNZatAxtG1U0lXEk+vuGKSN74jY3Y +8+/2sVT5VN/GckoG2JDlXTcsNeejmZljwE7twvi5rBD5Q3zY7B1zTH3QhTbx +4twgCyqedKGmY3YXbujyZDSs+SiNzFGoetmFbyMMBhKO8OHHUdLzo3dhpexg +orsbH4k6PzkvTHRhyciYI3KGj5K/XBiuh7oxmDYR/eMDPmpvljZd+doNEyXO +d2sIH784Maz6RT7BKSJuLtVsHL2GJzt4az7D+VnIxmvp4zhWcD+ndXkPerMG +Mgq/jqOIeb4rv6UH6hflvDIPTKCO3rWg/fALhlQYZ+tvT2BkKTdgRqsXaTdq +uo7yJpAg/6pXP6IX4tzzkfkGk5hj0Sd/be7F4uLbc/q/T2Kr4pZ8CUUOngie +/xndP4mAAHXb254c0OhDBnv2TAHnctWXZXNw3OXZOs2rU7DXiro+9oUDoxbt +Pd1fpnC79hm9V6kPDyS3PavWnUbg90qmrjZ9KP6B73UmbhovjibMFMb0oWL9 +lE98zzSag66qN7zpg1VL1IcunRm0j07psTh9SD5R6zwaM0N1YaR18ep+eNDv +mO9mzUAvY+Jn0x39UJzOjxnZPItk35HRAad+XBMLW+F1YRaaVsXxjhH9iP7S +yJJumoWJzPxH97R+7Lr7efSKxhwU8kxd1pX1g7Vpm417+BykGkiq48d+LISu +XhnSMAfrw6HxM1P9+JSXufyQugApPb2n9klzYZxVedglRAAa50kGTYuLmwEa +o62VArSUnd2VCi7uK5nUS66bx0277IhoRy62Jg4sXDo5D5Ui14myU1yE82jB +ReXzUN632zLyIheWIlv3askswNtNQoSZxIX4mIvtcq8FlMuYJvAecRH93ig/ +rWgBR8xOFwS/5iLK/oVT8KpFrD4wnz1bxcXeRhZtleciZG5FuX5t5+KL3IEr +K98u4pbrxqKqPi5WaeyRNxZbwtWo/TODY1z8Iz84tM9tCV0+Wfohi1wcbVaR +Of1iCSEH25NCV/Hwwule3LfCJfAPbYp/upaHisoWowAHIThlXg5Gqjwcnbxu +JfZYCJvDNavjtHmoaTLRDcwRQpCc0f2a8o68aRlWrhBJIUvpHMpSbm7sx0+E +YJ2irTT4gTpP3+JNeyXE5Pe2fl8p699jhMWUUvf73PxttvAgYyKe9Z92an9j +RrCULg+XlN/H+nUI0f2NvqwB5X+mg0+2M4UwLkl+4kO57kmXTiZbiPOl5eVl +/56Xy3tn0iNEdJH4Bb9tPIwNmjVHDQnRf9ET1Xo8HKuafzU0LATjeqU1oVyf +/iLZdlQI6zuyDkrbeXhsp+CiNiZETNx1WjBlt9K/ueWTQrQFbS5T3sEDI+Uu +XXOaygfz4BUzynuDrfNvzAihKeFrcpqy3OY3gR4C6r3VbzPplC8vO2VXOy9E +0LsR2jhl0v2dvu6iEI+ctTnK+lT8wlaFP5aEmPsYetqMMiMxRiAUCuEd2iII +pvw/yDDg+A== + "]]}, + Annotation[#, "Charting`Private`Tag$168250#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.528488, 0.470624, 0.701351]], + LineBox[CompressedData[" +1:eJwVzXs0lAkABfBR23ocUh6VIouUUmJRqHWZKSpUaCPZ2dKhx0qLivIoTdpK +Hkda5VmZ1TJ5ZL3WUTvZRCjaaobUDDPfTMhmDAYz+PbbP+6553fOPeeahZzy +C51Ho9F8qPzfDj+fX0CjyZASPmTAsOGBrTaZ764mg5x7ULjDngeDm9GbWPNk +qDTTj/Nx4mGsJvzo1wtkKKS7rvGn81ClYr7Q1pJB6hx9YO9+Hmx/YaQaGciQ +ur0kWC+RB+sCbUN7KxmS7BnZtR08mHcUrArbK0P5bc0bqWF8tGslJKc/kOFg +4p1NPexuTOsSLvIpGS6sXHZdp7EH+pI018YdoyATOXr8x+8xkDfG2lk4Ch2e +29r7z3pBX9Fvskg2inSVZLey9AMC4q9O3/GUo4jTuNXv1kccKIu2SMmXA/rH +Gb3hAvSxP92r+VeOk73LmXVrhTC/YBhStG0MHZqKDPUhIQZNO8623RqD0iu+ +1XNnH/IynvcESsZQQmtw087ugxZxPrF0yzjKu+4K90v7MDtbF+N4YxzCLO+b +3db94CjLq1jicdTaBNoXRPXDo2Vwi7PzBJoeNCQ8+6MfoUFlRlbXJmAWs9R0 +cLgfbl3rnN8LJzBReIL57RoRCrXtypptFTAWlO0OChKhwXo05PRVBeLiWe/O +pYnwdPlE2HWBAnU7I5ySn4jg05X0V4/NJBYbW5g0DIiQdaz1wHDyJMYjYtb9 +oy/GoZbsHU78SXgF/tZX4yzGMkVp8ufVU/jYzK5rDxYjRT32q5CEKVzx02NU +XRSDJXzJX/xqCuHG9a1ed8XYnPNx+LLlNB6ajIXmcMXgr7Lb+2PcNJyswr6L +E4gxc0ZHI7p9Gif9V1R3TonxoaRIbZe5Ev5GBqI2fQLu7KY9QdFKaNzmS7Ot +CWRGWA6/blIis/o1t9qdQMEKepu2kQrmlcXiE4EENqZ/mrl4XIXQUu8358IJ +xEk8Iuu5KsSyM6W6SQS85210Was3g/Vn9jkzbhLQGgnyVQuZwdHC9FgHNgHW +E7fSvPoZWCzerHO/hkDSvoqASM1Z+Pt4euk2E3B5yffQPDwLQSFDNPSWgNBw +22WNullUXONoc8QENC2dl7irzyEhfiT1sYzAlyUDg1uZc3jcOXPEcY5AYKep +XlTFHKRduzZYaUlQEZB7dSE5B65O8FZfQwmeNnW5RXxPIsT7jg//GwkCx9N8 +1ItJ2LlWM/WtJXj+im576gGJ3FDRNCg7lCj0+L+TWGRRnBJOWZfJ7C7mkGBx +JjOb/9+3bDji8YjEMcF8u5j1EjjmdsQmN5IwXfj8YfcGCfToWuz5b0iUr1RW +ZdlKcNH4yZWf3lI+vceSS/mLIvL4m3ckDl9mpX2m/ILTY1PUTWJhe8Z2uh21 +Nyz5ky6g/ksTPUYojwx4diYNkujdlXvL016C4L9VjwaHSNC3D5yNotyWX5Hl +O0wiIGfznnzKxX5Lg8xGSDDWSAk5ZWajlOCOk1hwksvOd5Cg49ecFisFCQ3R +D66tlF0id5dmTJLw9dTtlFM2XF176pCSxMy92neejhJcop3wa1WRSJio9Iqi +LHtv4mg7S+LSREt9HmVmzeult+dI5HTOGrdQ7khPVpIkiZrKfbGjlP8D769/ +RQ== + "]]}, Annotation[#, "Charting`Private`Tag$168250#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + GrayLevel[0], + Dashing[{Small, Small}]], + LineBox[CompressedData[" +1:eJxTTMoPSmViYGAwAWIwXVDFysDwwf695a9/TnrX7LXn8YgaayD4SmfmqaQF +IPinuWpb+5cj+D/5n1h9+oHgCz/ts9vj8RHOfzHnc7PnfATfSfqhrMAHBD+8 +puPnTPdPcH7k2mLl7rkI/oMlzxdufYvgK9WLJi12+Qznv5Q/U3ZqKoI/Z8Kx +mxFPEXyuJ1V1q6y/wPl//24vN+1B8Ff/Wrep+TGC73b8pbWl5Vc4PzVqraRG +J4LvcEHL8tZ9BH8+j+Haowbf4Pxd2h+TSjoQ/INSX9O67iH4vhca99/U+w7n +T8k4EfmmFcFPOD7dw+I6gi/xbVXra7UfcH43ewVLUi2C33z/7HXBcwi++ay7 +b1pUf8L511UMA+KrEfw/pbwcxacR/DsrFzN6Kf2C8x2XHPKPKkbwJ+Wpvrl4 +CMGfJ+10ikfyN5yv3//8T0Mmgl/91K1wxwEE34dJ30pT6A8iPt5HBTImIfjN ++xxWzdmB4DeGrA8v5PwL51udve7GmYjg3xd1aeHYjuBzqlqKObL/g/Pfib14 +aROH4EeclxcqWo/grw+f3cH3H8E/eOiCQ17of4T6L32+7MsQfCEnriXMlxH8 +M/2tv/7/R/ABxG3KVg== + "]]}, + Annotation[#, "Charting`Private`Tag$168250#2"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + GrayLevel[0], + Dashing[{0, Small}]], + LineBox[CompressedData[" +1:eJxTTMoPSmViYGAwAWIwXVDFysDwwf695a9/TnrP7LXn8YgaayD4SmfmqaQF +IPinuWpb+5cj+D/5n1h9+oHgCz/ts9vj8RHOfzHnc7PnfATfSfqhrMAHBD+8 +puPnTPdPcH7k2mLl7rkI/oMlzxdufYvgK9WLJi12+Qznv5Q/U3ZqKoI/Z8Kx +mxFPEXyuJ1V1q6y/wPl//24vN+1B8Ff/Wrep+TGC73b8pbWl5Vc4PzVqraRG +J4LvcEHL8tZ9BH8+j+Haowbf4Pxd2h+TSjoQ/INSX9O67iH4vhca99/U+w7n +T8k4EfmmFcFPOD7dw+I6gi/xbVXra7UfcH43ewVLUi2C33z/7HXBcwi++ay7 +b1pUf8L511UMA+KrEfw/pbwcxacR/DsrFzN6Kf2C8x2XHPKPKkbwJ+Wpvrl4 +CMGfJ+10ikfyN5yv3//8T0Mmgl/91K1wxwEE34dJ30pT6A8iPt5HBTImIfjN ++xxWzdmB4DeGrA8v5PwL51udve7GmYjg3xd1aeHYjuBzqlqKObL/g/Pfib14 +aROH4EeclxcqWo/grw+f3cH3H8E/eOiCQ17of4T6L32+7MsQfCEnriXMlxH8 +M/2tv/7/R/AB+TjNlg== + "]]}, + Annotation[#, "Charting`Private`Tag$168250#3"]& ]}}, {}}, { + DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, + AxesOrigin -> {1.0000000204081632`, 0}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, {0, + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> { + FormBox["R", TraditionalForm], + FormBox[ + RowBox[{"\[CapitalSigma]", "(", + RowBox[{"\[Kappa]", ",", "0", ",", "R"}], ")"}], TraditionalForm]}, + AxesOrigin -> {1.0000000204081632`, 0}, AxesStyle -> GrayLevel[0], + DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> 246, LabelStyle -> + Directive[FontSize -> 10, + GrayLevel[0], FontFamily -> "Times"], + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{1.0000000204081632`, 1.9999999795918368`}, { + 0, 0.6931471805599453}}, PlotRangeClipping -> True, + PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, {Automatic, + Scaled[0.02]}}, Ticks -> {Automatic, Automatic}, TicksStyle -> + Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]}], + FormBox[ + FormBox[ + TemplateBox[{"0", "0.75`", "0.9375`", "0.984375`", "1"}, "LineLegend", + DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["\[Kappa]", {FontFamily -> "Times", FontSize -> 10, + GrayLevel[0]}, Background -> Automatic, StripOnInput -> + False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.368417, 0.506779, 0.709798]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.368417, 0.506779, 0.709798]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.880722, 0.611041, 0.142051]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.880722, 0.611041, 0.142051]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.560181, 0.691569, 0.194885]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.560181, 0.691569, 0.194885]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.922526, 0.385626, 0.209179]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.922526, 0.385626, 0.209179]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.528488, 0.470624, 0.701351]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + AbsoluteThickness[1.6], + RGBColor[0.528488, 0.470624, 0.701351]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #5}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + FontFamily -> "Times", FontSize -> 10, + GrayLevel[0]}, Background -> Automatic, StripOnInput -> False], + TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.368417, 0.506779, 0.709798], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.24561133333333335`, 0.3378526666666667, + 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> + None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.368417, 0.506779, 0.709798]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, + Selectable -> False]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.880722, 0.611041, 0.142051], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.587148, 0.40736066666666665`, 0.09470066666666668], + FrameTicks -> None, PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.880722, 0.611041, 0.142051]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, + Selectable -> False]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.560181, 0.691569, 0.194885], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.37345400000000006`, 0.461046, 0.12992333333333334`], + FrameTicks -> None, PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.560181, 0.691569, 0.194885]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, + Selectable -> False]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.922526, 0.385626, 0.209179], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.6150173333333333, 0.25708400000000003`, + 0.13945266666666667`], FrameTicks -> None, + PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.922526, 0.385626, 0.209179]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.922526, 0.385626, 0.209179], Editable -> False, + Selectable -> False]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.528488, 0.470624, 0.701351], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.3523253333333333, 0.3137493333333333, + 0.46756733333333333`], FrameTicks -> None, + PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.528488`", ",", "0.470624`", ",", "0.701351`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.528488, 0.470624, 0.701351]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.528488, 0.470624, 0.701351], Editable -> False, + Selectable -> False]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + GrayLevel[0], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> GrayLevel[0.], FrameTicks -> None, + PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"GrayLevel", "[", "0", "]"}], NumberMarks -> + False]], Appearance -> None, BaseStyle -> {}, + BaselinePosition -> Baseline, DefaultBaseStyle -> {}, + ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + GrayLevel[0]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["GrayLevelColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + GrayLevel[0], Editable -> False, Selectable -> False], + ",", + RowBox[{"Dashing", "[", + RowBox[{"{", + RowBox[{"Small", ",", "Small"}], "}"}], "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + GrayLevel[0], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> GrayLevel[0.], FrameTicks -> None, + PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"GrayLevel", "[", "0", "]"}], NumberMarks -> + False]], Appearance -> None, BaseStyle -> {}, + BaselinePosition -> Baseline, DefaultBaseStyle -> {}, + ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + GrayLevel[0]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["GrayLevelColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + GrayLevel[0], Editable -> False, Selectable -> False], + ",", + RowBox[{"Dashing", "[", + RowBox[{"{", + RowBox[{"0", ",", "Small"}], "}"}], "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4, ",", #5}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], ",", + RowBox[{"FontSize", "\[Rule]", "10"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + GrayLevel[0], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> GrayLevel[0.], FrameTicks -> None, + PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"GrayLevel", "[", "0", "]"}], NumberMarks -> + False]], Appearance -> None, BaseStyle -> {}, + BaselinePosition -> Baseline, DefaultBaseStyle -> {}, + ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + GrayLevel[0]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["GrayLevelColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + GrayLevel[0], Editable -> False, Selectable -> False]}], + "}"}]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "\[Kappa]"}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{{3.816503802932601*^9, 3.816503821032585*^9}, + 3.816503895471801*^9, {3.81650433094069*^9, 3.816504361867091*^9}, { + 3.8165043920215607`*^9, 3.816504406571755*^9}, 3.816504732690586*^9, + 3.816505077342475*^9, 3.816505571735682*^9, 3.816505614449535*^9, { + 3.816505656470937*^9, 3.816505666118002*^9}, 3.816505934848763*^9, + 3.8165061458085213`*^9, 3.816597284079317*^9, 3.816597339801849*^9, + 3.816597411306581*^9, 3.8165982784475317`*^9, {3.816676605790825*^9, + 3.8166766295278*^9}, {3.8166766799807787`*^9, 3.8166766968042307`*^9}, + 3.8166779264429283`*^9, 3.816678022950041*^9, {3.824544890243334*^9, + 3.824544917759533*^9}, {3.824801476346506*^9, 3.824801504802503*^9}, + 3.826346090339835*^9, 3.826352688693585*^9}, + CellLabel-> + "Out[191]=",ExpressionUUID->"a338e701-f10e-4c48-96d5-631ab8f23577"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], "]"}], + ",", "complexityPlot"}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.816496418562139*^9, 3.816496434803322*^9}, { + 3.816496475568883*^9, 3.816496490911209*^9}, {3.8165047648083773`*^9, + 3.816504766785898*^9}, {3.81650499579523*^9, 3.816504998794756*^9}, { + 3.826353117216631*^9, 3.826353122544361*^9}}, + CellLabel-> + "In[221]:=",ExpressionUUID->"88df1705-7487-411e-91a4-b967ca95a817"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Figure 3", "Subsection", + CellChangeTimes->{{3.815486204466791*^9, 3.815486206906389*^9}, { + 3.826346480471622*^9, + 3.826346482303645*^9}},ExpressionUUID->"873e30c6-ee52-44ba-ab10-\ +25b79170d6ba"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"dataAmin", "=", + RowBox[{"Join", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Map", "[", + RowBox[{ + RowBox[{"\[Kappa]", "\[Function]", + RowBox[{"ParallelTable", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", + RowBox[{ + RowBox[{"Exp", "[", "loga", "]"}], "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"0", "==", + RowBox[{ + RowBox[{"\[CapitalSigma]", "[", "3", "]"}], "[", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"Exp", "[", "loga", "]"}]}], ")"}], "2"], ",", + "\[Epsilon]", ",", "\[Kappa]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"loga", ",", "0"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "20"}]}], "]"}]}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", "0", ",", "2", ",", + RowBox[{"1", "/", "100"}]}], "}"}]}], "]"}]}], ",", "\[Kappa]s"}], + "]"}], ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Epsilon]", "/.", "\[Epsilon]Ground3"}], ",", "0"}], + "}"}], "}"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", + RowBox[{ + RowBox[{"Exp", "[", "loga", "]"}], "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"0", "==", + RowBox[{ + RowBox[{"\[CapitalSigma]", "[", "3", "]"}], "[", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"Exp", "[", "loga", "]"}]}], ")"}], "2"], ",", + "\[Epsilon]", ",", "1"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"loga", ",", "0"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "20"}]}], "]"}]}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", + RowBox[{ + RowBox[{ + SuperscriptBox["10", + RowBox[{"-", "4"}]], "+", "\[Epsilon]"}], "/.", + "\[Epsilon]Ground3"}], ",", "2", ",", + RowBox[{"1", "/", "100"}]}], "}"}]}], "]"}]}], "]"}], "}"}]}], + "\[IndentingNewLine]", "]"}]}], ";"}]], "Input", + CellChangeTimes->{{3.816493233355715*^9, 3.81649324521803*^9}, { + 3.816493834967662*^9, 3.81649383569214*^9}, {3.816494023289939*^9, + 3.816494047021104*^9}, {3.8164941987885513`*^9, 3.8164942046667833`*^9}, { + 3.816495451236371*^9, 3.816495480797701*^9}, {3.816495706906603*^9, + 3.816495809379611*^9}, {3.8164958996406393`*^9, 3.816495922793696*^9}, { + 3.816496023421665*^9, 3.816496026669324*^9}, {3.816504463609523*^9, + 3.81650448352668*^9}, {3.8165048238978357`*^9, 3.816504848901842*^9}, { + 3.824545367282023*^9, 3.824545469299919*^9}}, + CellLabel->"In[22]:=",ExpressionUUID->"23213cd8-d73b-4c2e-8573-723e0dfd1279"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345879432225*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"b5ab264c-e5c4-49ee-9f5d-a558dba6e680"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634587954257*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"46b7b676-7327-4190-b6db-af8c19ad1688"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345879619526*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"18a2b158-b0df-4493-8b52-f16c1931b98f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345879716621*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"dc093d8e-9578-453a-9d51-6917853da10b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345879787815*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"b6a3f548-341c-4e04-991f-040a6ca53bcc"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345879858025*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"1bfbd4bc-8f36-4748-b6d4-f27bfc933e30"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345879950163*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"cdd7b1fb-3b88-4b01-ade6-18cfadc3753b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880041194*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"78cdcb01-7a41-4326-8b29-6fd000abd757"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458801411963`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"f96215bf-f7cc-4f3d-bf51-c090e4d3694f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880220715*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"5ed95346-9786-4908-be51-33a68772c260"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880304141*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"624bc985-3c7e-428a-8548-6edcdc21401a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880378139*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"d547ca10-9f16-4a1c-bd69-7fa5b6a25e4a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880465434*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"5e6777bc-bde9-49ff-90e9-45716ba74fb6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458805447693`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"c0fc00a1-71ca-4ffc-9015-0551e3d80ab3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880628023*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"b91c70b4-51a2-4e87-8d4d-6ba3f8aa4907"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880633904*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"305b364a-ea7e-457c-b156-9f7266a72085"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458807165403`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"ba1325fb-a070-4e99-a073-93df7cbe604e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880725522*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"0049c5a0-5030-4d9a-8063-17d1b5174641"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880734107*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"740d2588-adc7-4e89-afdc-b13e5f3aa49f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880808773*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"755df0c4-02d6-4e98-b79b-034d7d5b81f7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880925797*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"e77b3e92-b908-4c33-ae9c-13c4961fdc07"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345880997251*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"82426e88-df80-427f-bbe8-b2cbeefbf863"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345881072401*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"e551f98f-fc07-4734-98bf-1bfa97a555a7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345881131517*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"a50e93ef-7ab3-4fc0-a66f-56c663627bdb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458811836147`*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"5e0aff12-3391-47a0-8224-409d4f2b4a01"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345881322146*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"47e6227d-6f30-4d70-88f8-be87b3f3534d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345881377212*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"b25d2a81-dfc4-46e1-a578-eb2aee9f1db8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345881429841*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"5bace815-d93c-4c75-98b1-f57224543926"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345881490279*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"e1c87755-55ba-49fa-a995-02b881bd33bb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345881554147*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"5849197f-e06b-4b2f-9ee2-e43e70f3c9b5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458827416973`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"d36f3cdf-c11d-45a3-86e2-a304e4f5e02f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345882796545*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"6fc1b7f4-1ff8-4bf8-9546-431e892fe708"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345882852096*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"e875c28c-e8d6-4be7-bca8-f37d34c6f197"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458829112043`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"db6ed3a1-7899-4c4b-b813-1cf3a5fc4b9b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458875653057`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"5cf4214d-d36b-4127-8e68-22028667e216"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345890948574*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"adfaf162-a248-427f-8c1f-76b94bfa8cc0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458910251904`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"ede8f108-44c1-4281-b17c-ae4288203020"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345891103443*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"c115e6f6-f394-47bd-94ac-0b86c5368aac"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345891156783*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"38c7491b-41ea-4b85-a13f-d9c3af5203c8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345892927318*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"ce20e33e-9282-48b4-8e94-5c32c563f74d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345892984914*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"26fd7ead-4b4f-4e6c-97a7-b875f70ab8ed"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458930646048`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"fb33003b-08af-4f4b-8e63-a6a4565527c1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345893117043*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"3c3f4fa0-d474-4259-a98c-bb8dd4b0a556"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458938872128`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"91f458bd-cf46-49f4-885e-491288741517"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458940459023`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"f197abfb-d0ef-4a5a-a16f-7f39b621a6bb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345894091887*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"2f20668b-2dd5-4412-bf60-1bf43d737373"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345894155861*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"a54337a5-f757-4b50-9b98-924be7c7f31c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345894207011*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"deb9a9e3-5fc6-4d13-b777-8bb77563de68"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458948837223`*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"bd6082c0-9929-4575-82be-cc166b86d757"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345895440095*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"2df7e6ab-0734-4cb1-99c2-eceba2126f50"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345895495902*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"3191bba6-cffd-4b12-9072-7b1648acf19f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345895545525*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"bbf075d6-ddc1-42e0-859d-c117e1e7f8d3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345895587934*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"2140fd35-235f-4db6-a262-e9b7bccde7c8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345896886058*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"9fc40d74-c6a9-477e-b319-40a70bb799b6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458969623957`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"214e21c6-65fe-49e9-839f-bfbb2b1e74f7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458970125837`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"b3123def-790f-432f-b01e-10b8f3ac99b1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634589706489*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"b3e3b02c-410b-4af0-8632-3df0951e86c9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345897478693*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"2fd21520-09b8-441b-8073-917daf5ea165"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345898586136*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"8f696efe-f35a-4171-b3dd-6d47710d7526"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345898640205*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"b9c68675-9c1d-45ab-9579-4152686ab336"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345898690014*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"2ee5e2de-f616-4613-9a80-bd23e36bfacb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345898737012*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"a6969433-8026-47ba-b91b-78c6f1eb2dc8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345899919788*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"3c180826-077a-4673-aab4-180165864380"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263458999635057`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"a259ce9c-d1f7-49df-8494-97875ee00a92"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634590001798*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"5bdf0c70-3e44-4a78-81c2-8f7d33ba7e41"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345900076825*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"3bef3290-ff57-434f-b304-f286aba102ad"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634590013905*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"cef69e9a-a0e1-4356-a0c2-fa3a00eb04d9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345900988443*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"bd43a493-7fc6-4b92-b394-7fc09dc2594c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345901049855*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"a8c57e1a-e9e0-4aef-84e2-280c44b62757"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345901106474*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"ace0176d-5198-4238-b6c9-fbbcee135c7a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345901155546*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"72c7dae1-9694-4e3b-bb24-6afcdae6e348"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459020288258`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"b8974682-160d-4e9f-b397-c343c3262758"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345903295794*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"c1b444b8-57dd-4504-9cf0-a541c586d68c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459071972637`*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"bd063fdc-d35b-49c4-86b1-a0a56d48d6cb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345907236268*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"b8c9ccfb-f4ac-44dd-8aa5-f3abd27c01fe"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345907271278*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"4a7be221-5e78-455f-9b70-b3c6e835d889"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345907313057*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"906ae12a-2aeb-4477-83df-e51ac66ad482"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459085898037`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"6b8e1eee-f3ef-47c7-88c8-a601ce528dfb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459096589212`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"b3b61c1e-c68a-4214-9665-99ad0e50ec5c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345912312202*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"39ab8912-52ed-446f-bd2d-f5bc058aa52b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345912340567*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"a396ce33-611e-4267-a45b-a8f024c300af"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459123783484`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"6aa5a106-2e0c-44cf-b763-e6cdf80b8d37"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634591240659*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"3461d81e-0ae4-4c04-b79c-123dba86a11c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634591287328*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"1a0bcc5f-fd30-4cbf-b1f9-de44f1c72bb0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345913791287*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"a007b3be-9ded-42dc-8560-b745e80f624f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345913843272*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"bcf30ede-a537-49da-b4a8-abd76e27fcbf"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345913890732*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"c828bfd3-4da1-4d66-8279-2341d7de1cc7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345913936466*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"5b4a88c5-d13c-4a05-a961-6b4964f06b4d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459139906683`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"65c5eb77-ec4f-48d7-95f9-783ca0b7a25d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345914037673*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"851d24e4-b6e4-43c4-8152-4d76241bc688"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345914088592*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"bcb50763-5465-49a9-8fcf-28e8b4f3a818"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459141489983`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"465c0f5a-2fd3-4204-9950-73711cfbc5ac"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459142083273`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"4d162071-34ff-4019-97b7-94f08d661cd9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345914253827*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"663c64d6-af75-41bc-a0d6-e080a00ee4ef"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345914309342*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"1fab5968-ee10-4c76-a2ea-c8eabad9802b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345914365662*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"84c7069d-041e-45e8-93ee-e702ade749aa"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634591456052*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"22f90fcb-3744-4d9c-bfba-deebf5770785"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345914636858*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"89add76f-d787-4f88-8730-4add7d066eb1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345914703702*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"9b09d79b-a73c-49c9-9a64-5a89765b21fa"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345914758502*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"eecaf081-1c46-400a-a081-b3a7666f6ba7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634591502713*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"031f241f-60ca-46e0-9902-11b146f74cbf"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345915131041*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"3cbae34b-789c-4862-8f1a-21faa8689ed3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345915219438*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"c45cab54-658a-4a7a-b6a6-4e95858366d8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634591527219*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"3534b758-18b8-46c8-ae94-8367bead2ce6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459153242083`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"df7dae07-d146-495b-a1ad-ad9c770a44a7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345915390407*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"374cd1ce-f80e-4374-915d-2e013a2e6510"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345915443779*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"798b4b38-56a1-4a0c-9ddf-601ba8e53b16"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345915511551*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"2910d53c-29ee-4240-91f7-03e7e78130f3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459155626507`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"9ed7da4a-9073-48e5-b77e-a68195b26923"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459156151533`*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"ccbc15eb-f5ac-491a-a236-7ccc22a20751"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345915621108*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"1555ab20-83eb-4559-b6a1-e6bd248b0da5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345915662613*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"00b4c406-8a32-4c30-9c5a-89a6c2b401b3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459157140217`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"40f10f3e-7d39-4b7d-b1b8-413d9e59a387"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345915827693*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"2cd8bc44-855d-46b0-984e-7aa298be6006"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459159108353`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"9bdb1641-9b20-483a-8195-43709b435ed5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345915959009*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"ad76bdb3-55a2-4f6f-84bf-432840ba7a89"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459166791687`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"248eacd0-e2fc-432f-b62b-e01735f200f7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345920373268*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"44090342-05de-4aab-927d-d0777d913084"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345923204002*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"457a5ce9-40d3-441f-a8d8-bb989cd67141"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345923257399*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"eb8bb6c7-5361-4d7a-9370-4c5b5384fef1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459233095503`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"9380dae2-5d36-47c7-b566-2aed9d342dc2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459233580523`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"b14f919c-1811-4c58-8fe3-a84d554947f1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345923810235*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"b30b165a-684e-45eb-926b-49a405f8ed11"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345923903273*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"d8d9e562-182e-4183-871d-32fcfa727224"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345923962323*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"35aa5d0b-ec02-45d7-8dec-14ab12d505ec"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345924003993*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"a2339664-f192-43a1-9338-220157fd5373"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345925520639*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"bb1164e2-a5b0-4198-b12e-42fa61c20581"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345925577709*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"a20b4610-421c-4784-9497-d670353aeb70"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459256368427`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"ea708535-4351-45b0-8ee2-4f1606bdf4b1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345925680443*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"00c9ecaa-7041-41a3-9687-e6fd0a931704"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459293631067`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"2c615eba-b45f-41ce-83ac-24ae52222310"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345929448983*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"6d8e8cfd-e2a9-416a-a62f-4a9c4adf1fc8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345929528796*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"9572e8a9-e919-4f7f-9b04-6c9ac32ae106"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345929586235*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"9fedf00c-b1a9-4738-8748-74e0cd371535"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345929728773*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"f37b5f45-d49b-4506-b07a-f17218c094eb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634593035001*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"0b7af16b-9fd1-49d9-8e81-548086a90bba"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459304298763`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"0f4f7b5e-6c73-495b-a136-4798046c47b2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634593052252*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"70dfd261-ce3e-4efa-af73-30f567f28804"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345930593463*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"e6966dbe-374f-4255-904a-5464338dc520"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345931543901*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"abca962b-716a-44b0-b96d-692463bf3bc9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345931606257*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"c9f8db85-d86a-4953-ad59-82cf8e63e7c5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345931664029*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"6830b319-55cb-49d8-80bd-01d6edf6627b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345931719219*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"d230a909-9394-466a-ad1e-af9ff5728236"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345935603109*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"ab190145-b087-4b53-a36c-24f9cd30e4d1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345935679743*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"580cb3bc-89b6-4f9a-b44c-e3488d17f53b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345935690572*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"3d72b13e-c348-4080-a7a1-21b8e784a6d9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345935751278*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"2126164d-fa84-46cc-b08f-c8984675ec2f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459358196383`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"ce4b5120-4327-400b-8e2c-dbc931416fc7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345937847211*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"3f38d658-68cd-43d9-8d06-003545b08f57"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345937920569*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"212f5576-f78a-4339-b37b-ff413cdba6af"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345937992244*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"3d6e6e22-d61c-446c-b79c-39d0d8cb28a0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345938058167*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"e52a78a5-d8d7-4f2b-9dab-00d809d46fca"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345939109874*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"cc873a64-8dfe-44d4-86d1-51226f57cf63"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345940895029*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"70b7cda6-1df4-454d-a972-a6a139828a79"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345940941058*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"44d8d221-e202-40fb-a16b-e2dc73c9074f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459409929447`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"1a63e52f-442a-4cf9-aa45-077690a03020"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459410455427`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"de7807dc-2082-4adc-94bf-20069b07d345"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459433207397`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"9989ecc8-babd-434e-aea9-b2d8ae45b51e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345943326366*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"48f4c901-a994-46d4-b441-26e4311b8fe5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345943397252*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"fa228080-3792-46cb-9ebc-070d7de9dc07"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345943455556*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"103c53a4-92a2-499a-be59-5c1452dfe218"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459435197067`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"f802d54c-c860-4f12-967a-f472d49db87a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459435873013`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"7c578ad3-29f3-43d7-a1ad-94a9c820dc7a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345943669643*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"e33ef7c1-ba04-4114-8476-91e863faa877"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345943742074*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"e578fc52-a5da-47d5-8703-e7ca06908209"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459438087893`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"a63db450-e79c-4848-a16d-d5145e9def2f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634594387201*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"ff547d16-4e3f-492c-a37c-f5444c14aaa9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459439359217`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"7b7d185d-95fd-4cd1-bdd7-ae12ef77b978"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345944014896*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"8b9c4fb0-4eb7-4d1a-aff2-d8c75ee05a92"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345944091227*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"a6121b36-0f1c-4e2b-89ab-714e62a629c9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345944153822*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"6849bd49-f782-4337-8c4c-b95ddd4fb61f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345944213292*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"69b45c83-3055-4dd5-9505-8e0d650adf96"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345944278246*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"e7464d65-5829-4ce9-a7d4-5497a667e6e0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345944349566*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"deb367ad-9e96-42c9-ab52-1295becbcc77"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345944418672*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"def304b3-8d3c-4774-8f5c-f2e30c3e31a2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459444889097`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"6076b058-3c40-4485-b2d0-64680741d4a9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345944553425*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"7615c5d8-6a70-4e7d-bc41-37ee9bdad8fe"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459446342077`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"3864b58c-65e7-43a3-9b0d-31de3c78cc6b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634594470448*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"d88a79f9-cf97-49ca-badf-52fdc2e135da"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345944770266*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"ceefb892-55f1-4fd6-bfac-3bf1c012cae2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459448500757`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"855a771e-db96-4155-8e2e-917497ee6769"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345945373769*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"74979533-00ec-4420-9f01-d8f4e4919cd5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459454446087`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"35e0f592-d253-42b6-8cd9-b4d83357c396"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459455041113`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"81ba5f42-b0ca-4379-825b-9180bb1d9d8f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459455818377`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"082b4593-3455-4ffb-93c5-c3cdd33c544a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "bddir"}], "MessageName"], " ", ":", + " ", "\<\"The search direction \\!\\(\\*RowBox[{\\\"{\\\", \ +\\\"5.2220915145539229651`20.*^-15\\\", \\\"}\\\"}]\\) is not a descent \ +direction for the merit function. The step will be taken without the line \ +search.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345946295125*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"893436cb-9a63-42dc-a787-6213fb608882"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345952157078*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"4947542e-f25b-49a2-8a13-81de2d4a507d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345952236478*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"a43f3a0b-ab5f-4f34-ab5b-bd57de1d13c3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345952305726*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"3dba5024-dc04-4d6e-a65d-507cf3cdad28"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345952366354*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"05f72cb6-e11a-4277-8d8a-54cbd5614507"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345952423294*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"7d44bb60-bd68-45a2-bc8c-65b295192230"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459524808826`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"c0cec7f2-6f5d-425d-9406-089375c93241"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345952559156*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"5077cf52-4cc7-4c45-bd2e-734cb49dd969"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634595263699*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"d7baa5d2-a469-4c5b-9c54-0eea6571f919"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459538881693`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"c8d362d7-c462-4391-8a6b-d56dd921b07d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459539661694`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"7aaa464b-dcea-41f9-92c7-3f0f8d3bbc92"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345954036077*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"9d337a05-cfda-417e-a2f1-22ef594210d1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345954101797*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"9b07c716-6e96-477e-979e-de518c44fd41"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345957042115*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"437e294d-3922-4948-884f-a469667b9c05"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345957106147*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"d7a50c78-a75e-4754-ae1c-5a25b30b743e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345957162573*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"7f66f3f6-42f5-4c81-9f26-2fbd67c328e8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345957228156*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"22277cce-bcff-4bc2-bcfe-4bf980cfd802"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345959949389*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"98f19bc9-bc5f-4c2d-996c-46091fd379a3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634596003832*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"6df65c42-265d-4a1f-962f-50bbcd3248c9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459601036167`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"d92abf87-8cd3-46d2-a711-ed59426b7d7c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459601787863`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"6b3bba6d-af29-4235-870e-7dfbef2ecd43"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634596024721*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"13e30252-a9ef-4694-8f0f-4019250da29c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345960327958*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"3dfeaef7-339d-4eb3-9b11-d3dda3c930f0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345960377021*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"00bc0b46-d78f-4cab-b77f-32e9b2f19f2e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459604397717`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"c6ce2613-627c-4849-b1b2-550c82f53249"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "nlnum"}], "MessageName"], " ", ":", + " ", "\<\"The function value \\!\\(\\*RowBox[{\\\"{\\\", \\\"Indeterminate\ +\\\", \\\"}\\\"}]\\) is not a list of numbers with dimensions \ +\\!\\(\\*RowBox[{\\\"{\\\", \\\"1\\\", \\\"}\\\"}]\\) at \ +\\!\\(\\*RowBox[{\\\"{\\\", \\\"loga\\\", \\\"}\\\"}]\\) = \ +\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"-\\\", \\\"38.12164785733958`\\\"}], \ +\\\"}\\\"}]\\).\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345960507634*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"9379d9c0-e903-478f-accc-b481d7fee271"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459653966303`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"5222bf17-0e90-430d-821a-dbf4a284d4fb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345965462831*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"0f22eee2-6947-4691-a2eb-95cc12c12b68"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459655344877`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"9cdca55e-5822-47ba-a959-d8fd078a1ea0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345965601069*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"56fe29e1-9a43-4b53-b24f-07068dcefa89"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459656681843`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"9adcdc53-3669-49d8-8705-6a24f41ab51f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345966264514*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"ba9370ee-c5ca-4c51-9e97-d276eebee7f7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345967860849*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"47b83af7-dab2-41ee-9dde-1af1fbbf8882"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459679463577`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"51e5618e-093b-4346-9f84-d5d526064fe4"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459680231256`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"596a90f5-2538-4be4-a533-4e4a62c611fb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345968098921*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"182cdc57-f0ac-4977-8d8e-ea02b1ae83a2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345969002721*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"d70070a5-2c1d-4670-8292-67916c02f8b6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345969071035*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"801533e9-9558-415a-8db4-5349b89b50ae"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345969134262*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"d807abe5-bb14-4c6f-870a-b1aeb48347e0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345969198677*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"69f9f278-6645-48a2-829c-19fe4ebfc578"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459701388073`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"4d6d8271-b66a-4ed7-bbfc-7e9e7a15564c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345970209096*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"44b091e5-0e8c-4c03-99d3-e8fb14fb987b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345970276791*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"135cd65a-fb66-4d62-affb-6df93d3a45ff"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634597034975*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"4702768e-9a7c-46ab-b2a5-bb93126935a7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345970439312*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"f49879dd-a092-4e0e-a7d6-a2a028fc3b03"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345983018442*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"7ee37be0-db19-4eae-9e1d-5d254ffb28fa"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345985346136*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"3f693613-47ef-4e2f-a685-74475e674919"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345985416479*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"75ae9353-f245-4ef0-8ffc-1518f7ed223c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345985484437*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"73e9c7b0-675f-4557-9d80-300f51d02ae5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459855653152`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"cc11b446-57f9-4495-ae5c-9a8def358e36"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459858273153`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"f826c32b-795f-4ba3-9362-1c3a7afb62c8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345985893723*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"c0378200-dc93-4828-86b2-e48745b35f59"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345985973804*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"d65fa205-8216-4dea-a13d-e3cac2082912"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345986034309*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"471b4661-3240-44ac-8449-619a85c6c2bb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345987997908*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"fda59fcd-3cdd-40c4-967c-8a2d4f2eb5a9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459880898333`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"fa153bb3-6a9b-45cc-be7b-40865a7d8674"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459881702833`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"4d630a65-bdbc-443f-a578-9779ffcec9e1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345988247558*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"a461856c-ceb8-4364-9969-200ae74f75c4"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345989521221*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"aabda5dc-d9ad-43fa-8e34-d8287399df15"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345989596356*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"d7fd4ed2-57ae-40ec-ba71-941d6fe5a55a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459896635036`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"9bfc0ae6-4529-410f-aece-1d1e0a9371d1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345989750352*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"4e66aedc-297f-44fd-978a-6dda40646c69"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459905766973`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"0a59f16b-4c98-4c7a-970f-2c2a110c6171"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345991756518*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"a2951630-a78b-411e-92b1-0b1b0f2459b2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345991823653*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"25672ae0-345b-4a7e-9773-631ec0d35d1d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634599188336*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"1e7f37c7-6d18-4a5d-afc2-e05139b4ef78"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345993075211*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"5482ce83-48e9-4edb-bef4-ec77f7825b8e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345997205296*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"25220d62-efc4-45b5-addf-54675c7cd245"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345997273622*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"e5e2aebd-7377-4996-8fb0-92069ef6b284"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345997333962*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"ce177ce7-32e1-4d94-a4f0-7ed702cac54d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345997402977*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"f6985399-d23a-4a6c-bcc8-f4b453d96c9b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459976212063`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"20ba3386-66db-4cba-b343-dbc490c78ee1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345997695841*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"32cafcb9-3dc9-4842-bfea-003100a10307"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345997755548*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"7789d30a-e590-471a-b4b0-bae9faf5adc3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345997809948*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"bad98833-2a19-4419-ad20-2fa5d0a5987d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345998643755*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"878546f2-b2de-48c1-970a-61e03c5b5db1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345998722122*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"7dd9bc04-3cbb-46d4-85c2-c92efbf5b6c9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345998785953*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"f7bb5154-f8a7-4bc4-873f-1536c90c7a52"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345998884313*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"fa8dee13-01fe-42f3-a75c-795db9a89f53"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345999484551*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"d672d830-3500-4fae-a77b-eabf0c0cd32a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345999559577*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"4ed0bac6-abbe-48cb-9913-7772d42c77ca"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826345999632862*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"e98dbab4-f683-4537-a9a6-c9bfffff57b9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263459996886253`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"9a321f4f-47b6-4728-9f43-7023c29d89c5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "nlnum"}], "MessageName"], " ", ":", + " ", "\<\"The function value \\!\\(\\*RowBox[{\\\"{\\\", \\\"Indeterminate\ +\\\", \\\"}\\\"}]\\) is not a list of numbers with dimensions \ +\\!\\(\\*RowBox[{\\\"{\\\", \\\"1\\\", \\\"}\\\"}]\\) at \ +\\!\\(\\*RowBox[{\\\"{\\\", \\\"loga\\\", \\\"}\\\"}]\\) = \ +\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"-\\\", \\\"44.955469689020774`\\\"}], \ +\\\"}\\\"}]\\).\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346001442999*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"b15ab9f4-88cf-4e17-96df-005c555d529a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346002789283*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"7ef5d1cc-fb20-4658-a4c3-30451be31dcc"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "nlnum"}], "MessageName"], " ", ":", + " ", "\<\"The function value \\!\\(\\*RowBox[{\\\"{\\\", \\\"Indeterminate\ +\\\", \\\"}\\\"}]\\) is not a list of numbers with dimensions \ +\\!\\(\\*RowBox[{\\\"{\\\", \\\"1\\\", \\\"}\\\"}]\\) at \ +\\!\\(\\*RowBox[{\\\"{\\\", \\\"loga\\\", \\\"}\\\"}]\\) = \ +\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"-\\\", \\\"44.75885863329767`\\\"}], \ +\\\"}\\\"}]\\).\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263460028664703`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"8a289038-693f-40bc-9d93-5968bfa844f7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346002941616*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"423edbc8-4a77-46f7-b154-6e4c51687dec"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346003005175*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"4330450d-8323-4693-9c54-6da559330158"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634600307001*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"80b7a4e2-8c9f-4043-9c7b-cd60ab4766cd"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346004907888*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"669e39d6-a49b-4cd7-a24a-2781114d4c2d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346004979617*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"7767ce43-e555-4a47-8f63-edb5204ab341"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346005050479*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"49e28d51-08f7-4e88-9b30-ebb7100b5f31"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346005121667*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"8bbb7e47-060d-497b-a5f5-a7b4cd6ef8f3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346006745409*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"a96e94bc-238d-44d5-b57b-e683e4650676"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634600707195*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"93cdf34b-3b95-4ec8-bedb-4d03687ad245"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346007140594*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"f6174739-672c-4437-b3ce-9a1194bd6b0f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346007192149*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"466b0b20-37a9-429e-bacf-9186051a6780"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263460072692003`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"d1d95e1f-a32c-4a96-a627-4bc6d5ec6af1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346007328657*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"8eff9354-ff20-4a6c-aac1-2d07b07dbe7b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263460077040443`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"56dcf89e-9be3-4e78-afc1-d5986dd47d89"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346008718191*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"15522e87-ddeb-4f8c-b2bd-fa79d4f99138"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346008779728*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"71212d19-d627-4371-8a0c-bf70e7041f17"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263460088409023`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"1ba3b34d-a7c2-4e45-8613-7f2a34c6bdfc"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346008895782*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"4eae2ec9-3ee3-4604-92c2-71b1f96e12b1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263460089841623`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"8ad6f084-0ede-4961-9b1e-e706e1ab9f0e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346010551669*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"0158a44e-d19c-4643-a0bb-3bff729c05e6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263460112572107`*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"0d048c83-f033-4ff1-846b-787882ed59cc"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346011321512*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"44915078-dd14-45b3-8349-3844348a8f6c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346011389545*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"7453f261-9b90-4ab0-bf95-a259171a346b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346011449922*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"3e1814cd-7653-4ce4-b5a9-663a03c1946b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346015259963*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"0d3931bf-c95f-41b9-93f6-cb0aaf5ae2ad"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346015297175*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"7a789c08-173c-49b2-ac9a-82c00c431e4b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263460153509912`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"72d4e718-4b70-49b7-98f4-fd82430e3024"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263460153997707`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"5b119705-426f-4d74-9ba1-d28deb98131c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346020022786*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"67346fc7-5f87-49b3-ae82-f10f1745c5b8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346022914558*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"4df11233-88b4-422f-9e18-815fbad3568c"], + +Cell[BoxData[ + TemplateBox[{ + "FindRoot", "lstol", + "\"The line search decreased the step size to within tolerance specified \ +by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ +decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"", 2, 22, 1, 31538697861017634714, "Local"}, + "MessageTemplate"]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82480156633608*^9, 3.826346025956451*^9}, + CellLabel-> + "During evaluation of \ +In[22]:=",ExpressionUUID->"9ddca959-edeb-486e-9534-ff0c53b23fff"], + +Cell[BoxData[ + TemplateBox[{ + "NIntegrate", "slwcon", + "\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"", 2, 22, 2, 31538697861017634714, + "Local"}, + "MessageTemplate"]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82480156633608*^9, 3.826346026324939*^9}, + CellLabel-> + "During evaluation of \ +In[22]:=",ExpressionUUID->"38496d54-553d-449a-b72b-3974b438a3c2"], + +Cell[BoxData[ + TemplateBox[{ + "NIntegrate", "slwcon", + "\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"", 2, 22, 3, 31538697861017634714, + "Local"}, + "MessageTemplate"]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82480156633608*^9, 3.826346026360079*^9}, + CellLabel-> + "During evaluation of \ +In[22]:=",ExpressionUUID->"6903bb20-c815-4b1f-844e-434990972d50"], + +Cell[BoxData[ + TemplateBox[{ + "NIntegrate", "slwcon", + "\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"", 2, 22, 4, 31538697861017634714, + "Local"}, + "MessageTemplate"]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82480156633608*^9, 3.826346026394959*^9}, + CellLabel-> + "During evaluation of \ +In[22]:=",ExpressionUUID->"a13df24e-6ea5-440a-bbdb-643640920153"], + +Cell[BoxData[ + TemplateBox[{ + "General", "stop", + "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"", 2, 22, 5, 31538697861017634714, "Local"}, + "MessageTemplate"]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82480156633608*^9, 3.826346026398837*^9}, + CellLabel-> + "During evaluation of \ +In[22]:=",ExpressionUUID->"b80c939b-4a38-44c9-a74e-e310bcc37bde"], + +Cell[BoxData[ + TemplateBox[{ + "FindRoot", "lstol", + "\"The line search decreased the step size to within tolerance specified \ +by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ +decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"", 2, 22, 6, 31538697861017634714, "Local"}, + "MessageTemplate"]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82480156633608*^9, 3.826346027893592*^9}, + CellLabel-> + "During evaluation of \ +In[22]:=",ExpressionUUID->"9bc3e0ab-96bc-47c9-b2d4-e46ad33705e8"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"desertPlot", "=", + RowBox[{"ListLogPlot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"Reverse", "[", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "#1"}], ",", "#2"}], "}"}], "&"}], "@@@", "#"}], + "]"}], ",", "#"}], "]"}], "&"}], "/@", "dataAmin"}], "/.", " ", + RowBox[{"0", "\[Rule]", + SuperscriptBox["10", + RowBox[{"-", "8"}]]}]}], ",", "\[IndentingNewLine]", + RowBox[{"Joined", "\[Rule]", "True"}], ",", + RowBox[{"AxesLabel", "\[Rule]", + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", + RowBox[{"R", "-", "1"}]}], "}"}]}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"7", " ", + SuperscriptBox["10", + RowBox[{"-", "4"}]]}], ",", "4"}], "}"}]}], ",", + RowBox[{"ImageSize", "\[Rule]", "246"}], " ", ",", + RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", + RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "]"}]}], ",", + RowBox[{"TicksStyle", "->", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", + RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "]"}]}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", "0", "}"}], ",", + RowBox[{"N", "[", + RowBox[{"Rest", "[", "\[Kappa]s", "]"}], "]"}], ",", + RowBox[{"{", "1", "}"}]}], "]"}], ",", + RowBox[{"LegendLabel", "\[Rule]", + RowBox[{"Placed", "[", + RowBox[{"\[Kappa]", ",", "Top"}], "]"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", "Black", + ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "}"}]}]}], "]"}]}], ",", + RowBox[{"Epilog", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Thickness", "[", "0.006", "]"}], ",", "Dotted", ",", + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Epsilon]", "/.", "\[Epsilon]Ground3"}], ",", + RowBox[{"-", "1000"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Epsilon]", "/.", "\[Epsilon]Ground3"}], ",", "10"}], + "}"}]}], "}"}], "]"}], ",", + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Epsilon]"}], "/.", "\[Epsilon]Ground3"}], ",", + RowBox[{"-", "1000"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Epsilon]"}], "/.", "\[Epsilon]Ground3"}], ",", + "10"}], "}"}]}], "}"}], "]"}]}], "}"}]}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.816492020347604*^9, 3.816492203388406*^9}, { + 3.816492237985483*^9, 3.81649223817749*^9}, {3.816492285808477*^9, + 3.8164923507427473`*^9}, {3.8164924878764963`*^9, + 3.8164924882253847`*^9}, {3.816492530001341*^9, 3.816492530447646*^9}, { + 3.816492600987565*^9, 3.816492622563839*^9}, {3.816492662206044*^9, + 3.816492702112059*^9}, {3.8164927491827307`*^9, 3.816492797739805*^9}, { + 3.8164929259218397`*^9, 3.816492929961719*^9}, {3.816493125116156*^9, + 3.816493225563363*^9}, {3.816495827722281*^9, 3.81649586292367*^9}, { + 3.8164962221336727`*^9, 3.816496293480371*^9}, {3.816496328138741*^9, + 3.816496397125225*^9}, {3.816496437368909*^9, 3.816496444807905*^9}, { + 3.8164965260133963`*^9, 3.816496529771778*^9}, {3.8164965612498903`*^9, + 3.816496577902356*^9}, {3.816496819910501*^9, 3.816496838810224*^9}, { + 3.816496935318945*^9, 3.8164969402367373`*^9}, {3.8165045249591084`*^9, + 3.8165045553324327`*^9}, {3.8165049162185507`*^9, 3.816504940993766*^9}, { + 3.81650510126588*^9, 3.816505128331159*^9}, {3.816505891583239*^9, + 3.816505912127801*^9}, {3.8165972955848837`*^9, 3.8165973015129232`*^9}, { + 3.8165973339294863`*^9, 3.816597334025374*^9}, {3.816597368850658*^9, + 3.816597405818657*^9}, {3.816597599654532*^9, 3.81659766735927*^9}, { + 3.816597697536249*^9, 3.816597709071999*^9}, {3.816598238457905*^9, + 3.816598273394125*^9}, {3.8166763240779*^9, 3.816676342630211*^9}, { + 3.816676389727065*^9, 3.816676404351549*^9}, {3.816676481569744*^9, + 3.816676504681446*^9}, {3.816676653500823*^9, 3.816676665964252*^9}, { + 3.816676709101452*^9, 3.8166767116051893`*^9}, {3.816677886379428*^9, + 3.81667789531502*^9}, {3.816677962260331*^9, 3.8166779624758244`*^9}, { + 3.824545870803899*^9, 3.824545951604662*^9}, {3.8245460323668013`*^9, + 3.824546032998204*^9}, {3.8245460979846992`*^9, 3.824546101551199*^9}, + 3.824546198778061*^9, {3.8245463066754313`*^9, 3.824546365244224*^9}, { + 3.824546395444992*^9, 3.824546514302774*^9}, 3.8248016507442427`*^9, { + 3.826352717273942*^9, 3.826352725881825*^9}}, + CellLabel-> + "In[193]:=",ExpressionUUID->"0ff61e9a-ae7f-4fb9-a586-53259ceaa31d"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{}, {{{}, {}, { + Hue[0.67, 0.6, 0.6], + Directive[ + PointSize[0.004583333333333334], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJxtmXtUlNUaxhExU7ASFe94CRUMXWomYenrpY4X6pSpqclRLPMkmpZxIsVM +yUteUqM8SmXeNTEslAwofQcU1A6jEgoqiAz3OzMMw13m+M1+Xr911jrzj2sv +h2++/T57v/t5fnvA2yvfeNfZyckpoo2Tk/YvPobgpyJ+nbi4hjKPfDCuY6ad +P2y/0NNjWg2dnmJa0/W0na+vijn++7Aa2lQ+I85zk52tnx8+MNK9hgJ3Jdm8 +A+08qPtBr4/rLPSs42PnoHNLOm2/a6GOjgfaeVKbrJkrLlhIe9oUUytntc6f +1++whR4+7OETW3ndhaj1+zdZyPG4Xa18LPxEn9L3LLTE8Wnla1/PdrYHWGic +44GtfNgtLPr+cAt1dbxgKy+d7jF1W2cLVWivV/6Avf/YdS3faqaL2uOSHvCf +4W3aDsww07eR2ucBF4/5KXBMnJk+dDzwAS8MWbG3/bdmmup4wQf86XfGoV+F +mamfY8IPuK7jrJmVgWaq0x5na2GPMVvefWy8mYyp2qeF1/aaXZrnaaajWvmO +tHC6y8xFzvZqCnO8YAu/1dP+bwNX0xuOCbdw5tauQ+yfVZOPo4AtPGeI6dLv +VE1Kjhb+qsfF12pbq6BHM18+OD3y+Pkq6NHMAxfXLb4RVgU9mjnz/YO+K/2r +oEczX4mZ035DXSX0aOagvukBbc9WQo9mNppn77KuqIQeTfxbyvvtXh1aCT2a +OOe2+ecuhRXQo4n3Gy+MH3+gAno08YUc24LUuRXQo4nHhx+4ntC5Ano0caj9 +6R/qrpZDj0bukNgQFr2hHHo0cq+oSWdOPV8OPRp5R/DqLq1VZdCjkf3u9N19 +6GgZ9Ghk2wf9EiPmlUGPRn7zzE/e1zqVQY8Gdj3oMur1xFLo0cAhexNf6BZS +Cj0aeF23yW49B5dCjwa+PLrj13MzS6BHA0c2jpqYtqUEejRw7J7xmZ/4lUCP +Bv69NG3djKJi6FHPMRy0aNY3xdCjnkNf92lYO7EYetSzb7X7qpTKIuhRzzPa +ffSUb2QR9KjnGsO4hB8nF0GPep6+rJ+bX2Uh9Kjj0GsHItL2FEKPOn6yqajr +knGF0KOO0wwdrF0LCqBHHUftHxofs7UAetRx2MCfKicNL4AedWwf+96zSWn5 +0MPG+f0MP3iH5EMPG+8q7ThyZbd86GHj8xE7V+7+NQ962HjJnNgpn83Kgx42 +rt3eGuBfY4IeNn7lVOq7sTtN0KOWI34Z2FDsY4IetfzR5g+X/XkxF3rU8rkm +p7hZgbnQo5ZNrkvX24ruQ49afjs61Psz9/vQo5aHOQ/aWzg2B3rU8vCmqdZ5 +Qfegh5Uf+E3bezY8G3pYeUjSFo+MQ1nQw8qRxr9nnTh/F3pYuWlpqbFzxh3o +YeUFiV7ZXcpvQw8rJ221GAe1ZEKPGu49Yr3Hvg6Z0KOGebVt7KAuGdCjhj0q +RwyL6nELetSw89ll39t73oQeNfyvmo83OnVPhx41nNmyOODzJ/+CHhZOHP2P +HwPbpkEPCxf7Z5ftLLgOPSxsOzJrzvE4I/SwcEp8Zkjf8P9ADwtf/eTM5OgJ +V6GHhW/E+i7LsKZADzPPWb69f+fvLkEPM2+OuNU777kk6GHmd+K6+AdvYehh +5vO3JgRnb0mAHmbus3vdU/HLfoUeZs4+VGHcN/IX6GHmUdkj7hp/Pob6V3P0 +wfvNg1ftQb2r+Vxh/yFRQa+zqm81f2K8tv97932s6lnFFVFfvuWWc4JV/arY +J9m0tML5DKt6VfFIU49vtkyOY1WfSo707JCy8ewFVvWoZO+NXhPanEpiNf9K +rv98XO7y7ims5lvB5tSekW6HrrKaXwWf3lS9aOR0I6v5VPCcnuGPnd92g9V6 +Kue9azza1YX/xWr9lPPJRf7bw3bdZLVeypk4uvfsMxms1kcZDzC4vXez8jar +9VDGod8Odb/8UhYr/cvYea8hYW3CPVZ6l7JPdLfwDT65rPQt5dQt87tGbTWx +0rOUPRM67stxymelXwmH9rvT8vTXBaz0KmG/Fb1fvPNyESt9StgYO3X9zP4l +rPQo4T/i3hoxYFgZKz2Kec/bExatWlvBSo9iXrPD5+Rcn2roUcxf5LrZfUdb +oEcRLyjNjnlmoRV6FLFtX8Ca+7n10KOIZx0uOvns884GpUchB/0t3eTp19ag +9Cjk5nHxvVdcb2tQehRyhlefMSmjXQxKjwLuPDh4uc9qF4PSo4BX7Yj6dOAx +F4PSo4DrLZuvLzzvYlB65PO0zka/I5dcDEqPfA45PS3k2MOx0iOfT+VVLdDG +So88tp65FaSNlR55PCe5vk4bKz3yuH/46O3aWOlhYo/LXiO0sdLDxIt7PT5J +Gys9TPxm2taZ2ljpkct9B098RhsrPXJ5duw9V22s9MjlwMaWV7Wx0iOXU7vk +dNfGqv73efm2k1O0sap3DqcHLeyvjVV9czjh0MRe2ljV8x77ugf4a2NVv2we +XhDdQxuremVzeMwJx9+r+mSx1+Ce7fV63OUS7/Z99Pnf5eC+eZ30+d7hZKdd +3fX53eZ/3vbcpM/nNs849/4QbazWUyZvujkgQBur9ZPJzwSFTNfGar1ksPVi +lps2VuvjFlfNf83xvmo93GL/1h3ttLHS/yYnfJHopY3V49I5PjTvcV3fdJ4d +nOyp6/kXuy+3jTr+SL80TmXXJbpeaew97+luuj43ePmVF3vretxgk987HfT6 +X+Oc+D599Hob+WBFaTe9vqn8Su6E7no9/+Rj43Z76vV72FeK5rrp9brCo5P2 +PKHX5zInJds76PVI5uM3Urro87/E25akPqfP9yInJqQM09dnIse9cNZXn4+B +B4568Un9/S887F8JjUcfve8fPGVNpav+fvEcljzfVX+f39h5w9DH9d+P5R0v +/dhJ/70YfmJ8uav+/NPsfmp369FHzzvJ9xbn9dX//ihXbdjspn//B44d3DpK +//9v+LuLX7ro44382NIrjvqM3TEib+fql8cf3+Pa9v+N8X2S7+N5JM/D79H/ +/t5RkvfB+5K8L+ZDMh/Ml2S+qAdJPVAvknqhniT1RL1J6g09SPSAXiR6QU8S +PaE3id5YDyTrAeuFZL1gPZGsJ6w3kvWG9UiyHrFeSdYr1jPJesZ6J1nv2A8k ++wH7hWS/YD+R7CfsN5L9hv1Ish+xX0n2K/YzyX7GfifZ7+gHJP0A/YKkX6Cf +kPQT9BuSfoN+RNKP0K9I+hX6GUk/Q78j6XfohyT9EP2SpF+in5L0U/Rbkn6L +fkzSj9GvSfo1+jlJP0e/J+n3OA9IzgOcFyTnBc4TkvME5w3JeYPziOQ8wnlF +cl7hPCM5z3DekZx3OA9JzkOclyTnJc5TkvMU5y3JeYvzmOQ8xnlNcl7jPCc5 +z3Hek5z38AMkfgB+gcQvwE+Q+An4DRK/AT9C4kfgV0j8CvwMiZ+B3yHxO/BD +JH4IfonEL8FPkfgp+C0SvwU/RuLH4NdI/Br8HImfg98j8XvwgyR+EH6RxC/C +T5L4SfhNEr8JP0riR+FXSfwq/CyJn4XfJfG78MMkfhh+mcQvw0+T+Gn4bRK/ +DT9O4sfh10n8Ovw8iZ+H3yfx+8gDJHkAeYEkLyBPkOQJ5A2SvIE8QpJHkFdI +8gryDEmeQd4hyTvIQyR5CHmJJC8hT5HkKeQtkryFPEaSx5DXSPIa8hxJnkPe +I8l7yIMkeRB5kSQvIk+S5EnkTZK8iTxKkkeRV0nyKvIsSZ5F3iXJu8jDJHkY +eZkkLyNPk+Rp5G2SvI08TpLHkddJ8jryPEmeR94nyfvgASQ8ALyAhBeAJ5Dw +BPAGEt4AHkHCI8ArSHgFeAYJzwDvIOEd4CEkPAS8hISXgKeQ8BTwFhLeAh5D +wmPAa0h4DXgOCc8B7yHhPeBBJDwIvIiEF4EnkfAk8CYS3gQeRcKjwKtIeBV4 +FgnPAu8i4V3gYSQ8DLyMhJeBp5HwNPA2Et4GHkfC48DrSHgdeB4JzwPvI+F9 +4IEkPBC8kIQXgieS8ETwRhLeCB5JwiPBK0l4JXgmCc8E7yThneChJDwUvJSE +l4KnkvBU8FYS3goeS8JjwWtJeC14LgnPBe8l4b3gwSQ8GLyYhBeDJ5PwZPBm +Et4MHk3Co8GrSXg1eDYJzwbvJuHd4OEkPBy8nISXg6eT8HTwdhLeDh5PwuPB +60l4PXg+Cc8H7yfh/bgPILkPwH0ByX0B7hNI7hNw30By34D7CJL7CNxXkNxX +4D6D5D4D9x0k9x24D5kg9yH/BZygIXI= + "]]}, { + Hue[0.9060679774997897, 0.6, 0.6], + Directive[ + PointSize[0.004583333333333334], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJxtmXlUlWUexwnLwmNmqKFWTpu5cFxScwHlK6SgiJWaYWFpctRpisx0rDSl +IbfSQLjujRXqkTFnzKXEpfyhKIbLoBgCKgZcVtku+y7Dve/3d9+Zc+b+w3nP +vbzv+/y+z/P8vt/P8/S8RdPnu7q4uMTc5+Ji/8tPQkjFs68VZNiQvufDcZ3S +2+TJY17REcdtOBiQs7z7wTa5lewSlrrNhjUl0473WdMmfTqv6Jy5zIbZUWdr ++89uk5jd96/dNNOG4Y5Pm8Su65PcMNyGTo4btsn8JZs7dHW3wX63gJx7EnKk +04L9f1Sg/Wbtd7wnW5v2TfpqZwUct4u6J5+/cTbl1GsVWOD43JORaeGY2KUC +4xw3vCdTMl3/1ONCObo7XvCe7DqePGZweDlK7a9X0io7o6JPbhxZjkT77c62 +iv83lcs8y8qwc4f90yp16au3dNxThsWOG7ZK4tZxXQfMKsMkxwu2SvzYLdFz +OpfhT44Bt0rs+KOpqVKKOvvtalvkh47zvD/8qBRXLts/LRLwS5fCYc+VYq+9 +fHtaZHfl0TPuaSVY4XjBFjkWv+7ZzmtKMN0x4Bax9k496TGiBAMcBWyR/WlH +dw3LvQtDjhYZMuumdUbUXerRLKeGF76/zPsu9WiWDU1XtsUUFFOPZrGen94S +u6mYejRLUlZI111jiqlHs3z828LXV+YUUY9m2W3bf3bU+iLq0SRPu+atODeo +iHo0ydQnwi49kVpIPZoksjrJf9RfC6lHk6zZ8GODm0ch9WiS0xNGdtgQX0A9 +mmTL3NFPHXq9gHo0SlLVnOr3a/KpR6M8HFf/3ZlN+dSjUZqS116P8MynHu3f +Dw+ad/ZcHvVolMz+gT8tnJ1HPRrFP+vtLQuqrNSjQZZk99/941or9WgQr5ap +7i/0slKPBunRpaf3nf251KNB4r5f/MOu0bnUo0GW9j2dGHo+h3o0yMOn1x99 +/NUc6tEggU+OGHgwI5t61It77/mFHedkU496advQtX/3pD+oR72MCnulcXLy +HepRL30z30kPu5BFPepl9MDUyCkJt6lHvUw4nOG28+gt6lEnvX9bldk79ib1 +qJPFk4Ze/np9JvWoky9c/7X0+3czqEednA7o/VbTS+nUo07C0vdbX/G4QT3q +5NaZ85aB1t+pR610ey53ct+469SjVvwGDl6TMi+VetRKja134sEe16hHrVjd +l68OWZVCPWrFZeT6aaG/XqYetbLz3APd+hUmU4+a9uukjyY2JVGPGll4aOxJ +z9pE6lEjZwdkD/42LYF61Ih3Ra+m+uGnqEeNzB45Y1ZG+E/Uo0YKH/7yhfHd +DlCPGnmx24ChEYN2UI9qSfV5prt7z6Vi6FEt/r08l/8webcYelTL9kFdB61a +eFgMPaplUvyd4MHdT4qhR7U8Hrq6YeU3Z8TQo1qOzXSNXbEoSQw9qqRm9bXW +i5GXxNCjSjoVfODpG3FVDD2qJGD8vAdbPrguhh5V8lXO8UCvrTfE0KNKLg57 +2qPU9aYYelRJa35kSkhilhh6VMoDa6f1mFOXLYYelRJR/feXR061iqFHpSxa +n5Jsbc4XQ49KWe9m7fla32Ix9KiU23uq/Dq4lYmhR6UEzdy38mivSjH0sElz +8PwTy9t1M/SwSehXz6TMve/BBEMPm+ycO2SCd9xDCYYeNvnn2C+/e3S6W4Kh +h018x7/YWhnjlmDoYZPA/vFPRG91SzD0aL9f5sy4ze3XRv0r5JkxB05Y2q+N +elfIzfwKF/v3Rn0r5PL24Mei2q+NepbLxrVDBtm/N+pXLic+7+i7pf3aqFe5 +PPdqg81+P6M+ZVK/8kqF/fdGPcok/8bxKVvbr43xl8nuPSu229/PGG+plL3b +/x37/xvjK5Xudwd+aL82xlMqG8PDR9nvZ8ynEjmQnTvAfm3MnxLxCxoyw/57 +Y76USPOGI6ft72fMj7sSczlgqf17Yz7clR0L54dUbHNLMPS/Kx0tj27b1/69 +oXex7Im48Oa29mtD32JZjQ3F9ucZehZL/JKNBfZrQ78iWfDr9VX25xl6FUns +qehD9ucZ+hRJ1rlPz1ucehRJa3KQp8WpR6Es86g4EePUo1BGJIdutzj1KJQx +Xlu9LU49CuRwlnusqUeB3DcajnoYehTIjbx3h5l65MuVEYlXLU498mVeZP4y +i1OPfPl43dsS49QjT7zf27E3yqlHnoR2+FukqUeePO9Z+meLUw+rJCX0jLE4 +9bCKa9iSmaYeVukbFR1oceqRK92SY2aaeuTKP37OHmq/NvTIlW2zG8danHrk +SHBc0GyLU48cyXks+2uLU48cKb7p5RiPoUe2jLgU/LrFqUe27Hpk1nxTj2zx +8Dj/hqlHtnyftGOquR7+kGkX6/zMet+RiB9dnjXre0dWXAv2N+uZJYvrTk2x +OOt3W9DySKBZr9vi1WPvLLM+t+Rq3CAfsx43Rfp88pY5/pvSbeGMN83xZkrK +qLdWmuPLkJxl/YLM8WRI/MmAieZ8SpfmnGP+5vxJl8C/eDieZ8yXG7L82819 +NzvnR5pkLQrzMedDmrht8fEz1+PvcqTpwhRT7+vydvRYH1Pf67J9/Rl/U89U +6dzlfX9Tv2viXvX4JFOva9Jc9DxMfa5K0JHBE0w9rkp4tGegWf9/y/OnB4SY +9b4ils8GTjLre1nyywMmm/W8KENGfOdj1i9ZOl2I8THr9Zukfdb6X/W5IOt8 +78BcL+fl0r6t48zxn5Ockjg/c7yJcnbXNV9zfGdk0UOtL5njSZDw6g2Tzfc/ +Lf38fp5qvu8vEtL4yXjz/U7I3C/uH2a+T7y0lYdGms//SR5ZOhjm8w5LjO9T +/ub9D0pkcIKveb/9Ejx0yALz//fKoQ/ee9H8/bfy8qZ+vub3myXuHWO+GNer +BdYujmuvjUNzIz+d6DPE/8C4/3fN30N/z/tB78fn4X+ftxf6Pnxf6PtyPNDx +cLzQ8bIe0HqwXtB6sZ7QerLe0HpTD6ge1AuqF/WE6km9oXpzPkDnA+cLdL5w +PkHnE+cbdL5xPkLnI+crdL5yPkPnM+c7dL5zPUDXA9cLdL1wPUHXE9cbdL1x +PULXI9crdL1yPUPXM9c7dL1zP4DuB9wvoPsF9xPofsL9BrrfcD+C7kfcr6D7 +Ffcz6H7G/Q6633E/hO6H3C+h+yX3U+h+yv0Wut9yP4bux9yvofs193Pofs79 +Hrrfsx9A+wH7BbRfsJ9A+wn7DbTfsB9B+xH7FbRfsZ9B+xn7HbTfsR9C+yH7 +JbRfsp9C+yn7LbTfsh9D+zH7NbRfs59D+zn7PbTf0w9A/QD9AtQv0E9A/QT9 +BtRv0I9A/Qj9CtSv0M9A/Qz9DtTv0A9B/RD9EtQv0U9B/RT9FtRv0Y9B/Rj9 +GtSv0c9B/Rz9HtTv0Q9C/SD9ItQv0k9C/ST9JtRv0o9C/Sj9KtSv0s9C/Sz9 +LtTv0g9D/TD9MtQv009D/TT9NtRv049D/Tj9OtSv089D/Tz9PtTvMw9A8wDz +AjQvME9A8wTzBjRvMI9A8wjzCjSvMM9A8wzzDjTvMA9B8xDzEjQvMU9B8xTz +FjRvMY9B8xjzGjSvMc9B8xzzHjTvMQ9C8yDzIjQvMk9C8yTzJjRvMo9C8yjz +KjSvMs9C8yzzLjTvMg9D8zDzMjQvM09D8zTzNjRvM49D8zjzOjSvM89D8zzz +PjTvkwdAeQB5AZQXkCdAeQJ5A5Q3kEdAeQR5BZRXkGdAeQZ5B5R3kIdAeQh5 +CZSXkKdAeQp5C5S3kMdAeQx5DZTXkOdAeQ55D5T3kAdBeRB5EZQXkSdBeRJ5 +E5Q3kUdBeRR5FZRXkWdBeRZ5F5R3kYdBeRh5GZSXkadBeRp5G5S3kcdBeRx5 +HZTXkedBeR55H5T3kQdCeSB5IZQXkidCeSJ5I5Q3kkdCeSR5JZRXkmdCeSZ5 +J5R3kodCeSh5KZSXkqdCeSp5K5S3ksdCeSx5LZTXkudCeS55L5T3kgdDeTB5 +MZQXkydDeTJ5M5Q3k0dDeTR5NZRXk2dDeTZ5N5R3k4dDeTh5OZSXk6dDeTp5 +O5S3k8dDeTx5PZTXk+dDeT55P5T38zwAeh7A8wLoeQHPE6DnCTxvgJ438DwC +eh7B8wroeQXPM6DnGTzvgJ538DxkvJ6H/Aee3exl + "]]}, { + Hue[0.1421359549995791, 0.6, 0.6], + Directive[ + PointSize[0.004583333333333334], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJxtmXd0VVUaxYMiQxAY2ugaI02KgrERQCaU7UJKSAESJY5SBwElQihBEhFl +1IggDBlQYPIA0RFUHIgBpUjxC4JBaQFJQhJK+nvpvdd57939vZtZa94/WXfd +l/vu+fY539n7d/rPXxa08B43N7dt7dzcHH/5iRv46+GKvgvLcPPL5WM73WyV +oBlHb9WML0PM5Mw1vWJa5cDzxyaH9yvDh4WBJ/p82Cox3tGfobEUs6J+rn5s +VqvsuPDgN7d+KIWX89MqT0Q/eTJuaSk6OR/YKv0rPxqcN6gUjqdNzmyR+a3+ +ePFOCewPsz+xRb4pjF1e90kJnI+LapH/HEg8fGNKCRY5Py3Sf9jj9n8rxljn +A1skY3pApcf3xejlfMEWmXP+/ZJ1i4pR5Hi9wmY5VrPxVPs/F+Oc43E/N4vf +vi+C9l8sgiXa8WmWqpNndsx+uwgrnA9sFlta1iOPPV4EH+cLNsvHX+4Z0Jxa +iL7OATfLicYLdw98VIgax+Oqm2R6z6DjscMLceWy49MkV5+e47kuowD7HOX7 +skk+2DKgesymArztfMEmsXTu4p46vABBzgE3ydBei7otuZOPIc4CNsmm7eum +/BaZD0OOJok7Naa6dGg+9WgUa7nFOzMhj3o0ysolCRv/EZZHPRrlb4EL1xT9 +KY96NEr+0nsTy47ZqEej9Lauu//TYBv1aJTCD15OPVtlpR4Ncrz0u76rt1qp +R4OceDy8ZqenlXo0yKkT7qkj43OpR4M81M3tpcFzcqlHgxwaNCxqXlUO9bA/ +790JFTc25FCPerl0NuHImx451KNeGgfGbR53MJt61Et85Fuxed7Z1KNeujU/ +47vjQhb1qJfYh9L39wnKoh71suxfR5MXp2VSjzpZ//7g2rnzMqlHnYwqWPCC +LTuDetSJvy1kaeaCDOpRJy31Z6yvxqdTjzqZMzvJf+mZu9SjTl7vF1a2M+YO +9aiTcx5Xf/os+jb1qJWQr4988di7t6hHrfQf807X7Jlp1KNW4qPmnF80LJV6 +1MqMoyMmzm2XQj1qJWve2rCBvyZTj1rpunVcS/j6JOpRI0nvV+2PHZ1IPWrE +a1yezzjb79SjRkbYzsxfveE69aiRLXesAZ/3uUY9asQasbA1L/AK9aiRvAdn +Le4ccJF6VMv80H3Pfut5gXpUy9qa+tTgknPUo1ruq7ns3eOfcdSjWqyWleGl +HiepR7UczLgaGnvxCPWolgW5Ie9M8vmKelRJ6iL5anHDBupRJR12rOro7b1d +DD2qZEfIjO07FhwUQ48qSXM79Gik5bgYelRJevykyfdfiRNDjyp54AFLitvA +eDH0qJKYvbk9u2RcEkOPSrFty1sl7tfF0KNSMiZu3lYRkiiGHpUS0OFS2pAB +KWLoUSkrZ/lVfOFzWww9KqX93x/5w+vvZIihR6UkdBrtd8+IbDH0qJCARxO9 +3MOsYuhRIYeG+OR0fa9ADD0qZO+tmI0R7crE0KNC9l2IOrn24yox9KiQNckn +A8+EtY8z9KiQpIRha5JSusUZepTL51cGjr5vaPc4Q49y+S7Ad+QB+7WhR7l0 +7zi7ZZf92tCjXJY8PTLDcW3oUS4dT9um7bVfG3qUy+ld9fXf268NPcokfPXE +M7vt14YeZXJ61sFBe+zXhh5lsmd9xw0W+7WhR5ms9nP7q+P7hh5lEvzjtZGO ++4YeZbL9vfAXHNeGHmVy2T3Hw/E+Rv1L5ZfkSysc9416l0pc4KktjucZ9S2V +r4vuO++4b9SzRHZ27Tdok/3aqF+J/ODrEeO4b9SrREa1v9xhl6s+xbIncu2L +Zj2K5dtlhzMsrvEXy78vta6xuMZbJI/Wu6eb4ysSz17dvzHHUyQn3776ieN5 +xnwqlMXtYh92XBvzp1BSniy/7fi+MV8KZff8Th857hvzo0CCX7l/reO+MR8K +pMu5E4GOa0P/Agkb5LXXcW3onS/3Vhcus7j0zZfMhClbLC4982Vunw0LLS79 +8uTY+LLlFpdeeTLVazd2ufTJk/77e4zZ49IjT7YHFh62uPSwycvvBb9m6mGT +efVDnb9n6GGTs70jI6JdeljlmY2f/NHi0sMq6V6ly009rJJZ+Wp2tEuPXPFc +UR1icemRKwOPnA029ciVwpKbOdEuPXJk+JGIEaYeObLNNnupqUeOjCq6ts7i +0iNbgmaO8be49MgWj9cG+Jp6ZEvoh6HOeht6ZMnWnE2vmHpk2dfpV230yJKx +fZpnm3pkysyH3/Ix9ciU5xd18zP1yJTdXbr7mHpkyKr2kXNMPTJk9aE+zt8z +9LD3kZ49ZpjrI0NGJy15w6x/uoyyNaww5/9dmfVg0mqzvnel5+ZuiWY970h+ +/JKZ5ny+LX5Z9waa9botreM2TTPrc0tCOq+YatYjTbxrjrYZf5oE9f55qjne +VJmy4qcIc3wpMurdyy+Z40mR5ydZg8z5dFPKvTpPN+fPTZnyec9p5nxJlgXr +bznHb8yPJAldlRdgzockSehX9aapf6IEJV8JMvW+IY3N1gGmvjfEs2+Rv6nn +7xIc22uqqd91WTfx6lRTr+sSOq0pwNTnmlQfWhlu6nFNkhMRYNb/qow9O2G6 +We8rMtPN18+s72V55KlXA8x6XpRffPYGmPX7TaKmp/uZ9fpV/tLBfbxZnwty +sXerv1mPX2TCzEEvmeM/Ly1H+403x3tONk+Y5m+O76y4PeXZZjxxMibn2Tbv +/5PMDa1v876nxfcZb1/z/X6U6AeSfM33OS6jn5jf5vd/kGObov3M3zssQ974 +us3zYyTi985txntAthZF+Jn/v08G74yaa37/M6l5vUeb+59Kx4Uf+5rXkTI8 +bJLzvvfmp7O2vDVx3K4Qm+//u+b3od/n86DP4+/hf39vH/R9+L7Q9+V4oOPh +eKHjZT2g9WC9oPViPaH1ZL2h9aYeUD2oF1Qv6gnVk3pD9eZ8gM4HzhfofOF8 +gs4nzjfofON8hM5HzlfofOV8hs5nznfofOd6gK4HrhfoeuF6gq4nrjfoeuN6 +hK5HrlfoeuV6hq5nrnfoemc/gPYD9gtov2A/gfYT9htov2E/gvYj9itov2I/ +g/Yz9jtov2M/hPZD9ktov2Q/hfZT9ltov2U/hvZj9mtov2Y/h/Zz9ntov+d+ +AN0PuF9A9wvuJ9D9hPsNdL/hfgTdj7hfQfcr7mfQ/Yz7HXS/434I3Q+5X0L3 +S+6n0P2U+y10v+V+DN2PuV9D92vu59D9nPs9dL+nH4D6AfoFqF+gn4D6CfoN +qN+gH4H6EfoVqF+hn4H6GfodqN+hH4L6IfolqF+in4L6KfotqN+iH4P6Mfo1 +qF+jn4P6Ofo9qN+jH4T6QfpFqF+kn4T6SfpNqN+kH4X6UfpVqF+ln4X6Wfpd +qN+lH4b6YfplqF+mn4b6afptqN+mH4f6cfp1qF+nn4f6efp9qN9nHoDmAeYF +aF5gnoDmCeYNaN5gHoHmEeYVaF5hnoHmGeYdaN5hHoLmIeYlaF5inoLmKeYt +aN5iHoPmMeY1aF5jnoPmOeY9aN5jHoTmQeZFaF5knoTmSeZNaN5kHoXmUeZV +aF5lnoXmWeZdaN5lHobmYeZlaF5mnobmaeZtaN5mHofmceZ1aF5nnofmeeZ9 +aN4nD4DyAPICKC8gT4DyBPIGKG8gj4DyCPIKKK8gz4DyDPIOKO8gD4HyEPIS +KC8hT4HyFPIWKG8hj4HyGPIaKK8hz4HyHPIeKO8hD4LyIPIiKC8iT4LyJPIm +KG8ij4LyKPIqKK8iz4LyLPIuKO8iD4PyMPIyKC8jT4PyNPI2KG8jj4PyOPI6 +KK8jz4PyPPI+KO8jD4TyQPJCKC8kT4TyRPJGKG8kj4TySPJKKK8kz4TyTPJO +KO8kD4XyUPJSKC8lT4XyVPJWKG8lj4XyWPJaKK8lz4XyXPJeKO8lD4byYPJi +KC8mT4byZPJmKG8mj4byaPJqKK8mz4bybPJuKO8mD4fycPJyKC8nT4fydPJ2 +KG8nj4fyePJ6KK8nz4fyfPJ+KO/neQD0PIDnBdDzAp4nQM8TeN4APW/geQT0 +PILnFdDzCp5nQM8zeN4BPe/gechzeh7yX5p5qrU= + "]]}, { + Hue[0.37820393249936934`, 0.6, 0.6], + Directive[ + PointSize[0.004583333333333334], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJxtmXd0VVUaxeMkhCGkTOjvBVAEJGCEQAAHiWxdlOAoWEAssEYTwVmggMCI +A4SqERQGMppRolSBQYRYaLHBF5EOgZAQgpSQ3ssjvWfy3t3fvc5a8/5h3fXC +efd8+5zv7P07fSLmPzfrD25ubh/d4+bm/JefBN/ATSFXJziQtuutR73SWmX/ +k+VvD+rnwNdhmUu7fN0qk3b4Pjj0Hgeiip/9vndUq1ws9SiN+6kcMzadqA6c +0SpjD4RPGPP3coS4Pq3y8RODav2CyuHlGrBV9gyO79w7uwzO0cIyW+StzTdO +zIwtQ9tgbSO2SN/QO/npk8vgGm5Ti1xa/Zz/++5leN31aZHNdfXJU+NL8ahr +wBYJCP/mqYlzStHF9YItIscD017uWYoS5+sVN0vygQ/CoxJL8KtzuBPNkrn2 +Ws6J5SX4LNb5aZbC6p3DfB8qwQLXgM0S0D902Cs3izHR9YLNMu1yduT+dcW4 +1zXhZjnyxfGYguHFqHEOV90ki25WT3koowiJF52fJhk5eMawyR8WYbezfLua +ZF/K7ieeDCnCMtcLNkl65APx/W8W4jnXhJvkziHvlMurCzHQVcAmOfbIodDH +BxTCkKNJUl4LnjfvQgH1aJTcK9GHnplXQD0a5ekzF1LS/AqoR6O8X7FibfM3 ++dSjUb4MjOx0ZHI+9WiUF09vdqsozqMejTLjo4df3LM2j3o0yMrk2umn+uRR +jwapuDIK437MpR4NcnvAlKb2z+ZSjwa5svaH3A55OdSjQSaueV5GLcmhHg2y +Y3905GqvHOpRLysnnA5Jjs2mHvXyccbVIP8B2dSjXoLvDxoZdDCLetTLxg0B +8BmdRT3qZezQ7Umf/JJJPepl4a2fTx8an0k96qT1q+Y+485kUI86GbRGlg2c +kEE96mTrpr1+Ue/doR51Mn/V0pjbi9OpR50UD5z5csfXblOPOjkyJvDbYxNv +UY86iRg3+7NPB9ykHrWycHrfPaNaf6MetfJ8/eAeYy5fpx614hNzesWgT9Oo +R638c1a/C6umXaMeteKZ4B101DuVetSKI/+F/JE/pFCPGtnZJ+fXp6cnU48a +2V4YuuapiiTqUSP9aoe2P9BwiXrUyBrHL3ufr7pAPWrkZN2HQzamnaUebf8/ +orlLY+wp6lEtK0Kq1m4bfYJ6VEtol5rw7IXHqEe1JK8455N771HqUS2LR2yN +215ygHpUy9lvL3av/i6WelTLjXNn5hePXyWGHlXyU3ba/IriPWLoUSXvZmQd +OPvGYTH0qJLGuFcz5y4/LoYeVeKZ9cL0XTtPiqFHlQz1rC+PnXteDD2qpNfB +rju7TU8SQ48q6dNhqWPR+RQx9KiUhStXbAj7JE0MPSrl9u6IuTeu3RRDj0o5 +t+fTTn1ezBBDj0qZ+crNisceyhZDj0o5ucwvNP2zPDH0qJSpgb7vBLcUiaFH +hUSlbJu+eqtDDD0qpGjpE2PcP6gRQ48KSVpeG/dOWIcEQ48KaXzq6L5Ob3ZI +MPSokGMbNswOmNItwdCjQuJKl6y/v+3Z0OOuzO2+ZLG97dnQ467s/c/unO5t +z4Yed+XV4KUJHdueDT3uyjRZP7Jn27Ohx13xXF80yfn/DT3uSuzGqETns6GH +Qx5+4JHetrZnQw+H9E2KnNK77dnQwyGlqZG2Xm3Phh4Ocd/hON+j7dnQwyF5 +Z9tnON/f0MMhg9+d3dk5vqGHQ+YmxLt+36h/uTgG7H7Np+3ZqHe5LOx2vJ/z +e6O+5TJCui9wjmfUs0wSZ4bYnc9G/cpkecze/la9ymROZfLPNrM+pbLovvX3 +2c16lEpY/ZDinub8S+X8N7M8e5nzLZFdvYN97Ob8SuRt31yPnuZ8SiTPe16B +c77GeiqWML++kc6/N9ZPsfzoHTx9UNuzsV6KZU7NgBLn98b6KJKcdWNHO8cz +1kOR7BrX4Wnn94b+RfJg01/72029CyWutnSI3dS3ULLXXe1tN/UslC2Hjxfb +TP0KZEv0rZfspl4FUjI8eqbd1KdAFmxZHGHpUSA90736WnrkS2TY1Xvsph75 +MvDtY2U2U498ObNqUVe7qUeedHtz8hmbqUeeHPZ/sMZm6pEn+7aE3+pu6pEr +SzcN7m7pkStH0zIKbaYeuTJm3J872U09ciQt+it3S48ciUmN8bSbeuTIrJXv +ud7H0CNbzpZFdrL0yJZZvjEtNlOPbDkwbLWPpUeWbA7Y/3FfU48saeo01dvS +I0vGJwZ0s/TIFOwMs1l6ZMr4Tjfslh6ZEuF3yN/aTxkyPKXHvZYeGVKZctnT +0iND3qiIL7WZemRI+cE4f6v+dyR9R4yvVe90iX4pfKLdrG+6TG18tJdVz9vy +/d9afaz63ZLvvdy7WPW6JZ+/v9XLqs9NOVhe5GvV44Zs/ftsX2v+N6TjJP+O +1nx/E0fK4K7W/K7LtrjIdtZ8rsuc00cX2Mz1lCbXfVJ9rP2cJttt6zrYzfVy +TeaEDB1k9bNU+aKzW0wPcz2kSmr/O0Mt/a+KY+qX/pbeKbKj61vBdlPfFPn3 +kAWu9zH0TJb44dGZNlO/KxJw7biHpdcVORAZ1d7SJ0n+NWm0l7U/kmTsxCkd +rfpfkqhRGX+y6p0oK8L/0c6q70U5cWyju1XP8xL0zrQ/WvU7J9vSmj2sep2V +v4S7eVv1OSPn7n+8nVWPU/LGqeh21vxPSsvVqz7WfH+Vz0Pne1jr8xfZ9ky+ +uzWfBAmKWNbeev/jUn3Z5m6978+S2H+sh/V+P0hWPw9P633iJXV+iqf1+4fl +9PbAjtbvfSdzO3u1s8b/Wnr6+rWzxtsnqSMCf7d/d8vOhHoP6++3yYSG1z2s +72PkhaOHfvf8nrx07JJrvEc2BGdtXDJ+TOKRER7/75l/D/17jgcdj7+H//29 +3dD34ftC35fzgc6H84XOl/WA1oP1gtaL9YTWk/WG1pt6QPWgXlC9qCdUT+oN +1ZvrAboeuF6g64XrCbqeuN6g643rEboeuV6h65XrGbqeud6h6537AbofuF+g ++4X7CbqfuN+g+437EbofuV+h+5X7Gbqfud+h+539ANoP2C+g/YL9BNpP2G+g +/Yb9CNqP2K+g/Yr9DNrP2O+g/Y79ENoP2S+h/ZL9FNpP2W+h/Zb9GNqP2a+h +/Zr9HNrP2e+h/Z7nAfQ84HkBPS94nkDPE5430POG5xH0POJ5BT2veJ5BzzOe +d9Dzjuch9DzkeQk9L3meQs9TnrfQ85bnMfQ85nkNPa95nkPPc5730POefgDq +B+gXoH6BfgLqJ+g3oH6DfgTqR+hXoH6FfgbqZ+h3oH6Hfgjqh+iXoH6Jfgrq +p+i3oH6Lfgzqx+jXoH6Nfg7q5+j3oH6PfhDqB+kXoX6RfhLqJ+k3oX6TfhTq +R+lXoX6VfhbqZ+l3oX6Xfhjqh+mXoX6Zfhrqp+m3oX6bfhzqx+nXoX6dfh7q +5+n3oX6feQCaB5gXoHmBeQKaJ5g3oHmDeQSaR5hXoHmFeQaaZ5h3oHmHeQia +h5iXoHmJeQqap5i3oHmLeQyax5jXoHmNeQ6a55j3oHmPeRCaB5kXoXmReRKa +J5k3oXmTeRSaR5lXoXmVeRaaZ5l3oXmXeRiah5mXoXmZeRqap5m3oXmbeRya +x5nXoXmdeR6a55n3oXmfPADKA8gLoLyAPAHKE8gboLyBPALKI8groLyCPAPK +M8g7oLyDPATKQ8hLoLyEPAXKU8hboLyFPAbKY8hroLyGPAfKc8h7oLyHPAjK +g8iLoLyIPAnKk8iboLyJPArKo8iroLyKPAvKs8i7oLyLPAzKw8jLoLyMPA3K +08jboLyNPA7K48jroLyOPA/K88j7oLyPPBDKA8kLobyQPBHKE8kbobyRPBLK +I8krobySPBPKM8k7obyTPBTKQ8lLobyUPBXKU8lbobyVPBbKY8lrobyWPBfK +c8l7obyXPBjKg8mLobyYPBnKk8mbobyZPBrKo8mrobyaPBvKs8m7obybPBzK +w8nLobycPB3K08nbobydPB7K48nrobyePB/K88n7obyf9wHQ+wDeF0DvC3if +AL1P4H0D9L6B9xHQ+wjeV0DvK3ifAb3P4H0H9L6D9yGP6X3IfwEjJkjl + "]]}, { + Hue[0.6142719099991583, 0.6, 0.6], + Directive[ + PointSize[0.004583333333333334], + RGBColor[0.528488, 0.470624, 0.701351], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt0X001XcABnCscnoRkYyj0Y4cs6IXmrO1vqU0alZYyVZN3dX0Mhlr6ci8 +lJw6hLOw0MWiM9m8NSTaY3FiXko3dL2793q7XFzum/s+O7/vH895zvPH89dn +w+lL/meMDAwMjizm/9baZ57wV+uh9fFzLfAQk85G4+zjHD3mzeqS2izFpDgk +knu2SI/dJ/bMuIzOkvhVQssfYvWQDPhdWcmeJUFlQQFRgXrMie2ynI/Oki1f +tqQmuOiRFvn0bKLJLDFe+PhlylI9fIfUeXaNM2Qwu3hlVr8Ox+6UtwqvzpBK +YutT8FgH1062Kd9lhiQJkm6W3NaBI965y1gwTViJ2oYnp3TI3n7P3C9jmnzy +Yahhg4cOa741dav1nibmrwZ3tZvqIP17aSpRiYgw/NC1t2NaREYleXMfiUj9 +uvoa3jMtbMxWLIv9SkQyn25RTN3VYv+RkH9clotI6Ml8N/kFLeze5eUMVk0R +LyPzcIO9WoSwU/nJrCli+zC+dIWNFuWcHN9NplNE4iMRrZ3TQDe/KrCsZpK0 +TLOc7Zo1eGz4Z9861iTJT+v87oNcDfZkB9meWDlJIt29Crf/pMFhpXjocoWQ +HOqp5H/qq4GfGW8u8JiQOEY72ns7aCCqUGxUaiYI46FGRHhRk1/eBPVQY7y6 +aoef5wT1UCPq/NRGCX+ceqixNVJ92zl+nHqo4e+SmC60G6ceanjaB99yqBuj +Hmr8zmYPtB0dox4qNAaM9XFmR6mHCgMd74VtShylHioIrGvlrbaj1EOFrv7q +w8llI9RDhZ+5rOYIzxHqoYKD5kDtGY6AeijxNqBN+kWwgHooca3qbruliE89 +lLh1oeVK0WU+9VDiRo74mzENj3oo4VkUer0pjkc9lOgtTTdav4RHPRYg9Ohu +f3l9mHos4EF0MqkzGKYeC5hkZ2pvyAapxwKCeFXP4wQD1GMBG/4wCV/d2k89 +Fv+1S9Zyi/uohwKP3085FZPQSz0UMMx4ff5+YA/1UCDnZOmzug1c6qFA9VXn +tNOCbuqhwF+5L0TmOV3UQwHOvZhtpgc7qYcCBz35p7pmOdRDDrvlkt4Ht15T +DzlK7vzq9Miqg3rIse/4yd2G29qphxxTBVvH7a1bqIcc3/dqt3D5L6iHHO3n +Ziwckxqohwwd7hdNNpvXUw8ZMkasuywET6iHDLXNLJ+sz8uphwzOVpXvdJb8 +Rj1kmNcnu6ocLlEPGdj5Lme7L+aC8ZDCcm9HDcu9HIyHFMFxEzv3OdWC8ZBi +2cZCj5LR52A8pHCd9kwfvt8MxkOKj2LWtT189RKMhxRWYaoIzr8cMB4SHDvw +prAwoRuMhwRO57zC8yp6wXhIsPX1jxHS8CEwHhL4htnw1NF8MB4SsG7u8Gp4 +MwrGQwJZ47S70ZpJMB4SFPt83VRpIAbjMY+Jghyv2EAZGI95FG/+LKgnxbK+ +suoXt/TFnW4x2Ppi9fr6/wBChvze + "]], + LineBox[CompressedData[" +1:eJwt0X001XcABnCsckoiwjgadnCalZeiOVvrKaVRs8IKW4zuMr1Mxlo6akXJ +0SGchYVuLDqTjWRItJ/FwbzFDV3v7r3eLheX++a+r53f94/nPOf54/nrY3fq +QsBpPR0dneNv839X1/zinl21gmzTsY6WTVsbq2HtW/x2l+34LGQww6xxLL/M +IG9kBbPFBd7XgySU/urH3RlrRSjz/bq1WkdIuX7ZnpnsLIKkecFDb/McFfIk +JDAhSATGrd3eTa+nqKSNfLMfrovgF2PFUV7lUmVR8ezIUhHcen+ME8eOU33N ++vknWSJsO+MdW/h0iFLb5oYGKEUIPvy6pCR5gHK86mjrYy+GRYwijvUvizo6 +WM391E+Mj66Zdz561U3Fe3iX7PpJDJcFr+yJ+21UUVbfdx88EGOdQ4ln+dRL +qn2B4WTTJkZ44uyeg9vqKZGvSLBlWQyzAz11DI9KyvpRUsUGKwmYRc6RA+cf +UN56JrE6ByRY0aa7KOwvIDqsyF16TgIni+p3+sp/Q+5zV9n8XQnq2xi+eZ9X +otG8sY7zQoKcSct+U94z8GOPXnkzLUGPx3nDHSaNMHk1trfLSIquM4umjmlN ++OTDaN0mTym+H1K7srktYKSom55FSDFf7DZja9mONF7arfLbUhw8GbZPd2cX +aA8pyu/8uu2xRQ9oDyls1ouGHqb2gvaQ4YgXN6J/iQXaQwbWvWs7jY70gfaQ +4a8HLQKTgn7QHjLUXnbKOsUbAO0hQ0FYxYsGOzZoDxl0c3rP3g8aBO0hQ9X7 +GRHXkodAe6ziYf2aLeyyYdAeq7D7wzB2U8cIaI9VhHBqXibyRkF7rGKOmau+ +KRkD7fH2fzUdDToToD1Wwfcc6Oq+MQHaQ46himy9rWs4oD3k8CqNvtGayCEe +ctwsEH4zreIQDzlSz7VfKr3IJR5yXKm522Um4BIPOd4Edoq/COcRDwXsVYfr +T7N4xEOBn9mMtjivSeKhQP9I7bH0J5PEQwGeZb20w3qKeCgw2vNezPaUKeKh +QHPg9DBraYp4KPE7kznaeWKaeCjhZRueat8wTTyUCHBOyebbzBAPJdzilbed +kmaIhxIJZ+cdRNwZ4qHETG3Nbn+vWeKhRFxsaat/4SzxUEHwVOYgV80SDxX8 +jTnLQcF84qHCMblw/OJTPvFQYX9+iHWowRzxUKFK989hc8Yc8VBBs7Ix6End +HPFQo5JV4LfdaJ54qBHFzOSmM+aJhxo273IKxmrmiYcah45H/eO8XkA81LAy +3rDu+lcC4qFGfEKaD/uxgHhoIP57bSYUAuKhweZvjdzrfRaIhwb5u+6Z+Ocs +EA8NWMI9e/V5C8RDA5c+phHXeZF4aBB8p7KDf3mReGjhN64stGleJB5aZMU/ +j0wxXCIeWiwLbfKcTiwRDy1Eo/6XDJhLxEOLfaH7F52nloiHFivGDWmdZkLi +oYXa19+l2FOI/wDgJdJe + "]]}}}, {{}, {}}}, { + DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> + Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, + DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> { + FormBox["\[Epsilon]", TraditionalForm], + FormBox[ + RowBox[{"R", "-", "1"}], TraditionalForm]}, + AxesOrigin -> {0, -7.264430222920869}, AxesStyle -> GrayLevel[0], + DisplayFunction :> Identity, Epilog -> { + Thickness[0.006], + Dashing[{0, Small}], + LineBox[{{1.1687578468201574`, -1000}, {1.1687578468201574`, 10}}], + LineBox[{{-1.1687578468201574`, -1000}, {-1.1687578468201574`, 10}}]}, + Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{ + Charting`ScaledTicks[{Log, Exp}], + Charting`ScaledFrameTicks[{Identity, Identity}]}, { + Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> + Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> 246, LabelStyle -> Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10], + Method -> { + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& )}}, PlotRange -> NCache[{{-2., 2.}, {-Log[ + Rational[10000, 7]], + Log[4]}}, {{-2., 2.}, {-7.264430222920869, 1.3862943611198906`}}], + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, {0, 0}}, Ticks -> {Automatic, + Charting`ScaledTicks[{Log, Exp}]}, TicksStyle -> Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]}], + FormBox[ + FormBox[ + TemplateBox[{"0", "0.75`", "0.9375`", "0.984375`", "1"}, "LineLegend", + DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["\[Kappa]", {FontFamily -> "Times", + GrayLevel[0], FontSize -> 10}, Background -> Automatic, + StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.528488, 0.470624, 0.701351], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.528488, 0.470624, 0.701351], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #5}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + FontFamily -> "Times", + GrayLevel[0], FontSize -> 10}, Background -> Automatic, + StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.004583333333333334`", "]"}], + ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.368417, 0.506779, 0.709798], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.24561133333333335`, 0.3378526666666667, + 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> + None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.368417, 0.506779, 0.709798]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, + Selectable -> False], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.004583333333333334`", "]"}], + ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.880722, 0.611041, 0.142051], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.587148, 0.40736066666666665`, 0.09470066666666668], + FrameTicks -> None, PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.880722, 0.611041, 0.142051]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, + Selectable -> False], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.004583333333333334`", "]"}], + ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.560181, 0.691569, 0.194885], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.37345400000000006`, 0.461046, 0.12992333333333334`], + FrameTicks -> None, PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.560181, 0.691569, 0.194885]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, + Selectable -> False], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.004583333333333334`", "]"}], + ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.922526, 0.385626, 0.209179], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.6150173333333333, 0.25708400000000003`, + 0.13945266666666667`], FrameTicks -> None, + PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.922526, 0.385626, 0.209179]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.922526, 0.385626, 0.209179], Editable -> False, + Selectable -> False], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.004583333333333334`", "]"}], + ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.528488, 0.470624, 0.701351], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.3523253333333333, 0.3137493333333333, + 0.46756733333333333`], FrameTicks -> None, + PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.528488`", ",", "0.470624`", ",", "0.701351`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.528488, 0.470624, 0.701351]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.528488, 0.470624, 0.701351], Editable -> False, + Selectable -> False], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4, ",", #5}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", + RowBox[{"Joined", "\[Rule]", + RowBox[{"{", + + RowBox[{ + "True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + GrayLevel[0], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> GrayLevel[0.], FrameTicks -> None, + PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"GrayLevel", "[", "0", "]"}], NumberMarks -> + False]], Appearance -> None, BaseStyle -> {}, + BaselinePosition -> Baseline, DefaultBaseStyle -> {}, + ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + GrayLevel[0]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["GrayLevelColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + GrayLevel[0], Editable -> False, Selectable -> False], ",", + + RowBox[{"FontSize", "\[Rule]", "10"}]}], "}"}]}], ",", + RowBox[{"LegendLabel", "\[Rule]", + RowBox[{"Placed", "[", + RowBox[{"\[Kappa]", ",", "Top"}], "]"}]}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{{3.816597640761548*^9, 3.8165976677979717`*^9}, { + 3.8165976980499*^9, 3.8165977096091423`*^9}, {3.8165982466935883`*^9, + 3.8165982736466303`*^9}, 3.816676453783361*^9, {3.816676484476494*^9, + 3.816676505238661*^9}, {3.8166766589120483`*^9, 3.816676666220433*^9}, + 3.816676711872538*^9, 3.8166779261187553`*^9, 3.816677962797728*^9, { + 3.824545862189622*^9, 3.824545952142198*^9}, 3.8245460385753937`*^9, + 3.824546101991886*^9, 3.82454619907401*^9, 3.8245463654767017`*^9, { + 3.824546400724839*^9, 3.8245465146310377`*^9}, {3.824801714905985*^9, + 3.82480171513446*^9}, 3.826346062714772*^9, 3.826352726505781*^9}, + CellLabel-> + "Out[193]=",ExpressionUUID->"14278160-8876-4a53-97fb-37448d51adae"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], "]"}], ",", + "desertPlot"}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.816496418562139*^9, 3.816496434803322*^9}, { + 3.816496475568883*^9, 3.816496490911209*^9}, {3.826353102616583*^9, + 3.82635310704806*^9}}, + CellLabel-> + "In[220]:=",ExpressionUUID->"92914bff-7a69-4cb5-9f38-ddd68861b3aa"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Figure 4", "Subsection", + CellChangeTimes->{{3.826346450895177*^9, + 3.826346453575242*^9}},ExpressionUUID->"5e1699fc-010f-4fbd-ad76-\ +e83ae1d05c8c"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"aegg", "=", + RowBox[{"Rationalize", "@", + RowBox[{"{", + RowBox[{"1.125", ",", "1.325", ",", "2"}], "}"}]}]}], ";", + RowBox[{"\[Kappa]egg", "=", + RowBox[{ + RowBox[{"3", "/", "4"}], + RowBox[{"Exp", "[", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"\[Pi]", "/", "4"}]}], "]"}]}]}], ";"}]], "Input", + CellChangeTimes->{{3.8165154024457197`*^9, 3.816515412964715*^9}, + 3.8165161535700893`*^9, 3.8165164713756657`*^9, {3.816517028449217*^9, + 3.816517034545554*^9}, {3.816517241845296*^9, 3.8165172424370937`*^9}, { + 3.816518007931349*^9, 3.816518010602941*^9}, {3.8165181270132437`*^9, + 3.8165181270929527`*^9}, {3.816518243511157*^9, 3.816518244383073*^9}, { + 3.816518358753373*^9, 3.816518419506295*^9}, {3.816595973856247*^9, + 3.816595974095907*^9}, 3.816596626308275*^9}, + CellLabel->"In[25]:=",ExpressionUUID->"39ecfd83-04c4-4409-81e2-d3e96d48eb6f"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"groundData", "=", + RowBox[{ + RowBox[{ + RowBox[{"ParallelTable", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"Cos", "[", "\[Phi]", "]"}]}], ",", + RowBox[{"Sin", "[", "\[Phi]", "]"}]}], "}"}], "\[Epsilon]"}], "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalSigma]", "[", "3", "]"}], "[", + RowBox[{"#", ",", + RowBox[{"\[Epsilon]", " ", + RowBox[{"Exp", "[", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]"}], "]"}]}], ",", + "\[Kappa]egg"}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", "1"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "20"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Phi]", ",", "0", ",", + RowBox[{"2", "\[Pi]"}], ",", + RowBox[{"2", + RowBox[{"\[Pi]", "/", "400"}]}]}], "}"}]}], "\[IndentingNewLine]", + "]"}], "&"}], "/@", "aegg"}]}], ";"}]], "Input", + CellChangeTimes->{{3.816515360581036*^9, 3.8165154965583*^9}, { + 3.816515528639048*^9, 3.816515539055126*^9}, {3.8165155742159777`*^9, + 3.816515578887783*^9}, {3.816515635073002*^9, 3.8165156538411493`*^9}, { + 3.8165156983062267`*^9, 3.8165157151303368`*^9}, {3.8165160628735123`*^9, + 3.816516063128406*^9}, {3.81651703897279*^9, 3.816517060170051*^9}, { + 3.816518394578524*^9, 3.816518401450116*^9}, {3.8165185126328783`*^9, + 3.816518512756044*^9}, {3.816595914004568*^9, 3.816595914111039*^9}}, + CellLabel->"In[26]:=",ExpressionUUID->"4b60b490-0dad-4b0a-b352-179e46c1b313"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346156599121*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"f395eb50-05b0-4c36-a654-50af3224d8d2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263461723573236`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"97eb8a59-3579-475c-adf8-2f31dbcbc9f1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346173173718*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"95774afb-26d2-4631-9afe-a1e762e83a1e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346173966918*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"a4b5a8ba-61b8-45f6-a11b-e787df036bf7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346174015644*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"52d97512-4ed7-43ef-815c-9bc3a5acfd64"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346181209528*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"a13e31a2-ec26-4397-bf75-571d518aad00"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263461812852707`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"1903ad1b-f238-4d1f-a4ce-2e583c983324"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346181338798*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"777c85ed-9c52-4fd3-8829-18030d8db947"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346181389351*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"cf3aa182-f878-48b8-bfd3-feda1113e396"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346186642551*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"d70f76cb-fcf9-4d44-9e91-8ae449155fbb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634621876123*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"3483496a-090d-41f0-a03d-29d1939dbf45"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346219036955*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"07151cfa-6108-4a0f-9c3f-cfa7bfa881dd"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346219304018*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"4bfdea7a-39e3-4c65-8405-4aa4025b73eb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462193595543`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"426c7335-c7b7-4570-bd6c-029d9b6bc7ee"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462194277697`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"585d2e72-d1f9-4da6-a677-c406c36869b7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462195171824`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"80ee130d-62b6-4cf4-b992-30b1b1ecf81a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462196188507`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"f4be69ab-ce64-4959-bf30-69254bb33c00"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462196829023`*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"75351899-f36e-4137-9657-8ab989540a22"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346219689659*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"9652fe48-7001-4939-ad94-07facfd22a84"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634621974325*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"981034e4-7681-467b-83b1-2cd4aeb3c3cb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346219834752*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"cd607010-5273-4d75-9ef0-6fd155a6d136"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346219840817*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"509d84b0-e48e-47f5-885b-f5eb3c190772"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346219891622*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"b23ee381-5407-43d0-8ef0-ed7984916eb1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346219943609*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"f38ea902-c711-4b5a-a15c-3451051e36ef"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462199510612`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"bdacfe71-2fa4-40b7-b4af-a0db7040e7fe"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346220011609*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"876bc206-5401-466b-8019-b09db82faa35"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346220069949*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"d542ecd4-cfb6-4a55-87d5-2b0a6a50cfb7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346220076706*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"343e0c3f-e59f-448e-8669-2f96d55c7ce4"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634622014285*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"8433f9e9-4a22-4aa6-ad9d-7aabe210d6b5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462202034473`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"abd245ff-de69-4926-b42b-274c908268d8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346221427822*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"4890ee92-ba63-408a-9cbc-668fcfe128da"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346221519158*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"a2982e41-2475-47b2-9d5a-09c6527de8fd"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462216207952`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"620956e6-bba9-43b5-9ef7-d6b70206bd1c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346221679591*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"beedfccd-1461-414b-9ff6-31207af634e5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346222998115*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"72ba1f05-5d62-42f7-a8e6-e324bcf528e6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346223091227*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"232786d3-54c0-4039-894e-4ca208f0a1bd"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462231679087`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"d24a0eef-896c-4776-a2e0-92395282410a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462232165813`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"d75cbf0a-096f-48ba-b579-13f10e55881f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462260656652`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"835c03d7-5210-433c-88b1-64cb18a44f89"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346226153957*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"0f605e73-35aa-4f16-ad2c-f9c54085f982"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462262426147`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"21088a7b-e00c-4729-8e40-b8ef7130229a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346226300832*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"62175a58-88f1-4a3f-ab5b-ffb9bbe5634d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462390599623`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"2bc4ad06-359c-45b5-a42d-b94a103249f2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462391368647`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"f07c87cc-63d6-4c9f-a373-9c60501fc4cc"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462392260036`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"03414564-ba76-4a8e-a511-f14e8da80d0f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346239277419*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"67743ee9-355e-4a48-98fb-c27464321727"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346240828051*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"9f32ad43-69dd-42d7-9062-7faa84e7fa16"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462416539993`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"fba37843-44df-479b-9805-97119fd6b6eb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346241778982*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"6ad7d88e-234a-4946-ba01-d17c0ab33ffa"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462419154367`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"bc697720-8293-4ca5-a2a2-7b3791c7b601"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346241973834*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"85ce6d73-328c-4275-be85-68c8f3bf9bb8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346242797592*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"5bd0ad8c-a4d5-4fbb-9718-c799b14dc474"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462428622417`*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"b320ee52-17dc-4f5d-896b-f27d5e6d4766"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346242939196*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"9f107287-310c-452c-9882-f5a57ef71845"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346242996772*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"69c3bff9-7c2f-4cb5-a109-3966349dd51e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346243351636*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"cdd720b2-0c1f-4f03-beba-335cdec2f2b0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346243357645*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"03b4c995-62cf-4a62-8945-3af041112e31"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346243430614*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"8ccc0b58-38eb-49e4-bd87-07b9af2e9c3d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462434741*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"f4e77fb0-1fe5-4d72-a0af-97a37da3626a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462435295753`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"34591764-52b4-48a5-8645-10a8ad784120"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346243589264*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"aa30a471-7c76-4bcc-b5fc-d1d0c9e1a978"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346243646282*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"89333cee-2e48-4a52-a449-e0aaca5242d4"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346243658958*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"66f1068c-a833-4aef-980d-3ceaae39a065"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462453522053`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"b34d51ef-06e5-41dc-8ca4-12f61b7e5098"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346245453431*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"844c744e-9d36-43d0-a765-509ce1334a19"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462455559177`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"37745f8d-1368-40da-a283-c5654d012653"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462456092243`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"413ecbbd-3bf3-4a49-a043-c28f9a6ce05c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634624595829*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"f8c5d63a-65d3-49f6-8275-d3edafcdb5b4"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346246047266*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"ba4a6c36-a665-4f44-b0e9-f108b024dd21"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346246124354*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"3d245659-15cd-494a-b93d-0e250515038e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462461778927`*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"55b01a4a-526e-4dee-afb1-acdef5ad8623"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634626250105*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"92fc6cae-4539-45e6-b9e9-5fc6501ccaf6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346262636405*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"99b32fc2-0af8-4535-aedd-ad6945b8b14e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346262760317*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"2c03c84e-d0ee-4d26-aa37-92fd157dea79"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634626282524*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"e1f8db48-1fac-43c2-b569-4c23c1d83070"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346262937182*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"22afd2ad-368c-452c-a2e3-679822ff7b67"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346263027087*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"fd014501-cbd5-4806-bf4e-c4aa7ee5c89a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634626311662*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"4fa5574f-0933-4ff9-a354-390a263a7d57"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346263178738*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"8c72094e-a44e-42f1-86cb-479d317c1521"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346263874704*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"2429caa1-b89d-408d-8722-1347cc2ca0e0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346263963396*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"8a80d050-440d-453d-9ac5-39065eb20e07"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346264052081*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"33420c5c-fb58-49e8-bbc1-ea51f18052cb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346264110228*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"cc36f5ce-0bc6-4c30-8f5c-d0d9490e15c2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346265551619*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"d0f57b16-18cf-4ebe-92a7-ae7fe53b473c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462656281013`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"a36c6104-2bab-4692-b123-57b1f7a29864"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346265693221*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"db58bc6e-8734-4008-b418-f0800b71f2a5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346265756185*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"b9ec8ed6-951b-40d2-891a-1a0edea41400"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346267705971*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"d04439b0-834c-4777-8694-daacf0384dc9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346267795516*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"49ff2cda-63b5-433c-a45b-dfc084797aa5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346267885088*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"20ece0ff-b680-4b8e-aa46-7bd031c1a581"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346267948987*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"4b4e0c3b-2728-4c23-9356-77918a85af75"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346268236375*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"573e06fd-64b6-401a-8f14-dc6ea2161ee9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462683497047`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"9f393dc5-7ab4-4ca2-a556-16a1a135b80f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346268462531*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"f37c8654-4e16-4d83-8b20-825738070f5e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462685198307`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"9b757907-2f6c-4b70-945b-90b98353dcba"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346276969636*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"26215cac-66da-46e3-baf8-3ebb2c233cdd"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346277059145*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"8cff57ee-0689-456d-953d-c8b644f7b55d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462771592417`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"75504a94-b04c-4687-9a54-8d0d7e942fa9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346277219673*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"2c2f9b40-cff4-466a-90bb-bb028b700cab"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462779776*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"151ca284-6fef-4a5b-b004-13cae03db70d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346278090392*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"88392e11-a889-4c8c-8827-36df3d136f14"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462782034283`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"9e1a60b0-8d2b-4cd8-9557-83c72fd01f7b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462782632437`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"94a0caa8-8c15-452a-aca2-523927259284"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346278665595*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"2b009632-06f2-4cd1-85eb-dcfd846529d3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346278741955*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"b7d63cf7-899b-4705-a6f8-2ed4c9e1dccb"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346278830048*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"ae74e38e-34ca-4ea8-b3d0-64463e9ea543"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346278889526*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"e07331c0-d9d8-4efc-87fa-773bfa32206b"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634628169268*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"51881a3a-11a8-4da8-9aab-139b6ce1de41"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346281783012*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"df52b9e3-02a9-431b-ae1a-4b3c8f8c0e14"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346281873452*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"f0a130c4-0be4-49fa-9d43-bd4fef9b62c6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346281933276*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"71a2e57c-d561-4346-a09d-5e6748f07015"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346285384368*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"e7d417ab-10ee-41b1-890b-003e65711483"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346287706871*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"a58a29ca-5a92-4ebd-8e17-3eb7d90f0295"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462878610353`*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"16dc3bff-9ba9-4770-9a23-9c47ef31beed"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346287976068*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"7d049eb3-934a-4a9f-abc6-7c3fff947a88"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346288066132*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"a5f59212-926b-41d7-952f-5be92e72c3fd"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346290234393*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"64b9f3fc-1001-44e3-909a-e942e20ed60c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462903254757`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"b3d84f7e-e5aa-4cb2-96ff-70e521eae5f0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346290476891*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"25fdd85b-d420-4a9e-b6e4-92600eb3e102"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346290529747*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"6a048741-e183-4f33-be5b-62fd874d9532"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346291583024*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"9f7dfda9-4d4f-4d89-890c-05b6136e5ce7"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346296723514*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"2591ee59-e039-43d4-94c2-9bbf7e1983f5"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346296843848*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"813d2439-d853-460a-bd23-22c55cf606a0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346297023819*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"920914cf-5242-425b-8bb8-26db61579372"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634629713972*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"b846d998-9b8d-45cf-b304-39e145e8565f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346299442038*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"db7a3fe7-c773-4018-84e2-c252faf8ec5c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346299542137*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"0b9988c0-dd26-475a-99d7-5f1180ebfd33"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346299619012*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"5e7fc3e6-0b74-4eb5-8710-40d23238f77a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263462996801023`*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"2170c169-52ad-462b-8111-6a40c2e73458"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346302296797*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"10ae9c01-3616-4775-8b9a-71eb8697d61e"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346302671054*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"cef04bdb-c148-422f-91fc-169c55b7e6d0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346302739051*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"b7d34f17-30b9-4b36-8d60-80bc8b566855"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346302800519*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"09e5c6c6-1b8a-4f18-afd9-545211f47575"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346302869577*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"165d59c9-0020-4548-a5a8-97f41e81efd6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346302932252*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"dbd8007a-b4a1-4dc1-86c2-983132832545"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346302993598*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"e06d4a20-04c2-4550-8e25-5e71fd058e77"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263463030637903`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"7ca3f9b5-fdd7-4d51-a9fd-fc7cdddd7771"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346303129848*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"1cfb3636-c68d-46e8-bb42-3dfda46bf0e0"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346304817165*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"cf27f023-6b2d-4721-ab59-f0e1900cab65"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346304931551*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"3b21c9fb-3922-4176-8c81-1af33f7f65bd"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346305009302*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"78b2f907-049c-40ce-b8f5-9807a93dc5e8"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346305062724*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"99faa3aa-7e1a-4534-adb0-d75cefd5858a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346305111319*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"98429721-d514-4d59-b633-9a20a6a22ed3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindRoot", "::", "lstol"}], "MessageName"], " ", ":", + " ", "\<\"The line search decreased the step size to within tolerance \ +specified by AccuracyGoal and PrecisionGoal but was unable to find a \ +sufficient decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ +tolerances.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346311073678*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"8a209287-e3cf-42bf-8313-43aed9699d68"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346322950252*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"99d6f1d1-cc56-4f86-ba9b-fd045c7411aa"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263463230014133`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"725544e9-c72d-4aa4-915e-86b141a99074"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323057399*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"dc4141be-8bcf-469f-ae75-42aa5d45b598"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323110897*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"d45f9432-fcdc-453d-a600-f95937fcc56f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263463231640387`*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"ebd281f4-51af-4e86-9fca-89a1e2f24561"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323220962*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"831bfbba-d72a-4416-b02d-14ecb9317785"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634632328827*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"1f3b2a1f-4750-4f89-bc1f-b27bb5213f80"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323297261*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"7cdf5f1c-c68d-4dc0-a952-43520d22bb26"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323349619*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"30c8081e-8f43-498e-83d5-286810e32c8d"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323357102*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"0ed57168-17cf-42f7-8a31-e410856f2085"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323364419*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"411b1cad-7e8b-4cfa-a9d8-9b567e37bd36"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263463233714933`*^9}, + CellLabel-> + "(kernel 1)",ExpressionUUID->"dcc8f655-3cac-4b66-be4d-94aa4de0b2f6"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323417687*^9}, + CellLabel-> + "(kernel 6)",ExpressionUUID->"ec7688c4-bbd4-4c59-8c15-c1eb78354f73"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323424336*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"66dced77-42bf-4d16-a69b-2f844dab0d15"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346323431191*^9}, + CellLabel-> + "(kernel 3)",ExpressionUUID->"08e95725-e047-44eb-bf5f-21abe471cf5a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263463234764442`*^9}, + CellLabel-> + "(kernel 4)",ExpressionUUID->"2f081d7d-bb4b-4d32-8b1e-ef1136dd0be4"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346324094191*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"15824342-ce31-437b-81dd-d8261d854d75"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346324196562*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"1c447299-84cd-478a-8fa5-e35be900ddd3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263463243739443`*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"80eb51e2-f1a8-4cad-8f69-2a8c0477e67c"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346324426258*^9}, + CellLabel-> + "(kernel 5)",ExpressionUUID->"04fe7e62-072a-44bc-a93e-25a7e3c34003"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.8263463249325457`*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"6adad984-df02-4a07-9ffd-b04953056266"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346325107695*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"2614fb72-218b-406d-b268-07f27a2a8b38"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634632514732*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"9972548f-f4f2-4fe9-90fe-344a1acdbca9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.82634632522048*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"90efaa21-2383-45af-ab16-e8f3d6b4fef3"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346325250577*^9}, + CellLabel-> + "(kernel 2)",ExpressionUUID->"0b6f63f7-dbad-461d-b7a5-b3962cae49ed"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346325281497*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"f3c42ab4-05b0-409a-a388-026a53852c0f"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346325349279*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"3c2239de-38f4-42db-bc07-fca6901b175a"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346325384334*^9}, + CellLabel-> + "(kernel 8)",ExpressionUUID->"d09bc56b-ec8e-4d56-a418-eff220a19fa1"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346325536982*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"77c36570-1b3e-4f94-8b3a-cb79ea8b6ca9"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346325628278*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"91296fb6-bda6-4bda-b2d2-78006240a643"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], " ", ":", + " ", "\<\"Numerical integration converging too slowly; suspect one of the \ +following: singularity, value of the integration is 0, highly oscillatory \ +integrand, or WorkingPrecision too small.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346325744481*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"65be45d9-ec25-44c5-9835-2663beb3ad64"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], " ", ":", + " ", "\<\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \ +\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"\>"}]], "Message", "MSG", + ShowCellLabel->True, + CellChangeTimes->{3.826346325788045*^9}, + CellLabel-> + "(kernel 7)",ExpressionUUID->"b418c0c6-304f-4b4c-8528-faf9839fe0f6"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eggPlots", "=", + RowBox[{"MapIndexed", "[", + RowBox[{ + RowBox[{ + RowBox[{"Show", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"#2", "[", + RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "4"}], ",", + RowBox[{"ListPlot", "[", + RowBox[{"{", "}"}], "]"}], ",", + RowBox[{"ListPlot", "[", + RowBox[{ + RowBox[{"groundData", "[", + RowBox[{"[", + RowBox[{"4", "-", + RowBox[{"#2", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "]"}], ",", + RowBox[{"Joined", "\[Rule]", "True"}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"Opacity", "[", "0", "]"}], "}"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"FillingStyle", "\[Rule]", + RowBox[{ + RowBox[{"ColorData", "[", "97", "]"}], "[", "3", "]"}]}], + "&"}], "/@", + RowBox[{"Range", "[", "2", "]"}]}], ",", + RowBox[{"Filling", "->", "Axis"}]}], "]"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", " ", + RowBox[{"ReIm", "[", + RowBox[{ + RowBox[{"\[Epsilon]th", "[", "3", "]"}], "[", + RowBox[{ + RowBox[{"#1", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"Exp", "[", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]"}], "]"}], ",", + "\[Kappa]egg"}], "]"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Phi]", ",", "0", ",", + RowBox[{"2", "\[Pi]"}]}], "}"}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"Black", ",", + RowBox[{"Thickness", "[", "0.003", "]"}]}], "}"}]}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.1"}], ",", "1.1"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.6"}], ",", "0.6"}], "}"}]}], "}"}]}], ",", + RowBox[{"AspectRatio", "\[Rule]", + RowBox[{"0.6", "/", "1.1"}]}], ",", + RowBox[{"AxesLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + RowBox[{"Re", "[", "\[Epsilon]", "]"}], ",", + RowBox[{"#1", "[", + RowBox[{"[", + RowBox[{"3", ",", "1"}], "]"}], "]"}]}], "]"}], ",", + RowBox[{"Style", "[", + RowBox[{ + RowBox[{"Im", "[", "\[Epsilon]", "]"}], ",", + RowBox[{"#1", "[", + RowBox[{"[", + RowBox[{"3", ",", "2"}], "]"}], "]"}]}], "]"}]}], "}"}]}], ",", + + RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", + RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "]"}]}], ",", + RowBox[{"TicksStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", + RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "]"}]}], ",", + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"246", " ", + RowBox[{"2", "/", "3"}]}]}], ",", + RowBox[{"Ticks", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", + RowBox[{"-", "0.5"}], ",", "0.5", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.5"}], ",", "0.5"}], "}"}]}], "}"}]}], ",", + RowBox[{"Epilog", "\[Rule]", + RowBox[{"Text", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + RowBox[{"\"\<(\>\"", "<>", + RowBox[{"#1", "[", + RowBox[{"[", "2", "]"}], "]"}], "<>", "\"\<)\>\""}], ",", + "Bold", ",", + RowBox[{"FontSize", "\[Rule]", "fS"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", + RowBox[{"-", "0.5"}]}], "}"}]}], "]"}]}]}], "\[IndentingNewLine]", + "]"}], "&"}], ",", + RowBox[{"Thread", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"Reverse", "@", "aegg"}], ",", + RowBox[{"{", "1", "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\""}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"White", ",", "Black"}], "}"}], ",", + RowBox[{"{", + RowBox[{"Black", ",", "Black"}], "}"}], ",", + RowBox[{"{", + RowBox[{"White", ",", "White"}], "}"}], ",", + RowBox[{"{", + RowBox[{"Black", ",", "White"}], "}"}]}], "}"}]}], "}"}], "]"}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.816515074151752*^9, 3.816515120999682*^9}, { + 3.816515315243464*^9, 3.816515331499495*^9}, 3.816515399949691*^9, { + 3.816515546599065*^9, 3.816515621608923*^9}, {3.816515666489868*^9, + 3.816515669321512*^9}, {3.816515794588127*^9, 3.816515803419868*^9}, { + 3.816515847693048*^9, 3.816515890021503*^9}, {3.8165159365821333`*^9, + 3.816516038120009*^9}, {3.8165162695648813`*^9, 3.8165162722928143`*^9}, { + 3.8165163869343987`*^9, 3.816516432511044*^9}, {3.8165165359694557`*^9, + 3.8165165704333057`*^9}, {3.816516985745493*^9, 3.816516992360854*^9}, { + 3.816517081595516*^9, 3.8165170995227623`*^9}, {3.81651727191098*^9, + 3.816517301038579*^9}, {3.81651739275278*^9, 3.816517405448842*^9}, { + 3.816517762023346*^9, 3.8165179105135107`*^9}, {3.816518034124354*^9, + 3.816518045828045*^9}, {3.816518725320525*^9, 3.816518729912027*^9}, { + 3.816518761560957*^9, 3.8165187910490522`*^9}, {3.816518833018791*^9, + 3.816518896683169*^9}, {3.8165189857410393`*^9, 3.816519082862582*^9}, { + 3.816519125263579*^9, 3.816519148599649*^9}, {3.816519179953043*^9, + 3.816519211832706*^9}, {3.816519257993894*^9, 3.816519352403204*^9}, { + 3.816519530894964*^9, 3.816519594887865*^9}, {3.8165223475775423`*^9, + 3.81652235020877*^9}, {3.8165956854771423`*^9, 3.8165957800292053`*^9}, { + 3.8165958126461143`*^9, 3.816595886199092*^9}, {3.8165962652862463`*^9, + 3.816596311238987*^9}, {3.816596446729855*^9, 3.816596545002994*^9}, { + 3.8165965820602617`*^9, 3.81659661097248*^9}, {3.816596911938657*^9, + 3.816596915706008*^9}, 3.816597324393899*^9, {3.816678449244966*^9, + 3.816678518022129*^9}, {3.8263527446745977`*^9, 3.826352756378562*^9}, { + 3.826352824308754*^9, 3.826352833036125*^9}}, + CellLabel-> + "In[201]:=",ExpressionUUID->"33123f69-02c8-466f-a31d-aa33dc2739ed"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + GraphicsBox[{{{}, GraphicsComplexBox[CompressedData[" +1:eJzt2fk3Ve/bwHFUpubJEBlLCpUmY64MjZKSqKQyJUUJJZmKUOaiaKBBmUqZ +IsQlGZLM0zEczjFUQkcDUnz63rv9eb7PWs+f8Cz7l+unvdb+5d7Xet1vacvT +RjY8XFxcMlO4uKj5WWZC9C7vJ+T699Fkfi+yu/gJF0mbOmk+vAKnqw8M1v7+ +hNnev3f1St6CjOSxqhvn+7BN6POmGapxIHQvzdVmpA/nF8mreskkw4FHLDeW +y2ecOGKVpZ+YCnMu5yyM+v4Z9ZZsO3DfIhNOFnPJczv1Y/1PlXf2G1/CtH8y +Ll7m9GNomMLEdY1XwNUjanbq5ADOj67+VK5UCBr6dplfewawfGirkdauIrgi +tbdL0WwQX123SzjlVQxn2g+NSlcOouZThS8m+aWwdnNxR77aF7QXA+E4gXK4 +0Sl7seneF3xvHaX72KICTBMDMlf/8wWDDnW4G72phDXOqQv89nIw8H7bYimh +GnA3DAz2j+Xg8Egw1u2shbxSns+fmRwUDM/esPpyHeCIyjR1/iE8yur+5Z1b +DwrxFYaei4Zw6MUqn77BBng0Q9xZc+kQKte9+OUp3gR7DFN/CMoP4awOzUd6 +es2gGuPnEy0zhMJnr1dst2KAgk+mWMaCITx2ektasmsL7L4q3BY9zsHi3OkD +Cd6toHpOqu5rAQfF0rNuP3drg6XbzlizHTn4BnuGTli3Q+SE/ibx+Rzs5VNe ++FaLCWFjuSbh8V/Q6xywf/N1QHp2noWV4he8YPPCJQg7oOfs2TLW40E02nHc +Us+mE9zPyHMcFgyil42KoupYJ+w4/muBn9sAbjKUtu7YyAK7vivKD5v6UVrQ +qS/lHAvMuBdlayr1Y7vu90vHEljAKM/3KPD6jDX6UY1na1hQH15W5/6+D+fG +f8jb940FM57lB6QK9+E6gbqhKzPZUPjs5MELFp8weMbU4BsybBjeGTi1Jfkj +wq7RdJ41bGiQ2KOc8uMDxs2KsNqnyQYb8YqtL+EDLlTyi5mpw4aqs36B94J7 +8YZar0C8LhvWZYXEDbT14Nzxn3XXtNlQP7ZFY87KHvzQpbFMk7zf1yLpZe3b +jdWdygN869jwfM6g2ur2LtSs6lffvZwNPsnzjieoduGCqk/Vx8TZ0JZuvW8o +mo37Nt7uvkm+d73V1SOyEyz8d0K56OxRAxsWjn8r1dvWz4JtOhtqPj3sxIte +hus1GCzgT7gTKufbgSVt0xoVilkgmZ+Qr32SiSwLsYN6z1kgcOTdKzGzdlzx +drtL0i0WbL75xDjMqA1nJzaoeviy4Kb2YJjjnlYMZmX6t9izIKPbrSbEtAW3 +8ujLtO5jQVPReFW6NQNLE+fLR2qxwIqhtzjxfDP6M/LtFy1jAfNwxOn1EU1Y +c4onz3M2C35sv9AhldmIVmWvNaI5nZDO52Kzuq0B25bZn5Ut7ITjtZc3K/A3 +4GYVzZCM8E4IqFW43qxej2erxiQPWHTCopgt1hNOdShXXlkgu6YT5j/uHLFJ +rcWYw+23paZ0go6jdlTbtxr00fhjfrChA6YERk5foV6Dx3OTmlsed8BKV9tb +G2dU47kQnfPxrh3ge3SoaW5KJcrGPVEr3d4BiTbTuJ1M3qNVmFHERvEOkBKx +XDCFvwIdLqUfnMNhwtx5GxUdXpfj+BiPmnYREzx93jmY+bzFlQ1JKbU3mHD1 +1Ykmjx1lKHR3cMUbOyY0+vc89RUtRcbp32lC5DwI9gQGyXKKMeAfb9N385jA +mruqU6jiDVpd9mOzPrZDs1XIqYUpRei9I7XWOL8dXAoOJXRGvsYpKqlF8hHt +MJBrIb/epxBPvo/uPGDXDtNsvgmm9xVglaHi7g/QDtEq67qkW17hp2Jd7fdC +7aAR9chie10u4uFYUYEvbXBmX51WfsNL3N1wKul2SRuE17s4CrGy8LKOznWv +mDZQHvxT/vV7Jrbk1fOln20DecWnj4dmZ+D0Cwb9a3a1QfH0D7xZa9NQ2lZx +/LdcGzg4Ohsz8p8hV8wD9ZlcbbCjrHDEXeYJWnkPvbBsaYVI0aP7MyMTcPmt +w5Jj6a1Q91T1Se/8R2jpvLmhMrgVlN7H2rrdu4++67SSmMda4UPcDKl8h9uY +9jrWbql2KwSzPabNz4hAnkIeiYdireB8+LFklVggfvbaxb9npAX2KHoK1P1w +w+9xmedW1rbA/+wNOf2b1ipPW8BMSbc/PtkNXseeW2kX0ALZCiUDtgFXoXLw +0me0bIELTqGPeGZEwIuY4HJVrRY4svzYSye9WyAePBZbI9oC+XxW3G0O96Bf +UyT68jADVniqsP2KH8K1oTXH99QyYDdj2MC24jGER/McWpvCgNMv8duPikRY +5DxjgfxVBlTe+GkTWvoEVooE9SnYMOBosbTytbxnIAFb4zW0GTD1fignpTEV +tvXtszRZzICVRQuuSeqnQ6PytzSnsWbYNHRD16AgA0IqBVUjGpuh20a95+iq +FzDLa1QzI60ZDCztc31js4Bn462EqpBmSHrodKpz+kuQXrozscuuGdTa2Dvv +uuZAnP/Rp/2bm4E7+crTLnYumIteyvkg3QzaPhJ2LTtegWmczmj1RBPcyH/+ +NDE9HwQP2v151NIEJozQGmdRhDNJBmNHXjRB+WLvpelQCFEmDmN/wptAenBR +/q5vhXBoSkaOt30T/N7gKBD36DXUV0S4t29tAo/jctWFJkUw773EpbmyTTDl +/DpGHv8bUFnIFyX+TyMc8X33/VHuGxDSKP85ymgExXkt8WH2xTAhF8D7IKMR +ppqwV4VKlMB2TkDQ/NBG2FxysDS9pgSWMt1U9I83gh9nrsIc31LYPvxNUk+n +EaQTEz5mry+Dp+NPBcbEGqGi6Z8/+Z/KIJC1tfHYcAMIrDnxbc3dt8DvVcwd +UNUATaOZBUq7y6E7eYfV/oQGSPW2H82f+g54C8PW1Xs3QMcxu+2jOe9gm1HA +p2+mDbA4d3f94OkKCHk6/CF9VQNwf+9Y/ULuPQSciKqdydcAQqkir452vIcz +4yJFE8x6cC5NHOGNqoRcgUVRXpn1UKwco5m9uwpCbPXG/APrwWT9Epnw6dWQ +37VinvDRejirlJcTW1YNrq5GGrLr6yE16MseL50aqFubYJwgUA+REnIfOh7U +wPXipvV3mHUgNL/3+gR3LXgeC1w8lloHAYoXDvVa1oKBfQBfjm8dtDcNaccV +14JHeZh7w7464FXLV9NZ9r8z4W6ScE1gHfhf3Gv4e7QWEgUDxA5w6qBQQtRj +pKwW4n/kLOg3roeRfQwDhahaOCOktjAirx4+v37ODrOpBfeb2owjsg2Q4tw1 +S2xtLTiKXUo6EtwAP2s3Ohf9qQGb+BzzByMNIGmatdO9ogacXA5cX2fZCMJu +fnfUb9bAfe3IFcurG8GnxzDpx5Ea2BOrORa2sQnY8R1eMfI1oGAsruKW0gQF +S4pPGLKq4dO0A9yjEs2gc3XEbYZDNag8a7AUu94MIQrncvaNVgFXv8miMV4G ++HvqnZjpXQUrdabsj/NkwPSz3YILplaBNVt818oRBqxed2Vwm38lbIw5k/vM +sQWcy395XJ1WCT1bzQbVBlvAsXjWirRL78H7bs6P3pOtoJ0m6XnrVwW0+GdG +lw+0AvdQ2aCoYwVEWO87P366Dd5+v9DK1/UOHHKy+KOG22BkKNx8w+53IKJj +wUzzbIeoo9s8z+aWg65w4E5bfibsO+MTFiFVDnlbOm5Re8PWztqc7BHYf8dY +aIZcB1TPiea90VkGS16NiK7N6YCdkTEl01TLQIRvnbClYScM/3plciqoFBpH +1bizP3WCpMbwyZAWci6sO6QTdVggdn5352KZEsiNczn9+DoLlk9cPd5oXQyb +4m2qLXtYEJwz+OTYgzfwS6jxOkeFDW5bzr31bi4Cj6+MxWYhbFippHP2HW8R +WJsKeGf2sEGYr/JS/8rXEGl7e7+gVheUdi4q9TEshDcpfrEnb3WB3qMD101r +CsCc+/mz3pEu2H7fW/7n0Cto228c52fSDU/SoqcJcOWB0+AlLdOX3eD2MEPg +wfhL2BD1tNNavAf2HZv3+n1vFhjr3buQ5dMD8+aH9YbkZgKvh1GhUX8PHGyU +iGC6pQNTLZJL06QXPhV0GifLpMJ4qNsupze9cEPRMTPblvxnu/rlvq75ALOE +nno/3h8PLonLrzx79AEyJlbvaFz4ANbc+FN/W+QjaGd3n/2hFgWY17fsXuhH +iEgUmLPkeQDwR+Mc4o//7hEHmVlviD8gLPAM5Q8UqNn5hfgD1ndyDIk/cGKG +ewXxB8TO2apF/IH7OQOexB/ASTilRfyBMscWeBJ/wJ5Lti+JPzCEYTGL+AOM +0nL3En9gtn7tQeIPENkgOkr8gXxmZrHEHxCWKCsWofEKf+kMBDmcHIDcRR1O +xB8oHPXxLvEHXPK20iX+wDd5zzjEH7C6+VUq8Qd+OeiySaZyEE7t+rrUNL8U +c0ycxog/YAlzvxLxB67kVvZvvPcFmg6KWz+yqMBrlXkexB/gcmj7FuIPjDlZ +Xnd5LwcCZKeOSwrV4IqvL2OJP6Aj1buc+APrUrZ9Iv4ApWdZ64k/0CVGagXx +B3RMMZS/mFuPt798AOIPcHse4ED8gfbGe0yJP8BAIb6B+AP52GETAvJDsMT9 +4CZdvWZ05FUOJv6A+b9WtRJ/oNvKQ0D8AS6CBX3EH3iYJ7mD+AMKDLg5xB+4 +Z8nFSOIPUI4/akP8gTMWpiwk/oC9ZW+SiD+wzMxpp9h8DuzwSF9VpsVE1wnB +POIPOON+RXecrwPn6IRrE3+AzvTBvcQfOB6UZEP8ASb3GL90bTqxr3lZP/EH +sJpqlhF/YIkz73TiD9D/7XyY+AP7HPVliT9g42JeNvEHSm/WKib+gPvdXIHE +H7iRR92b+APKZio0E3/g9tCr5cQf4HW+4QXxB97aoRxC/AGiXv4/iD+w+Giy +OfEHiHXqhxJ/oO6U6dOJP0D5XWo28QcKuk1ZS/wBMUot1sQfOKPonh7xB/jX +z75D/IGzn0dEEH/Ax/Nyc4k/UMOzMIn4A8yfiTKIP5BrcZc68Qc05PfKEX/g +Fb873sQfsOXWxUHiDwwKaqH8Aaunt1L+wHAJPsofoDvCpPyBpVLFlD/gWvYI +5Q+sLP/91x3/TtSOyxon/oApaXd3EH+geefJOuIPWJzgsYH4A/tnCgUTf4CF +WFw98Qe+HDhbSvwB3rWiR4g/UGrmYcofYHVYkPIHJm5OMCf+gKoIHS3iD7Tl +hIQTfwDIiwYQf6Dp8YvVxB9wXzlZmvgD/TZOrSb+gMY4EcofuE32IOUPKPN+ +T/kDpaLTKX+A02MRyh/I5xPOJP6A5jI7deIP5DIwPkb8AToRr88Rf6Cuwt4t +xB9w8cilUOIPnG9+/xrxB8RoClH+QH8fXwviD3CWlckl/sB3gW8pf0AJM4Py +B5bmjN0k/oCgcg/KH5iy5i7lDzin/JLyByZJiFD+gJTUH67EH7hqcw/lD2Bv +vUf5A+tCjCh/gHTQI8ofuO1JEeUP2OG82Iz4A3lpfwCH9ge60P6AJbQ/MJr2 +B8jT/kAm7Q/opv2BS2l/QArtD+yh/QHHaX9gGe0PsKX9ga60P4Cf9gf20v6A +I7Q/sM76rz/gHu0PTKP9AVwlf/2BirQ/4DntD/Sh/QFWtD/Qj/YHnKP9gatp +f8C//kAR2h8w7PbXH8ik/QHbaX/g6fATlD/gcu0tyh/Yt1d7lPgDXqSdziL+ +QD37eMof4KT6jPIHNvGoU/6AeJWtlD/Q4qehNfEHFKyfiCP+QPPMKkniD0hU +t6D8gQnnSil/ANdma8ofeID2B9TQ/kBd2h/QS/vjv/dWSrQ/cCftD0yn/YHP +aH9gCe0PdKX9gWm0P/Ak7Q+Up/2BSPsDB2l/oBTtD7xM+wP1aX9gEO0PPEH7 +AxfS/sD3tD9QifYHmtH+wEW0P3A27Q88QPsDVWl/YBftD1Sl/YG+tD+QSfsD ++Wh/oDXtD1xE+wOf0/7AZbQ/cBPtD0ym/YGjSX/9gca0P3AL7Q80o/2BjrQ/ +cPDAX3/gHtofeIr2BxbT/sBw2h+4nPYHHqP9gV9pf2AZ7Q+8SPsDhWl/4ITr +X3/gatofaEz7AwVof6AU7Q8cov2BE/v++gO1aX+gHu0P/NcfKOnqS/kDFyoc +liL+wNdyuZQ/sLIqn/IH/usPDKL9gX+U//oD/3j+9QdW0v7ANtofKPvDnfIH +rh+8Q/kDv6TZqhB/4PnLda3EHzh816qW+AMtWYG9xB9YKmxO+QPN+TUof+CZ +K3cOW3S8R9lUjvI/zHpUELlO+QPFOYKUP3CuwWXKH/jKbB3lD9w9vF6S+APX +JJjMIf7ALRnpL4k/UCw2XZ34A2dnHqf8gTpegpQ/UOjZ517iD2zZH0H5A5nL +Ayl/YIinHOUPVH3iR/kDvydFUP7Aq5H9lD9w1aFAyh/oarBVnbjjvzMq3EGE ++APfWM/dTfyBMvx3RIk/MFJY/wLxBxbOrJ5B/IEqf+K2EH+gtGfqAuIPNDJW +ofyBw/iG8gd+jN0zm/gDA6MlKX8gU27QifgD3YYCKX/gtP5wyh/4KC02iPgD +Hyw3uEn8gduvDFL+wM0D1yl/4PfXQZQ/8LCciDfxBzasWLuB+AO5jnvYEX/g +NU8tyh8o6VZH+QO7HXmtiD9QICib8gcKuMmLEX/gEtddJ4k/8HOWrSnxB3rU +LaH8gd8mdCl/II9rFuUPVB/eS/kDH/5gUP7AmXtsKX/gOi5xyh8oXio8TPyB +b219KX/g8P1iyh/4eD+D8gduH+NxJf5A2yOrWog/8GeQEOUPDFX+dYj4A7VF +Oc3EH7jc1vw88QdeLonTJ/7AbWJ5ocQfyDdT4gG1N5aV21hR91hte3mFiT/Q +u2IJH/EHFqxTW0D8gR5cW18Tf2D43fhFxB/YcEH1APEHJsfd4CH+wJKd3fbE +H/jj9w5Z4g9MMVrBJv7AXQWHjxN/oBK79gjxByolXqwi/sBjd7uTiT8wYsHV +COIPFNLUKCf+QJ+EKxLEH8h8OEL5A4WNrV2IP3CZfKQr8QeGrrExJf7AKXa8 +JcQfeJ/ldJf4A6M3fQ4l/kDuu/eSiT/Q0N5AhvgD3ZLOHPI36Ub+kln8glx5 +2JuvCMQfmDM3WJD4A61mKlD+QKM+r0LiD/S1PeBK/IESBpu6iD9QMYyZT/yB +QYe+hxN/4DX3P/9omPTiqScpe4k/cK5m917iD1SYpZ1H/IGCDrnLiT/Q1Mbb +h/gDnydY3ST+wHLeQWPiD3xoeZXyB05ptaf8gdItyyh/4O7cLbOJP/D/9o/J +HjLZQyZ7yGQPmewhkz1ksodM9pDJHjLZQyZ7yGQPmewhkz1ksodM9pDJHjLZ +QyZ7yGQPmewhkz1ksodM9pD/7z3kPyiaoPE= + "], {{ + {RGBColor[0.560181, 0.691569, 0.194885], EdgeForm[None], + GraphicsGroupBox[PolygonBox[CompressedData[" +1:eJwlz1dXDgAAgOHvKyObUrZkJEQyslV2ochMRrKyiqwoe0WInxXKzMyWmS3Z +POd08Zz3+o3JK8wqCAkEAkEquRBs6kUucZkqqrnCVa5xnRvcpIZb3OYOd7nH +fWp5wEMe8ZgnPOUZz6njBS95xWve8JZ63vGeD3zkE5/5wlca+EYj3/nBT37x +mz/85V+gaTRICKE0ozktaEkYrWhNG9rSjvZ0oCOdCCeCzkQSRRe60o3u9KAn +vehNNH2IoS/96M8AYhlIHIMYzBDiGcowEhhOIiMYyShGk8QYxjKO8UxgIpOY +TDIppDKFqUxjOjOYySzSSGc2c5hLBpnMYz5ZLGAhi1jMEpaSzTJyWM4KVrKK +XFaTxxrWso71bCCfjWxiM1vYSgGFbGM7RexgJ7vYzR6K2cs+SihlPwc4yCEO +c4SjHOM4JzhJGac4TTlnOMs5KjjPf//jXWY= + "]]]}, + {RGBColor[0.560181, 0.691569, 0.194885], EdgeForm[None], + GraphicsGroupBox[ + PolygonBox[{{1, 201, 200, 199, 198, 197, 196, 195, 194, 193, 192, + 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, + 178, 177, 176, 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, + 165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154, 153, + 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141, 140, + 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, + 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, + 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, + 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, + 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, + 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, + 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, + 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, + 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, + 2}}]]}, {}, {}}, {{}, {}, + {Hue[0.67, 0.6, 0.6], Opacity[0], LineBox[CompressedData[" +1:eJwl1WVbEAYUBWAQu1BU7MAOxMJO7EIUEwMUGwO7AwXs3KYLXdjtpuvZbsbC +dmmup5uxMNZ7efbhPfcXnHPDEpNjxwYGBASsFhk3E0FkJgtZyUZ2cpCTXOQm +D3kJJh/5CaEABSlEKIUpQlGKUZwSlKQUpSlDGGUpR3kqUJFKVKYKValGONWJ +oAY1qUVt6hBJXepRnwY0pBGNaUJTmtGcFkTRkla0pg1taUd7OtCRTnQmmi7E +0JVuxNKdHvSkF73pQxx96Ud/BhBPAgMZRCKDGcJQhjGcEYwkiVGMZgxjSWYc +45nARCYxmSlMZRrTmcFMZjGbOcwlhXnMJ5U00lnAQhaxmCUsZRnLWcFKVrGa +J3iSp1jDWp7mGZ7lOdaxnud5gRd5iQ1sZBOb2cJWtrGdHexkF7vZw15e5hX2 +sZ9XeY3XeYM3eYu3eYcDHOQQhznCUY5xnHd5jxOc5BSneZ8P+JCPOMNZznGe +C1zkEpf5mE/4lM/4nC+4wlWucZ0b3ORLvuJrvuFbvuN7fuAWt/mRn7jDXe5x +n5/5hV/5jQc85BGP+Z0/+JO/+Jt/+JeM8geSiSAyk4WsZCM7OchJLnKTh7wE +k4/8hFCAghQilMIUoSjFKE4JSlKK0pQhjLKUozwVqEglKlOFqlQjnOpEUIOa +1KI2dYikLvWoTwMa0ojGNKEpzWhOC6JoSSta04a2tKM9HehIJzoTTRdi6Eo3 +YulOD3rSi970IY6+9KM/A4gngYEMIpHBDGEowxjOCEaSxChGM4aM8U5mHOOZ +wEQmMZkpTGUa05nBTGYxmznMJYV5zCeVNNJZwEIWsZglLGUZy1nBSlYF/v9D +/gNGEqux + "]]}}}], {{}, {}}}, {{{}, {}, + TagBox[ + {GrayLevel[0], Thickness[0.003], Opacity[1.], FaceForm[Opacity[0.3]], + LineBox[CompressedData[" +1:eJwBsQFO/iFib1JlAgAAABoAAAACAAAARbugmPS97D8AAAAAAAAAAP6Egbug +sew/wXiMooVPXD9xxsqxSaXsP2HxmqpfQ2w/vDNonZKM7D9ETrp8GCt8P48b +o/sDW+w/iwYXA6D6iz9NbLrZf/frPzBKxCYcmps/rHmTEaAv6z8hUvwaYtuq +PwcFout7oek/uHT9+91quT/paKBmHZTpP5hVJDbCzLk/M3D6psGG6T8dUN0N +RC66P4/hPLcSbOk/KFU/FSLwuj8KWrLA2DbpPz6gjBJSb7w/lC21zgDN6D82 +vqI711u/Px/AAOUU/Oc/kcEnORZ4wj/hQJNhJmfmP0AGhv/ojcc/EP50112m +4z9qKlTroZDPP+C5UP3AMuE/r7jlbnL70j/GzMem6ovdP+8exbP43NU/oDe7 +J1Jc2T+D0d+uZSbYP0TYiujcFdU/cT8eJPhP2j+6/MbTvQzRP9j5m95JNNw/ +wk4V4DCwyj8U+d0WEtLdP6iqxAsImcI/dSc6u1V13z/0pMGm3qO1P23HsQ20 +dOA/Ns+UHjlxlj/p5+Mv1CThP/AsX7S3zlE/4krgBfFb4T/CVNWf + "]], + LineBox[CompressedData[" +1:eJwV1nc8Vu0bAHCrwY8GSVEqlRZNq3i7jGRmJjIiDUWhoUHKSBmVkTLSEpKR +l3hLvVxCIXvzePA8zzlGPB4nlTT97vev8/l+7s+5zznXuK+zwt3H5oiIkJCQ +orCQ0H/X4H+N+q62WaMu16428SAX5i1Y3LBwSxnqqt6XSbnOA/eFJ0I3u5Th +/Z7YXK9IHjSXVRm4RZTh/5xsanbc5MGVfk9bEV4Z+m7qDOqM40HxnrEXtvFv +sTruW7XEAx5k03oCg9/lKCH9r699IQ9+xpe4KHHfYczbFItADlkv3KWnNu89 +6nHaxHdQxKZPqlzhPU6EvZ0zOcADnQkndbEH75Hfk8f3GuVB7hOgw5yrsHH1 +q5cWkzz4KqZodr2vGt23Gx8S/I8Cn+eZjU7favGv6aH2EA0KamVNZT6trcPd +CTbH5bZTsOO8ZX2qYx1e+3z1a5Y2Bdy1PorOpXUoLPZhpEGXguMhnTfWXa/H +hGLxYXEzCi7O1vU3VWzEvP6gaWNXCi7QyXdKtzTjFnGZ6MZrFHjn6p/3Nm/G +MweZGu0ICsLaxEI3ejTjtmDbixlRFMwekLTvT2nGV4FOK87HUMAErkqbId6C +TyvzxGYkUzCXf971NN2CCZx/bBpyKPhkq52gmdmGJnGGa8eaKGhqH3q+qKIN +HYPyVL61UJAWu+GSeB/xGGycbqNAWDnhqPyCdtQXSp4n3k3BOCNa/iOoHTMy +O9JEuRRoi3inoEsHmjRbH73FUHCrQu3c44sdqPe4Rc9vggIKvd7cvtOBNs4X +8/d/oeDkbsMXz+o78Gq+x2aFKQo267YGp+zsRPexF31Xpik4uHdbUsbKLrSM +FjGpkaIhNVxYPF63Cx9UrmWHzaXBpXzTtTiXLqxzabsG82nYXhZeX57QhfYW +94WyFtBgc+5I1CfJbhy2k49zVKBBzjN5U/SPbowSOqqrtJaG4LGZobGLWKjF +K1HIWUfD6IVuj3QNFrpucg3YuoGGK3l+wiJnWHhP1fSh2kYazp/arRrNZ+Gr +kiRHKTUajj4Ii/vD68EMs+Q9s4AGR0PdHBRj4+i3eUG+ujSovlvHuqPMRqeD +dXVtejQovXkYFuzJRrnh3gu3dtFwTMHx1r7PbExzmn2y0oQG2u9raZlsL2qo +O1aKmdGg47dtha5WL7IEe4vBnIbMroSQy4G9GDjVuiPdggaJrqie77P78GyJ +Q7WKLQ3CantKpVT6MOPUpR26e2mw1wvq0rDsw+F4pnyPHQ3qxubPq+/0oWB/ +beM+expCGm2PbinuQ+kJ2GzjQEP+z3SLPHYfZpsvdzXaT4P0d+G0kZX9GO6m +16foRINCWrV4plE/siUVxIWdaXhkZhnr79WPEfWxL9nEc3PyPx140Y/X6y/Z +BB2gIfJLwxppJQ6e2PXW6dxB8j3plnMN1Tj4vsQ4SMmdhuiprydCdnMwuaA6 +ooq4ddvyC0u8OCiXVTT18xANoqqPFC4GcnB1pbJa1GEaery1V3CiOegpmSgk +c4SGRY4ntesLOXhrlt3k/46S/HyMNbCt4uDie1JfLhGrfRuJp7o5GJ/7cMMg +cVfJ6bWX+Rw8ml52zciDBi/1xkmlaQ5mjX4SPCK2KbGaap7PxbzioD0TxCIV +zKqoVVzUHg6L0j5GQ/oRq7MWmlysKBuIvUT8auHLXgVTLp5usjQp+m9dc77D +Z2cu2pXsTB4g9igUdLf5cDF06dQJqeOkHu4F7y8L4WKA1Y1nKsSL81Pqiu5w +sdCxQ9OAWFesYG1RJlmvCJi2In7m3+xe+oY8348/ZEeceuCpT3MDF1UeuXdZ +E7sM+xsIuFxMeMh7uYu4s1KlZcFXLhZwd5zcSLwuWX2u4Wwebm0R7Z9DbBmR +NnZZgYcZVQ8///d+x3OXupVv5GHO5x2xL4jDE7sc5urzUGlf7f3zxOsaHtQc +seOh/Yt501uIvbU/PHl3jIdeN+OTeSQ+ErkGXRsv8ZC7PMsugjhT+6iL3S0e +fk3VFlEl9j0zNBb6iIc8vXuDVST+0gt9L70u4GGwbiJ/P/HscxY/pyp5KIRd +v3kkn2UOfs7QyUPPym7RQ8SJnf6xNz/y8KXp+FA3yf/qT0+09eZQGMJiCbJJ +fVzWkY/LWE6h0Job1ExiM13pKzLbKOSnzXZ0IPWUsPgnS9SBQqfa/d59bjRc +5G9Ye92Twl+BlWxpYt4a5+r5gRT2vFT2/suV9Et5R7FOKoXWmgZJZ11o8KtY +N8gupHDiuI1IMKlvy5VRClerKEx2EFUNJf3AivxsM8Sn0GGx3uFjpF9m/8lQ +eTJNYcfxoZ1mpJ9yHLD0iDSNez66n19J+u3puuf//NGk0VjqUMoL0p8DX/KY +NlMadZXr7bxI/y6Y6RWV70Ije6Rz5iIbGiyee1wLDKVRavfvIUtLGgylBeMu +jTQKXr2t0iDnxR6LfTGHeTS2KJ11u21E9vP6Wuv7lcb4vWeX0obkfNnEZCYp +DOBF5UWJB/XJfj+ujqw7NoB/Y3FczQ4abix47eAYMID5j5OtK7VoYE5rBUbf +GsBBnxGHAg0apnIaTswqGsD7W+80eWylQca9wn29yCBGjUybqZPzMvKXiWig +7CCC/SLNKmUaDuQ+tm1dO4jLbXZdN1tFw4wLq89FWg7ix13bqfXLSHxH/qlQ +vD+ILLddTnrkfF6Q8zCrRGsIrTrMEl78JPPp5i5P1p4hlF8aJbuQzAPTifC4 +KfchVJtW8D5K5oVM3y8trZtDaB3VJNvEpyDIzuJMKXcIiw3GpSvYFOw5f0aG +MzmEchqRmjFdFPR+TtkpLDmM2mbiM0zJ/HLV3aGppzGMzZIDwqG1FLyV/xH5 +d+QwJg7PtJ9ZTObXhWvuVQ+HcUSl4K5aIQWGzon5PYXDmLQ/w8Iij4JzTFDK +z75hPLnBIsYgnYJn9eVv5237iIJvCTu3kHm7bl31KQvWR+yO8+uaOkjBk8Ie +Yfnxj5hsJ7Wh3omC9yoK+n2iIzgWJJYVaUfBU75EmKXqCHJ1lj8uM6Zg3phh +Ve2VEVwSpv73go0UfHvTHWMbP4JuZjqPNq6hQDb7g2Nz5gjSHr45m5dTkLDp +S0Ru8wjO/xWVwJ9PwfBrhaN9SqOYkmegp/uFB989DxpLao5iiJxQUgKfB719 +rXtUzUbRSzNdpoPmgW+xn5HRmVHcEW79e1Y7D6YtAi42lY/iykbfaB3y/9Rz +WUaLd4CPavLHeptP8sDL3u3im1N8rLRQ0Xt9mAfdV2mPkKt8jPG7sT7CiQda +G/k1nc/4WH7ssQHLmAeHc0qF7n7mo4pgXraREg8y2S2SLTPGULBsp637Ih58 +eZz2ekpuDCnnD7/d55D/rxqX02I6Y+jB+rN64Q8uXN516aZE6BgqyH0I1m/i +gkrfCBUTP4ZCS8ono95xISfDqfpP+hhOWh2Rf/OaC9I/EvKjq8fQdbOe7Yc0 +Lmw2szQOkBTg/AwPkZzzXJh10NloVbQATbbDT/9FXNA6vfffrw8EKHJ7QlZR +kgtlCzYXZD4XYMmWa70Z0xzYWqSWlV8vwO3ivNvHBzmwO+DSc0OJcWRPqhcX +FnAgBg0kFi8exxVVbMtr6RxIri8Rr10zjnbLkwR/JXIg9JB4XM2ucRSR1Q5z +DeSA8uW9xmsCyf2KB+S8d3OgwnHuX4OR4xiXXDp0SosDwtq31gQnjuPKqm/O +zus5IC4ln2jyYhydAlYkDkhxIPxVmNaSoXG8tEPrXOLTfpjor7GuWMngvWFg +if/TBxLN3PS56xhMjTk+KpfUB/b/VFqYbmTwg0GUze+APrieEbs9UovBNE0n +FUu9PngU3lu7xZzBbZZW6Qs/9EKIvImCwIrB+S65E4PZvSAVNimSaMegDK+m +MeZmL9AN4UaFBxgsds88ddqqF3Kk3wZK+jJoFFOgcq6NDVHXTx7adpbBuzfy +3ysUsaHKucbE6AKDp1IEV+/fYcMI26NLPYjBZar3mzX2seHpvjuuKtEMNusb +ZX1o74EW/9eZxXEMKt4McXIq6oHi7oaQbXcZ/BE+KFcb3wOSZ1VL+SkMrvz1 +UdvEtgdGiwMMzz5j8H1O2ZbaBhbo6xjMOJLDYKSitLprLgtaYWqufh6DmyIC +TrdHseB0Vt14WSGDEqFsQ09jFojwj71xf8nglTrNFxHKLDgVxi9lihlcvf2I ++E0xFsz58edgcymDNjn71uqVdYO3wuHfK98y6C9Y0zhxvxuCS5yr3SsYdP/U +KR8Z0A0q3eL8tCqynr7oiJdGN4Q0DBlm1jA4/jDE6B+Zbgi0y25OqGVwa5rP +3WGmC0JbL4RrNzK4L/ic8YzsLtBf9Kl4vIlBNwPreOZ6F7isWr8+poVBPRMl +xXeHu8Cb4bDutDOoI8kq36DYBRsDfir/7GAwZ/LKh9IfnbAmdE6NeReDicVR +H3U6O+F7i51qEYvBsEY0+xXdCVE+mkJ1PQy+dC6+vPNEJ6T0HzdtZDOodDgn +86RxJzSMNMpiL4MhXG39yFWdoBU6fOJeH4MTEsaV8UKdcOREvePhfgb/Gh98 +epPdAcfbt4wu5jBYtsjlqN+rDrAfdFv/L/Fd9YUXzeM7QFtPZ7UZl8GD7+/v +l/HtgDDt9X5NxHfanVPeGHeA5XifLvAYVNtsP229ogOUSufeSyAuUXu1tPN7 +O/hnaSV0E2+OzY0za2mH8rIkkxkUg6fvOH/Py2qHfT5qVfLEs5I6+WKh7aDY +UL36P586JzPbzKkdXDpaAkSJDZb2DoRsaweTqOucDrKfnE7j8tz/tcO0TItX +PLGPmLHtB6oN/KusNHSIo8Rd5XretIHSBpv9DeR9rbR7ZnJut0EE3SwwJZ41 +vfZNt1cbiD/0m19AvlfBw6q+2qANagci2KLE1yJH23MV2oA38cdLl8Rr9PeS +kxGfW2HZ2SNsDxJPaZ9r651rW2Hb7lFTfxLvx4cgXflJK5QqO7SfJ/nIXVJ3 +5qN/K/xykUh2I/niPVygkm7TCqlun1+qkXxODTodclzfCsGe8RZfSL5rNDSf +i4u0wu3ukqMapB5GHnvUO+S3AD9/al1xG4OrZmtWfQ9vgaKrJh/XtDLYw768 +LMGtBRIjFg/UkPpLPuGlWjO3BYpjxbNWVjP4NG2Vo7x3M6hH/lKSeE/qpaZ1 +ONewGUIX3CnqJfUOra/09Jc2g63E/lJzJPtR38/61DVBqGx4jEURg8qTOxNG +1jeBb5b2zNQC8vy1NWq3RZrA8XFeLUX6kd4eGxFc2AjLEzMHt2aR/CcdPrNf +phFMX7o3iT4g64mTf2U310PQ3/fUG5IZDIgTEfYIrgfbQO2t4QkM3h/b4ay2 +pR58AyCpNoZBVRunkFmxdfBnYu+b+BAGLS8kXs20roUcz8Jou0MMHpu9qfl2 +ZzVkx7+2PutK+tXyto/4rWrY558re92J9P8p729Ju6rh9kyFTRG2DEZzh9fM +Kagi5wNzQdSAQaeUg+a2t97DorlYJVjGYFtJrF6teSXcNZf67KLA4M0DN2K2 +ziDeddykYiGDT2YetispqYDcgCd/fKVIf6gEy8KmCng9dNHn1ZdxfP3b4v20 +TDkobruSszR9HJXuvZZ4UoNAV3vFcJLHsf+CnpEhICQUUPTtmHFMjI9aoV1U +Cr/NkFUXMI6l/A0mq1JLYGCreeUt63GcjPR89fvKG+DJFSZc/yHAR8/Kuabm +LwHz5kT0GwjQ9XH27y97n4OP1O1sFy0BHnAbrJnnnAtdl/emtqoIcInxpX+H +DuVA82f9d09lBaiY+jqv2i8LIuyD278OjiHfP4RyS82Ad73e+y3DxzA1bvsC +u50PwJN/0bj8Ax+tzmenL49wgf8D0DTBTw== + "]], LineBox[CompressedData[" +1:eJwBQQG+/iFib1JlAgAAABMAAAACAAAAOKDoVSOx7L/fkFBM2G5dv3KyDQfq +Luu/ZVQNU+7mqr8J120ieCHrv6Ub5LDVwKu/YF6bVJUG67/097tqJXKtvy+k +vIDW0Oq/z1n/d2xlsL+K9lJpiWXqv2AU6sqLqrO/hHPccUiQ6b+CRD97wui5 +v7R3xFrE7ue/HMrvv46kwr/nZTBnLRHlv0D28KPgj8u/Bc+2DoZA4r/tRPL6 +FaXRv2zOwhG/gd+/Xiqfcu261L+NRvRZPznbv3m/fapeJ9e/ci9Lypzh1r9P +I7KiqWzZv7rdEFJmBNO/EfWUa6tM279+Lp33I6bOvwAbNySK+Ny/xwt9hlqs +xr/R1LEqTKbev89s36xqNL6/qqaAsiEQ4L93i7vVgTiqv9ak+WFh1OC/PSVf +tLfOUb/kSuAF8Vvhvyg7spQ= + "]], LineBox[CompressedData[" +1:eJwVlnc8Vv0bxwt5nkiJSkQZhbSMjJBLViIzq0IhkVE2TSpFpUIZCamsPBEJ +KbqKEMre877vc4yyjhWV+J3fX+f1/uOc8z3XZ1xHzPGcuTPbsmXLxJYvW/b/ +677PB/tCW8xAi2lZG+/AxESnaCMhrkIQi9LhqNnDQvteH+0C20K42TFJpMiz +UCRc0tX/VSEoD5Q5Byqy8GpO5ZKzZRG0bPvHSEKNhZvyoZTn+VvYzZ0eE6DH +Qjlf8bRnuu+hfM9yOy47Fv76L2ffM4uPoJVVqcy4xUL/8Lt/2P5UgECASOMi +k4We7NoOzyUr4aCsvEYYycIzRqVfj5pXQl+D0Oo1Qywc089ftzKrEubHZeuF +R1m4EJO/0u9YFfxwvvFM9icLG5N6PkTiFzBa8OtQ5iIwNnBDbdTjWjj9UOdE +gRyB+ZN7D4rX1ILXVvFtknsJZBMWZdTO18KW8cucsUoE3ggxqXOz+grR/q94 +fdUILGqudOni+wb3XP5Oi+kSaP5p1cq4yDr4Jtd9wtSGQOjPfyLS0AAlQwu8 +nZcJNLOyzJAaaYC7uXjXJoTA+aQYSy3ORvDbphbSdo3AkAy34RfqjTDvnJr3 +LYxAd2fft9pZjRCrF5iXGUVgu9O667nhTRB+0VlnVRqBqW2CjUzzFtATlay2 +ryGwruxmgqhXCwykccU9/Urgr2sS633utkDizyReVh2BidEZtkZfWsBY8PfQ +8WYCM7WNhgc1WkG6zd5AvofA2pAQk/w9bVB44eEzxzECv7/L9BIQ7YAZlVjT +aB4SdwWMCCtCB4jvSmB6rSGxiOfajdP2HcDOa7v+8FoStd0iizmSOuBy4mPV ++XUkxpyyGNizqROW+LoMJYVJ9PPiDTLY1AXb17x9Ur+dxIZTvuOZal3QtSVe +1HcHid4+g+WbbLvAPrrqDt8uEjO2hGdrJHXB+Z3O4zqyJL7q1Dh6QbQb1C9x +XQhQItHNtVu6XqYHznuV9y3TIvHywcZfAYd7YHjl4hdbbRJLv6yOVjjbA14C +O8vydUisczKTHsnrgfA54zTzgyTen1l+yEK1F+wZplfND5PIZnYu/5ltLxwN +7VG6YURio4TKworgXqiQWxv82pjE07XJu7g/94LnD9WbC6YkCn/y38Rr0gel +D+KSDluS2Jy0LGyFTx88/y9ewNyKxKVWmYY1MX3AH+aeZGZN4tlvm6cdu/vA +S7zjhsZREoNP51T9t9gH7HpZn3ccI7F+7tS5leL94Or0oYrvOIkjT6ul2c/0 +w+8n0o3fbEmUd7wl9ySiH2QeHnr91I7EB2L3/5jk9sOHlAM85+xpPY5sL5mY +64e+74bk7AkSu21HzCd4GFBd+Hrfq5MkJldc3DS5hQFyKo/eOziQyBO0GMev +w4D1Ktdm8xxJ9DpnDwsWDGg9qrBd14nEzeaJLWPODHC0jpBqotlS8MTbkTAG +NDc6HOg8RWKn4u7FuXgGCNoJqB1xJvHmT09RniwGfL0/+L6S5qtnrQfNvjLg +RF8GT8JpEkv4g4Kv9jLA6Xr6+180d3jP9hePM+BxfHuWuQuJJwYml/9ZYkCx +sWN1Ks23Rk37ddYygS/y4AqKZkq90DtOnAlp/Q6H97qS6NAe+npKgQmO+5wj +vGl2F+xLsNJlwoPpvtcZNFt9S5Eot2JCwlPF7Daa1VRcdVVcmTA+l+m6SLOA +5J35gvNM8M8za9p8hkTuGSFF9TtM0AwQa1emeTqeNVWTyIT8cpbTIZqVXzpv +d8xhwtY2FecjND9w669f/pEJSw+eVFnS7F18oPdFIxOCL7gHmtJ8W3qv/jGC +CT/vVJ/Upjl2ku8f/lkmVAOe203z859ja1o4WbDRTyZyLc3tH8JskjayYI/D +p+xR+nz63hZtZ2VYkH+P7w3SnFUXdEVfnQUfa0Lv3abZf3u1rowxC9rFraWN +aDa3/SK67iQLWvpSPP6h2QnT2Tl9WNB52UyvmJ6fmvAB1tJ1FugVyKY40nwo +ZUvu8lgW9Hj3nWKneWOd30nuTBb87Wq68pjW57Sn8KDwOxbI2Nh3yNCseCFB +QekrC+rjXxzPo/U14RNSs+5jgUVywdRumusj/4FcNgIUB4zY19D+OJa1YvPw +OgJ0NTeYetP+kbktcUlKigCpYgHrGtpvGRGdASWGBLCNRKicpP04m7Jmeq09 +AUwhtoFE2q8zu55kn/UiwDkqf6Ke9nPyn4b4/TEEmL4TK9tI+z2670/aqwwC ++qczj+2m86BhcD9L+h0BMy3Lp/fReeEcTzDe00/AQLdAuTydrxsKTlUlkwSM +f/as2ULnT2RI7ocpBwlc+lVebDYkivKMdkdsJ+Fdi6BKJp3nhrTakL3qJCg+ +D5FytyBxqiLuIsuYhFsiVeYSR2h/tWwQMvMj4d7m/fM+dB/0v031DUASNsdw +FEYYkHikZnjnQDMJteYGC836JPJtqAs8NkzCJu1b6Tx0/5xfs0fDZu0AbPYd +T7Gm+0roFUdNotMAlImcPq+lRqKgTpSZetAAsFfV7RTcR+c7tMCUGTEAqQU5 +Cky6/9ZzF2xSKxyA52n+uTry9PuTrG5uXzkIzxq33LOUJtEwTcubEhmE2z+d +OPO30f14gv3ue3maU+OKlkmQCLtK0+xsB+Fg6/xeDxESB49yH/36ahDES3XS +g+k+36HwV2a79RCELxg5Bf0kcBV7/hdhjyHg+LPb5ssUgRnTf4PWXh2CXCs3 +Nc4Jej/FS+7+mzUE84azyoZDBBZPqYS1Lw7B2ljl2dk2Atkrso9/4x+GOV6B +Q3lNBDav03Mpkx6GwdnfJ4/S+2nxYJbkC/NhOOX16eC5CgIDWwZ2OKYPg5PC +Okb2awI3iranGrwfhj+L1Vq12QRe0FHUlW0YBpX2bM2WTAKDdraRk7+G4TD3 +3IXMZAL7NCLq9Iy+Q2Np9A/LWwSOl3WJ/pz6Dglln5XSjhH4+7h5pSznD9hu +5Uq0WhBYEJvXdkrwB6hmyXRNGf9//8vsfAs/YCNvtfKkFr2fU3uUOCJ+QFNt +zvuF7QQO9G49OyM+AmMub2aUZ1jou+avapriCMhvXNkqOsZCCcFFDkP9EXgw +aec0M8DClN6vTn6eIyCk5rbreDsLo9e//KNYNAIPNWfYthWz8LGJNcrqj8Jw +oYhtXBALo9heGfIcGwXpwEIeMS8Wnoo+MdvpPgpG0UvSD11YmJoTZqd1fxSE +7hkcV7Ji4f7LkKTXOgob3JTYztD/Y2unWNta7cYgPPoEXhxkoob3Pc27Z8fg +E/9CSEwPEzfvW7SWDR4Dc8eewbgmJv5iHJJXShmDZGrNdasPTLRsmrutzByD +BLFvx989ZKKHU07XF/txuPGosExwPxPlGQnppZ7jMBlaenhWjom+6z9bP7o0 +DuZW2drvJJm47uR3dY6EcXjkYxG+jJeJSYERI0+ax4Fz4wJHMJOBWdoeb8uZ +46Be/exWeisDN+oZCH2dGIeJrunsomoG2mt0XrrFPQFn3jUsxOYx0OLy/vmc +AxOgMFUzYRDCwBzFydQJ4wlQdZvO/OjLQKsjU/l8thNgKJTrJOrCQO+7QT8W +/SdAeZW8SLIRA4uDM867Zk5AwqzQzYeCDJQY2q2Ryk6Bvy3x4e+xfjT7efGW +/koKVr9OdVSDfjTS9OPvWU2BTMr8GxOJfozS1/RvEKTgwCtb3b8/+pAnOS9s +ZDcFsyJF4T5BfbhsTUoP5176eXkCXB7H+3C2xjeFdx8Ft1xTRDU0+pA70m/D +hBYFJYGKwp7sfZjQaKHbakmBRylwLt7pxfkDpnEOxygwcb3eX+7Zi+fKo150 +21PAlH4YecqkF/N2ypbFu1Bwtia4QJmvFwcyfGv3BlGwoPpmeldsD5odOSCx +6xIFOq9WuzcH9GBqkWweXwgF74WemFtZ9+DO4q+KaWEUsLYYtc0K9CDb0yWv +wRgKQlaMvUyL60bh1N8P7j+i4Mkujv+u+HVjb9ttCfEkCg6XbPCUN+tG0QtM +G/ZUCrqYAvI7ubrx8XfB72YZFHBILsj7DnbhbMPXd7eyKGgNL5iOLetC3k2m +ywtyKehMV8eAC11ovC/fJTOfgtvuF5sUrLqQ+alwKrSQgivJ9oX1cl14iDfR +6dd7CtK3rVidPtyJhCbDrr6CArkrDtw9Fp3YuWHpPvcXCk5qkS+S93RimwzV +LltDwV6p1V46XJ24Srv8tVIdBfPr0nLVsAN38MccFmigz8tXYHjvUQdWNW/g +YjZScEgmyaTStwO9eFL+kW2l4NKZdd3DUh146ORty4I2ClwKKsJblnfg7/wh +lkQHBZFbr4xkdLfjEZ3atxc7KagvyItzKmjHO9QWZkkXBX/lTMT/vd+OdQnp +p4e6KUi5WiAa69qOB3xmLP700PqwvZBerdWOaVLeb+d7KTBj6Td4bWpHIx7L +5P4+ClIDOHI+zLRhinjGutx+CqyfR9rMf2vDIm41GTcGBeUHek9vzmjDO7M5 +4zxMCmoecHnJhbShhMsZn8c0K3y055Y/2oZmy+Iq+VgUfD+u1iAq34auktJ/ +fWm+sozfapGrDcOe1EkjzQOT9ntriVacE/5jO0MztD5kCy9pxVUFXdn8BAWc +54VtFGNaUdPIQlaE5pg83a/Nnq04PbPiNy/NmQYaP530WtFZTktsgr4/c/W/ +noObWzFcjae0iGb/wbNVx+dacLus0IDb/9+3dunx5/oWXKPwJe9fmv+78CdE +LLMFU29sUY+iz79HwmKVb0gL5kbVJXHQHJWX2Fxs04Ktw5KTjvT3awuye/yU +bUH9fUJmL+n5tDjpuW1f2YIuKsqdDHp+Bo+yHY8wm7HtenraMpqDaxaH/Yqb +Mea8VDM3Pe9r+wMi70U1Y6mfahVJ67WDh4x4eaAZcYtozWtaz4VrFiteCzaj +idrbdA9a76LPdQN5k014mHXDPZX2x5yjxebnT5vQf7f2Q/EWCprPqz+MOd+E +xiXvBe42UXDPuSM71KwJpexUC6TqKbi4jmfp2PImJNXfZAd+o/PQLlMw2d2I +x1TnlgprKeiTvWIbVtiI8/K3tnLQfj5uU62e596IIlw3nnYjBR8fXz7M3daA +3O+ePXpRSkGp3otHabkN6Onq0+Hy/3xw6Whq3WnAjTNP0wro/Hzuf6ARqtmA +hzhVRx69pP3OL/rUw6oeW2WEQsdeUKA2ORTcy12Plwilk/J0XqMZlQFHP9Xh +7Ld/T0U+peDmw+AS/511mHC1Yc9Tug+8556+sGD/hpUn5sflL1IwrNdx3+hN +Da73XaGaFUj7P2jsVZVbDZpllfWu86NAPYQXbMRqsF3AuOizBwXHTt9VxnvV +yNnPdI+2oyBj7uxMgdsXlH155Tn7fgpmdhY8rpGqxNtpje4fVShYJez6frq/ +ArXN9770ofszNObwdfX4Cgwwv7/p7Q66LzV7efasrMCq0DLbGrp/EyVsUtNG +y7HiH+uX5sMTsBV4rmi8+4QxH8I7AnvpfeBgOHnN4xNO2PCMhTVNgN2hVflz +mz+hA7Nuj1vJBDgbpu/2C/2Ios6daZr3J2A++Jrt3ecfsGJvOREsNwE+6QZ/ +zowWo794nNxlt3G4NqUsc64xFxWuLhQ9sRsHNVsO+TjtXFSKslhbZDoOO/ku +8bt7vEIF/tPGFUrjYPk9iyN7XzZGeT3SdWEbh7a397ac6s+k8xwU8CtuDHye +iZRx2aTg92tqlWG3x8DhfHJHVWwyct3P7l19eQwWXGzsHIITsXi9of6/jmPw +JC7TwtAqHk9e8pPM2TEGR3IMryzfFInjtvFN/24eA/uuF5eHxSKQFdb31453 +DJ5lqvI9WRuO+cpxKfMzo/D4XHz13/lg3Jrx4bLG0Ch0P+tRM5kIxCWmb1pw +5yi0sM/cvNp1Dk8eH9IvqR2FPPvlibq1J/Dg+5T4mdJROK/9ycDwzauS/wE/ +4svE + "]]}, + Annotation[#, "Charting`Private`Tag$169817#1"]& ], {}}, {}}}, + AspectRatio->0.5454545454545454, + Axes->{True, True}, + AxesLabel->{ + FormBox[ + StyleBox[ + RowBox[{"Re", "(", "\[Epsilon]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm], + FormBox[ + StyleBox[ + RowBox[{"Im", "(", "\[Epsilon]", ")"}], + GrayLevel[0], StripOnInput -> False], TraditionalForm]}, + AxesOrigin->{0, 0}, + AxesStyle->GrayLevel[0], + DisplayFunction->Identity, + Epilog->InsetBox[ + FormBox[ + StyleBox["\"(a)\"", Bold, FontSize -> 10, StripOnInput -> False], + TraditionalForm], {-1, -0.5}], + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->164, + LabelStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10], + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.1, 1.1}, {-0.6, 0.6}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{{{-1, + FormBox[ + RowBox[{"-", "1"}], TraditionalForm]}, {-0.5, + FormBox[ + RowBox[{"-", "0.5`"}], TraditionalForm]}, {0.5, + FormBox["0.5`", TraditionalForm]}, {1, + FormBox["1", TraditionalForm]}}, {{-0.5, + FormBox[ + RowBox[{"-", "0.5`"}], TraditionalForm]}, {0.5, + FormBox["0.5`", TraditionalForm]}}}, + TicksStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]], ",", + GraphicsBox[{{{}, GraphicsComplexBox[CompressedData[" +1:eJzt2flXTvvbwPGSkiShlAylURoQTmi4TEUJiRSVaDI0kAgnR6HDoVRKGSqS +RhEpmrua5+m+u5sHqTTQICqU4fvZ5+P5Pms9f8Kz2r9cP+699t5rXfu130us +ThjZTuHi4pLm4eJiZqlEgHtnYidy/T4ypSqst63uQtbzE8eUDT2h++xWX67U +Lpx9t4LTX3cb/PgsE4Q3vcMTT+SfbxIIgw6zmG3OVe+wfx1f+IWRSKgK3m40 +/XA3hp+WSl+q+hQ4r/52fjrWjbMcIgSDLBKgeI6Nq4hfD27N7ZUNrEqC2ghf +dqNyL/oq7bSKc0qBPfd7Qk6V92LRJ+2nspoZMDFNP1fOqQ+Vnn4LcViYDVom +i27xzX6PC6y6PD3VcuGq04X8/sT3eLDj06d5h/LBdWxYyMH4A96t7cy3iiiE +47w340o/f0DuNgPF6T+LIfXVYdPP3v2Ykb1G4d3xMmiHd+dvLh7A5/u3vePp +rYAnPubHv0cOoLFq8bqCtdXAvWHfEjupQTxTddN+9yUW+BVrmFTdGESjq71+ +uaVs+Oq9maXVMYibskWulMzmQNWvs5m9MkMY+HwJT6lRLYjeeLLZZccQhi7P +FBC4UQf1y/yOylgMYVrjxcL3ifVg2RGuMrZ7CBM2Llg7p6IBPtXzid1TGsIH +lRc+X2E3grrmz9P67wfx8MK9/o9zmqDjzjbtUp9B5EtMEt5wtxm4fdXnWkkM +oqb1OveXe1sgWnbxszGfAVyqYFDFP9YCrHo/YYGhftQ+usJe/kIrGHcW89/V +6sepQseHsnpa4V68S+mbvz7g1gppvTXr28DxRcoTBXI/O6BQ/eiZNuh+OPDe +r70Po+JHWVeC2+DSmXTh7/x9OKYvHtQS3was4ov1g6q96On5y6YgoQ1AomrB +nb09OOHffsAzqg0GlMobqty6UU1qaqi+bxvoiR6aMyvqHeZCuq2gUxscMz5Y +d47ThXfCjISvb2kDY8dVQ33TurBbUllouwg5f/2+R1M3dmJ3aP36Z22tME0o +aMFajw5UC/eIbopohXdpjQklBW9xk97XN+wjrVCjv1mrdfZb5H10vs9paSuk +Gaa7u9m042LNL2ybnhYQnLlhxgq3N/jm/vr32yNb4HuVcoTK+ja0kDGaE27V +Ah98OKIPeVvRJJanrkKyBZz9bqVLtzbj7wkH/15ssT27CfV9G6DrfjN4qoqr +R8Q3orqN/ept+5vBT+e1Z2J0A/rOyZ93TrwZ8qV11vx6Uo9eQxqagQ1N4HHa +GART6nDuRcOA5HtN0Keo4WdVWYsH45Izh82a4JhG31zvAQ4WFi1u3yXZBCMP +lvCIiXLwQeGCo02djaARbhMWuKUG5ax3DgfGNoLi/eGLD9zYWLR7RcOVk41w +I1VXtSKVhRlnSk48XtsI3RMbB3J+VqPJ2Rs/h7kb4YygwcQS/WpM8bwSal/e +APnFj5aqqFfhfUFLKYG7DRDiitKh7ypwBVc4T7FNA0Suzx38+qAcxbx3vw9V +a4CIcQP3eKsy/PAxf7MndwNorDmrunpFKcpmOdm4sOrh9c9O/2nTSnDHnu9j +VuH1sHpno1B8dxEus5v4qH+6HsQi9f5JrCxEtXGheumt9WC6AR88ySrAt1MP +mXdI1ENORyCP8ut8bKpXULo0VAeR11pc6pLy0GshZ+eX/DpQVRUe2JGWi3z3 +uPM0g+sgylxFR6MwBzP2ndqnd6oOjr99kWjQkI3Ltrali+rXAcv0c/jRdsT1 +P5WE70vXwS3j0LjdC7Jw216Ur5qohcv17x+XHMpALnHXvme1tcC6Fzds8CIN +s2S2WSx/UQt/hT76dnB6Krp9cioy8KqFxt3OydftkzGs2jfll10t+FkPz7Ko +e4VHjFaxNm6uBQXfeZFOekn4eq/ygKBULcQ3rjXfn/8SQ2Rappr94ICdvPaZ +TN0E/Lm+JVq+mQMjcpoxF8Oe4y7z6vFjqRyQ/dqnLZzzFG9OPZopeZcDO87P +Er8xGIvhZlycTWc5EHn7kduOpdGoE8L9sGIfB+ZGjWblO0bguG6uasYfHPC4 +mDN6MOsRclR6fvGLcSC64qal3KoHOP/ao6TnX2qg8ipbN+XHXZRid1fGNdTA +i5DUOX82B+BwX2HV19Qa+FDyY9WnoJt4MEEgxz+4Bm7nTXy7d+8KGpaZmJz5 +qwY4CQKdB/50wcTIMecQyxr4n70RM7PPfeqmGpj/y9x1HrjAWjtf21jZGtii +sJ3DLXMFbOd//vPatBoQPPXXP51e3mD2TXFz8Hs2HDKu0GcN+EO4+clpbyvY +cCF1SRz7+h3QFn99wjiBDbF78orDJULgjxST3JHbbMh4P6PxtGEY8Lstrk4/ +xwanOzrOUT7hICQSHBhjzgbxWVbaK4sjYNNT87rEDWw4GnJe68iPKJD1El72 +RpYNjwXk3fxUY2HWu0SUnc6GQCPrH2NmcaCT+Vz98gALbvlqvXj79zOYlauj +MMJigcNZQQx6+hyiclemnH3NAumTJutUel+A0fXrldODWbA9jf0j+WsCbF2m +eyranQWGo/vtBfkToU9J8cQOGxZM3bfwtd68JHj7Sz3nyzYW5AtuGA6QeQW8 +pm++RKmwIOtkvAvfitdQvbLabe8cFkxP8x7M0UiGIts5wT/HqmGDZbz6O90U +UN89sCO8uRqk3Mvn+OxOhc4OSy7N7GpATYfBZrM0WNNqYFUSUQ2qDS+y+m3T +4ajEnRVbr1eD7EtB7bYTGXAv2lLspWM1SA9OO1F5PhMiR59/5jOqhj75gKUt +V7KguSpQYPMf1bBazzdY1gdBzpkr2kqiGko/+u+0NsiG0bQjqQXfqyDlT9Of +Q6xsmBtrruqRXwX7bcfeF5nkQKR54rlBryroeb5Sc7w1BwwjOzdN31MFAVfW +OQbZ5EKRvZdjyfwqyOx6qP/0Qy7k/Ng4qNBeCS/23hvZ7pIHXaViaYuiKsHu +Rj3/3xN58HXq1mPh9pXAc+DmrqOe+fDnjDOs+BWVsOi4xVE+oQLQc21qWD9a +AReU/VRO3i2ApMrHgtqpFXBpRFElWaYQDklnqr+4UAGPp24v6X9eCM/EZ0r+ +AxXQOa8sWkarCCKL7A9kclfAQY65jlNZEQQUSVjq5pXD3Axx3jcHiiGf8zlM +3LMceDU7JW98KIa6B2srl20ph5B9Cq5X/ioBMe23Eqd4yqFJbYFGu3ApbLog +JtmVUwZ7zj7XeBVZClUus9tOu5fB+IllPeKa/ztDbwculeaUQdCYyY+8L6XA +K6/u0etYDu0fCmWPvSwFAY9iY8/pFaCw8OWbcftSWKXfJTIrmlx3gIKqvWwp +bBfN1X2sWwnhBhPX4ppLIK7yAr95byXInIo0eHqrBHJeOXQZe5Pn5HrZzkK3 +BCzO6G8zmV8NBz4oDD/7Vgzju/pscsl7UB3E5vKOKwZeEeM7F/KqodGmWPGd +WTEIuFzeFCTBggJHC/FIgWLIcf+su8SFBS0RAx7JyUUQF2HbtbyCBac38Jry +WReB9rszeZylbGiPXsU+L1gEFpd0Q+WusmFGU1bgRGIhZGUdf7nmHRtEl8ve +PLG/EKxEH3AW6NZAg+SCA+nfC8A5fMbHwZgaiPyjtiIntACUeTRPFs3kwPdp +/bY2mgWgIhJeknWaA4ZTTW9ebsiHmMMzU4daOWBZNvT0m3M++Bt4n3LVqwWh +ZSGLIvnzwdNOxPlkci0sDFFPswjJAyPHgE/fFerg9bJZc8aV80Ar6WsKszf4 +BbK7yB6BgqxUJaPZ9TAu2vpVcUsuOMSvLjx8ox76pdbLmZfmgLy5h/ctvgZo +T4j1iTfIgZQ1NXnTrzYAT/CX9p7SbNg172r+CH8jvPweVFq6JRta1tlJu/s2 +wuC8y45KpxHG1g3m181vAv+80mwe4yzwqLxQvTymCQ6F8nt6KWXCEsekzenr +m0FMzdl88Zd00BPMXvSC1Qz8OVNthJPTwGvo56Otji3wpN0pOeZ4KlyWDt6W +ObMVFrDneknNTgHerZd4dyW2guPohcvhsa9h47DDOu2DbdA8cM5cf9UraNfe +8bJC6A10KWw7KP0sESTZvFKbC97ALG/RMzLzXgK7gi3/eUM7tJ2pDV3l+AJi +jows9whvB8XelXJ6Vs+Au92Xx2naWzArFZe3y4kFKb/aKR0n3gLr8KjQjNFI +cA8abudueQsCaYJ7TcYfwYona/yGtndAGlfJPOeQYEgMk42pJl+Tvk1tLp1N +/lBfs3MwV70TdtZXm+sbXQGVmjDGH//dI0rhYTbEH7DWeMtx4g/klnx6jPgD +fIYn4ok/kE83NJv4A9bNiU4j/sDzsQ/NiD9AOmvRK+IPNB5JYvwB0gsjGX/g +2V8Zx4k/IEnkyjTiD9xkdfE88Qf0GkQpEH+gdpAji/gDdKYpHib+wCWVlQ+I +P8A69lg88QfedJHPJ/6ABA+FB8QfaK3SF038AbwulbeJP3DHrA4k/gDezBND +xB/Iay7KR/wBi0K9M4k/cFR1UzTxB1RZu8oRf6B0RrQZ8Qcc+PvAMuIPTDLJ +uU78AbuV/EeJP3DvF0VT4g+o1qtZTvyBKl9Mn9pKDULLkwAF4g/s2nHOkPgD +xlXQm/gD/9wsFEH8AUu+JdoSf6Clkmky8QcIL/z4s8SoFq+1rEwl/oC5NhaW +xB/o6j/rAPEH1EpcTyf+wPtB0auJP6Die6wW8QcaJ/DMJf4AtU7Fj8QfyC1V +4Ez8AYq/rvsSf+BSL7VdxB9woGxckvgDt/Q8Fyf+gCJ9S0/iD9zQ0JJE/AHP +ijvqiD+wfXr75+lD/XDu2ecdxB9YIGbER/wBaXMr+4k/cJG3WgnxB4i9ztlK +/IF8yxWSiT/gTOGIDvEHTrHaMkD8Aeu6UjnEHyhRt2cW8Qf0Xre8TfyB5c8+ +lxF/QEix6T7iDyz7VCpN/AGmFjNtiD/QS826kfgDLO1YjD/wVV7CYuIP0JER +PEv8gan+idXEH3DVex4/8QemTXweIf6A2ENV84g/sLRshPEHuMWUaxB/oFja +oATxB4hcPR1F/IFhytKMP6A8sLiN+AODl87fSPwBcdV8H4k/UOPDRk/iD4iX ++tRE/IF2/JoCxB+QyL2zj/gDfU5sY/wBPCIOjD9w7fUBxh/Q2LqA8Qfucvg7 +nHHH74mfLAVNiT9AaDxkPfEHZhyOWkf8AWtmyKoTf+CE2oqrxB9QfNRanPgD +t8z4rk78AVcUDIH4Az2LJJcRf8CrpW5/En/gpxJdX+IPsNDxyyD+QP6YG4w/ +gD895g3xB6rKXmT8AY4zAxh/oL/TrofEH+C4onWI+AONp31h/AFVJeqMP9D0 +1m7GH7Crs4HxB/rabmP8AV+6Axh/YK7gtXHiDygLNQkh/sDiqqOMP+C8ohrj +D3QJ3C1D/AG26+ZPJf5As3N7GX+AXvZIH/EHiqbUuxF/wJ2BjA3EH2iaeonx +B4TsPMf4Ax24fzL+APNOkS/EH7g1tZLxB7zlGWb8gYL2+xl/wKm5kow/0EJ8 +JeMPOPG12Iz4A818hBl/wHG128uIP/DUxKLTxB+QniG5i/gD08cC+pm9kRBt +n0v2CDbdMmP8AYYJTxl/YLVPG+MPmJIikUH8gdmuko+JPyA7TJ/xB+58cI/x +B8SHZjD+wJ4OgQjiD2hFH8Yf6B76/iPxBwzuijMn/sDL1B/gQf2BTdQf8Ij6 +AwOpP8CR+gO1qD+gnPoDH1J/gBf1Bx6l/gBujX/9gUPUH7Cd+gMVqT/gFvUH +7qb+gEjqD3xK/QEG1B84g/oDhqk/0JP6AxqpPzCd+gPkqT+wm/oDVlF/YBb1 +B/yk/kAW9QfsoP7A3/6A3dQf2ED9AcnUH//9bxVL/YFzqD9wJfUHalF/4EHq +D5xJ/YHm1B94RGefHvEHuhdM8BJ/oFnMdMYf6DoRzvgDeXi5K4k/ENiVBcQf +mE79gb/9gcrUH1gx919/oCj1BwL1BxpSf+Bs6g+MoP5AYeoPDKH+QH3qD7xH +/YEi1B9oTv2BD6g/UIr6Aw2pP3Az9QduoP5APeoP7KD+QD7qD+yk/sBX1B/4 +1eRff2Ai9QcWUX8gP/UHFlJ/4E7qD9xI/YEi1B/YTP2BadQfuIr6A+dSf6AJ +9QeuoP7AMOoPXEj9geHUHzhI/YFt1B8oRf2BEtQfmEf9gT3UH/iK+gOFqD/Q +iPoD71J/YDv1B+pQf2AI9QfWUX9gFvUH5lJ/YAz1BzZQf6AD9QdO4f3XHzi+ +/19/oAP1B6pQf+Ah6g9sd01l/IH3H7cw/sAr1B9oQ/2BwdQf+Jj6A9uoP/Ah +9QeaUn+gN/UHzqH+wN/+QD7qD6yn/sAA6g8Uov7AeuoP3ED9gb/9gb/9gd3U +Hf+dEdQfGEr9gV/k/vUHcqg/kI/6A2WpP1CO+gPrqT9QnfoDb1F/4DPqD5Sj +/sA06g98Sf2BJtQfaEj9gd+oP7CS+gNn9xkx/kAX7QLGHzgz2YrxB3qwVzD+ +wGWXuhl/4MGJZsYfGFZozfgDHcunMP7AWOOTjD9wyj1lxh84VXkj4w98ZpjC ++ANvjckkEn+g+aZfjD+Qj1+4hfgDlWzuWRF/YIXWySHiD3Q1W8b4A1ff72b8 +geufhdkRf+CTr6KFxB84FJx2nfgDF20ZTCH+wOqdLMYfuG9voDPxB35IT1xI +/IELg+JOEn+g52hDKvEH3twXMEz8gaLXVs4m/sA1JQbJzN4wuGHRyfzHkj9g +xPgDH//hxfgDX24NKCD+QI58tizxB+4Zu8f4A5WXZDD+wNvB7ow/sNYsi/EH +Hn5bW0j8gbk+YuXEH3jtMA/jDzx2mp/xBwb+Y11A/IGW8/bkEH/g8498RcQf +eN0h/jzxBwb7yzL+wN2nW82IP7CXv0eS+AO/vxG1I/5ASydexh+4rcz3NfEH +8oRIbyX+wFn9zdeJP/B4rSMP8QfynerxIP7ATX0KGsQfmK4Ub0H8gcJV7ATi +DzwSNG5B/IF/3BSXI/7Avq6vZ4k/8Ly7nSzxByb4WAUTf2Agz0kt4g8s75ii +RfyB9q6JU4g/MNuxTJb4A4v2u3ETf+Bsh40ziT+we1Snk/gDLYVs9xF/oPia ++b7EH4jpC0SJP/BtrWYU8Qce3jXiTPyBfXLjA8QfeCHJjfEH/t/+MdlDJnvI +ZA+Z7CGTPWSyh0z2kMkeMtlDJnvIZA+Z7CGTPWSyh0z2kMkeMtlDJnvIZA+Z +7CGTPWSyh0z2kMke8v+9h/wHku+bKQ== + "], {{ + {RGBColor[0.560181, 0.691569, 0.194885], EdgeForm[None], + GraphicsGroupBox[PolygonBox[CompressedData[" +1:eJwlz1dXDgAAgOHvKyObUrZkJEQyslV2ochMRrKyiqwoe0WInxXKzMyWmS3Z +POd08Zz3+o3JK8wqCAkEAkEquRBs6kUucZkqqrnCVa5xnRvcpIZb3OYOd7nH +fWp5wEMe8ZgnPOUZz6njBS95xWve8JZ63vGeD3zkE5/5wlca+EYj3/nBT37x +mz/85V+gaTRICKE0ozktaEkYrWhNG9rSjvZ0oCOdCCeCzkQSRRe60o3u9KAn +vehNNH2IoS/96M8AYhlIHIMYzBDiGcowEhhOIiMYyShGk8QYxjKO8UxgIpOY +TDIppDKFqUxjOjOYySzSSGc2c5hLBpnMYz5ZLGAhi1jMEpaSzTJyWM4KVrKK +XFaTxxrWso71bCCfjWxiM1vYSgGFbGM7RexgJ7vYzR6K2cs+SihlPwc4yCEO +c4SjHOM4JzhJGac4TTlnOMs5KjjPf//jXWY= + "]]]}, + {RGBColor[0.560181, 0.691569, 0.194885], EdgeForm[None], + GraphicsGroupBox[ + PolygonBox[{{1, 201, 200, 199, 198, 197, 196, 195, 194, 193, 192, + 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, + 178, 177, 176, 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, + 165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154, 153, + 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141, 140, + 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, + 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, + 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, + 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, + 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, + 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, + 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, + 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, + 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, + 2}}]]}, {}, {}}, {{}, {}, + {Hue[0.67, 0.6, 0.6], Opacity[0], LineBox[CompressedData[" +1:eJwl1WVbEAYUBWAQu1BU7MAOxMJO7EIUEwMUGwO7AwXs3KYLXdjtpuvZbsbC +dmmup5uxMNZ7efbhPfcXnHPDEpNjxwYGBASsFhk3E0FkJgtZyUZ2cpCTXOQm +D3kJJh/5CaEABSlEKIUpQlGKUZwSlKQUpSlDGGUpR3kqUJFKVKYKValGONWJ +oAY1qUVt6hBJXepRnwY0pBGNaUJTmtGcFkTRkla0pg1taUd7OtCRTnQmmi7E +0JVuxNKdHvSkF73pQxx96Ud/BhBPAgMZRCKDGcJQhjGcEYwkiVGMZgxjSWYc +45nARCYxmSlMZRrTmcFMZjGbOcwlhXnMJ5U00lnAQhaxmCUsZRnLWcFKVrGa +J3iSp1jDWp7mGZ7lOdaxnud5gRd5iQ1sZBOb2cJWtrGdHexkF7vZw15e5hX2 +sZ9XeY3XeYM3eYu3eYcDHOQQhznCUY5xnHd5jxOc5BSneZ8P+JCPOMNZznGe +C1zkEpf5mE/4lM/4nC+4wlWucZ0b3ORLvuJrvuFbvuN7fuAWt/mRn7jDXe5x +n5/5hV/5jQc85BGP+Z0/+JO/+Jt/+JeM8geSiSAyk4WsZCM7OchJLnKTh7wE +k4/8hFCAghQilMIUoSjFKE4JSlKK0pQhjLKUozwVqEglKlOFqlQjnOpEUIOa +1KI2dYikLvWoTwMa0ojGNKEpzWhOC6JoSSta04a2tKM9HehIJzoTTRdi6Eo3 +YulOD3rSi970IY6+9KM/A4gngYEMIpHBDGEowxjOCEaSxChGM4aM8U5mHOOZ +wEQmMZkpTGUa05nBTGYxmznMJYV5zCeVNNJZwEIWsZglLGUZy1nBSlYF/v9D +/gNGEqux + "]]}}}], {{}, {}}}, {{{}, {}, + TagBox[ + {GrayLevel[0], Thickness[0.003], Opacity[1.], FaceForm[Opacity[0.3]], + LineBox[CompressedData[" +1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAEJ6msFgL5D8AAAAAAAAAAIF5M3Im +/OM//3KNDdK3Uz+K8Zj7Au3jP909NSLnqGM/2/4LVujO4z88t21pRotzP0VG +RaFjk+M/2ouZI9hQgz8r0f35Fh/jP6D9rtA835I//LeTlTJB4j/nBZGhoQii +P6kXL0eXreA/87FQKQ2KsD9d55N5srjbP0kX/ENvJb0/AnlGWxaQ1z9t1xsz +4uzCPxxyz+4QMdQ/zJB6gT9Jxj/IO8uCJhPRP3Jia8jsRMk/6Tc13t8FzT8B +YW3eMaPLPwCUvn5f9sc/eBwKmA7nzT8s1wYH4UzDP9lv4E9a7c8/kIZUPdcq +vj8I3MiJoNrQP606uv9NCbU/L4H+W6bK0T9UgJh01ouoPylbCA5xqtI/ZSiO +LtKViT9jKkj2d4vTP49qNoVwWEQ/QsjEIU7V0z9zJ5qb + "]], + LineBox[CompressedData[" +1:eJwVVnk4ldv3p3xLJaFCKbNSpsJxGy2UdEOGDFGaVGg2JkQqlEo018kNpURX +MkQqy6VoQKbDGd84nMFwXjKV+ff+/tjPfj7P2muvtZ7PZ+29tA6ddj0yQ0pK +qp5a/7/TNYRZrge2YvrY59BJbhP0a1QPSrPy0U61X6UwhQHvdwxFmj4oRyPH +iNgFtS3QlxHoKfnrK+p3LBSormVCw6izjFVBA86+tfRmfAELVg70p7vUNCBX +507Z3VIWKLu6eF8QNGB1WNrRl/+xQEO6S0hTbcTizkIN4gcL/mz5qTg7phGX +XYrUP9/LgtIDtp9OuzahrI3vs+QVbFjWJ/WbrcjAnCWxgvFUNvBlz27+Y8zA +kifW0fcy2bA50fj6egcGRv2MM6L9ywYtprHpqgQGXvJ5mx/9gQ1M1SMbK6cY +GLBhRqQ1hw0tGUv/UxluwT3TYb/OL+FAfPC0xcg0E33mdMhFPeDA3mVNqz5r +sLB6b/D88SccUF54waoUWAjqarpRLzhQrHj6mcoFFvrGxOy4/JYDGqH0mmcz +2DiTeOWT3cyBt/nZFuYLOLhadLhpgyIXxuZ5F4fY8dDmWzinMJELOzrV+UdO +8FCt+u5ru1tccJXfOHIxhYecyfjFrIdcUNYOP2XN5eFpK0b/SBYXVJ12hTcF +E5haQtdeWs0Fh9mKPn45P1Gp9WV78wweeJpqfw9Sb8e60drC5DAeHAhSK7xG +a0eFlQ2WetE8MEv3fYYO7TgU98j5dRwPaIaC0PDIdnxknHMg4w4POI7JwYbs +dnTtjJb+84YHPaUR65cNtOO4v2uW4TsemGQlXVsxl495rgY2u8qp8/p5pxM3 +8PHp6zi3kDoenPFZ9vvaYz7uzay4/LuLB7OOe/U6FPEx6nD20X/7eRDysOro +yjo+/ijonnb+zYP+deMW+lIdaDF/Uma/DAHdQvviXUc6sL518FjccgJiose9 +OdEdaOhpbfRAh4DyPFFdxIMOfDfa+ub2KgJo58wUpWo6cKIg28GGRsCrysB0 +NfNOnPOxTfOYPQEPFkXEeO3sxIQNh3xfOxPA0Lj77JV/Jzb+k/ey1Z0A/cV3 +/kpJ7US3sn6duv0EhKICQ6ukE5ucnpQ/OkwAX/OFalVjJ16PSjK1CyBgmFlU +YScrwH0mSTabggiYPhZioasjwPGDnsaXwgiY15h7TMlSgJ1RDYnPIwjojeNP +aIUI0EJ3tlzMRQJy1Qy22NwU4OVqP1/TeAJk6w8vDcoWoPmZL8llVwkQDIQr +T7UJ0BnF//okE6B9Q3Vi94QA/2efWHTqNgHxEXJD5SpCvP12vMLtHgEpvmUu +NDMhgvUkS/4hAax8W9+inUL8zFEep9MJ0Ah3D7Q6JsTUmnSd8VQC1vxYjYw4 +IYqCmhwN0gj4X2tkYki6EM+bfj1jkEFAqq3fvGUfhSi8dffC2FMCpDMPh3xn +CnEbfeep+5kE9G2jDcQOCTErdLm+9AsC3kwwciwVROjh6/TQIouAz2mBFVKG +Ilwj559t8ZKA9bFuLtV2ItxgRrOWyqbuL2k7meIrwsOsDqtbFJ66fGnlvhgR +SpjKiT0UVn2Vk2BIF2Gj9PTY3BwCLiUfGTz3VoRpMtfD+yl7WR5NvrpBhFFe +v2Y+pnDO3x94ShIR1T//XJajsHBt38G9smLcd1evzYqK/zFH+W6Gjhj1f7iP +/UXlpxT9/XinpRjfzfEp6n9OQMmhkWZNbzGeKhb+CqDqO8iqf+cRKka/eZY3 +M6j660+KJi8nizExOPD4w3RKnzHLY7JzxNj26qyv4xMCZqXmL66qEuNomMeu +j48JyAj/+05LuxgNu3Yoiyk+sm/3V7MnxFhyYjC+huLLK80wvEGlCzN9ImMC +KD7ZNgouKY5d+GvRy9NfrhGwST9B4unfhWFGs9SuJFB6DNxFzrvUhaGmi96O +U/oBJz2pV6ldKHyeoKYdTYDtrKvfLEq6UPPStxVj4VQ/TEz1ZTd2oZG3WeHF +YAJWdy+Wny3pwh0qlumlJwm4XuZ+K1CrGzUWbVExP0jA7n2k2vmN3ahzQMY3 +2JuAhWftBcfcuzGCF3jHZxcBf5XxHUVXulGW3mVrvJUARc5aMiijG5OGLtKV +NlH8GFTVs993o4H45MVUMwJa9tXS1pPdGL2Z1ZihRcDJNv/HhrN7cNZ7LSM1 +VQIyp2TkRzR68NQu7hhNnoCegy6lMi49WH9EeobTKA/y4toqtgX0YJH9KWd7 +kgcrvXKCdsf2oGGHeJOQzwMnlWHHzrwezCos8Bj6xoMX+3nr9nzpwUMRWVVH +ynjwIdd3B/1nD04O3PAOot6vRf1nPc7M70XGDfuPXvd4MN/uvo3V0V7UO5v/ +wWEPD/RkbzxsjOxFeunMExfteRC1VWOOVkovBpbEvXTcyIO+e4//6yntRRm3 +TVkZS3hQuN+VefhHL6ZHqZ0ykOVB/MWBp7c7elH/77k1diNckFoqVpGbJ8Hh +Touv6xu4UHVEnOWqLsGnycUoX8aFtI2i8u1rKTtsnwzN5kKeJv/qZg8Jpujm +hI3FcsGzVZah+ViCA65OikwDLhxNM0pIy5EgfgoJq1Tmwu1gu4P1pRKMNR8Y +2CnNhRn7lnhvYkpQ0VHu/TYGBxZXVp8KE0rwW+sF34IyDnR8aL6/d0iCkWc0 +eeXUf7XauWrvqgUk/pJnB2A4B7LmxujJLyNRNPer/psDHLDsy9tL1yfRVJ2u +YLudA84T/ZU5ViQuMfPRdFfmwMKehn1GDiTSt09vaZxgg8kXmqWbJ4lOWm0J +g3w2bAivnEg6QaKtQIuhm8uGfZumEtPDSBQGXF1lcZsNcz6t+eBxgcQM7eXm +5Fk2lNXc+fr8FokGqrUn3K3Y8MXa+h8rOol3Lmw3m6XLhhi/pbMjn5KokHS2 +7cBsNtw72df3I59Ed4llvEotC64olhV1vaPyrdU6GPqaBYHSV+gZ5SSWe0mJ +LqSwID9CyWesisSZxr/UNwazQNXEpLy/hkRv+0uqmW4s8MituhPXSOL7pKQe +pLEgnPezsKSVxLUfpUuuK7Og4twzmUQuiYabcjPlfjOhPfNQ0GgbieJrip1W +rUxYffHayCwBiROPlmWvLmbC5cbc2/liEhXlRmnf7zGhrijYY6KHxI74mhqd +MCZUhCS5d5IkZptElNLcmRB5uuDNsV8kah045DLDnAltpgl3bw6SuAA1uxOV +mGBZfo22a5hEs6btHfX9rXB04bz6ohES80y00hl1rZA9NPWq+DeJBbt9bjx6 +1Qqf9EaWe/0h8b/oFmWtxFawHBs5/4jCdWu2vDnm1wrxJ/avjaLwQV2yOXwr +Za+syJyi/JeYn5hy0GqFTexPLtoUti50yRVPtgCpO1goouIPbhb5O7JbYDiG +7uk0ROIDBaIo6m0LJHWlffMaIFGwSkYz/FYLBK/b+WJ2P4kMsz/m1qdawKh7 +xU0vCYmTfrzLrL9bIFX7rYFzN4meCQsybPRa4OTIHuNeIVWPTKtmtFQLPFRb +4mzcQSIzZvn9GxwGTC9/P/qCTeL9+rVfjKn581MoS6WdQaLVF8/CyuMMsB1e +EFtZT+lvZMmY6TYGXFSiZyd8JpGrazr6fKwZZPletONIYlWqnyC3uRm0L117 +Ml5C4vXaE8n3c5thxiJt4Yocqh7p1AuKh5qhT264VZPSmxQn74b/umYwj9n1 +7eMjEmNXs8Mz5JuhJev9H8EVKt9Qm86q0iZgvml+tfggiZq1ziZzlJogcWXT +M0cPEu167/vkihphcMC/wMyexHMT+VO2Hxth+nA6ucCcxH1ptvPd/BuhuE58 +3HQGiXrTvtvVyxrAOWDHDZlhCb7eWLMs8XYDOHi+KEoWSaj3cPGbEf8GYGSe +NOZ9p/C5xZ+YCxvgx5rfDoEpEvzatChbElAPAW2xRkxFyp8R5Oa2tg4qPJ7z +p6UkmOv0UljIq4Wt/6rEjfb1Yv3HNF/bxFrYyGix8q/tRdmhhCvTHTUwoVtM +947vxUNiHZbyo+8QEVh1rOxXDxacU3h3U+krXM/MuTz8thvd/VOKI+ET0Jbo +7dF91o0LuXS24VglNM16FGaf0o3+zXvt1hRVwvcNjlvijnfj4c/qAyaGldD4 +ndH6TqMbjTv8YtTVK2B0oaJfXkIX+jms+DOtWA4Fcvzfp73EOM0XtF0NLYED +qmPX+NS8M/OPs/Ye3efwuy9BZ3KWEJ9f+VwbcDQTBtdX7dYbEaBb/fJfD14+ +g5DCWPKfZgEuKDHZ6Gr2FPjSX76uuyXAOnrsi5luafBmtVhhkYIAfX8a/hGk +3AWTqvLlNLVOzNhvlKeX5gb/BwmLKxs= + "]], + LineBox[{{-0.6244565277346672, -0.0012511420057889676`}, \ +{-0.47290783956691407`, -0.09209506040508433}, {-0.40070570207751477`, \ +-0.13106051226899593`}, {-0.33764441989755006`, -0.16320611143774155`}, \ +{-0.2861381160622594, -0.18826704645907275`}, {-0.24437709857656795`, \ +-0.2078435926144351}, {-0.20367318881725313`, -0.22631064844819707`}, \ +{-0.1684519607704005, -0.24181562198337073`}, {-0.13540056633182124`, \ +-0.2559739185108759}, {-0.10011761045699125`, -0.27067701640523867`}, \ +{-0.06679575305091635, -0.28417809284127227`}, {-0.029115255130245567`, \ +-0.29899908680662124`}, {-0.0006208943763566444, -0.3098941163799547}}], + LineBox[CompressedData[" +1:eJwVVnk4lVsXNzSLylAqdVFCEakkLotyRblFuQhFhkYZKorSpFIZmlCpJDNJ +KJVUS4YiIfM5znnfOM7EOecVMle+9/tjP/v5PWv67bXXXmtreAfu9JORkpLi +0ev/e4AOP3unlzWkjVeF/GY34+P9mYf+C8+Bb2p+3OXTWlGk7Pn33m8lUHf0 +UfRs/TY89d6pYrl+JZxsCpZT8G1H5UFxS9JYHXCz4k239zJQtq45aIdWPfzx +/+Vc94OBx2rYTUaO9fCfHfHMYYSBG8JsDaNy6uFJtpuK7xQmxtWIvQI9GmDr +pr/mfljKxOiA4MkKv2/wZWBduqUTEyVhbvKZwkZYJrCKiy5n4tzb0ccdbVtB +eX3dpGFeBx56WWp+zqcVGgoqlli96MDr8kzzr2db4ZnkYYHT2w68sX/e48ri +VtDQs1W7Ut2BqlE3ddZptYHM53sO83gduEhczDWZ1Q6LAm2OlS9loRX1ptiI +YoAwYoqvXTwLA6MzFTPlmeD18/bjVw9YeCVUqcFCnwnF4eP9Wmks3O10Wq/L +nwnqJisTZhWxkCjwISgJE1Z05tT1NLAw+nxInutIB7jN8ZhOybHx1LK9u/N0 +CMgbaDu45xIbS4x+3P/bgYAdSxtTL8aw0dzII3TyJAHZ76x2Z8azMfxW9Psl +1QRYVmYHCdPZONBRs/fjYRKWHD9/3LGKtifv234u+Q6DSS9PRU4lsDr/zrF4 +7ne4k8JrDpEnMMGLb1k7vRNkBTs6vFUIXLZVplltbSd0Xh17t0qLwJZmp4E/ +1zuh1X7QKsiaQMXX026VQxesG0/bGnaBwLiy52STcxekcdMd+q4S6KtGvPl9 +tAt8bR8fc7tJoFpDNjf1YRcYyT7xUHhM4JZ0QaDuRBdwExMjO0sJVEl0ipyt +xIE3Kd1rB8sJVK33Spi5igN734/7jdQQeFVZc4ujOwe4YcM7m9oJlG/od1d6 +zwHnBQPNFQMEjthxJeWtHNBj6Oo4jRFYZlPrE01x4IC9HjZOEijjZ2m+X70b +dHdY77s9m0R5SrvZ/HI3WA7sv6SqRWIjPK7IT+4Gl2me82RWkejWsaDB+E03 ++G5tEzUbkjiuy50fLeqGFZ9UW/X/JrH9tdVns11cSIzbzM50JLGQPc0g5QgX +mF8eJR5yJvFy+d6w+Ze4cN7r0StFdxIVK9ce3VBMyz9dS1XxJXGh+8fDXXVc +6O+v1Ao4SKLpU97AAz4XAhkWEbn+JNYbrdWxUuXBO+s1v2pPkDgo9WnOqjU8 +yEmc8/n5KRLXSDKGl23lwaYVo3knzpBYLPtpntUZHrQObhtKjiRx2fTfvr4J +PAhjrhXIRJHo1LxzKD6fB5+Ulin9c51ErLjYvbiLB+N5lNq+myQedtbYHDzO +g6auB6Eb75DoKrbvblTig+KhcWlJAomqWR5m5vp8MCkTDYffI9FkO34osuGD +DtV/nZNEIimg2Gu8+BA8sL5f8xGJQ6m+0m/D+LBUGOdm9pjWXxR7Z+sdPihx +rg2tfEKi+si7YU4eHxhXjlE/UkmU/aV1/eInPhQEewTGpJNoG/E1W6eTD9Re +/ZRfGSQedIzIaRnjw2Hd7EzLLBLtoZK8rCSAquRTmS7ZJDIHOYlm+gI4bWj5 +0TKHRNGV6sVDNgIIjkqbP0HjsrszXxR6CSBk0rXyci6JcbOYj4LCBXB3rgn/ +O43PBUovXBMvgDNP7RJnPCXRWO27x8AzAVjGMcV/aPkSafdHLz4LoC7xqlQ5 +jddZ82ee6BKAnKoX34HGYbmhdUYTArA15hfm0vEimJEKfcpCGN6xNqSe5jcQ +PrUva7UQMkJnWJXS/DXtj8V42Aqh5Rd/eVAmidc0yyblvIWgq6ZrIKbPb/rD +d0/xaSF8er346Oo0Evc1uha7JAihz3yhaD2dvyK9hUoD+UKQyct4KU3nV74/ +LyKyWgi7Xke33HxI189YzsgsjhBYahNOnPsk+qeZnYuaoP0tzIahRBLvJq1U +GFXuARUF8aNq+r4/U7z77qt7oM9OcMqdrofE4Filwi09sGtaOjMvhubn//vA +iFcP4FXTmtKrJH4qZp3TD+8B1eBhh6hLJEbrZcLOOz3w3DAiXOE8iRMZ5VG+ +eT2gnT20w+E0iQqp4Uv/JXugbmnLSqlgEoOK5BdpjPTA7CuRtv5HSOy0nT1K +zOkFo1sKm2/4kXjJayRa3qoXho4Ts4ddSXRvdG6M2N0Lf2TXTW7YSWJ5t4Vq +U3AvcPRFyvrbSLSbS6RrpPZCY8+2af9/n+I9i2anlvQCW174Y+86Ek/btzyX +aeyF4pmzYjfr0fn0E1R5TvZC2bc/tzUWk/jDTRZ3zxfBMd03XgsVSQxsOyJj +oC8C11na2WUzSJRjg+d+NxGQJ/1vLhoisLDxR19VkAg2pBQW1PYSOOzdUDJx +RQTPv/fZ6XYSGJV7ksEtEoHRtaNKArp/NZYvWHVthhi2zNM2c7tP62tvCAtd +IgY5zwLwiCEw5u7EMwMjMSyKtYifeo7AJad+P5ZyFwPDWFbK3odATFSvUQkU +Q5p65xyhE4HXxDqF/RfFQPge36drQ2D96bYnozliCPxWK5OkTWCT7EF1jfdi +YHI9z1cvIDBy7tqtct/EsLo/80HSdAIPV489+WtIDE9LBM46fDY+4/PkVvwt +gcj8TZs4yWxsNtY+v/FfCRgxatla9LzhnagZmLJXAnEbZEzlwtgob1m2Cc9K +oNB2seStIxtzxA7dT+MksOGL65rL5myM6jadaZ8sAXPWOpV+HTZWxbqnpb6T +wMB1cuLZHxZmGadMcamVwEe9uvWTQhaiSWvVW6YE3k79HDHQxELO6oeXYoYk +cGq2n3xZBgtNle8agC4Fdj2uqpM2LIyJOpzqtJ6CLXIZRw+uZuE7z5h9ilYU +3ChRCglVYeEc0Y3qSBcKzvjapF3kdKD8stfTjL0pSHp3kX+Bnu+5L+Z8iPWn +4ObYB2Wd/A480Kugueo8BVNG25uPnKLnvXVUTuA1CirmTn6dtacDM+MWebnc +pmAG3Lqwy6oDY72eHldIo8A7dHQnb0YHnlA88JOdS8HZRzs1DMVMXLZNLLIv +oqDmF0dep4GJ4lyCmlNGQdDPX1OWxTMxoSTkrOATBaaOqQfuHWfiG5FuwPY6 +Cr6q9v4s2MlE121hF62bKXhhajozYA0Tb/91NLaGQUHUvM9yjXOYyJ9IDiAI +CvKbtwSwJAzUMjNVOs+h49/MyourZWC+YDSkkE/B9q4ie3E2A8+oqD0O7qWg +7GQ5MXSZgRtfeaaXSShY+9J7NM+bgd79PdnJPyj4FjxqrgQMTFIwJuQGKZi/ +wcd15WIG7paZODtjiLYfezg2ONyO6wvkmfHDFGzLcWEFN7Wj/6jF5sIRCqQL +733IeNaO4TnrNfeOUtCXsfPIrau0PMha8IDGs/77/dzYpx3VeWZzj9D4Hz+9 +fXfN23Fpk4n2V9repHL57uIF7ZjCDChH2r+pYvDJ2/1tOPNBX6QNHd9rU0iK +YW0bvj8bsHAfze9+hvT7W+ltWLpd+u+5/RTYxvNKXke04eIq4rkTRUGJ6EJU +unMbVm9UtjYQUbD+jvtCN4M2VH6wpSlFQIG2Wb5fx/Q27GF7W+R20/VybdJX +u7MVn8rZh9p/p+BVd9G8zW9a8ahhQvDVDgpapyYfMLjZipXrVq3xbKWgOiHZ +hzrQivyfMtjYQEHwd0PZi9CK6RMh9+IqKHjYm7nMgGpB86uamqx3FKzK/5Vs +X9WC5woihz4XU7Byn1SRzcMWnGeZYBuVSUGKQ0sUw64Fbd8PWXok0/yU9pqe +UG/BH2HFx9sSKBBfcPT5OdyM47PM3mMkBR3balk5ac1Yo/rn9JpwCszWcaZ0 +hzUjW+hb+W8QBYZZnc4zHJpxZc3vkGh3CmYW2P1Z+qsJ3SynfN20mq7H5+oq +Bbua8Jl/jZahJgXX5BLdzuo2YWmCz6FmFQqUiq+6bZlsxDvpL2OtfknAy4Rz +8FtuI8p+jMvhVUngfkVmoES6ER+J90ju0f1Cpduh1senAadKX6zMsZCA6u9e +lr9KA/LuR1yMM5AASkoGEz/XY2JplwtjrgQstG1POOvVI7b/ORnbKIYdsq9K +Ska+YqNyzNJQezFErBxZnHr3C7qPFBYeNhDB6fpenaXTPqHJYPnUaUtEwG8N +sTuAVajQlzkeP0sE1aUz3H6fqkJ++WXmTV4vBKiqyytJKrEu8YWmyoNeOHYO +1IcZFQiXszp6pvTCmMVZe7myj9gzVnvze7sQxkz/SI8llWJPzVSf3+VCeJZh +891JuRQjBow9Nel5e+Zx0KrLcW/xUdeMjshLQnido8jZd7kET684t6hojRDy +1ib9lIp4jQMZ2tcXxgmgIqV81OPOC7xxiOfynyMfPpzwLDLJz8bYgiv2cy34 +EOSwwupacxZqfG0wZa/kwy0pxx87xjORoRxzI2sKH9z+0c83ts/AHpczZ+eU +8KDsxvUsXelUfNvPkGzU4sGtoq0B693vopNx9fJ5SjzYGJ56OLApAZPuMt6N +S/HALzqnbKt9PMYMLNkwleACV4O/vWnLLTxG2WiMJnDBu/ZlgnnpFdxlvWuD +D/1fFZx34b9tikQ/pV1k5zEuuFlvc13ddx71rVZ0KzlwQfUAVy3taCg6f0yx +rLHgguvUymfsiiB8cc5/9S19LizsmK57dMt+PKm3MveIGhdUcq40nVznjIrJ +mQWuclzYpfqlfq1a5rv/AfkK5Fs= + "]]}, + Annotation[#, "Charting`Private`Tag$169892#1"]& ], {}}, {}}}, + AspectRatio->0.5454545454545454, + Axes->{True, True}, + AxesLabel->{ + FormBox[ + StyleBox[ + RowBox[{"Re", "(", "\[Epsilon]", ")"}], + GrayLevel[0], StripOnInput -> False], TraditionalForm], + FormBox[ + StyleBox[ + RowBox[{"Im", "(", "\[Epsilon]", ")"}], + GrayLevel[0], StripOnInput -> False], TraditionalForm]}, + AxesOrigin->{0, 0}, + AxesStyle->GrayLevel[0], + DisplayFunction->Identity, + Epilog->InsetBox[ + FormBox[ + StyleBox["\"(b)\"", Bold, FontSize -> 10, StripOnInput -> False], + TraditionalForm], {-1, -0.5}], + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->164, + LabelStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10], + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.1, 1.1}, {-0.6, 0.6}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{{{-1, + FormBox[ + RowBox[{"-", "1"}], TraditionalForm]}, {-0.5, + FormBox[ + RowBox[{"-", "0.5`"}], TraditionalForm]}, {0.5, + FormBox["0.5`", TraditionalForm]}, {1, + FormBox["1", TraditionalForm]}}, {{-0.5, + FormBox[ + RowBox[{"-", "0.5`"}], TraditionalForm]}, {0.5, + FormBox["0.5`", TraditionalForm]}}}, + TicksStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]], ",", + GraphicsBox[{{{}, GraphicsComplexBox[CompressedData[" +1:eJzt2fk3F/37wHGJFqXc9iUUpX3fFO5LSiGl0iJRd2lDe1EKJRGKFkrWCElC +ZUvksu/Le7Hv+xJRIpLyec398v18z/n+Cd9jfrnO/Dhz5sw1j3nOOXZ+zwle +Hh4ehYk8PMzcWHMv5011E/KMHYln1iXIGDVjUpH53lJLe1jV+STsWGMzDu3o +firxxx0aL1wu9DJvwaqJQ+YNLH/4LGinWzTcgkN8ujYX5EJA+dgq2z9urdi4 +bvLU8HnhYMg1XiS2oA0/ifXaHEp9C5EpKgEtmW1oXbP7HK9sDLTXCyrIn27H +9qxRscrQeDgYxRnUm9GB7W2i6mEmidBzWecKJ74DBfNkJUp2I3x+7jCaadKJ +q6pXXHuUkArZ2XoRk//6jK/WRO3Kb04H9Tea/QrJn9EtTlL+r/lZ4BC0R07b +tAuFQ4IMV93OAdUGb2UdoW5UDBa8tex7HnTaeue5ve3GH3fS106/WgjybXM+ +ymz7grNaHgxU87HgxUjEkeesL6g46B/9Yw8bXH5FPXDS7sGnZXYpz15woGOz +fsH6yB7M84Cvw71cWDthwEjzVw9ePBK45ce6Unj2t/bhiqW9qNo1UU3rchk4 +es+9PLi5F90v7i1rCSiHJc9Hk5+r9qLA4ZNpS5IqYCT08E8viV40z/uj8D21 +EmLOiM3bWNqD89TrQk5HVcG5vvVFmy17kLNuvrn07WoQl/n9buTXF7w0o3q9 +hHINiK397m5y+gta1OVrq7FqQPx0YIZucjdqKEib39CphTP+B51UJ3TjBTfZ +oJLQWjhk9FxPZG0XWvje2rHocy0ov5unGW/8GbcFFwV8FakDPv10G45tJ5qv +PvdP+/w6qLkapxTh04HYlhLZsqAOwpbvEZaOb0f/3iH1CKk6SH60ZZIltw2F +/0qwrB+phZJZAYmhfa14OmN0a11JLTz0GHFeLN6KR7Ya2+UH1cI9XUHn2dCC +G5W7tzqa14LI8x1m+841o2XMpujwpbVgcN2db39wE7ae+73Fp6sG/BdKr7zW +2IgREXUbbV7WwLInlimt8xpRoiN16bYjNVD+8qdc6MUGVLD8ujRDvAYubLon +ts+5Hpc/SXP3KqwGCfYPvqdqdXj55aj8jjvVUHfibuPr0Rpc1MGK0FaphlGX +O7zSxdU4Qyg/qrmvCprSmyYZh1fh2IT9K+50tbpXoreum2zH8Sp4aHZ8u6JT +Bd6ontn2Wr4K+DqOS9nfLcf5PK01KdWVYOPc8+vKozLU3GsgouZVCd+aPkw/ +E1KKlWdf9C42qIR84XNZ9WklKH5DTdNDshKEkpr7dDu5GGT21e9aVQWYcaQm +rZPk4tSNvb/K/Srgt1vgdUU9Dqp3KcVHHquAKQnXS4Jc2Sj7Ufz3jwUVMPim +IHA7l4WF564cCPtaDok2audi5Vn4xNxs0aeEciiZmjxrYmsRpvhEji64Uw5T +NjW8CH1aiHdDTO3q9cqh7TOv5Uf9AmS7Ox+tn1UOC6WqVB/K5OOM+fpeol1l +sCf/of/TL7m4Nq9pxdWPZeD8PSFIPTcHNwgaG4y4lIF74WP/qZHZaLTh/mIv +ozJYZxTdcsUnC8UNX/7QWF4GqefCtwk+ysRnp7JUe3nLIDb3lutxtwzs7b0T +7V5eCrFWcsIi7un4Q1nqiFJEKWw4OKwV75+Gm4eEHf3sS6FIK8ho4G0qJg6s +S+w1LIX+AL58y9wU/MXpqhZZXQomz9JlS4oRW/JFxCdMLwWfkqOP+CSTcZW3 +b2tkawmEHXhc98UsCUvCvoiIpZSAiOVL/sk5H1GqafX7xT4lcFhga2jRsgTk +k+Nb1GVZArXFxZDnH482czX4dfVLYO3R4wqOEnHY1R6itW1FCbQYHnrh8SwG +j5zMlCsTLIFfa9aXuM6JRvWK6oFvXVywzi6Smfn+HfLM1TL3yOPCyf6ZExO1 +3+K1SZNt48O4oL3TZf1FVgQuCJZV2efMhaBTyedOSoej44EbUadMuRB8a4Je +3IVXmKQQe+azNhdsovM2Z3FCMGAgSal8ERdWCkql8qkHYU34U9GF07lgq3jt +Vlt8AFYYntCp/sIBsybduYWXfdFih8eszmIOPA6VdZh2zxPFa1Y27XjPgYKM +NZUeMY/xxYvQBfxPOHBei2PCU38PD+SrJglc40ChxUL+GovbaJHFr2N4iAPK +hv0seYNLuOXk7PrevznwP3uD09Nhka3AgcRhzwKUvwThZ89r1E7igBbvIV1B +/ttw5feRe0u72MB/yLhzsMEFmurVw2KK2ZDK/bDDjvMIJJ0f/nU+hg37f8RK +aix8Cr4uo9sOerFh6EHZ4uMW3pD3yan7vC0bgtSqZJ3i/SHpz8PXUSZskMyu +LJt7LRD+TuTfJKbNBj/5BMHZD4NAVijxpt8yNuzo6FEaDQqB5eqTV2uKskFx +VCh7akwo6NjK7546zII1neaeDilhkKG3N66tngWHlxqPxuWGw/3be+5XZbKA +paa6sKE4Avq79j9sDGdB4uOIBg1uFPQKZM/5+YgFgccmiAh+fgtXEtLqZK6x +QB6SVA52voMZh7l3dxxmwUu3RaL+7e9h88yil3e2sCBbultjpCUaeHLn3UxZ +xIK+Ok7Wo8YYKN/VPO+PEAuKBRSPWtfGwnLe0nsWPcXgyXM6sLIiDjwNqla0 +fywGl7c2h7K48SD2TG5I524xBDepxx0p+gC3rjTs9dEvhiWfXlil5SRAisSr +wxz5Yig8Mf/AtPSPoFq0ft7nriJocZRu2/8pESrlFHxq4ovA6WuBcFp8EsgY +kNtkXwSyZ6xOmr7/BNZN/n826BUBZ9/3MNOIZDj6oMv4mXQRTJsWGl3/CsHz +F7z/0FoIr7ZvuXZlTwoYLsvherwtBF99AV02KwVsDtlOU7pRCB59fTue6KXC +xpkTmk9oFkJ3n+mJ4qJUWGO7aveOmYUQ9nJvldvONLj0qOliaUUBqGdbyTYX +pUH6MlnxwcACuHKvraVaLx30pe+2vDYrgJPr2Uud2ekwRyhUt3NVAdiFbUn7 +pZ8BuVverggfzoeUjWfaNcozQCxgY3Bbaj74iIgJXDyUCc3Xkrc/ccqHGqGG +BZ4NmdBhJDQSsTMfspxK5bNPZsE0PRfufNF86FtUqSfSkwW/JWrCf1bkwQOX +lsdultnwJWvKsJRfHswQNrmry5MD0jMmCt/8Jw/6dFdKHb2XA6siOPflFPNg +tbWJZKNELvgoRdV9acmF9GO3nzWG/O/snxItZbU2D7jRgg49J3IBNPnPJmfl +wcVlnuemzMuFHt0L+rkH8wGembxRaM4BWTmhe+978kF3nYToioAcOGUWFu3u +UACfrp/MVjDKgcB4SYu7coVwTP6rWrd4DvQu8bgTllAI+wJWL7dhZUPRHeHd +EgeK4LjH7j+ZTtkQddjwRs+PIti5ccmJWMgG36nZnTu9ioG/v/HnhoEsOPNn +TvoSefLcOkvO3BSWBa2cIWvJyyyoGtotF38oC/R3b75rncMCn+i/196dngXH +hvcOmcuzIeBcwmufxEwYjnMOGb7KBuOmhAO1pzOh8H2imRqHDU6lZ/JXi2bC +rSAtRZ1lHFi28reIw6cMOKZRVrn+PgcigxSzYo9nQOIW7wS5bnLeczX+1dQM +OCB7ZavkTi7ISGnxw5t0iHcz1IT35L1n7p1yQDcdBqOXyL+VLIGYKe4irM40 +KAodNHOyK4E17N/3b99Jgy0qFyd2dJdA4uwttdtmpcHVabM/MHsj8C9RQ7JH +wM7D81NafikM1L3/aayRCn2SKpKOUAaag8std5PneMWK9T//iSuDY0ED4GuY +Ah8n5r62XkH2YsleuRlpCCeLhvv5IsshQj/PLSIrGWprTH7PX14BLzZCh2fa +J7C7G/hGPKYC1IU3rtKMTYJqwel+fGqVcInXxUDRPxGCvRwcFuRVgtGU5KAn +1h9BhRtckXioCoIS/NS/6yUASpnc+vWtCjb8nd3pKPEB+J+IBM93rYZgvX+u +unLiIGqT1z77pTUwyzbk3JpbsSBcOjq6j1sDvUpT27zkY2A06WZPp20tOPzQ +/50b9R6+LOcfvL+iDiIcUyWTl7+D0VRJvYcddfAxbm9+nGoUxHkXbNcKrYcP +T/k/NvWHg12f62THdQ2gGC/gdcHhFcxS6bOX9muAQKeY3OddwXBv9c+5DyY3 +gsN+i9QbcwNh71qM/MuyEbx06qdFH/SGZFWXb8UdjcBfMl3rDe9jOKlicGng +SBNMiWf/3GN1G569vswi/vjvHgkTrWX8AQlGIvuIP3CXGPsl8Qc8uK7oQfyB +AqbHOMQfYPLV9DLxB846Ea1M/AGWCUamxB+4LbnoFvEHJJfsmk78gXlKzUuI +P2C3ZPlN4g+M4S32Jv4A8V13TYk/MHbOLwHiD1i7PvJPRWg8fhATHyD+ABvl +QVXiD6yptL1F/AGbgjyUiD/Q9d6kmVkmnbDaZ6I98QeG6eu+If4g19WpR/yB +XybO/E78ARb/SMgRf6DaJEUd4g+Q02LZEX/gN/fmrcQfMHtjpivxB67m82sg +/oDUXYd1iT9wtoBQBPEHWPxt2kP8gXG6YpeIPyDZZlcy8QcKhFjfIf6AOc/9 +Eog/8L1NczXxByi+NRom/sAMzw1HiT/A39F1G/EHGhbz7if+AEPXGeuJP1Cn +eHct8Qd4aj9Wag0oR4lvUjIBqr1gw7Nv2tKkCnRhOzcTf8Cjig4h4g/0XGe3 +mPgD7nWeCSf+wDC+F83EH1AVZ2NL/IGDcgG+E0e+gMxL9Y+yyjVod1E0kPgD +XJeE7Sf+QKfQq1ziD6j7pHyd+AMn8V+6TfwBX6tqfIk/0FrppjHxB6iUpRoR +f+Dus3p6xB/wM+TkG+IPPBGb6UP8AXpt3fbEHyhTOmEh8QcEZD18R/yB6vUc +MeIPMJpmrkn8gT1/jKYQf0BIgZUV8QdOf9GQTPwB7frm24k/iIu67hN/QMEO +GwfiD7Rf6OpE/AEvJq1i/IHLgMec+AMSe3fEEH+gN8ttMvEHPA720yb+QAXH +b0rEH2Ae7rmI+ANbVg98Iv4AiXjfhcQfOH/tDCniDwgs4yoSf6Bqf40I8Qe4 +Km97TPyBvDPrGX/A0imfGX/g9APZxcQfEJwyz4/4A/tbYhl/wLrmYcYfeOXT +76mMO8Ymai0+2kv8ARMqXeYQf+Dgcj0d4g+wCupoIf7AmW5iMsQf8NIqpY74 +A9WGLEaIP+BO3zfGH/jcO5vxB6iGRTP+QN/+l3nEHzAgYKBD/IHtsgf7iT9A +0yrtOfEH8huHM/4A5+rXI8Qf+Pt7ww3iD5iwi/WB+APFzaayiT8gJ/bgEPEH +9ggrBBF/gONKw4PEH2g6M5HxB9ivUFxM/IEJt9OkiT9glc6SP8QfuGrKqUDi +D7C8qH6L+APPHlJj/AE3NRIYf6DiwUjGH/B94TLGH2g4y4vxB9iJfmb8gWdO +pDL+AH+OCeMPnC//kPEHzH/nzPgDA74PMf6Ay8GfGX/g7ANbtYk/IDPX9G/i +D/T+8JPxB5w/zx9D/IH2ducYf8C7iouMP9CpYLY28Qc4nwDGH+jAE8X4A2Kl +NRl/YFzYVMYfcHNZH+MPPKlyifEH7BqsFSP+wCjqDwDqD+RWOjD+gEKXFsYf +OJ/6AxZQf+Ae6g/4JfuvP7CD+gMcqT9wMfUHNFF/YC31BxhQf+Ag9QeoUH/g +mD9gzB9oQP0Bp6g/UIP6AxSpP9CP+gNuU39gHPUH5FF/oBH1B9hTf+BG6g9o +pf7AMX/AmD/wIvUHWFF/oCf1B0hTf2AG9Qd4U39g+LIJjD/AU+V9IvEH5lF/ +wCXqD9z87gyb+ANEJZ8x/vjvf6vZx3UsiT/wa8Qo4w+0fVzG+APH/IFj/sAh +w3/9gZXUH/iG+gP5qD9Qh/oD3ak/sIf6A9OpP/AF9QeO+QMVqD9Qi/oDn1B/ +oDj1BxpQf6Ay9QeKU3/gJuoPXEL9gUj9gZupP9Ca+gPrqD9whPoDG6k/cOK0 +f/2BsdQf6ET9gQupP1CS+gMjqT9Qm/oDudQfKED9gWP+wDF/YBX1BwL1B7pQ +f6Aj9Qe6UX+gNPUHhlF/oCP1BypTf2AR9QeyqT9wE/UHtlN/YC31B9pTf6A4 +9QcqUH+gHfUHVlJ/4GnqD5xE/YHu1B845g88SP2B0dQfGEL9gf7UH7id+gOb +qD9wHvUH+lJ/oDH1B26m/sBs6g+8Tv2BRtQfaEv9gVuoP9CK+gOR+gPZ1B+4 +mPoD3ag/kE39gV+pP5DX+F9/YB71BwpRf+Aw9QdOkvzXH2hL/YGV1B8oRf2B +StQf6LruNuMP7Ctb4Er8gWupP9CX+gNzqTv+O0eoP7Ca+gPXU3+gGfUH3vnT +u4f4A/UqesKJP1Cc+gM1qT9wD/UHhlN/YDj1B5pRf+CYP3Av9Qc+p/5AoP5A +P+oP3ET9gdHUHyhG/YFm1B8YRP2BNdQfWEj9gQeoPzCA+gMNqD/Qg/oDu6g/ +UJv6AzOoP9CG+gNr58ow/sAenVzGH/jMWovxB+5Ou5tJ/IERDasZf+B9u2mM +P7B+dokm8QceFQrhI/7AyLm2W4g/0MkiDYk/cGZwsBzxB576Jcz4Ax/pLmb8 +gUlbNRl/oAGvES/xByav2ltD/IFXl/2MY/ZGcb78QeY/1oFNRknEH1i6NGGI ++ANVRvIliD/w/p9qC+IPbBFNHSL+wMBnAYw/MHKCIeMPvFqYJEv8gZatSYw/ +cH6tFeMPzHwrw/gDo8za2ok/8PEUQ8YfuHWkbSXxB0YJGfkSf2Dp2dwDxB84 +VFxnT/yBz9nTXhB/oNhz9XLiD9R+tQ2IP5BXqfUm8Qd2BOxn/IF61gGBxB94 +ttLAgvgDu4xfMf7ARP53jD/QKIqX8QfuPGvQSvyBbqanvhJ/4OZupz/EH8hu +fT5E/IE794dLEX8gy2rXTuIP1Njhkkf8ga1OYVrEHxikpx5P/IEu6goCxB/Y +ZfLNl/gDNRaYMP5AqSM8jD/wfrMO4w/yXZeZQvyBKWn974g/MEM0Xoj4AxPO +rOkl/sCs4GhN4g88I25zkfgDXUwGhog/8P/2j/EeMt5DxnvIeA8Z7yHjPWS8 +h4z3kPEeMt5DxnvIeA8Z7yHjPWS8h4z3kPEeMt5DxnvIeA8Z7yHjPWS8h4z3 +kP/vPeQ/wqHOPQ== + "], {{ + {RGBColor[0.560181, 0.691569, 0.194885], EdgeForm[None], + GraphicsGroupBox[PolygonBox[CompressedData[" +1:eJwlz1dXDgAAgOHvKyObUrZkJEQyslV2ochMRrKyiqwoe0WInxXKzMyWmS3Z +POd08Zz3+o3JK8wqCAkEAkEquRBs6kUucZkqqrnCVa5xnRvcpIZb3OYOd7nH +fWp5wEMe8ZgnPOUZz6njBS95xWve8JZ63vGeD3zkE5/5wlca+EYj3/nBT37x +mz/85V+gaTRICKE0ozktaEkYrWhNG9rSjvZ0oCOdCCeCzkQSRRe60o3u9KAn +vehNNH2IoS/96M8AYhlIHIMYzBDiGcowEhhOIiMYyShGk8QYxjKO8UxgIpOY +TDIppDKFqUxjOjOYySzSSGc2c5hLBpnMYz5ZLGAhi1jMEpaSzTJyWM4KVrKK +XFaTxxrWso71bCCfjWxiM1vYSgGFbGM7RexgJ7vYzR6K2cs+SihlPwc4yCEO +c4SjHOM4JzhJGac4TTlnOMs5KjjPf//jXWY= + "]]]}, + {RGBColor[0.560181, 0.691569, 0.194885], EdgeForm[None], + GraphicsGroupBox[ + PolygonBox[{{1, 201, 200, 199, 198, 197, 196, 195, 194, 193, 192, + 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, + 178, 177, 176, 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, + 165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154, 153, + 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141, 140, + 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, + 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, + 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, + 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, + 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, + 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, + 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, + 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, + 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, + 2}}]]}, {}, {}}, {{}, {}, + {Hue[0.67, 0.6, 0.6], Opacity[0], LineBox[CompressedData[" +1:eJwl1WVbEAYUBWAQu1BU7MAOxMJO7EIUEwMUGwO7AwXs3KYLXdjtpuvZbsbC +dmmup5uxMNZ7efbhPfcXnHPDEpNjxwYGBASsFhk3E0FkJgtZyUZ2cpCTXOQm +D3kJJh/5CaEABSlEKIUpQlGKUZwSlKQUpSlDGGUpR3kqUJFKVKYKValGONWJ +oAY1qUVt6hBJXepRnwY0pBGNaUJTmtGcFkTRkla0pg1taUd7OtCRTnQmmi7E +0JVuxNKdHvSkF73pQxx96Ud/BhBPAgMZRCKDGcJQhjGcEYwkiVGMZgxjSWYc +45nARCYxmSlMZRrTmcFMZjGbOcwlhXnMJ5U00lnAQhaxmCUsZRnLWcFKVrGa +J3iSp1jDWp7mGZ7lOdaxnud5gRd5iQ1sZBOb2cJWtrGdHexkF7vZw15e5hX2 +sZ9XeY3XeYM3eYu3eYcDHOQQhznCUY5xnHd5jxOc5BSneZ8P+JCPOMNZznGe +C1zkEpf5mE/4lM/4nC+4wlWucZ0b3ORLvuJrvuFbvuN7fuAWt/mRn7jDXe5x +n5/5hV/5jQc85BGP+Z0/+JO/+Jt/+JeM8geSiSAyk4WsZCM7OchJLnKTh7wE +k4/8hFCAghQilMIUoSjFKE4JSlKK0pQhjLKUozwVqEglKlOFqlQjnOpEUIOa +1KI2dYikLvWoTwMa0ojGNKEpzWhOC6JoSSta04a2tKM9HehIJzoTTRdi6Eo3 +YulOD3rSi970IY6+9KM/A4gngYEMIpHBDGEowxjOCEaSxChGM4aM8U5mHOOZ +wEQmMZkpTGUa05nBTGYxmznMJYV5zCeVNNJZwEIWsZglLGUZy1nBSlYF/v9D +/gNGEqux + "]]}}}], {{}, {}}}, {{{}, {}, + TagBox[ + {GrayLevel[0], Thickness[0.003], Opacity[1.], FaceForm[Opacity[0.3]], + LineBox[CompressedData[" +1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA9Oe2TuW93j8AAAAAAAAAAN5LbUF6 +od4/juY80r84Tj/s5OWNOoXeP5F7YAjoHF4/e05O5TtN3j+pcw/gxeVtP84B +fHs4390/ecNW3ax5fT8T9BEL0grdP6DTF/fWqYw/dtIE+mR+2z+cru3tMimb +P3cKKBeix9g/aG0JYNSSqD+QjP6VYDLUPz/5w10cPLU/y4I6nF370D8Ba4zg +eke7P+IAJXJH6Mw/tWpBBufnvz8MnhvE9FPIP3UPjR9rAMI/92WSKn6dxD83 +Ei6zj6HDP1cMUVB5/MA/IQZi/HAyxT/WwXoqCVW7P0E0c+Nam8Y/Y1kBgRxa +tT/lRPs/qNvHP5VC4C+7yK0/NtXYGKgwyT8IvQ2PAWShP7S2ZxLpcso/Thgy +oTYngj96KHMlGbzLP1WQWr2e4zw/vMVyImspzD+OoJcG + "]], + LineBox[CompressedData[" +1:eJwVlHk4ldsXxw1RKmNRMjSpCOkKVyrLGAoRkga5ubi5cksp3UihASlJkaRE +horSRKZ1EpVUjuPML4VynOl9RVeD8Xd+f+xnP5/nu9dae+/13Xvx3n+2hinI +ycndkY3/zx4ZzwMCBtdjVszzdWyrd2CaFkBGiu7iNOtN09a8+wAXnM7FPWNX +Y2Lw7d9zQujw5+bl4hUeTei9qXB7dloHmAQ9X9Wq8hYVcoOK4wYYYD0ed3rB +Zwb+rN9KM+IxYSzwi2XFBAOHTnnNzetlQtIqQdK++Z34n7vmEV0xE+p1oxND +vDsxs/3TVZsxJhQxXnlsrZfpfrueSAxYENvix8y7xcTvRl3rPMNYcJur+ik3 +g43XNoCm9TgL6uT7VYwq2WimZfxUQZkN5Xrr1AUf2FhyWrOaUGeD0lTGaQ1N +Dr7oWCJ9sJQNvjeVvGbncjBRcVFx72Y2MNkrX82s4uKw82NuVAEbluduPHNN +i8AnXnbGczw5UJL2T5KfPYH65nmf1m/nQDLfOyEkksAHBvn2h/7kAC207Ffs +SwIlPwXJSgkccFuZUHbrWBdOvKwoq6/kwOwi62cJ37uxx64+2XcuF8KXNd+Y +c70Hr1hKg3YKuODyDH/ef9aDploMrapvXJBTf007yujB9F3aLjPleeCYWzRS +OLMXd9MC3zXr8WBRRWLmpoRetFUrcffw5cGOdJNh4d99eMf1E36t48FjH5DL +S+vDsExpnlkrD14f7ck+Xt6HZ9zS3+9h80Dbu2d1+0AfXpOvNCz7yoMOS9q+ +yvDPOPGxuqLQiA/S5QdTP0Z9wUWrJfWLU2U8PjLQkvEFx7xjds+6wocjktzA +zsov2ESbHsO9xYcRe2bNrqEvWLf+1kWdGj6E6XFKZ8f1Y/K4uuO3L3xgrDWY +PSOvHx/mXDncOsiHfSZ9FYvq+5E49o9B7Cgfioy+GxbLCVDytUnqok6AkivL +vjVNgFuU8ovP2xDAvJObklIhQHMl/igTCMigy63xoQvQ5GzNy153AnIbAqZr +6gzghduTLrCDgBk1SvoKawewhZNumr6XAB27oCNjOwdwoci/91IkATm1+XKT +hQOoVz4tt+UYAQwy+aRCywA+rR38mzxJgPKd4n4l4QBu93j4tOUsAcfjPhYr +zRKiS/7+5s0XCAjWjjScMhdiUG14d3y2bH3RmxuDPkL82LFz/bY8AswC64OY +h4RY1CE/l3WTAJXa1tHo50IMPzz2vrqcAMXU7/2GXbL4wWWkdiUBfmd1F1RP +ClHOq29K9REB85ZaR1gtFuFEu3TOjacE+PMdUy87i3DSIes3Wg0B68OPGneE +idD1UMyuw3UEODwo4onOilDS4Z39rIEAO81MQ365CMlZ/axklNU7EBte0CbC +TiFLj0cjwDonUW0NKcJI19w9j1/I7mtbyN5sNTFeM4nLU28i4F8czm+0EKMr +UfhKLNNTpJSwwkeMT1/a9jjKuDuz8o/gg2J8KT0m0JTl+1CiMPfdJTG+aBN1 +BTYS8C18wdRwlRhDJ8+/06gnYH/Vce32DjG2nzdtWftcln98tv2uITFe+K3g +Y7vsfFpvVwdc1ZDgRe1ldvQqAlhZw+bHLCTYsfO1om0FAZ2TLpflvCUo11x7 +aFoZAfKrfT2MoyQ4mstot7xNwO63bDVpqgRNZ49E0a4TUOKdX+BWKkHarKsP +78r6c8h58KFNswRFGTZag+cJGL24ZuJJjwRV7Ab001MISPA9ta5xXILFru8P +xB8nQG+nz3Lv+VK8tKmsmXZQ1r/Y1fEha6So3hY4EBBBQMO2DPkhLynOmbnn +xdpdBKRuSEgai5Di1/awbZE+BESUEtz9eVK0m3/P567Mv/SbXScsqqSYVpLe +ds+EgKPvh05Ev5bistGimFn6BFR3zSle0S1Fcp758jeqBFT2J7wOHJaiyMSy +t2eSDxdtVRljyiRq/jhc6y97PzdCbzVo6JGosd+9f8knPtyOPRF/ypHENSPZ +mW31fLDPaCrm+JEYUpyneucuH654Fe24HEbiUN9dNjuHD7RNZvKPjpAYcX/h +85AUPiTY+s/97SyJc92mbjsd4EPJepuVajkkxiyMK4rfyYdSM8f/NpbI6g9u +lqht5EOE79ivpiYSHzb+17BBlw+qXy1MFegkHm0c8yfk+fDBu2Aiu4vEF3d0 +PTtFPFD5FVV3TEjitvqWxOUdMp62iF75jcR0Y/VBVjUPeLdDWy0nSfzZnVLX +d0Om5zcHTptBoaBUxcQ7mQdEX8CWJZoUlrtm39D9iwf6ZU5l6boUKtwhbm30 +5IGrp2ciLKawZvcgwbbgQXbVGp0NxjK9tH7+Oy0edKeoMpNXUQjzTjoaj3Bh +h8kp1zlWFP7IMgoh2VzQUR3Wl9hSaCW4eMOghgvpzpctZ22gcGVut0NdLheC +d4WlHHKgcCz/XOWbOC5UpxjaGDlT6JmfEuG+nQv2CyYyDVwpPHzFbcaG37lA +USmKIRspnFbX7FauzQWl7BWLpTJeER30/eI3DlC63MImGZv5Vox/o3Pg4Ju0 +P77I4s0On9nBreDAm4jCPVtdKNS4m7XMIY0D8167NKo6yfZnsOLcqnAO6Dvc +fzEPKESnH1jiyAHGdP/2g+soFPs069/X58AW86X7DX6ncDBEecrxBxsWWSc5 +6FtSGBSRyf67gw2hXqGqB8wobFi1erH5PTZYLdrwdMFyCj1ObN6XmsKGkwG/ +rA0XUngz+7hLym42GKm7O9qqU/i+eIndn2psqPxWs9lPmcIhyvmej4AFHmf+ +MKOPk5hXN2uHuIEFAZOFB34NkNhWe2+bVRQLzmm6zLgn80PUz5sGUicWKK8t +IN7I/CLZzNIM0WXB6LuRMP9qEm3cqJj0Fib4jWt3vS6X+S+m3HfTdSY0HL6q +8vg6iV1lP+yZB5gQXvM9ZzyBxLKQV8OBekw4a37q16P1JMZmOLQlR3dCZEHn +yXoTEo2E2gsCoBP2n42OddYh8dWPwhEVjU7YSktQ5JNS7FeO22FRxQAnq78c +83OkqKxsc58Y7gB15SzdMa4E7+1csXT6UTroHPdIQ5TgQHPcUJ8bHdI8j151 +KJFgbWisWdd8OpwOjn9/JkaCSfs8hkOPtEP+ElPrlBkSPCbdkxSm+AHiY9fx +Z5uLkX//iVhs0QZlBVbzjTTF+GymVVsi5y2cIcsNTUZk/7NX6fVLiW8hzUTq +pNwgwqnocR+bjlZYGLNW2ctThCNqbze+/PcNeAQ7uzIihWiVJomMFrZA0mjS +aOYjAeZMkGHTrV6AvetBxfxrAvzMEDZFDtMg4GqaJu2kAOdOuSf5VNFggp7t +FrBFgFlc0z2Fq2mwd3diH43sxw/+UanZkY2gVUQvoSz6MZ7eqrfnfi3EM94r +Grd9xm3P/b5O9T6GS0pzLrkH96JB/Lpgnb8KoXGl4rWbxEfcWuRUX1K6Bf4H +bM+a+g== + "]], + LineBox[{{-0.47853713865065645`, -0.0009587823794039339}, \ +{-0.3473344082965771, -0.06764062812350859}, {-0.29026086032374115`, \ +-0.09493684978385952}, {-0.24233530448879323`, -0.11713684686895665`}, \ +{-0.2041983599291143, -0.13435407573339933`}, {-0.17378781361007703`, \ +-0.14780715436806344`}, {-0.14448473365964967`, -0.16054363343188588`}, \ +{-0.11933114473181075`, -0.17130186465826464`}, {-0.09584872090089921, \ +-0.1812014036420793}, {-0.07086264895008866, -0.1915835815979806}, \ +{-0.04729950232840672, -0.20123258964955315`}, {-0.020642043147410496`, \ +-0.21198344384374132`}, {-0.0004408133075717835, -0.22001399213836054`}}], + LineBox[CompressedData[" +1:eJwVVHk01YsT9zx5kUQJ9WyJekWWKKUyKD28UpIWUah4tmdLlpR9TZZ6KUJC +KbTIHhmEsmTrutuXa7+Xu3kVIdHv/v6YM+dz5szM+cx8ZjY5e5+4LCwkJPRS +YP/3vRk1trbT++GuX80+sn4nxmZ0ldRuyYPIJPVn1JmPqGZhYjMY8hr27v2y +YN7QjetbT99dlH0Lhp4unKqBHuw527Q8y2iBowMKegM7+vD8ZzEfmdJukO39 +xZZLfMKIBPLXWD8yaIwJFYrN9KPdxo4im7tkWFv8MCthuR+FXYvOXagmg4GV +1ktZMTLOFUjP7/pJhnHRYIszSmTcKFrs/l8KBeTL3q8IsSCjdsq7BOV6Kqgk +zE8b5pFxs5nZaJk1AQdSGuyyHSg4N96y9eZ1AuK3zZg2uFGwpUhMqOIZAQ4b +FIOmAyhY86BqSPjXAejLYhz3S6agy4PTLvdrBiBrv+bCigYKKh9NdtYyYEDJ +A4XtoE7Fmyq2Y321w3BJi5Kl8Y2KOdpnf7/XPwzcz86seGEaqu6jdsdMD0Ps +hq95k5I0tHR8wx7dPAJFm2eTnm+lIUmaRcpKHoEtcdbicJaGKYaxx8Q9R2Gv +Y/zOn7U07FiQLAuIHwXNiaFNJh9oGG1k+Eb88SjEhl8su0ai4bouk95XjFEo +C667TuHS8ADxIG3CZgyuZv4ZLK1Ix1Phc8+zzcZh9dPAxIoQOhaINsaHXBoH +OfNkD+lYOq5fWWAQEjUOJw+fyrFNo2O+6aDOUOM4jBGpbWmFdKyyld20zXgC ++urdZ1730XHed9Rb1HECdlx2ctAYpGMXYV/9M2wCztZNdoaz6PjjoC3PpGEC +zK9W/123SMfHp6mK4yZMYDxeI2+uSqC9mExzuDMTdNsmQkM0CLwfLHlDO4oJ +7E1BEKpPIHPlfv23zUzYfy7SmmlGYHO23pqMCSZI6vY3WVoR6JOw/CZclAU6 +zvX9V08RmLN/T5anOQuKZgzqFF0IfJTtutvLjQUnz1a6/OtF4L0vae5+iSwI +FZ9xbL9C4NQCszaykwVNF9+lekQSSLMyrU/gseB8pNbpvngCO7Jb1G5JTkKc +QULKdDKBtnK6u8KPT4J/g4zKoUwCb/pblLf4TMKVzjRPh4cEfpXZPrmcOgkK +5oTs1gICA5WFbmwrnQQnYUsi5ymB7LHxdQd7J0HuXplPUwmBEhIzeyw+T4Jh +Pik+5RWBNaZuXnulp0BPo6nn13IC60taVKV1p0Dd2vmzQhWBeXFLtR+PC3AA +N4VaQ+AteHHL02cKjEg+Vvp1BL74y4HBTpmC+QrXzh31BAYoNTDNXk7Bd13z +wiYkUMt/dV9I1xRY3N5y7b8GAj/tP1Mfy5uCICu7sfJGAuODZupcJNiQnK5x +bXUTgSVKzD45DTacso9nzAniiq52C+kWbPBqbCjyFeCeNA2lEVc2XGizDAsS +1PO181b7GsOGSbVby2KCfrkGUhNt+Wz4Nvaqa/NbQf0bvtrOjWx40huc+e4N +gf8EK7VXM9iwRV99LUvAry4g2r99kQ3ZuVbcmwL+fq1Vo3fkObAvgc58KZhP +5bODH6R3ceCFCvP9ccH8ROZEuo2tOSCqXnfes5BAC+812YpeHHCR74oWyiPQ +6Fo2qSCeA4culSqtyiKwTU58/ad8DpBoyoqJdwX6ySctFtRzQH3u+/Vrgv0a +7HyhLkfjQNIx66ODsQT2RtCruiS4UO1VUc4OIHBFaeiF1Vu4EFstXHHbk8DQ +D6odDCMuFNPPfMt3JnBYzLMATnOhaGotoXBGoK+6LQ80vblgcJ1BWzxC4Kvq +NJe8WC4YetfeABPBvkvyWrOzuVAVMefBFOjd/d1QoHw7F1SerFI6u1Ggx1K9 +8LQhLsSfuP1QVYLAamXF5KgZLuxLfjRuuUTHUpGSXM5KHqxfvSTRy6Pj4Z1h +71sVeGDWt+5kueAeI46sVVurw4MXYy3SM510LG5dyWk35UH/a6XalFo6Zi/I +fwl24YGcDMmQlk7HfR35oh6BPNh35eft2Cg6KueO6WAcDwKb44hkbzpqGn6R +u3KPB87Pg9S+2NExIffU9bgnPGjVPprzyoyOO6wVjObKeWC30SyzXZuO4hUM +m8YmHmwKfJZovIGOa/dELNgP8MD4wrZqUzYNjY/LymhM8oB2MiC8p5eGV0Xe +Zx75ygNJlwybt9U0vCjVvrlhiQfEQpal+EMaHlJZdon+jQ+UYy8fVkfTME0q +wei+FB8kNnCet7nRML74UuF3eT547/zts5EVDYdsqY1FKnxIezgjsnEnDa11 +hnoLt/KB/t3tsf16Gt77WFjsq8WHwJygFdGzVHxfpxXhqs+HpIGBpz9IVFxc +r/g1fi8foiecjdvKqPhMtYzUf4APOl46j7lpVAyRbdKwMuFDOeMWxc2biloG +0TpfDvJh/Yn0pYNHqDj/xuZokxkfzNK7nW78QcWYHmMlPMyHHY3FvgoiVLTz +ivOZEuCB7tnaTUMUtC+cMDEVYI/F7dNpNRTcEPsJ2w/xQfFaE8XnDgUzz2Uf +jjblQ0zo5fNNnhT0pTo5+gAfWJobYhPNKOi+Y/Zd6j5BfqW9+0dFCmoVF9mw +dvNBT+nAgZRZMpLcRBWu6vIhYcbRjNRJxv8yzpwADT6Uflg9kJtPxnC9QzZm +anzwt97msRBMxkttOx8lKvBh++49HqPHyKhsUzUqLcOHb2ftnRzVyfijfWR4 +UJwPY1EnBwO/92NwZEzMZyE+NGqGBe7o7sfDjBfCP9g88F/aExcT2I9VtFTT +BQYPZJbE/9T9qx/3vv/y1bKPB2TfjopbSv34d9XHxIVKHmhvTjbwaCZhicLI +0mSQIP8fme97V5PQvSkqie/Kg182PjzHZXzCUcU/5F1O8cDmp+a8/6tPKFXY +z3ijy4P7+hYXZWw+obOOmKv7KBdW7C2XkL7Xh42SHUv22lwQdSu57K/Yi30a +8fkOclyIgOMkR34Pcluer1vzU3D/y4roiD3IFOuTuvORA61WHMMCpx5Mv0kt +jnLlQGpRx5l1x7rxUBcrazaNDX+Zt1bMBXRiQR1twC+IDTm/hrnfUu3EwW4l +Vep5NiiLOj+M7u7AfaE3z14U/FPX55bPH23vQFOjD9UV76bA53eyHXmiDdPK +HUVYXyahrSzy7gff96jb3f70rS0LJm6mhv3LakLGwjmqtcM41Pebp3/OrURl +wrFj9NA4+BfoOd3ZXomvS2V1MzXHIa6vcpt5RQUmzUhHhv4Yg0CO3e8jH8sx +6/CuO2tyxqDOPa40aVUZxrt3PXCZHAV/Mbt5K6+XaCGzMCOaMQIe5rHffwTk +I1vnc45JzAj0bV5wfdKch8I6z5g5viMgO1ItzpDJwz/+HPJssByBqmO6D5g1 +uTi7Kkk4Y3kYaMp7HDs0snCpY/6Cp+cwSO306xFRu42WuyouV9gNAxE0LWsw +nYr6vLDjihbD4NljvWtlSAou3vUbNt8yDN/3bP37UUMimvnc8ZdqHoKjB0X0 ++hIi8JR9rE9U3hB80CTupKfewHN+5q46EUNw8MDKZkm5EFTP9D+/G4ZA5Y3r +EzVjX/S9NuGVrDQEud5XKje0uKGBhMVdpWUGWPb/s0NFwQnHF/UcmIMMuHS6 ++oq1uDXOsyqtJt4yQFaYmxE2k1v3P48M+dQ= + "]]}, + Annotation[#, "Charting`Private`Tag$169967#1"]& ], {}}, {}}}, + AspectRatio->0.5454545454545454, + Axes->{True, True}, + AxesLabel->{ + FormBox[ + StyleBox[ + RowBox[{"Re", "(", "\[Epsilon]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm], + FormBox[ + StyleBox[ + RowBox[{"Im", "(", "\[Epsilon]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm]}, + AxesOrigin->{0, 0}, + AxesStyle->GrayLevel[0], + DisplayFunction->Identity, + Epilog->InsetBox[ + FormBox[ + StyleBox["\"(c)\"", Bold, FontSize -> 10, StripOnInput -> False], + TraditionalForm], {-1, -0.5}], + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->164, + LabelStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10], + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.1, 1.1}, {-0.6, 0.6}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{{{-1, + FormBox[ + RowBox[{"-", "1"}], TraditionalForm]}, {-0.5, + FormBox[ + RowBox[{"-", "0.5`"}], TraditionalForm]}, {0.5, + FormBox["0.5`", TraditionalForm]}, {1, + FormBox["1", TraditionalForm]}}, {{-0.5, + FormBox[ + RowBox[{"-", "0.5`"}], TraditionalForm]}, {0.5, + FormBox["0.5`", TraditionalForm]}}}, + TicksStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]], ",", + GraphicsBox[{{}, {{{}, {}, + TagBox[ + {GrayLevel[0], Thickness[0.003], Opacity[1.], FaceForm[Opacity[0.3]], + LineBox[CompressedData[" +1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAhXa5xOjR1j8AAAAAAAAAAOmQlEc0 +utY/HUefhn9sRj/PO4SxrKLWPyMF7dJNVVY/c20USSJ01j8kglgQeCdmP2J/ +EkMTGdY/z/Hd2vTNdT908sUop2rVP7gGEvMiI4U/9RhBV7Up1D+slJOgOuuT +P2PL8UA7BNI/5d4rANfdoT98oYcA5QbNP1sZfebOhK4/gfeaWGBByD+a66OO +R3uzP1KXFLrzkMQ/jPN3gxSztj9mjF2ZQ0PBP2tdUgIhjLk/9KNvAMo1vT/w +klt00tC7P2yFVcy/Crg/uRDY/nsAvj9XbQz8xVSzP/Wo4HBp+r8/ScrB9U4y +rj/kSPGVzN7APzLQA70WEKU/ythCN2PQwT9KnrAJdZuYP4aXHrZRtsI/WfNT +T8y0eT/mMiDcIaPDP4UhFGAldjQ/70VuhEPywz+Z05ql + "]], + LineBox[CompressedData[" +1:eJwVknk4lYsWxo0nLilnG+rYJxLX0KBQKWlF5KidREeEihxldqSQ5JqHRpSy +yc1RSkUoQ7lZEbGJ7Hl/n50MbdPen66G4+iWe/f9Yz3reZ/3+a0/3netDIr2 +/E1JQUEhWT7/3/FSkqw4Z4sJISSc//oSOtTWtgSsqMCOKwHVtJFOiNd4Haay +UIud87oH/vTpAvpfK7xg4zNU5J5s/cmEBSl2/Uor2e0Y8h9FZrlnLwwmtr+t +a+9Ft8bv4cW3+4FbpW2ed4GHL6auENM1bPjHX3H6VB0Ps0qSxa0tbDBWUEx/ +KOShufJFTnU3G/DVg1oXEz4+vepe+XaUDa+rdFNU2vkoHG7yubCMAwmukmxy +qRCrvmcEBeZygH3pZ+s5VRKTg1kxT9K40N/pm3ltC4kqRakOIYVc2Nty2AAj +SeTQIuu23ubCm3qvrmdCEhNKP5szXnFhJ1M9Kr1+EH1jrQd1NHlQFDb2N37G +W1wdF3OcUcaDrRYFHULuME4UtcQXiPnwzc+v23FuGA3yL84azfJB9EdYuKrB +CNI02xb3qArgUF5AA/PYCNp2HSw4YSWAx10Md6V5uRYHlz1NF4Cu5+bpx7Zj +WKK15G2ylRAEGlWNTQFjqF7ilGjkIoTn7xeCtbPHsKyXl915SAjzRmuU2skx +NGH+y3FxlhC2OapVzGa+R8bMr1muYiGYrUqKfD0lQb1SmsrFDBFci4pheeuP +o6uprFdyQwRqFvck2i7jOL6cnqNWLYKImnPP1cvHsZr5pOY6TwQZ7bTXZw9N +YJ93XrGzEQGVmrnPNXInMHdIFbytCVgSUmBa0TSBG3KsYlScCQgZePiSrTOJ +u4966tFDCDD0qdcL65/Eyn07bp66TcCnqIYnZ75NYo9x2Yb79QSwVn9+6GM5 +hYtS6MpOLwj4cEnloG/mFO5n3OlMIgh471lQEVo/hSvuvvnnYgkBtkqcdON3 +U/jwUfuV0Q8EEK4hViGbp7Hr58xCW2USIvq2xoqDpvGufvfHWxokpIxFA+fi +NHa307SsaCS4lkV3bGueRr8hSBcsJ6Fp5tjC0tFpHC2xnLtkSIJ/uBB3akjR +7Zsx3cOEhHTNwUaWjRQlJpXN2uYkdLAenbzuJ0X2jrCaXksSwjpmo8vTpDge +VKt4eg0JMirKwrNSin9RT2WL1pKgtZCl7MKSoqJAPfqW3H88SeTHSKW4yPRN +6pbVJCw4b4ru1ZRhTumBfX3y+5tvrHVmrJWh7EiHnbcpCV4Zo31TDBm6138c +7DciQf8XdQkzXIbWdmbLrQ1IuG72Y6Z3rgzn6weXJemQEJgRx6VVypDeFrL/ +jiYJd+4tNetpk2EzP+fCQ3k+KSU3l/wulvMBbNmFeQK86/QDFP6UYaGQ/dFp +hoBTGiZmMVoUdlbppPWOEEDr8ec1m1Ko93ufZBWPgFXhiSu59hRuFNjx3ToJ +sLm1y7zZg8Is0z/i7RsI8Bo6GhIYTCEcVT0xV0FAt8qdl92nKXyt7NJ8Np+A +6sbdNyazKXSNlH7qSSbAOKK0vuU6hV7ZMcajJwgoZDn6O1RSaOXxvbvdk4CU +FO0joY/l+uVdaaQ9AXdZR9W3IYUxbcZaEmMCjpd2bahnURj1bMjGUp2A4Yr9 +W1kcClPUit/BjAh2hevSUkgK/27r+6MFRwQNu9ds4wxT2Fwkdpt6IoLteou6 +2iQUOtFjz2UUiWDFLP3g3ikKi83cjP57Ws7TP608JaVwFblZ57C3CJiLz81s +kVFIbFh4VGkrAu/Lb2k35X7uJc3GIW0RDOjFx9+S80cc+B6aM0JoHI7N2zVO +IaO0bvEmlhDqast3FYxQOLM9WBhUIYQqBscye5DCgS1O/y4+K4TeqbJNFjwK +azy0ZKMHhJDV0SI520thuUN+lcsaIUwuDFhmt1FoXfp1T4+SEO6WTYfubaRQ +e6OebaJIAB8N82L5VRTmxAfOH6oWgHrWb4mmpRRuIjWPJaQKYOSCm5ldMoVd +haUqeWYCCP4y80UtgkLJSbszV+b5MJKvodLqK89vRZ/iXA8fKiwObv+8gUKb +SExVj+DDTXPbe5l0Cpd/C13Zbc8HVsuNVoMf5P0eM9TV1OBDtP+UU4JAhnEL ++jO/3OPBLu3gfZMRMjQ8nrnq6hAXMkwULhd6yP9NX/FQ0gMuGDr7jOXayLDU +f+zjugQuMB1/0kuak6I4/M6IgTYXXtlF2AclSNEsWXuZxJED3bH7U88fkKK7 +ZlrQA3UO3KBderd+vRQj/QOvJrHZEHnfn6s/Po1sU0mDbyAb7hvlLBzZO437 +opaLibQByFqq89VeewpN3FZHh97uA5ODJ3MPMMdxfdzRRHFiF+jn83euixvH +40udwzUMu2CsPNV1h/s4Fiu+aLfqfAVe8bUOusrjeItppOOr8wqqgf6lPlqC +guHqQtPWDgjycWEO/PoeZ7mh99jb2yHKfa+Nke8onhNX7tk60AKevrbJjQ6j ++D1ueMcevxb44Wtq8HnjUbx4ra+6auIZSJM1Sj7IRlAnZR0dVJ7BWEV+bVHG +CGZcb1pymNEMZbkTgd9bh9HlxANXdd0G6I9el3r26RBaS5s+zIprIIrhx1Dd +QeKS9KDLAncmzPCFIa3TAjyziRfjnOYK/wOJLi1X + "]], + LineBox[{{-0.35505776615454954`, -0.0007113828841360244}, \ +{-0.2507875213820242, -0.04883888571538661}, {-0.20788915618483741`, \ +-0.06799518739936339}, {-0.17266344285811872`, -0.08345978027676777}, \ +{-0.14503369385088835`, -0.09542617234683598}, {-0.1232001958815138, \ +-0.10478220533743264`}, {-0.1022910504710167, -0.11366029125863056`}, \ +{-0.08441951541730572, -0.12118563378430897`}, {-0.06778116128835751, \ +-0.12813985883691978`}, {-0.05010818505967048, -0.13547201104304868`}, \ +{-0.033454526544815545`, -0.14233006016365252`}, {-0.01460935969482621, \ +-0.15003080646354114`}, {-0.00031221783145019927`, -0.1558308025965256}}], + LineBox[CompressedData[" +1:eJwVVXk8lAsXFiVbN+pLV66yh2iqiybkSHuJsrR+ukghWyp8KWWpZCmUS2i1 +jFIaqkmLHFualBjLzPu+9iaMmXmjq4RSd74/zu/8zu85z/k9fzznHD2fUNeD +8nJycpdk8f+8+wtF5Z+2hKhDFCRP1qJCZyWLU5MNIQNc4+41r/CCcqRIsrUY +FBvu5y/Lqsex72vHVV8/BvbkoZ1Rmlx8LJlv1RSOIFyx95u7cQOWuBOLv8x5 +DZbc0bbv4neY0Z7gu5LTDBcTq1M1djXjtor+7168ZghIY3bP827GnTwTJpdu +huJPq9ItApsxSq/qqetiHvi263zLOtOMmjoSRsh1HrjbKt/af7cZ6/V0Sk9m +tsChR+O/fZTjoY1lusq5mjaw260oDanm4Xuj6gTbtRQU/e09Fp/Zip6P5+67 +cYyCf3iTaotYrXgJteyiCihg3HWWJzitaKB3IS5vZgcoGx2ZyG9vRaUQ4waq +tQOeHcm6ydJswx6lYI/557rgumnQiNeNNsy1mszh3+2FjEST2+p17Tj9ZX6y +oKEXtHckyHkI2nHKf0iwWNoLAvWJ72XidtSK7mSXM/qgxGm10iMNPk6LLvHM +ed4Hn3+e2f7Ci4955yeLjvZ8gK2KJR1y8gJ8eC6g4tgMIWhr+Nzx1BTg5FFt +cc0SISx3cu2tMhOgFX/7u00nhKCc6u96xU2AMy8ZVJPzP0KmuPcXo1CAJg8S +XUTe/ZC2aeYzsw0EHpbP2OCX3A/C6KeRJ/YQ6OEtf0SL0w93FIfNWUEEcjo0 +c9SUB6A0dLdP8mUCmancTeTDAbAIMr+7oJPAuQ4q9PWuARiIeVU+TBNod9su +46TSIPQHDI7G/SJwlnWNcdj+QZBc+Mubp0fi9qtrjepURBCS5/37WR8SdSPS +5vKsRDAvdfqt6jASV+7+b3+TlwiuGWJSRgyJqipdoclPRFDg7ZQjvEai9mTj +E9s+EfDN8ifdikk872fxs051CBS05zEdy0ls3JLO3Og1BP6WoelnmkhU99cd +W540BPKf6+bVUCTmFp3cSj4agpdN5U4B/SQGLum+atU1BI2nrJ6HDJP4QmOz +GiiKQc6ovfXtOImE6Y18eqkY7g2NKURNo1ArcCZj1S5ZfW9hyVFlCtmeJW5a +Z8TAHky0YKtTeNmx8tI5lhjqxL8+mMynsMntNTO8UQzdph1LyT8oPPjNK7Fn +VAwWCluinulRmL18ae4LLQmM5tXZ1BpRmKTCOCIHEmBZcsaGTSh0GvUdKzgg +AYcR5y2rllDIPfta7VaCBBLGU6VXzSkMZiZcEBVLIN0r4LGSBYWpX3Nswhsl +MKWhdCNOhivHZny1G5bAjxJms5yM36tefsVaXQqOdM/taNn82tAtU7uXSaE9 +OObmqCGFk5sNGbkuUnjqVp/mqUthYJjXmi/BUtDKVz/9ZAGFM7UcQvYlS+F7 +/TBnYi6Fos2LtbhFUgjeldair0ahWJfdvrxWCtF9SmihQOG0ypqQtC4p7FgV +W6E5QeKO1RV0x5gUHF6Y+lE0iVuzI26rzaaBwx9/Ht5HYuSnTUbaxjSs2Gr0 ++0AriU07e/zk7GiQPnDbaPqKRHv//jLOdhr6FoREr+aQOLkn4r6lLw3hoPOX +XgGJjvQGv8gIGj4VUgpt6SSaHYve/78EGlRiMsbdT5P4/I55zIosGn7T71xT +EECid/6h5bcLaYj9T7ZnjZtMH7vLteohDaMZtutK7Uh8U6+8PqWSBkXPwwGh +hiQKLRok097QYJxpUjFNVebX6pNlC1tk/VNhrIARAnfkRSf2kjSEHXZSK24j +kNeX9E9Vr4zPtHi0jkMgWf5WUXGAholHJftTMggM5PF2sYdo2KfxK+v8UQIL +8aLNSwkNDxrmnV3lQmARw7V+mZSG9fusu++ZEXgkkmhRleFqVTWfP04nsMrE +6et2EQ32HI8r0i4Bfm0+eErhIw2a7jZabzkCPOdxM3BxNw2b9Le7JaYIkB1z +KbyaT0NhX1DcMh8BsuyOf+U30nDM19mlwVqApcXqouBaGiy9GNVeKgLUKW8U +ppTTcLlsjuXPTj4uG3FVty2mIaiEcC55wEftladtfJNpeM+N3xHkwkdTV1PV +kRM0TO1+n3d5IR9ffxi5Ye5Hg2158d5v0na0dzEz6V5Ng5lunHFxQjuqF50w +tJf5w0Av+vIEpw2rP+XE+9dIoXSfafbOmDasunA8IJMlhXdZVpJtW9rwqi/v +l0mQFAo2GkWs7JLd5zB2/35aAn9W2PotlGvFCrLnAPVWAsKrOtqR3BY0Puw+ +WXpXAse7Z8yuSGvBzL4V1tmyfeqk3gUt1WtBfbURj1CeGM4fufj1miMPmeU/ +NlldH4LPNkLDTO0m3HDaR2/G4kHI/TRf99U7Lv7e9GSbksIg7OkXqkSEc7Ge +Vd35Z88ApI8+bhhbyMWw+KfX1K4OALNR2TLw+GvZf2LkjasOwL2yzGxz03p0 +XpCUOTH1EcISCmYNP6vFmlT5Q6LZQnAosezmf6jEBd+5lx7ze2D9TerJ8dIy +bHGIXZrK6oE3KziVp5zL8JTpj77+iB7IDxr9UEyXIj4blUzT6oEfKg2z/Bml +qJlefb3RpxuE++Ktu8+UYGXq3gexql3gsbM/eqfBHVx5Ou6K+x0KVul5CgRR +15Gjwl5jcI4CZwPW7Cz/axjzx1TVeh8KElsOz2LsycUvc5KmYnUouHhvyyJ0 +zJbpSeA8zyJho0HsizXWf2NGrLaDaw4BXXk/vQnzZEz5kZE/cJKAU4zIlzZ7 +E9HeKiwWPQlYO6f3vn5KAratu7zeVp+AvR17Kxyn4vFz26H6tQ8EICdy2Khj +HIXprJDKj+kCOKFr6NP4KgLDlsaxa8MFsGhh4diV4GNYoaFxlGkvgC/275mD +dwPQxHCy7p2+AMpeLHtZbHIAD796OvfaTAGMHmX0ngzeg0Y3iwoLpXyYfePb +DLbLZrwQ8axOxOPDp+neub+WZFf8C8A00Dk= + "]]}, + Annotation[#, "Charting`Private`Tag$170030#1"]& ], {}}, {}}}, + AlignmentPoint->Center, + AspectRatio->0.5454545454545454, + Axes->{True, True}, + AxesLabel->{ + FormBox[ + StyleBox[ + RowBox[{"Re", "(", "\[Epsilon]", ")"}], + GrayLevel[0], StripOnInput -> False], TraditionalForm], + FormBox[ + StyleBox[ + RowBox[{"Im", "(", "\[Epsilon]", ")"}], + GrayLevel[1], StripOnInput -> False], TraditionalForm]}, + AxesOrigin->{0, 0}, + AxesStyle->GrayLevel[0], + Background->None, + BaseStyle->{}, + BaselinePosition->Automatic, + ColorOutput->Automatic, + ContentSelectable->Automatic, + CoordinatesToolOptions:>Automatic, + DisplayFunction->Identity, + Epilog->InsetBox[ + FormBox[ + StyleBox["\"(d)\"", Bold, FontSize -> 10, StripOnInput -> False], + TraditionalForm], {-1, -0.5}], + FormatType:>TraditionalForm, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameStyle->{}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + FrameTicksStyle->{}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageMargins->0., + ImagePadding->All, + ImageSize->164, + ImageSizeRaw->Automatic, + LabelStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10], + Method->{ + "MessagesHead" -> ListPlot, "DownsampleWindow" -> None, + "OptimizePlotMarkers" -> True, "MessagesHead" -> ListPlot, + "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotLabel->None, + PlotRange->{{-1.1, 1.1}, {-0.6, 0.6}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + PlotRegion->Automatic, + PreserveImageOptions->Automatic, + Prolog->{}, + RotateLabel->True, + Ticks->{{{-1, + FormBox[ + RowBox[{"-", "1"}], TraditionalForm]}, {-0.5, + FormBox[ + RowBox[{"-", "0.5`"}], TraditionalForm]}, {0.5, + FormBox["0.5`", TraditionalForm]}, {1, + FormBox["1", TraditionalForm]}}, {{-0.5, + FormBox[ + RowBox[{"-", "0.5`"}], TraditionalForm]}, {0.5, + FormBox["0.5`", TraditionalForm]}}}, + TicksStyle->Directive[ + GrayLevel[0], FontFamily -> "Times", FontSize -> 10]]}], + "}"}]], "Output", + CellChangeTimes->{{3.816596460253252*^9, 3.816596545291855*^9}, { + 3.816596586218313*^9, 3.8165966114519987`*^9}, 3.816596875008051*^9, { + 3.8165969122989693`*^9, 3.81659691606608*^9}, 3.816678664637816*^9, + 3.8263527568271303`*^9, {3.826352825890674*^9, 3.8263528335295763`*^9}}, + CellLabel-> + "Out[201]=",ExpressionUUID->"fda38a59-173c-4920-97e9-23124345a970"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], + "]"}], ",", + RowBox[{"eggPlots", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], + "]"}], ",", + RowBox[{"eggPlots", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], + "]"}], ",", + RowBox[{"eggPlots", "[", + RowBox[{"[", "3", "]"}], "]"}]}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"FileNameJoin", "[", + RowBox[{"{", + RowBox[{"baseDir", ",", "\"\\""}], "}"}], + "]"}], ",", + RowBox[{"eggPlots", "[", + RowBox[{"[", "4", "]"}], "]"}]}], "]"}], ";"}]}], "Input", + CellChangeTimes->{{3.8165193650512323`*^9, 3.816519427484233*^9}, { + 3.816596949762371*^9, 3.816596949834105*^9}, {3.826353010078906*^9, + 3.82635308525585*^9}}, + CellLabel-> + "In[216]:=",ExpressionUUID->"27edaac8-9cf5-41d9-a7ef-0e8012f5a0e4"] +}, Closed]] +}, Open ]] +}, +WindowSize->{637.5, 1062.}, +WindowMargins->{{1.5, Automatic}, {1.5, Automatic}}, +FrontEndVersion->"12.2 for Linux x86 (64-bit) (December 12, 2020)", +StyleDefinitions->"Default.nb", +ExpressionUUID->"37edadc6-d9ef-4172-9c42-d5c61b9098c2" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[CellGroupData[{ +Cell[580, 22, 155, 3, 50, "Section",ExpressionUUID->"f2ef6e23-5472-4b4f-a90e-ac0485cbf8ed"], +Cell[738, 27, 276, 6, 22, "Input",ExpressionUUID->"9ffdb55e-aca2-47fa-be79-d3a8081af909"], +Cell[1017, 35, 711, 19, 22, "Input",ExpressionUUID->"45156528-d88e-48c0-93b6-ce2fda8493c9"], +Cell[1731, 56, 320, 8, 22, "Input",ExpressionUUID->"abab33df-81ec-4dd2-add4-0b73aac6af97"] +}, Open ]], +Cell[CellGroupData[{ +Cell[2088, 69, 209, 4, 50, "Section",ExpressionUUID->"1cd74f7b-8e8d-4a93-a429-93df31bd82de"], +Cell[2300, 75, 1626, 45, 74, "Input",ExpressionUUID->"1be5f0c7-80bc-4e55-a0e2-7e29ac8cedc1"], +Cell[3929, 122, 4163, 81, 90, "Input",ExpressionUUID->"0ffb55f5-368f-4a96-94e4-1cb8fb3ea71a"], +Cell[8095, 205, 5313, 134, 129, "Input",ExpressionUUID->"85551351-1090-41c3-b770-6368d457fb6f"], +Cell[13411, 341, 1359, 34, 40, "Input",ExpressionUUID->"352c82de-844c-482d-a8a6-50227506de98"], +Cell[14773, 377, 1048, 31, 47, "Input",ExpressionUUID->"c1a8def6-a87d-4838-8456-cc15d1b3b9f4"], +Cell[CellGroupData[{ +Cell[15846, 412, 629, 14, 24, "Input",ExpressionUUID->"57fa20f7-5d21-4691-97ab-92b697541677"], +Cell[16478, 428, 567, 10, 25, "Output",ExpressionUUID->"00a82b45-c8dc-42e0-9601-d72727bc6a25"] +}, Open ]], +Cell[17060, 441, 721, 15, 22, "Input",ExpressionUUID->"6525b0fa-5295-4e36-831d-af4ab2f404e1"], +Cell[17784, 458, 1810, 48, 59, "Input",ExpressionUUID->"a927e624-5d13-4a21-a4d0-428f89543d5f"], +Cell[19597, 508, 2418, 62, 88, "Input",ExpressionUUID->"67cbde8b-a062-4be0-a2ec-3c4eba39ffb4"], +Cell[22018, 572, 1374, 34, 52, "Input",ExpressionUUID->"10425118-57f3-4136-bdb2-5eaf5c0536f3"], +Cell[23395, 608, 2907, 63, 125, "Input",ExpressionUUID->"b91cf78f-6b6f-499f-8527-47228c8aa02b"], +Cell[26305, 673, 5702, 108, 183, "Input",ExpressionUUID->"25f8328e-f8cb-469c-82c1-ef8c84175dee"], +Cell[32010, 783, 22040, 428, 583, "Input",ExpressionUUID->"710c9a27-f370-4b49-87ba-b6a2e503e1a1"] +}, Closed]], +Cell[CellGroupData[{ +Cell[54087, 1216, 253, 4, 40, "Section",ExpressionUUID->"0311d823-3095-416b-85be-e13c2fd81883"], +Cell[CellGroupData[{ +Cell[54365, 1224, 156, 3, 41, "Subsection",ExpressionUUID->"121916cc-376c-4307-a08e-81b75c069760"], +Cell[54524, 1229, 895, 18, 22, "Input",ExpressionUUID->"777ea0ab-464e-4cea-847a-2fa1209a8190"], +Cell[CellGroupData[{ +Cell[55444, 1251, 1574, 31, 24, "Input",ExpressionUUID->"f8eeb461-e5d9-4c90-a4d6-8a61ccd9095c"], +Cell[57021, 1284, 58370, 1098, 209, "Output",ExpressionUUID->"f3323a54-56e7-4004-8476-c25089ff9d68"] +}, Open ]], +Cell[115406, 2385, 1617, 43, 76, "Input",ExpressionUUID->"888ab8f2-1a64-47d4-85a8-7211f006b3a6"] +}, Closed]], +Cell[CellGroupData[{ +Cell[117060, 2433, 156, 3, 30, "Subsection",ExpressionUUID->"d8cc5be2-3bc2-4459-abac-4909817fd602"], +Cell[CellGroupData[{ +Cell[117241, 2440, 3639, 84, 191, "Input",ExpressionUUID->"9a858868-22d4-4032-8c16-522279cca440"], +Cell[120883, 2526, 47092, 917, 139, "Output",ExpressionUUID->"a338e701-f10e-4c48-96d5-631ab8f23577"] +}, Open ]], +Cell[167990, 3446, 587, 13, 24, "Input",ExpressionUUID->"88df1705-7487-411e-91a4-b967ca95a817"] +}, Closed]], +Cell[CellGroupData[{ +Cell[168614, 3464, 205, 4, 30, "Subsection",ExpressionUUID->"873e30c6-ee52-44ba-ab10-25b79170d6ba"], +Cell[CellGroupData[{ +Cell[168844, 3472, 3326, 79, 162, "Input",ExpressionUUID->"23213cd8-d73b-4c2e-8573-723e0dfd1279"], +Cell[172173, 3553, 477, 10, 28, "Message",ExpressionUUID->"b5ab264c-e5c4-49ee-9f5d-a558dba6e680"], +Cell[172653, 3565, 476, 10, 28, "Message",ExpressionUUID->"46b7b676-7327-4190-b6db-af8c19ad1688"], +Cell[173132, 3577, 477, 10, 28, "Message",ExpressionUUID->"18a2b158-b0df-4493-8b52-f16c1931b98f"], +Cell[173612, 3589, 477, 10, 28, "Message",ExpressionUUID->"dc093d8e-9578-453a-9d51-6917853da10b"], +Cell[174092, 3601, 477, 10, 28, "Message",ExpressionUUID->"b6a3f548-341c-4e04-991f-040a6ca53bcc"], +Cell[174572, 3613, 477, 10, 28, "Message",ExpressionUUID->"1bfbd4bc-8f36-4748-b6d4-f27bfc933e30"], +Cell[175052, 3625, 477, 10, 28, "Message",ExpressionUUID->"cdd7b1fb-3b88-4b01-ade6-18cfadc3753b"], +Cell[175532, 3637, 477, 10, 28, "Message",ExpressionUUID->"78cdcb01-7a41-4326-8b29-6fd000abd757"], +Cell[176012, 3649, 479, 10, 28, "Message",ExpressionUUID->"f96215bf-f7cc-4f3d-bf51-c090e4d3694f"], +Cell[176494, 3661, 477, 10, 28, "Message",ExpressionUUID->"5ed95346-9786-4908-be51-33a68772c260"], +Cell[176974, 3673, 477, 10, 28, "Message",ExpressionUUID->"624bc985-3c7e-428a-8548-6edcdc21401a"], +Cell[177454, 3685, 477, 10, 28, "Message",ExpressionUUID->"d547ca10-9f16-4a1c-bd69-7fa5b6a25e4a"], +Cell[177934, 3697, 477, 10, 28, "Message",ExpressionUUID->"5e6777bc-bde9-49ff-90e9-45716ba74fb6"], +Cell[178414, 3709, 479, 10, 28, "Message",ExpressionUUID->"c0fc00a1-71ca-4ffc-9015-0551e3d80ab3"], +Cell[178896, 3721, 582, 12, 28, "Message",ExpressionUUID->"b91c70b4-51a2-4e87-8d4d-6ba3f8aa4907"], +Cell[179481, 3735, 454, 10, 18, "Message",ExpressionUUID->"305b364a-ea7e-457c-b156-9f7266a72085"], +Cell[179938, 3747, 456, 10, 18, "Message",ExpressionUUID->"ba1325fb-a070-4e99-a073-93df7cbe604e"], +Cell[180397, 3759, 477, 10, 28, "Message",ExpressionUUID->"0049c5a0-5030-4d9a-8063-17d1b5174641"], +Cell[180877, 3771, 454, 10, 18, "Message",ExpressionUUID->"740d2588-adc7-4e89-afdc-b13e5f3aa49f"], +Cell[181334, 3783, 454, 10, 18, "Message",ExpressionUUID->"755df0c4-02d6-4e98-b79b-034d7d5b81f7"], +Cell[181791, 3795, 477, 10, 28, "Message",ExpressionUUID->"e77b3e92-b908-4c33-ae9c-13c4961fdc07"], +Cell[182271, 3807, 454, 10, 18, "Message",ExpressionUUID->"82426e88-df80-427f-bbe8-b2cbeefbf863"], +Cell[182728, 3819, 477, 10, 28, "Message",ExpressionUUID->"e551f98f-fc07-4734-98bf-1bfa97a555a7"], +Cell[183208, 3831, 477, 10, 28, "Message",ExpressionUUID->"a50e93ef-7ab3-4fc0-a66f-56c663627bdb"], +Cell[183688, 3843, 456, 10, 18, "Message",ExpressionUUID->"5e0aff12-3391-47a0-8224-409d4f2b4a01"], +Cell[184147, 3855, 477, 10, 28, "Message",ExpressionUUID->"47e6227d-6f30-4d70-88f8-be87b3f3534d"], +Cell[184627, 3867, 582, 12, 28, "Message",ExpressionUUID->"b25d2a81-dfc4-46e1-a578-eb2aee9f1db8"], +Cell[185212, 3881, 477, 10, 28, "Message",ExpressionUUID->"5bace815-d93c-4c75-98b1-f57224543926"], +Cell[185692, 3893, 477, 10, 28, "Message",ExpressionUUID->"e1c87755-55ba-49fa-a995-02b881bd33bb"], +Cell[186172, 3905, 454, 10, 18, "Message",ExpressionUUID->"5849197f-e06b-4b2f-9ee2-e43e70f3c9b5"], +Cell[186629, 3917, 479, 10, 28, "Message",ExpressionUUID->"d36f3cdf-c11d-45a3-86e2-a304e4f5e02f"], +Cell[187111, 3929, 477, 10, 28, "Message",ExpressionUUID->"6fc1b7f4-1ff8-4bf8-9546-431e892fe708"], +Cell[187591, 3941, 477, 10, 28, "Message",ExpressionUUID->"e875c28c-e8d6-4be7-bca8-f37d34c6f197"], +Cell[188071, 3953, 456, 10, 18, "Message",ExpressionUUID->"db6ed3a1-7899-4c4b-b813-1cf3a5fc4b9b"], +Cell[188530, 3965, 584, 12, 28, "Message",ExpressionUUID->"5cf4214d-d36b-4127-8e68-22028667e216"], +Cell[189117, 3979, 477, 10, 28, "Message",ExpressionUUID->"adfaf162-a248-427f-8c1f-76b94bfa8cc0"], +Cell[189597, 3991, 479, 10, 28, "Message",ExpressionUUID->"ede8f108-44c1-4281-b17c-ae4288203020"], +Cell[190079, 4003, 477, 10, 28, "Message",ExpressionUUID->"c115e6f6-f394-47bd-94ac-0b86c5368aac"], +Cell[190559, 4015, 454, 10, 18, "Message",ExpressionUUID->"38c7491b-41ea-4b85-a13f-d9c3af5203c8"], +Cell[191016, 4027, 477, 10, 28, "Message",ExpressionUUID->"ce20e33e-9282-48b4-8e94-5c32c563f74d"], +Cell[191496, 4039, 477, 10, 28, "Message",ExpressionUUID->"26fd7ead-4b4f-4e6c-97a7-b875f70ab8ed"], +Cell[191976, 4051, 479, 10, 28, "Message",ExpressionUUID->"fb33003b-08af-4f4b-8e63-a6a4565527c1"], +Cell[192458, 4063, 454, 10, 18, "Message",ExpressionUUID->"3c3f4fa0-d474-4259-a98c-bb8dd4b0a556"], +Cell[192915, 4075, 584, 12, 28, "Message",ExpressionUUID->"91f458bd-cf46-49f4-885e-491288741517"], +Cell[193502, 4089, 479, 10, 28, "Message",ExpressionUUID->"f197abfb-d0ef-4a5a-a16f-7f39b621a6bb"], +Cell[193984, 4101, 477, 10, 28, "Message",ExpressionUUID->"2f20668b-2dd5-4412-bf60-1bf43d737373"], +Cell[194464, 4113, 477, 10, 28, "Message",ExpressionUUID->"a54337a5-f757-4b50-9b98-924be7c7f31c"], +Cell[194944, 4125, 454, 10, 18, "Message",ExpressionUUID->"deb9a9e3-5fc6-4d13-b777-8bb77563de68"], +Cell[195401, 4137, 584, 12, 28, "Message",ExpressionUUID->"bd6082c0-9929-4575-82be-cc166b86d757"], +Cell[195988, 4151, 477, 10, 28, "Message",ExpressionUUID->"2df7e6ab-0734-4cb1-99c2-eceba2126f50"], +Cell[196468, 4163, 477, 10, 28, "Message",ExpressionUUID->"3191bba6-cffd-4b12-9072-7b1648acf19f"], +Cell[196948, 4175, 477, 10, 28, "Message",ExpressionUUID->"bbf075d6-ddc1-42e0-859d-c117e1e7f8d3"], +Cell[197428, 4187, 454, 10, 18, "Message",ExpressionUUID->"2140fd35-235f-4db6-a262-e9b7bccde7c8"], +Cell[197885, 4199, 477, 10, 28, "Message",ExpressionUUID->"9fc40d74-c6a9-477e-b319-40a70bb799b6"], +Cell[198365, 4211, 479, 10, 28, "Message",ExpressionUUID->"214e21c6-65fe-49e9-839f-bfbb2b1e74f7"], +Cell[198847, 4223, 479, 10, 28, "Message",ExpressionUUID->"b3123def-790f-432f-b01e-10b8f3ac99b1"], +Cell[199329, 4235, 453, 10, 18, "Message",ExpressionUUID->"b3e3b02c-410b-4af0-8632-3df0951e86c9"], +Cell[199785, 4247, 582, 12, 28, "Message",ExpressionUUID->"2fd21520-09b8-441b-8073-917daf5ea165"], +Cell[200370, 4261, 477, 10, 28, "Message",ExpressionUUID->"8f696efe-f35a-4171-b3dd-6d47710d7526"], +Cell[200850, 4273, 477, 10, 28, "Message",ExpressionUUID->"b9c68675-9c1d-45ab-9579-4152686ab336"], +Cell[201330, 4285, 477, 10, 28, "Message",ExpressionUUID->"2ee5e2de-f616-4613-9a80-bd23e36bfacb"], +Cell[201810, 4297, 454, 10, 18, "Message",ExpressionUUID->"a6969433-8026-47ba-b91b-78c6f1eb2dc8"], +Cell[202267, 4309, 477, 10, 28, "Message",ExpressionUUID->"3c180826-077a-4673-aab4-180165864380"], +Cell[202747, 4321, 584, 12, 28, "Message",ExpressionUUID->"a259ce9c-d1f7-49df-8494-97875ee00a92"], +Cell[203334, 4335, 476, 10, 28, "Message",ExpressionUUID->"5bdf0c70-3e44-4a78-81c2-8f7d33ba7e41"], +Cell[203813, 4347, 477, 10, 28, "Message",ExpressionUUID->"3bef3290-ff57-434f-b304-f286aba102ad"], +Cell[204293, 4359, 453, 10, 18, "Message",ExpressionUUID->"cef69e9a-a0e1-4356-a0c2-fa3a00eb04d9"], +Cell[204749, 4371, 477, 10, 28, "Message",ExpressionUUID->"bd43a493-7fc6-4b92-b394-7fc09dc2594c"], +Cell[205229, 4383, 477, 10, 28, "Message",ExpressionUUID->"a8c57e1a-e9e0-4aef-84e2-280c44b62757"], +Cell[205709, 4395, 477, 10, 28, "Message",ExpressionUUID->"ace0176d-5198-4238-b6c9-fbbcee135c7a"], +Cell[206189, 4407, 454, 10, 18, "Message",ExpressionUUID->"72c7dae1-9694-4e3b-bb24-6afcdae6e348"], +Cell[206646, 4419, 584, 12, 28, "Message",ExpressionUUID->"b8974682-160d-4e9f-b397-c343c3262758"], +Cell[207233, 4433, 582, 12, 28, "Message",ExpressionUUID->"c1b444b8-57dd-4504-9cf0-a541c586d68c"], +Cell[207818, 4447, 479, 10, 28, "Message",ExpressionUUID->"bd063fdc-d35b-49c4-86b1-a0a56d48d6cb"], +Cell[208300, 4459, 477, 10, 28, "Message",ExpressionUUID->"b8c9ccfb-f4ac-44dd-8aa5-f3abd27c01fe"], +Cell[208780, 4471, 477, 10, 28, "Message",ExpressionUUID->"4a7be221-5e78-455f-9b70-b3c6e835d889"], +Cell[209260, 4483, 454, 10, 18, "Message",ExpressionUUID->"906ae12a-2aeb-4477-83df-e51ac66ad482"], +Cell[209717, 4495, 584, 12, 28, "Message",ExpressionUUID->"6b8e1eee-f3ef-47c7-88c8-a601ce528dfb"], +Cell[210304, 4509, 584, 12, 28, "Message",ExpressionUUID->"b3b61c1e-c68a-4214-9665-99ad0e50ec5c"], +Cell[210891, 4523, 477, 10, 28, "Message",ExpressionUUID->"39ab8912-52ed-446f-bd2d-f5bc058aa52b"], +Cell[211371, 4535, 477, 10, 28, "Message",ExpressionUUID->"a396ce33-611e-4267-a45b-a8f024c300af"], +Cell[211851, 4547, 479, 10, 28, "Message",ExpressionUUID->"6aa5a106-2e0c-44cf-b763-e6cdf80b8d37"], +Cell[212333, 4559, 453, 10, 18, "Message",ExpressionUUID->"3461d81e-0ae4-4c04-b79c-123dba86a11c"], +Cell[212789, 4571, 581, 12, 28, "Message",ExpressionUUID->"1a0bcc5f-fd30-4cbf-b1f9-de44f1c72bb0"], +Cell[213373, 4585, 477, 10, 28, "Message",ExpressionUUID->"a007b3be-9ded-42dc-8560-b745e80f624f"], +Cell[213853, 4597, 477, 10, 28, "Message",ExpressionUUID->"bcf30ede-a537-49da-b4a8-abd76e27fcbf"], +Cell[214333, 4609, 477, 10, 28, "Message",ExpressionUUID->"c828bfd3-4da1-4d66-8279-2341d7de1cc7"], +Cell[214813, 4621, 454, 10, 18, "Message",ExpressionUUID->"5b4a88c5-d13c-4a05-a961-6b4964f06b4d"], +Cell[215270, 4633, 479, 10, 28, "Message",ExpressionUUID->"65c5eb77-ec4f-48d7-95f9-783ca0b7a25d"], +Cell[215752, 4645, 477, 10, 28, "Message",ExpressionUUID->"851d24e4-b6e4-43c4-8152-4d76241bc688"], +Cell[216232, 4657, 477, 10, 28, "Message",ExpressionUUID->"bcb50763-5465-49a9-8fcf-28e8b4f3a818"], +Cell[216712, 4669, 479, 10, 28, "Message",ExpressionUUID->"465c0f5a-2fd3-4204-9950-73711cfbc5ac"], +Cell[217194, 4681, 456, 10, 18, "Message",ExpressionUUID->"4d162071-34ff-4019-97b7-94f08d661cd9"], +Cell[217653, 4693, 477, 10, 28, "Message",ExpressionUUID->"663c64d6-af75-41bc-a0d6-e080a00ee4ef"], +Cell[218133, 4705, 477, 10, 28, "Message",ExpressionUUID->"1fab5968-ee10-4c76-a2ea-c8eabad9802b"], +Cell[218613, 4717, 454, 10, 18, "Message",ExpressionUUID->"84c7069d-041e-45e8-93ee-e702ade749aa"], +Cell[219070, 4729, 476, 10, 28, "Message",ExpressionUUID->"22f90fcb-3744-4d9c-bfba-deebf5770785"], +Cell[219549, 4741, 477, 10, 28, "Message",ExpressionUUID->"89add76f-d787-4f88-8730-4add7d066eb1"], +Cell[220029, 4753, 477, 10, 28, "Message",ExpressionUUID->"9b09d79b-a73c-49c9-9a64-5a89765b21fa"], +Cell[220509, 4765, 454, 10, 18, "Message",ExpressionUUID->"eecaf081-1c46-400a-a081-b3a7666f6ba7"], +Cell[220966, 4777, 476, 10, 28, "Message",ExpressionUUID->"031f241f-60ca-46e0-9902-11b146f74cbf"], +Cell[221445, 4789, 477, 10, 28, "Message",ExpressionUUID->"3cbae34b-789c-4862-8f1a-21faa8689ed3"], +Cell[221925, 4801, 477, 10, 28, "Message",ExpressionUUID->"c45cab54-658a-4a7a-b6a6-4e95858366d8"], +Cell[222405, 4813, 453, 10, 18, "Message",ExpressionUUID->"3534b758-18b8-46c8-ae94-8367bead2ce6"], +Cell[222861, 4825, 479, 10, 28, "Message",ExpressionUUID->"df7dae07-d146-495b-a1ad-ad9c770a44a7"], +Cell[223343, 4837, 477, 10, 28, "Message",ExpressionUUID->"374cd1ce-f80e-4374-915d-2e013a2e6510"], +Cell[223823, 4849, 477, 10, 28, "Message",ExpressionUUID->"798b4b38-56a1-4a0c-9ddf-601ba8e53b16"], +Cell[224303, 4861, 477, 10, 28, "Message",ExpressionUUID->"2910d53c-29ee-4240-91f7-03e7e78130f3"], +Cell[224783, 4873, 479, 10, 28, "Message",ExpressionUUID->"9ed7da4a-9073-48e5-b77e-a68195b26923"], +Cell[225265, 4885, 456, 10, 18, "Message",ExpressionUUID->"ccbc15eb-f5ac-491a-a236-7ccc22a20751"], +Cell[225724, 4897, 477, 10, 28, "Message",ExpressionUUID->"1555ab20-83eb-4559-b6a1-e6bd248b0da5"], +Cell[226204, 4909, 477, 10, 28, "Message",ExpressionUUID->"00b4c406-8a32-4c30-9c5a-89a6c2b401b3"], +Cell[226684, 4921, 456, 10, 18, "Message",ExpressionUUID->"40f10f3e-7d39-4b7d-b1b8-413d9e59a387"], +Cell[227143, 4933, 477, 10, 28, "Message",ExpressionUUID->"2cd8bc44-855d-46b0-984e-7aa298be6006"], +Cell[227623, 4945, 479, 10, 28, "Message",ExpressionUUID->"9bdb1641-9b20-483a-8195-43709b435ed5"], +Cell[228105, 4957, 454, 10, 18, "Message",ExpressionUUID->"ad76bdb3-55a2-4f6f-84bf-432840ba7a89"], +Cell[228562, 4969, 584, 12, 28, "Message",ExpressionUUID->"248eacd0-e2fc-432f-b62b-e01735f200f7"], +Cell[229149, 4983, 582, 12, 28, "Message",ExpressionUUID->"44090342-05de-4aab-927d-d0777d913084"], +Cell[229734, 4997, 477, 10, 28, "Message",ExpressionUUID->"457a5ce9-40d3-441f-a8d8-bb989cd67141"], +Cell[230214, 5009, 477, 10, 28, "Message",ExpressionUUID->"eb8bb6c7-5361-4d7a-9370-4c5b5384fef1"], +Cell[230694, 5021, 479, 10, 28, "Message",ExpressionUUID->"9380dae2-5d36-47c7-b566-2aed9d342dc2"], +Cell[231176, 5033, 456, 10, 18, "Message",ExpressionUUID->"b14f919c-1811-4c58-8fe3-a84d554947f1"], +Cell[231635, 5045, 477, 10, 28, "Message",ExpressionUUID->"b30b165a-684e-45eb-926b-49a405f8ed11"], +Cell[232115, 5057, 477, 10, 28, "Message",ExpressionUUID->"d8d9e562-182e-4183-871d-32fcfa727224"], +Cell[232595, 5069, 477, 10, 28, "Message",ExpressionUUID->"35aa5d0b-ec02-45d7-8dec-14ab12d505ec"], +Cell[233075, 5081, 454, 10, 18, "Message",ExpressionUUID->"a2339664-f192-43a1-9338-220157fd5373"], +Cell[233532, 5093, 477, 10, 28, "Message",ExpressionUUID->"bb1164e2-a5b0-4198-b12e-42fa61c20581"], +Cell[234012, 5105, 477, 10, 28, "Message",ExpressionUUID->"a20b4610-421c-4784-9497-d670353aeb70"], +Cell[234492, 5117, 479, 10, 28, "Message",ExpressionUUID->"ea708535-4351-45b0-8ee2-4f1606bdf4b1"], +Cell[234974, 5129, 454, 10, 18, "Message",ExpressionUUID->"00c9ecaa-7041-41a3-9687-e6fd0a931704"], +Cell[235431, 5141, 479, 10, 28, "Message",ExpressionUUID->"2c615eba-b45f-41ce-83ac-24ae52222310"], +Cell[235913, 5153, 477, 10, 28, "Message",ExpressionUUID->"6d8e8cfd-e2a9-416a-a62f-4a9c4adf1fc8"], +Cell[236393, 5165, 477, 10, 28, "Message",ExpressionUUID->"9572e8a9-e919-4f7f-9b04-6c9ac32ae106"], +Cell[236873, 5177, 454, 10, 18, "Message",ExpressionUUID->"9fedf00c-b1a9-4738-8748-74e0cd371535"], +Cell[237330, 5189, 582, 12, 28, "Message",ExpressionUUID->"f37b5f45-d49b-4506-b07a-f17218c094eb"], +Cell[237915, 5203, 476, 10, 28, "Message",ExpressionUUID->"0b7af16b-9fd1-49d9-8e81-548086a90bba"], +Cell[238394, 5215, 479, 10, 28, "Message",ExpressionUUID->"0f4f7b5e-6c73-495b-a136-4798046c47b2"], +Cell[238876, 5227, 476, 10, 28, "Message",ExpressionUUID->"70dfd261-ce3e-4efa-af73-30f567f28804"], +Cell[239355, 5239, 454, 10, 18, "Message",ExpressionUUID->"e6966dbe-374f-4255-904a-5464338dc520"], +Cell[239812, 5251, 477, 10, 28, "Message",ExpressionUUID->"abca962b-716a-44b0-b96d-692463bf3bc9"], +Cell[240292, 5263, 477, 10, 28, "Message",ExpressionUUID->"c9f8db85-d86a-4953-ad59-82cf8e63e7c5"], +Cell[240772, 5275, 477, 10, 28, "Message",ExpressionUUID->"6830b319-55cb-49d8-80bd-01d6edf6627b"], +Cell[241252, 5287, 454, 10, 18, "Message",ExpressionUUID->"d230a909-9394-466a-ad1e-af9ff5728236"], +Cell[241709, 5299, 477, 10, 28, "Message",ExpressionUUID->"ab190145-b087-4b53-a36c-24f9cd30e4d1"], +Cell[242189, 5311, 477, 10, 28, "Message",ExpressionUUID->"580cb3bc-89b6-4f9a-b44c-e3488d17f53b"], +Cell[242669, 5323, 582, 12, 28, "Message",ExpressionUUID->"3d72b13e-c348-4080-a7a1-21b8e784a6d9"], +Cell[243254, 5337, 477, 10, 28, "Message",ExpressionUUID->"2126164d-fa84-46cc-b08f-c8984675ec2f"], +Cell[243734, 5349, 456, 10, 18, "Message",ExpressionUUID->"ce4b5120-4327-400b-8e2c-dbc931416fc7"], +Cell[244193, 5361, 477, 10, 28, "Message",ExpressionUUID->"3f38d658-68cd-43d9-8d06-003545b08f57"], +Cell[244673, 5373, 477, 10, 28, "Message",ExpressionUUID->"212f5576-f78a-4339-b37b-ff413cdba6af"], +Cell[245153, 5385, 477, 10, 28, "Message",ExpressionUUID->"3d6e6e22-d61c-446c-b79c-39d0d8cb28a0"], +Cell[245633, 5397, 454, 10, 18, "Message",ExpressionUUID->"e52a78a5-d8d7-4f2b-9dab-00d809d46fca"], +Cell[246090, 5409, 582, 12, 28, "Message",ExpressionUUID->"cc873a64-8dfe-44d4-86d1-51226f57cf63"], +Cell[246675, 5423, 477, 10, 28, "Message",ExpressionUUID->"70b7cda6-1df4-454d-a972-a6a139828a79"], +Cell[247155, 5435, 477, 10, 28, "Message",ExpressionUUID->"44d8d221-e202-40fb-a16b-e2dc73c9074f"], +Cell[247635, 5447, 479, 10, 28, "Message",ExpressionUUID->"1a63e52f-442a-4cf9-aa45-077690a03020"], +Cell[248117, 5459, 456, 10, 18, "Message",ExpressionUUID->"de7807dc-2082-4adc-94bf-20069b07d345"], +Cell[248576, 5471, 479, 10, 28, "Message",ExpressionUUID->"9989ecc8-babd-434e-aea9-b2d8ae45b51e"], +Cell[249058, 5483, 477, 10, 28, "Message",ExpressionUUID->"48f4c901-a994-46d4-b441-26e4311b8fe5"], +Cell[249538, 5495, 477, 10, 28, "Message",ExpressionUUID->"fa228080-3792-46cb-9ebc-070d7de9dc07"], +Cell[250018, 5507, 477, 10, 28, "Message",ExpressionUUID->"103c53a4-92a2-499a-be59-5c1452dfe218"], +Cell[250498, 5519, 479, 10, 28, "Message",ExpressionUUID->"f802d54c-c860-4f12-967a-f472d49db87a"], +Cell[250980, 5531, 479, 10, 28, "Message",ExpressionUUID->"7c578ad3-29f3-43d7-a1ad-94a9c820dc7a"], +Cell[251462, 5543, 477, 10, 28, "Message",ExpressionUUID->"e33ef7c1-ba04-4114-8476-91e863faa877"], +Cell[251942, 5555, 477, 10, 28, "Message",ExpressionUUID->"e578fc52-a5da-47d5-8703-e7ca06908209"], +Cell[252422, 5567, 479, 10, 28, "Message",ExpressionUUID->"a63db450-e79c-4848-a16d-d5145e9def2f"], +Cell[252904, 5579, 476, 10, 28, "Message",ExpressionUUID->"ff547d16-4e3f-492c-a37c-f5444c14aaa9"], +Cell[253383, 5591, 479, 10, 28, "Message",ExpressionUUID->"7b7d185d-95fd-4cd1-bdd7-ae12ef77b978"], +Cell[253865, 5603, 477, 10, 28, "Message",ExpressionUUID->"8b9c4fb0-4eb7-4d1a-aff2-d8c75ee05a92"], +Cell[254345, 5615, 477, 10, 28, "Message",ExpressionUUID->"a6121b36-0f1c-4e2b-89ab-714e62a629c9"], +Cell[254825, 5627, 477, 10, 28, "Message",ExpressionUUID->"6849bd49-f782-4337-8c4c-b95ddd4fb61f"], +Cell[255305, 5639, 454, 10, 18, "Message",ExpressionUUID->"69b45c83-3055-4dd5-9505-8e0d650adf96"], +Cell[255762, 5651, 454, 10, 18, "Message",ExpressionUUID->"e7464d65-5829-4ce9-a7d4-5497a667e6e0"], +Cell[256219, 5663, 454, 10, 18, "Message",ExpressionUUID->"deb367ad-9e96-42c9-ab52-1295becbcc77"], +Cell[256676, 5675, 477, 10, 28, "Message",ExpressionUUID->"def304b3-8d3c-4774-8f5c-f2e30c3e31a2"], +Cell[257156, 5687, 479, 10, 28, "Message",ExpressionUUID->"6076b058-3c40-4485-b2d0-64680741d4a9"], +Cell[257638, 5699, 454, 10, 18, "Message",ExpressionUUID->"7615c5d8-6a70-4e7d-bc41-37ee9bdad8fe"], +Cell[258095, 5711, 479, 10, 28, "Message",ExpressionUUID->"3864b58c-65e7-43a3-9b0d-31de3c78cc6b"], +Cell[258577, 5723, 476, 10, 28, "Message",ExpressionUUID->"d88a79f9-cf97-49ca-badf-52fdc2e135da"], +Cell[259056, 5735, 454, 10, 18, "Message",ExpressionUUID->"ceefb892-55f1-4fd6-bfac-3bf1c012cae2"], +Cell[259513, 5747, 456, 10, 18, "Message",ExpressionUUID->"855a771e-db96-4155-8e2e-917497ee6769"], +Cell[259972, 5759, 477, 10, 28, "Message",ExpressionUUID->"74979533-00ec-4420-9f01-d8f4e4919cd5"], +Cell[260452, 5771, 479, 10, 28, "Message",ExpressionUUID->"35e0f592-d253-42b6-8cd9-b4d83357c396"], +Cell[260934, 5783, 479, 10, 28, "Message",ExpressionUUID->"81ba5f42-b0ca-4379-825b-9180bb1d9d8f"], +Cell[261416, 5795, 456, 10, 18, "Message",ExpressionUUID->"082b4593-3455-4ffb-93c5-c3cdd33c544a"], +Cell[261875, 5807, 499, 11, 32, "Message",ExpressionUUID->"893436cb-9a63-42dc-a787-6213fb608882"], +Cell[262377, 5820, 477, 10, 28, "Message",ExpressionUUID->"4947542e-f25b-49a2-8a13-81de2d4a507d"], +Cell[262857, 5832, 477, 10, 28, "Message",ExpressionUUID->"a43f3a0b-ab5f-4f34-ab5b-bd57de1d13c3"], +Cell[263337, 5844, 477, 10, 28, "Message",ExpressionUUID->"3dba5024-dc04-4d6e-a65d-507cf3cdad28"], +Cell[263817, 5856, 454, 10, 18, "Message",ExpressionUUID->"05f72cb6-e11a-4277-8d8a-54cbd5614507"], +Cell[264274, 5868, 477, 10, 28, "Message",ExpressionUUID->"7d44bb60-bd68-45a2-bc8c-65b295192230"], +Cell[264754, 5880, 479, 10, 28, "Message",ExpressionUUID->"c0cec7f2-6f5d-425d-9406-089375c93241"], +Cell[265236, 5892, 477, 10, 28, "Message",ExpressionUUID->"5077cf52-4cc7-4c45-bd2e-734cb49dd969"], +Cell[265716, 5904, 453, 10, 18, "Message",ExpressionUUID->"d7baa5d2-a469-4c5b-9c54-0eea6571f919"], +Cell[266172, 5916, 479, 10, 28, "Message",ExpressionUUID->"c8d362d7-c462-4391-8a6b-d56dd921b07d"], +Cell[266654, 5928, 479, 10, 28, "Message",ExpressionUUID->"7aaa464b-dcea-41f9-92c7-3f0f8d3bbc92"], +Cell[267136, 5940, 477, 10, 28, "Message",ExpressionUUID->"9d337a05-cfda-417e-a2f1-22ef594210d1"], +Cell[267616, 5952, 454, 10, 18, "Message",ExpressionUUID->"9b07c716-6e96-477e-979e-de518c44fd41"], +Cell[268073, 5964, 477, 10, 28, "Message",ExpressionUUID->"437e294d-3922-4948-884f-a469667b9c05"], +Cell[268553, 5976, 477, 10, 28, "Message",ExpressionUUID->"d7a50c78-a75e-4754-ae1c-5a25b30b743e"], +Cell[269033, 5988, 477, 10, 28, "Message",ExpressionUUID->"7f66f3f6-42f5-4c81-9f26-2fbd67c328e8"], +Cell[269513, 6000, 454, 10, 18, "Message",ExpressionUUID->"22277cce-bcff-4bc2-bcfe-4bf980cfd802"], +Cell[269970, 6012, 477, 10, 28, "Message",ExpressionUUID->"98f19bc9-bc5f-4c2d-996c-46091fd379a3"], +Cell[270450, 6024, 476, 10, 28, "Message",ExpressionUUID->"6df65c42-265d-4a1f-962f-50bbcd3248c9"], +Cell[270929, 6036, 479, 10, 28, "Message",ExpressionUUID->"d92abf87-8cd3-46d2-a711-ed59426b7d7c"], +Cell[271411, 6048, 456, 10, 18, "Message",ExpressionUUID->"6b3bba6d-af29-4235-870e-7dfbef2ecd43"], +Cell[271870, 6060, 476, 10, 28, "Message",ExpressionUUID->"13e30252-a9ef-4694-8f0f-4019250da29c"], +Cell[272349, 6072, 477, 10, 28, "Message",ExpressionUUID->"3dfeaef7-339d-4eb3-9b11-d3dda3c930f0"], +Cell[272829, 6084, 477, 10, 28, "Message",ExpressionUUID->"00bc0b46-d78f-4cab-b77f-32e9b2f19f2e"], +Cell[273309, 6096, 456, 10, 18, "Message",ExpressionUUID->"c6ce2613-627c-4849-b1b2-550c82f53249"], +Cell[273768, 6108, 635, 13, 18, "Message",ExpressionUUID->"9379d9c0-e903-478f-accc-b481d7fee271"], +Cell[274406, 6123, 479, 10, 28, "Message",ExpressionUUID->"5222bf17-0e90-430d-821a-dbf4a284d4fb"], +Cell[274888, 6135, 477, 10, 28, "Message",ExpressionUUID->"0f22eee2-6947-4691-a2eb-95cc12c12b68"], +Cell[275368, 6147, 479, 10, 28, "Message",ExpressionUUID->"9cdca55e-5822-47ba-a959-d8fd078a1ea0"], +Cell[275850, 6159, 454, 10, 18, "Message",ExpressionUUID->"56fe29e1-9a43-4b53-b24f-07068dcefa89"], +Cell[276307, 6171, 584, 12, 28, "Message",ExpressionUUID->"9adcdc53-3669-49d8-8705-6a24f41ab51f"], +Cell[276894, 6185, 582, 12, 28, "Message",ExpressionUUID->"ba9370ee-c5ca-4c51-9e97-d276eebee7f7"], +Cell[277479, 6199, 477, 10, 28, "Message",ExpressionUUID->"47b83af7-dab2-41ee-9dde-1af1fbbf8882"], +Cell[277959, 6211, 479, 10, 28, "Message",ExpressionUUID->"51e5618e-093b-4346-9f84-d5d526064fe4"], +Cell[278441, 6223, 479, 10, 28, "Message",ExpressionUUID->"596a90f5-2538-4be4-a533-4e4a62c611fb"], +Cell[278923, 6235, 454, 10, 18, "Message",ExpressionUUID->"182cdc57-f0ac-4977-8d8e-ea02b1ae83a2"], +Cell[279380, 6247, 477, 10, 28, "Message",ExpressionUUID->"d70070a5-2c1d-4670-8292-67916c02f8b6"], +Cell[279860, 6259, 477, 10, 28, "Message",ExpressionUUID->"801533e9-9558-415a-8db4-5349b89b50ae"], +Cell[280340, 6271, 477, 10, 28, "Message",ExpressionUUID->"d807abe5-bb14-4c6f-870a-b1aeb48347e0"], +Cell[280820, 6283, 454, 10, 18, "Message",ExpressionUUID->"69f9f278-6645-48a2-829c-19fe4ebfc578"], +Cell[281277, 6295, 479, 10, 28, "Message",ExpressionUUID->"4d6d8271-b66a-4ed7-bbfc-7e9e7a15564c"], +Cell[281759, 6307, 477, 10, 28, "Message",ExpressionUUID->"44b091e5-0e8c-4c03-99d3-e8fb14fb987b"], +Cell[282239, 6319, 477, 10, 28, "Message",ExpressionUUID->"135cd65a-fb66-4d62-affb-6df93d3a45ff"], +Cell[282719, 6331, 453, 10, 18, "Message",ExpressionUUID->"4702768e-9a7c-46ab-b2a5-bb93126935a7"], +Cell[283175, 6343, 582, 12, 28, "Message",ExpressionUUID->"f49879dd-a092-4e0e-a7d6-a2a028fc3b03"], +Cell[283760, 6357, 582, 12, 28, "Message",ExpressionUUID->"7ee37be0-db19-4eae-9e1d-5d254ffb28fa"], +Cell[284345, 6371, 477, 10, 28, "Message",ExpressionUUID->"3f693613-47ef-4e2f-a685-74475e674919"], +Cell[284825, 6383, 477, 10, 28, "Message",ExpressionUUID->"75ae9353-f245-4ef0-8ffc-1518f7ed223c"], +Cell[285305, 6395, 477, 10, 28, "Message",ExpressionUUID->"73e9c7b0-675f-4557-9d80-300f51d02ae5"], +Cell[285785, 6407, 456, 10, 18, "Message",ExpressionUUID->"cc11b446-57f9-4495-ae5c-9a8def358e36"], +Cell[286244, 6419, 479, 10, 28, "Message",ExpressionUUID->"f826c32b-795f-4ba3-9362-1c3a7afb62c8"], +Cell[286726, 6431, 477, 10, 28, "Message",ExpressionUUID->"c0378200-dc93-4828-86b2-e48745b35f59"], +Cell[287206, 6443, 477, 10, 28, "Message",ExpressionUUID->"d65fa205-8216-4dea-a13d-e3cac2082912"], +Cell[287686, 6455, 454, 10, 18, "Message",ExpressionUUID->"471b4661-3240-44ac-8449-619a85c6c2bb"], +Cell[288143, 6467, 477, 10, 28, "Message",ExpressionUUID->"fda59fcd-3cdd-40c4-967c-8a2d4f2eb5a9"], +Cell[288623, 6479, 479, 10, 28, "Message",ExpressionUUID->"fa153bb3-6a9b-45cc-be7b-40865a7d8674"], +Cell[289105, 6491, 479, 10, 28, "Message",ExpressionUUID->"4d630a65-bdbc-443f-a578-9779ffcec9e1"], +Cell[289587, 6503, 454, 10, 18, "Message",ExpressionUUID->"a461856c-ceb8-4364-9969-200ae74f75c4"], +Cell[290044, 6515, 477, 10, 28, "Message",ExpressionUUID->"aabda5dc-d9ad-43fa-8e34-d8287399df15"], +Cell[290524, 6527, 477, 10, 28, "Message",ExpressionUUID->"d7fd4ed2-57ae-40ec-ba71-941d6fe5a55a"], +Cell[291004, 6539, 479, 10, 28, "Message",ExpressionUUID->"9bfc0ae6-4529-410f-aece-1d1e0a9371d1"], +Cell[291486, 6551, 454, 10, 18, "Message",ExpressionUUID->"4e66aedc-297f-44fd-978a-6dda40646c69"], +Cell[291943, 6563, 479, 10, 28, "Message",ExpressionUUID->"0a59f16b-4c98-4c7a-970f-2c2a110c6171"], +Cell[292425, 6575, 477, 10, 28, "Message",ExpressionUUID->"a2951630-a78b-411e-92b1-0b1b0f2459b2"], +Cell[292905, 6587, 477, 10, 28, "Message",ExpressionUUID->"25672ae0-345b-4a7e-9773-631ec0d35d1d"], +Cell[293385, 6599, 453, 10, 18, "Message",ExpressionUUID->"1e7f37c7-6d18-4a5d-afc2-e05139b4ef78"], +Cell[293841, 6611, 582, 12, 28, "Message",ExpressionUUID->"5482ce83-48e9-4edb-bef4-ec77f7825b8e"], +Cell[294426, 6625, 477, 10, 28, "Message",ExpressionUUID->"25220d62-efc4-45b5-addf-54675c7cd245"], +Cell[294906, 6637, 477, 10, 28, "Message",ExpressionUUID->"e5e2aebd-7377-4996-8fb0-92069ef6b284"], +Cell[295386, 6649, 477, 10, 28, "Message",ExpressionUUID->"ce177ce7-32e1-4d94-a4f0-7ed702cac54d"], +Cell[295866, 6661, 454, 10, 18, "Message",ExpressionUUID->"f6985399-d23a-4a6c-bcc8-f4b453d96c9b"], +Cell[296323, 6673, 479, 10, 28, "Message",ExpressionUUID->"20ba3386-66db-4cba-b343-dbc490c78ee1"], +Cell[296805, 6685, 477, 10, 28, "Message",ExpressionUUID->"32cafcb9-3dc9-4842-bfea-003100a10307"], +Cell[297285, 6697, 477, 10, 28, "Message",ExpressionUUID->"7789d30a-e590-471a-b4b0-bae9faf5adc3"], +Cell[297765, 6709, 454, 10, 18, "Message",ExpressionUUID->"bad98833-2a19-4419-ad20-2fa5d0a5987d"], +Cell[298222, 6721, 477, 10, 28, "Message",ExpressionUUID->"878546f2-b2de-48c1-970a-61e03c5b5db1"], +Cell[298702, 6733, 477, 10, 28, "Message",ExpressionUUID->"7dd9bc04-3cbb-46d4-85c2-c92efbf5b6c9"], +Cell[299182, 6745, 477, 10, 28, "Message",ExpressionUUID->"f7bb5154-f8a7-4bc4-873f-1536c90c7a52"], +Cell[299662, 6757, 454, 10, 18, "Message",ExpressionUUID->"fa8dee13-01fe-42f3-a75c-795db9a89f53"], +Cell[300119, 6769, 477, 10, 28, "Message",ExpressionUUID->"d672d830-3500-4fae-a77b-eabf0c0cd32a"], +Cell[300599, 6781, 477, 10, 28, "Message",ExpressionUUID->"4ed0bac6-abbe-48cb-9913-7772d42c77ca"], +Cell[301079, 6793, 477, 10, 28, "Message",ExpressionUUID->"e98dbab4-f683-4537-a9a6-c9bfffff57b9"], +Cell[301559, 6805, 456, 10, 18, "Message",ExpressionUUID->"9a321f4f-47b6-4728-9f43-7023c29d89c5"], +Cell[302018, 6817, 636, 13, 18, "Message",ExpressionUUID->"b15ab9f4-88cf-4e17-96df-005c555d529a"], +Cell[302657, 6832, 477, 10, 28, "Message",ExpressionUUID->"7ef5d1cc-fb20-4658-a4c3-30451be31dcc"], +Cell[303137, 6844, 637, 13, 18, "Message",ExpressionUUID->"8a289038-693f-40bc-9d93-5968bfa844f7"], +Cell[303777, 6859, 477, 10, 28, "Message",ExpressionUUID->"423edbc8-4a77-46f7-b154-6e4c51687dec"], +Cell[304257, 6871, 477, 10, 28, "Message",ExpressionUUID->"4330450d-8323-4693-9c54-6da559330158"], +Cell[304737, 6883, 453, 10, 18, "Message",ExpressionUUID->"80b7a4e2-8c9f-4043-9c7b-cd60ab4766cd"], +Cell[305193, 6895, 477, 10, 28, "Message",ExpressionUUID->"669e39d6-a49b-4cd7-a24a-2781114d4c2d"], +Cell[305673, 6907, 477, 10, 28, "Message",ExpressionUUID->"7767ce43-e555-4a47-8f63-edb5204ab341"], +Cell[306153, 6919, 477, 10, 28, "Message",ExpressionUUID->"49e28d51-08f7-4e88-9b30-ebb7100b5f31"], +Cell[306633, 6931, 454, 10, 18, "Message",ExpressionUUID->"8bbb7e47-060d-497b-a5f5-a7b4cd6ef8f3"], +Cell[307090, 6943, 582, 12, 28, "Message",ExpressionUUID->"a96e94bc-238d-44d5-b57b-e683e4650676"], +Cell[307675, 6957, 476, 10, 28, "Message",ExpressionUUID->"93cdf34b-3b95-4ec8-bedb-4d03687ad245"], +Cell[308154, 6969, 477, 10, 28, "Message",ExpressionUUID->"f6174739-672c-4437-b3ce-9a1194bd6b0f"], +Cell[308634, 6981, 477, 10, 28, "Message",ExpressionUUID->"466b0b20-37a9-429e-bacf-9186051a6780"], +Cell[309114, 6993, 456, 10, 18, "Message",ExpressionUUID->"d1d95e1f-a32c-4a96-a627-4bc6d5ec6af1"], +Cell[309573, 7005, 582, 12, 28, "Message",ExpressionUUID->"8eff9354-ff20-4a6c-aac1-2d07b07dbe7b"], +Cell[310158, 7019, 584, 12, 28, "Message",ExpressionUUID->"56dcf89e-9be3-4e78-afc1-d5986dd47d89"], +Cell[310745, 7033, 477, 10, 28, "Message",ExpressionUUID->"15522e87-ddeb-4f8c-b2bd-fa79d4f99138"], +Cell[311225, 7045, 477, 10, 28, "Message",ExpressionUUID->"71212d19-d627-4371-8a0c-bf70e7041f17"], +Cell[311705, 7057, 479, 10, 28, "Message",ExpressionUUID->"1ba3b34d-a7c2-4e45-8613-7f2a34c6bdfc"], +Cell[312187, 7069, 454, 10, 18, "Message",ExpressionUUID->"4eae2ec9-3ee3-4604-92c2-71b1f96e12b1"], +Cell[312644, 7081, 584, 12, 28, "Message",ExpressionUUID->"8ad6f084-0ede-4961-9b1e-e706e1ab9f0e"], +Cell[313231, 7095, 582, 12, 28, "Message",ExpressionUUID->"0158a44e-d19c-4643-a0bb-3bff729c05e6"], +Cell[313816, 7109, 479, 10, 28, "Message",ExpressionUUID->"0d048c83-f033-4ff1-846b-787882ed59cc"], +Cell[314298, 7121, 477, 10, 28, "Message",ExpressionUUID->"44915078-dd14-45b3-8349-3844348a8f6c"], +Cell[314778, 7133, 477, 10, 28, "Message",ExpressionUUID->"7453f261-9b90-4ab0-bf95-a259171a346b"], +Cell[315258, 7145, 454, 10, 18, "Message",ExpressionUUID->"3e1814cd-7653-4ce4-b5a9-663a03c1946b"], +Cell[315715, 7157, 477, 10, 28, "Message",ExpressionUUID->"0d3931bf-c95f-41b9-93f6-cb0aaf5ae2ad"], +Cell[316195, 7169, 477, 10, 28, "Message",ExpressionUUID->"7a789c08-173c-49b2-ac9a-82c00c431e4b"], +Cell[316675, 7181, 479, 10, 28, "Message",ExpressionUUID->"72d4e718-4b70-49b7-98f4-fd82430e3024"], +Cell[317157, 7193, 456, 10, 18, "Message",ExpressionUUID->"5b119705-426f-4d74-9ba1-d28deb98131c"], +Cell[317616, 7205, 582, 12, 28, "Message",ExpressionUUID->"67346fc7-5f87-49b3-ae82-f10f1745c5b8"], +Cell[318201, 7219, 582, 12, 28, "Message",ExpressionUUID->"4df11233-88b4-422f-9e18-815fbad3568c"], +Cell[318786, 7233, 627, 13, 40, "Message",ExpressionUUID->"9ddca959-edeb-486e-9534-ff0c53b23fff"], +Cell[319416, 7248, 526, 12, 40, "Message",ExpressionUUID->"38496d54-553d-449a-b72b-3974b438a3c2"], +Cell[319945, 7262, 526, 12, 40, "Message",ExpressionUUID->"6903bb20-c815-4b1f-844e-434990972d50"], +Cell[320474, 7276, 526, 12, 40, "Message",ExpressionUUID->"a13df24e-6ea5-440a-bbdb-643640920153"], +Cell[321003, 7290, 499, 11, 28, "Message",ExpressionUUID->"b80c939b-4a38-44c9-a74e-e310bcc37bde"], +Cell[321505, 7303, 627, 13, 40, "Message",ExpressionUUID->"9bc3e0ab-96bc-47c9-b2d4-e46ad33705e8"] +}, Open ]], +Cell[CellGroupData[{ +Cell[322169, 7321, 5378, 118, 145, "Input",ExpressionUUID->"0ff61e9a-ae7f-4fb9-a586-53259ceaa31d"], +Cell[327550, 7441, 47968, 908, 147, "Output",ExpressionUUID->"14278160-8876-4a53-97fb-37448d51adae"] +}, Open ]], +Cell[375533, 8352, 483, 12, 24, "Input",ExpressionUUID->"92914bff-7a69-4cb5-9f38-ddd68861b3aa"] +}, Closed]], +Cell[CellGroupData[{ +Cell[376053, 8369, 156, 3, 30, "Subsection",ExpressionUUID->"5e1699fc-010f-4fbd-ad76-e83ae1d05c8c"], +Cell[376212, 8374, 930, 19, 22, "Input",ExpressionUUID->"39ecfd83-04c4-4409-81e2-d3e96d48eb6f"], +Cell[CellGroupData[{ +Cell[377167, 8397, 1738, 39, 75, "Input",ExpressionUUID->"4b60b490-0dad-4b0a-b352-179e46c1b313"], +Cell[378908, 8438, 582, 12, 28, "Message",ExpressionUUID->"f395eb50-05b0-4c36-a654-50af3224d8d2"], +Cell[379493, 8452, 479, 10, 28, "Message",ExpressionUUID->"97eb8a59-3579-475c-adf8-2f31dbcbc9f1"], +Cell[379975, 8464, 477, 10, 28, "Message",ExpressionUUID->"95774afb-26d2-4631-9afe-a1e762e83a1e"], +Cell[380455, 8476, 477, 10, 28, "Message",ExpressionUUID->"a4b5a8ba-61b8-45f6-a11b-e787df036bf7"], +Cell[380935, 8488, 454, 10, 18, "Message",ExpressionUUID->"52d97512-4ed7-43ef-815c-9bc3a5acfd64"], +Cell[381392, 8500, 477, 10, 28, "Message",ExpressionUUID->"a13e31a2-ec26-4397-bf75-571d518aad00"], +Cell[381872, 8512, 479, 10, 28, "Message",ExpressionUUID->"1903ad1b-f238-4d1f-a4ce-2e583c983324"], +Cell[382354, 8524, 477, 10, 28, "Message",ExpressionUUID->"777c85ed-9c52-4fd3-8829-18030d8db947"], +Cell[382834, 8536, 454, 10, 18, "Message",ExpressionUUID->"cf3aa182-f878-48b8-bfd3-feda1113e396"], +Cell[383291, 8548, 582, 12, 28, "Message",ExpressionUUID->"d70f76cb-fcf9-4d44-9e91-8ae449155fbb"], +Cell[383876, 8562, 476, 10, 28, "Message",ExpressionUUID->"3483496a-090d-41f0-a03d-29d1939dbf45"], +Cell[384355, 8574, 477, 10, 28, "Message",ExpressionUUID->"07151cfa-6108-4a0f-9c3f-cfa7bfa881dd"], +Cell[384835, 8586, 477, 10, 28, "Message",ExpressionUUID->"4bfdea7a-39e3-4c65-8405-4aa4025b73eb"], +Cell[385315, 8598, 456, 10, 18, "Message",ExpressionUUID->"426c7335-c7b7-4570-bd6c-029d9b6bc7ee"], +Cell[385774, 8610, 479, 10, 28, "Message",ExpressionUUID->"585d2e72-d1f9-4da6-a677-c406c36869b7"], +Cell[386256, 8622, 479, 10, 28, "Message",ExpressionUUID->"80ee130d-62b6-4cf4-b992-30b1b1ecf81a"], +Cell[386738, 8634, 479, 10, 28, "Message",ExpressionUUID->"f4be69ab-ce64-4959-bf30-69254bb33c00"], +Cell[387220, 8646, 479, 10, 28, "Message",ExpressionUUID->"75351899-f36e-4137-9657-8ab989540a22"], +Cell[387702, 8658, 454, 10, 18, "Message",ExpressionUUID->"9652fe48-7001-4939-ad94-07facfd22a84"], +Cell[388159, 8670, 476, 10, 28, "Message",ExpressionUUID->"981034e4-7681-467b-83b1-2cd4aeb3c3cb"], +Cell[388638, 8682, 477, 10, 28, "Message",ExpressionUUID->"cd607010-5273-4d75-9ef0-6fd155a6d136"], +Cell[389118, 8694, 477, 10, 28, "Message",ExpressionUUID->"509d84b0-e48e-47f5-885b-f5eb3c190772"], +Cell[389598, 8706, 454, 10, 18, "Message",ExpressionUUID->"b23ee381-5407-43d0-8ef0-ed7984916eb1"], +Cell[390055, 8718, 477, 10, 28, "Message",ExpressionUUID->"f38ea902-c711-4b5a-a15c-3451051e36ef"], +Cell[390535, 8730, 479, 10, 28, "Message",ExpressionUUID->"bdacfe71-2fa4-40b7-b4af-a0db7040e7fe"], +Cell[391017, 8742, 477, 10, 28, "Message",ExpressionUUID->"876bc206-5401-466b-8019-b09db82faa35"], +Cell[391497, 8754, 454, 10, 18, "Message",ExpressionUUID->"d542ecd4-cfb6-4a55-87d5-2b0a6a50cfb7"], +Cell[391954, 8766, 477, 10, 28, "Message",ExpressionUUID->"343e0c3f-e59f-448e-8669-2f96d55c7ce4"], +Cell[392434, 8778, 476, 10, 28, "Message",ExpressionUUID->"8433f9e9-4a22-4aa6-ad9d-7aabe210d6b5"], +Cell[392913, 8790, 456, 10, 18, "Message",ExpressionUUID->"abd245ff-de69-4926-b42b-274c908268d8"], +Cell[393372, 8802, 477, 10, 28, "Message",ExpressionUUID->"4890ee92-ba63-408a-9cbc-668fcfe128da"], +Cell[393852, 8814, 477, 10, 28, "Message",ExpressionUUID->"a2982e41-2475-47b2-9d5a-09c6527de8fd"], +Cell[394332, 8826, 479, 10, 28, "Message",ExpressionUUID->"620956e6-bba9-43b5-9ef7-d6b70206bd1c"], +Cell[394814, 8838, 454, 10, 18, "Message",ExpressionUUID->"beedfccd-1461-414b-9ff6-31207af634e5"], +Cell[395271, 8850, 477, 10, 28, "Message",ExpressionUUID->"72ba1f05-5d62-42f7-a8e6-e324bcf528e6"], +Cell[395751, 8862, 477, 10, 28, "Message",ExpressionUUID->"232786d3-54c0-4039-894e-4ca208f0a1bd"], +Cell[396231, 8874, 479, 10, 28, "Message",ExpressionUUID->"d24a0eef-896c-4776-a2e0-92395282410a"], +Cell[396713, 8886, 456, 10, 18, "Message",ExpressionUUID->"d75cbf0a-096f-48ba-b579-13f10e55881f"], +Cell[397172, 8898, 479, 10, 28, "Message",ExpressionUUID->"835c03d7-5210-433c-88b1-64cb18a44f89"], +Cell[397654, 8910, 477, 10, 28, "Message",ExpressionUUID->"0f605e73-35aa-4f16-ad2c-f9c54085f982"], +Cell[398134, 8922, 479, 10, 28, "Message",ExpressionUUID->"21088a7b-e00c-4729-8e40-b8ef7130229a"], +Cell[398616, 8934, 454, 10, 18, "Message",ExpressionUUID->"62175a58-88f1-4a3f-ab5b-ffb9bbe5634d"], +Cell[399073, 8946, 479, 10, 28, "Message",ExpressionUUID->"2bc4ad06-359c-45b5-a42d-b94a103249f2"], +Cell[399555, 8958, 479, 10, 28, "Message",ExpressionUUID->"f07c87cc-63d6-4c9f-a373-9c60501fc4cc"], +Cell[400037, 8970, 479, 10, 28, "Message",ExpressionUUID->"03414564-ba76-4a8e-a511-f14e8da80d0f"], +Cell[400519, 8982, 454, 10, 18, "Message",ExpressionUUID->"67743ee9-355e-4a48-98fb-c27464321727"], +Cell[400976, 8994, 582, 12, 28, "Message",ExpressionUUID->"9f32ad43-69dd-42d7-9062-7faa84e7fa16"], +Cell[401561, 9008, 479, 10, 28, "Message",ExpressionUUID->"fba37843-44df-479b-9805-97119fd6b6eb"], +Cell[402043, 9020, 477, 10, 28, "Message",ExpressionUUID->"6ad7d88e-234a-4946-ba01-d17c0ab33ffa"], +Cell[402523, 9032, 479, 10, 28, "Message",ExpressionUUID->"bc697720-8293-4ca5-a2a2-7b3791c7b601"], +Cell[403005, 9044, 454, 10, 18, "Message",ExpressionUUID->"85ce6d73-328c-4275-be85-68c8f3bf9bb8"], +Cell[403462, 9056, 477, 10, 28, "Message",ExpressionUUID->"5bd0ad8c-a4d5-4fbb-9718-c799b14dc474"], +Cell[403942, 9068, 479, 10, 28, "Message",ExpressionUUID->"b320ee52-17dc-4f5d-896b-f27d5e6d4766"], +Cell[404424, 9080, 477, 10, 28, "Message",ExpressionUUID->"9f107287-310c-452c-9882-f5a57ef71845"], +Cell[404904, 9092, 454, 10, 18, "Message",ExpressionUUID->"69c3bff9-7c2f-4cb5-a109-3966349dd51e"], +Cell[405361, 9104, 477, 10, 28, "Message",ExpressionUUID->"cdd720b2-0c1f-4f03-beba-335cdec2f2b0"], +Cell[405841, 9116, 477, 10, 28, "Message",ExpressionUUID->"03b4c995-62cf-4a62-8945-3af041112e31"], +Cell[406321, 9128, 477, 10, 28, "Message",ExpressionUUID->"8ccc0b58-38eb-49e4-bd87-07b9af2e9c3d"], +Cell[406801, 9140, 475, 10, 28, "Message",ExpressionUUID->"f4e77fb0-1fe5-4d72-a0af-97a37da3626a"], +Cell[407279, 9152, 479, 10, 28, "Message",ExpressionUUID->"34591764-52b4-48a5-8645-10a8ad784120"], +Cell[407761, 9164, 477, 10, 28, "Message",ExpressionUUID->"aa30a471-7c76-4bcc-b5fc-d1d0c9e1a978"], +Cell[408241, 9176, 454, 10, 18, "Message",ExpressionUUID->"89333cee-2e48-4a52-a449-e0aaca5242d4"], +Cell[408698, 9188, 454, 10, 18, "Message",ExpressionUUID->"66f1068c-a833-4aef-980d-3ceaae39a065"], +Cell[409155, 9200, 479, 10, 28, "Message",ExpressionUUID->"b34d51ef-06e5-41dc-8ca4-12f61b7e5098"], +Cell[409637, 9212, 477, 10, 28, "Message",ExpressionUUID->"844c744e-9d36-43d0-a765-509ce1334a19"], +Cell[410117, 9224, 479, 10, 28, "Message",ExpressionUUID->"37745f8d-1368-40da-a283-c5654d012653"], +Cell[410599, 9236, 456, 10, 18, "Message",ExpressionUUID->"413ecbbd-3bf3-4a49-a043-c28f9a6ce05c"], +Cell[411058, 9248, 476, 10, 28, "Message",ExpressionUUID->"f8c5d63a-65d3-49f6-8275-d3edafcdb5b4"], +Cell[411537, 9260, 477, 10, 28, "Message",ExpressionUUID->"ba4a6c36-a665-4f44-b0e9-f108b024dd21"], +Cell[412017, 9272, 477, 10, 28, "Message",ExpressionUUID->"3d245659-15cd-494a-b93d-0e250515038e"], +Cell[412497, 9284, 456, 10, 18, "Message",ExpressionUUID->"55b01a4a-526e-4dee-afb1-acdef5ad8623"], +Cell[412956, 9296, 476, 10, 28, "Message",ExpressionUUID->"92fc6cae-4539-45e6-b9e9-5fc6501ccaf6"], +Cell[413435, 9308, 477, 10, 28, "Message",ExpressionUUID->"99b32fc2-0af8-4535-aedd-ad6945b8b14e"], +Cell[413915, 9320, 477, 10, 28, "Message",ExpressionUUID->"2c03c84e-d0ee-4d26-aa37-92fd157dea79"], +Cell[414395, 9332, 453, 10, 18, "Message",ExpressionUUID->"e1f8db48-1fac-43c2-b569-4c23c1d83070"], +Cell[414851, 9344, 477, 10, 28, "Message",ExpressionUUID->"22afd2ad-368c-452c-a2e3-679822ff7b67"], +Cell[415331, 9356, 477, 10, 28, "Message",ExpressionUUID->"fd014501-cbd5-4806-bf4e-c4aa7ee5c89a"], +Cell[415811, 9368, 476, 10, 28, "Message",ExpressionUUID->"4fa5574f-0933-4ff9-a354-390a263a7d57"], +Cell[416290, 9380, 454, 10, 18, "Message",ExpressionUUID->"8c72094e-a44e-42f1-86cb-479d317c1521"], +Cell[416747, 9392, 477, 10, 28, "Message",ExpressionUUID->"2429caa1-b89d-408d-8722-1347cc2ca0e0"], +Cell[417227, 9404, 477, 10, 28, "Message",ExpressionUUID->"8a80d050-440d-453d-9ac5-39065eb20e07"], +Cell[417707, 9416, 477, 10, 28, "Message",ExpressionUUID->"33420c5c-fb58-49e8-bbc1-ea51f18052cb"], +Cell[418187, 9428, 454, 10, 18, "Message",ExpressionUUID->"cc36f5ce-0bc6-4c30-8f5c-d0d9490e15c2"], +Cell[418644, 9440, 477, 10, 28, "Message",ExpressionUUID->"d0f57b16-18cf-4ebe-92a7-ae7fe53b473c"], +Cell[419124, 9452, 479, 10, 28, "Message",ExpressionUUID->"a36c6104-2bab-4692-b123-57b1f7a29864"], +Cell[419606, 9464, 477, 10, 28, "Message",ExpressionUUID->"db58bc6e-8734-4008-b418-f0800b71f2a5"], +Cell[420086, 9476, 454, 10, 18, "Message",ExpressionUUID->"b9ec8ed6-951b-40d2-891a-1a0edea41400"], +Cell[420543, 9488, 477, 10, 28, "Message",ExpressionUUID->"d04439b0-834c-4777-8694-daacf0384dc9"], +Cell[421023, 9500, 477, 10, 28, "Message",ExpressionUUID->"49ff2cda-63b5-433c-a45b-dfc084797aa5"], +Cell[421503, 9512, 477, 10, 28, "Message",ExpressionUUID->"20ece0ff-b680-4b8e-aa46-7bd031c1a581"], +Cell[421983, 9524, 454, 10, 18, "Message",ExpressionUUID->"4b4e0c3b-2728-4c23-9356-77918a85af75"], +Cell[422440, 9536, 477, 10, 28, "Message",ExpressionUUID->"573e06fd-64b6-401a-8f14-dc6ea2161ee9"], +Cell[422920, 9548, 479, 10, 28, "Message",ExpressionUUID->"9f393dc5-7ab4-4ca2-a556-16a1a135b80f"], +Cell[423402, 9560, 477, 10, 28, "Message",ExpressionUUID->"f37c8654-4e16-4d83-8b20-825738070f5e"], +Cell[423882, 9572, 456, 10, 18, "Message",ExpressionUUID->"9b757907-2f6c-4b70-945b-90b98353dcba"], +Cell[424341, 9584, 477, 10, 28, "Message",ExpressionUUID->"26215cac-66da-46e3-baf8-3ebb2c233cdd"], +Cell[424821, 9596, 477, 10, 28, "Message",ExpressionUUID->"8cff57ee-0689-456d-953d-c8b644f7b55d"], +Cell[425301, 9608, 479, 10, 28, "Message",ExpressionUUID->"75504a94-b04c-4687-9a54-8d0d7e942fa9"], +Cell[425783, 9620, 454, 10, 18, "Message",ExpressionUUID->"2c2f9b40-cff4-466a-90bb-bb028b700cab"], +Cell[426240, 9632, 475, 10, 28, "Message",ExpressionUUID->"151ca284-6fef-4a5b-b004-13cae03db70d"], +Cell[426718, 9644, 477, 10, 28, "Message",ExpressionUUID->"88392e11-a889-4c8c-8827-36df3d136f14"], +Cell[427198, 9656, 479, 10, 28, "Message",ExpressionUUID->"9e1a60b0-8d2b-4cd8-9557-83c72fd01f7b"], +Cell[427680, 9668, 456, 10, 18, "Message",ExpressionUUID->"94a0caa8-8c15-452a-aca2-523927259284"], +Cell[428139, 9680, 477, 10, 28, "Message",ExpressionUUID->"2b009632-06f2-4cd1-85eb-dcfd846529d3"], +Cell[428619, 9692, 477, 10, 28, "Message",ExpressionUUID->"b7d63cf7-899b-4705-a6f8-2ed4c9e1dccb"], +Cell[429099, 9704, 477, 10, 28, "Message",ExpressionUUID->"ae74e38e-34ca-4ea8-b3d0-64463e9ea543"], +Cell[429579, 9716, 454, 10, 18, "Message",ExpressionUUID->"e07331c0-d9d8-4efc-87fa-773bfa32206b"], +Cell[430036, 9728, 476, 10, 28, "Message",ExpressionUUID->"51881a3a-11a8-4da8-9aab-139b6ce1de41"], +Cell[430515, 9740, 477, 10, 28, "Message",ExpressionUUID->"df52b9e3-02a9-431b-ae1a-4b3c8f8c0e14"], +Cell[430995, 9752, 477, 10, 28, "Message",ExpressionUUID->"f0a130c4-0be4-49fa-9d43-bd4fef9b62c6"], +Cell[431475, 9764, 454, 10, 18, "Message",ExpressionUUID->"71a2e57c-d561-4346-a09d-5e6748f07015"], +Cell[431932, 9776, 582, 12, 28, "Message",ExpressionUUID->"e7d417ab-10ee-41b1-890b-003e65711483"], +Cell[432517, 9790, 477, 10, 28, "Message",ExpressionUUID->"a58a29ca-5a92-4ebd-8e17-3eb7d90f0295"], +Cell[432997, 9802, 479, 10, 28, "Message",ExpressionUUID->"16dc3bff-9ba9-4770-9a23-9c47ef31beed"], +Cell[433479, 9814, 477, 10, 28, "Message",ExpressionUUID->"7d049eb3-934a-4a9f-abc6-7c3fff947a88"], +Cell[433959, 9826, 454, 10, 18, "Message",ExpressionUUID->"a5f59212-926b-41d7-952f-5be92e72c3fd"], +Cell[434416, 9838, 477, 10, 28, "Message",ExpressionUUID->"64b9f3fc-1001-44e3-909a-e942e20ed60c"], +Cell[434896, 9850, 479, 10, 28, "Message",ExpressionUUID->"b3d84f7e-e5aa-4cb2-96ff-70e521eae5f0"], +Cell[435378, 9862, 477, 10, 28, "Message",ExpressionUUID->"25fdd85b-d420-4a9e-b6e4-92600eb3e102"], +Cell[435858, 9874, 454, 10, 18, "Message",ExpressionUUID->"6a048741-e183-4f33-be5b-62fd874d9532"], +Cell[436315, 9886, 582, 12, 28, "Message",ExpressionUUID->"9f7dfda9-4d4f-4d89-890c-05b6136e5ce7"], +Cell[436900, 9900, 477, 10, 28, "Message",ExpressionUUID->"2591ee59-e039-43d4-94c2-9bbf7e1983f5"], +Cell[437380, 9912, 477, 10, 28, "Message",ExpressionUUID->"813d2439-d853-460a-bd23-22c55cf606a0"], +Cell[437860, 9924, 477, 10, 28, "Message",ExpressionUUID->"920914cf-5242-425b-8bb8-26db61579372"], +Cell[438340, 9936, 453, 10, 18, "Message",ExpressionUUID->"b846d998-9b8d-45cf-b304-39e145e8565f"], +Cell[438796, 9948, 477, 10, 28, "Message",ExpressionUUID->"db7a3fe7-c773-4018-84e2-c252faf8ec5c"], +Cell[439276, 9960, 477, 10, 28, "Message",ExpressionUUID->"0b9988c0-dd26-475a-99d7-5f1180ebfd33"], +Cell[439756, 9972, 477, 10, 28, "Message",ExpressionUUID->"5e7fc3e6-0b74-4eb5-8710-40d23238f77a"], +Cell[440236, 9984, 456, 10, 18, "Message",ExpressionUUID->"2170c169-52ad-462b-8111-6a40c2e73458"], +Cell[440695, 9996, 582, 12, 28, "Message",ExpressionUUID->"10ae9c01-3616-4775-8b9a-71eb8697d61e"], +Cell[441280, 10010, 477, 10, 28, "Message",ExpressionUUID->"cef04bdb-c148-422f-91fc-169c55b7e6d0"], +Cell[441760, 10022, 477, 10, 28, "Message",ExpressionUUID->"b7d34f17-30b9-4b36-8d60-80bc8b566855"], +Cell[442240, 10034, 477, 10, 28, "Message",ExpressionUUID->"09e5c6c6-1b8a-4f18-afd9-545211f47575"], +Cell[442720, 10046, 477, 10, 28, "Message",ExpressionUUID->"165d59c9-0020-4548-a5a8-97f41e81efd6"], +Cell[443200, 10058, 477, 10, 28, "Message",ExpressionUUID->"dbd8007a-b4a1-4dc1-86c2-983132832545"], +Cell[443680, 10070, 477, 10, 28, "Message",ExpressionUUID->"e06d4a20-04c2-4550-8e25-5e71fd058e77"], +Cell[444160, 10082, 456, 10, 18, "Message",ExpressionUUID->"7ca3f9b5-fdd7-4d51-a9fd-fc7cdddd7771"], +Cell[444619, 10094, 454, 10, 18, "Message",ExpressionUUID->"1cfb3636-c68d-46e8-bb42-3dfda46bf0e0"], +Cell[445076, 10106, 477, 10, 28, "Message",ExpressionUUID->"cf27f023-6b2d-4721-ab59-f0e1900cab65"], +Cell[445556, 10118, 477, 10, 28, "Message",ExpressionUUID->"3b21c9fb-3922-4176-8c81-1af33f7f65bd"], +Cell[446036, 10130, 582, 12, 28, "Message",ExpressionUUID->"78b2f907-049c-40ce-b8f5-9807a93dc5e8"], +Cell[446621, 10144, 477, 10, 28, "Message",ExpressionUUID->"99faa3aa-7e1a-4534-adb0-d75cefd5858a"], +Cell[447101, 10156, 454, 10, 18, "Message",ExpressionUUID->"98429721-d514-4d59-b633-9a20a6a22ed3"], +Cell[447558, 10168, 582, 12, 28, "Message",ExpressionUUID->"8a209287-e3cf-42bf-8313-43aed9699d68"], +Cell[448143, 10182, 477, 10, 28, "Message",ExpressionUUID->"99d6f1d1-cc56-4f86-ba9b-fd045c7411aa"], +Cell[448623, 10194, 479, 10, 28, "Message",ExpressionUUID->"725544e9-c72d-4aa4-915e-86b141a99074"], +Cell[449105, 10206, 477, 10, 28, "Message",ExpressionUUID->"dc4141be-8bcf-469f-ae75-42aa5d45b598"], +Cell[449585, 10218, 477, 10, 28, "Message",ExpressionUUID->"d45f9432-fcdc-453d-a600-f95937fcc56f"], +Cell[450065, 10230, 479, 10, 28, "Message",ExpressionUUID->"ebd281f4-51af-4e86-9fca-89a1e2f24561"], +Cell[450547, 10242, 477, 10, 28, "Message",ExpressionUUID->"831bfbba-d72a-4416-b02d-14ecb9317785"], +Cell[451027, 10254, 476, 10, 28, "Message",ExpressionUUID->"1f3b2a1f-4750-4f89-bc1f-b27bb5213f80"], +Cell[451506, 10266, 477, 10, 28, "Message",ExpressionUUID->"7cdf5f1c-c68d-4dc0-a952-43520d22bb26"], +Cell[451986, 10278, 477, 10, 28, "Message",ExpressionUUID->"30c8081e-8f43-498e-83d5-286810e32c8d"], +Cell[452466, 10290, 477, 10, 28, "Message",ExpressionUUID->"0ed57168-17cf-42f7-8a31-e410856f2085"], +Cell[452946, 10302, 477, 10, 28, "Message",ExpressionUUID->"411b1cad-7e8b-4cfa-a9d8-9b567e37bd36"], +Cell[453426, 10314, 456, 10, 18, "Message",ExpressionUUID->"dcc8f655-3cac-4b66-be4d-94aa4de0b2f6"], +Cell[453885, 10326, 454, 10, 18, "Message",ExpressionUUID->"ec7688c4-bbd4-4c59-8c15-c1eb78354f73"], +Cell[454342, 10338, 477, 10, 28, "Message",ExpressionUUID->"66dced77-42bf-4d16-a69b-2f844dab0d15"], +Cell[454822, 10350, 454, 10, 18, "Message",ExpressionUUID->"08e95725-e047-44eb-bf5f-21abe471cf5a"], +Cell[455279, 10362, 456, 10, 18, "Message",ExpressionUUID->"2f081d7d-bb4b-4d32-8b1e-ef1136dd0be4"], +Cell[455738, 10374, 477, 10, 28, "Message",ExpressionUUID->"15824342-ce31-437b-81dd-d8261d854d75"], +Cell[456218, 10386, 477, 10, 28, "Message",ExpressionUUID->"1c447299-84cd-478a-8fa5-e35be900ddd3"], +Cell[456698, 10398, 479, 10, 28, "Message",ExpressionUUID->"80eb51e2-f1a8-4cad-8f69-2a8c0477e67c"], +Cell[457180, 10410, 454, 10, 18, "Message",ExpressionUUID->"04fe7e62-072a-44bc-a93e-25a7e3c34003"], +Cell[457637, 10422, 479, 10, 28, "Message",ExpressionUUID->"6adad984-df02-4a07-9ffd-b04953056266"], +Cell[458119, 10434, 477, 10, 28, "Message",ExpressionUUID->"2614fb72-218b-406d-b268-07f27a2a8b38"], +Cell[458599, 10446, 476, 10, 28, "Message",ExpressionUUID->"9972548f-f4f2-4fe9-90fe-344a1acdbca9"], +Cell[459078, 10458, 476, 10, 28, "Message",ExpressionUUID->"90efaa21-2383-45af-ab16-e8f3d6b4fef3"], +Cell[459557, 10470, 454, 10, 18, "Message",ExpressionUUID->"0b6f63f7-dbad-461d-b7a5-b3962cae49ed"], +Cell[460014, 10482, 477, 10, 28, "Message",ExpressionUUID->"f3c42ab4-05b0-409a-a388-026a53852c0f"], +Cell[460494, 10494, 477, 10, 28, "Message",ExpressionUUID->"3c2239de-38f4-42db-bc07-fca6901b175a"], +Cell[460974, 10506, 454, 10, 18, "Message",ExpressionUUID->"d09bc56b-ec8e-4d56-a418-eff220a19fa1"], +Cell[461431, 10518, 477, 10, 28, "Message",ExpressionUUID->"77c36570-1b3e-4f94-8b3a-cb79ea8b6ca9"], +Cell[461911, 10530, 477, 10, 28, "Message",ExpressionUUID->"91296fb6-bda6-4bda-b2d2-78006240a643"], +Cell[462391, 10542, 477, 10, 28, "Message",ExpressionUUID->"65be45d9-ec25-44c5-9835-2663beb3ad64"], +Cell[462871, 10554, 454, 10, 18, "Message",ExpressionUUID->"b418c0c6-304f-4b4c-8528-faf9839fe0f6"] +}, Open ]], +Cell[CellGroupData[{ +Cell[463362, 10569, 7111, 167, 244, "Input",ExpressionUUID->"33123f69-02c8-466f-a31d-aa33dc2739ed"], +Cell[470476, 10738, 79206, 1426, 168, "Output",ExpressionUUID->"fda38a59-173c-4920-97e9-23124345a970"] +}, Open ]], +Cell[549697, 12167, 1453, 41, 76, "Input",ExpressionUUID->"27edaac8-9cf5-41d9-a7ef-0e8012f5a0e4"] +}, Closed]] +}, Open ]] +} +] +*) + -- cgit v1.2.3-70-g09d2