\documentclass[aps,prl,reprint,longbibliography,floatfix,fleqn]{revtex4-2} \usepackage[utf8]{inputenc} % why not type "Bézout" with unicode? \usepackage[T1]{fontenc} % vector fonts plz \usepackage[ colorlinks=true, urlcolor=purple, citecolor=purple, filecolor=purple, linkcolor=purple ]{hyperref} % ref and cite links with pretty colors \usepackage{amsmath, amssymb, graphicx, xcolor} % standard packages \begin{document} \title{Complex complex landscapes: I: saturating the Bézout bound} % change me \author{Jaron Kent-Dobias} \author{Jorge Kurchan} \affiliation{Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France} \date\today \begin{abstract} We study the saddle-points of the $p$-spin model, the best understood example of `complex (rugged) landscape' in the space in which saturates the Bézout bound \cite{Bezout_1779_Theorie}. \end{abstract} \maketitle \begin{equation} \label{eq:bare.hamiltonian} H_0 = \frac1{p!}\sum_{i_1\cdots i_p}^NJ_{i_1\cdots i_p}z_{i_1}\cdots z_{i_p}, \end{equation} where $z\in\mathbb C^N$ is constrained by $z^2=N$ and $J$ is a symmetric tensor whose elements are complex normal with $\langle|J|^2\rangle=p!/2N^{p-1}$ and $\langle J^2\rangle=\kappa\langle|J|^2\rangle$ for complex parameter $|\kappa|<1$. The constraint is enforced using the method of Lagrange multipliers: introducing the $\epsilon\in\mathbb C$, this gives \begin{equation} \label{eq:constrained.hamiltonian} H = H_0+\frac p2\epsilon\left(N-\sum_i^Nz_i^2\right). \end{equation} At any critical point $\epsilon=H/N$, the average energy. When compared with $z^*z=N$, the constraint $z^2=N$ may seem an unnatural extension of the real $p$-spin spherical model. However, a model with this nonholomorphic spherical constraint has a disturbing lack of critical points nearly everywhere, since $0=\partial^* H=-p\epsilon z$ is only satisfied for $\epsilon=0$, as $z=0$ is forbidden by the constraint. Since $H$ is holomorphic, a point is a critical point of its real part if and only if it is also a critical point of its imaginary part. The number of critical points of $H$ is therefore the number of critical points of $\mathop{\mathrm{Re}}H$. Writing $z=x+iy$, $\mathop{\mathrm{Re}}H$ can be interpreted as a real function of $2N$ real variables. The number of critical points it has is given by the usual Kac--Rice formula: \begin{equation} \label{eq:real.kac-rice} \mathcal N(\kappa,\epsilon) = \int dx\,dy\,\delta(\partial_x\mathop{\mathrm{Re}}H)\delta(\partial_y\mathop{\mathrm{Re}}H) \left|\det\begin{bmatrix} \partial_x\partial_x\mathop{\mathrm{Re}}H & \partial_x\partial_y\mathop{\mathrm{Re}}H \\ \partial_y\partial_x\mathop{\mathrm{Re}}H & \partial_y\partial_y\mathop{\mathrm{Re}}H \end{bmatrix}\right|. \end{equation} The Cauchy--Riemann relations can be used to simplify this. Using the Wirtinger derivative $\partial=\partial_x-i\partial_y$, one can write $\partial_x\mathop{\mathrm{Re}}H=\mathop{\mathrm{Re}}\partial H$ and $\partial_y\mathop{\mathrm{Re}}H=-\mathop{\mathrm{Im}}\partial H$. With similar transformations, the eigenvalue spectrum of the Hessian of $\mathop{\mathrm{Re}}H$ can be shown to be equivalent to the singular value spectrum of the Hessian $\partial\partial H$ of $H$, and as a result the determinant that appears above is equivalent to $|\det\partial\partial H|^2$. This allows us to write \eqref{eq:real.kac-rice} in the manifestly complex form \begin{equation} \label{eq:complex.kac-rice} \mathcal N(\kappa,\epsilon) = \int dx\,dy\,\delta(\mathop{\mathrm{Re}}\partial H)\delta(\mathop{\mathrm{Im}}\partial H) |\det\partial\partial H|^2. \end{equation} The Hessian of \eqref{eq:constrained.hamiltonian} is $\partial_i\partial_j H=\partial_i\partial_j H_0-p\epsilon\delta_{ij}$, or the Hessian of \eqref{eq:bare.hamiltonian} with a constant added to its diagonal. The eigenvalue distribution $\rho$ of the constrained Hessian is therefore related to the eigenvalue distribution $\rho_0$ of the unconstrained one by a similar shift, or $\rho(\lambda)=\rho_0(\lambda+p\epsilon)$. The Hessian of \eqref{eq:bare.hamiltonian} is \begin{equation} \label{eq:bare.hessian} \partial_i\partial_jH_0 =\frac{p(p-1)}{p!}\sum_{k_1\cdots k_{p-2}}^NJ_{ijk_1\cdots k_{p-2}}z_{k_1}\cdots z_{k_{p-2}}, \end{equation} which makes its ensemble that of Gaussian complex symmetric matrices, whose spectrum is constant inside the support of a certain ellipse and zero everywhere else \cite{Nguyen_2014_The}. Given its variances $\langle|\partial_i\partial_j H_0|^2\rangle=p(p-1)a^{p-2}/2N$ and $\langle(\partial_i\partial_j H_0)^2\rangle=p(p-1)\kappa/2N$, $\rho_0(\lambda)$ is constant inside the ellipse \begin{equation} \label{eq:ellipse} \left(\frac{\mathop{\mathrm{Re}}(\lambda e^{i\theta})}{1+|\kappa|/a^{p-2}}\right)^2+ \left(\frac{\mathop{\mathrm{Im}}(\lambda e^{i\theta})}{1-|\kappa|/a^{p-2}}\right)^2 <\frac12p(p-1)a^{p-2} \end{equation} where $\theta=\frac12\arg\kappa$. \bibliographystyle{apsrev4-2} \bibliography{bezout} \end{document}