/* bifurcation_chaser.cpp * * Copyright (C) 2013 Jaron Kent-Dobias * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* A program which facilitates automated mapping of bifurcation points in the * energy of a system where the Hessian is available. Currently, only a one * dimensional parameter space is supported. */ #include "domain_energy.h" #include "domain_minimize.h" #include "domain_eigen.h" #include #include #include #include #include #include // GSL includes. #include #include #include #include #include #include #include #include #include #include void geteigenvalues(gsl_vector *eigenvalues, unsigned n, const gsl_vector *z, double c) { gsl_matrix *hess; hess = gsl_matrix_alloc(3 * n + 3, 3 * n + 3); domain_energy_fixedHessian(hess, n, z, c); domain_eigen_values(eigenvalues, 3 * n + 3, 2 * n, hess); gsl_matrix_free(hess); } int domain_eigen_perturb(gsl_vector *z, unsigned k, unsigned n, unsigned eigen_num, double a0,double a_fact, double c, double eps, double g, double N, double energy_thres) { printf("Beginning perturbation.\n"); double a, temp_eigenval, eigenval; unsigned kk; gsl_vector *temp_z, *eigenvalues, *eigenvector; gsl_permutation *eigenorder; gsl_matrix *hess; eigenvalues = gsl_vector_alloc(3 * n + 3); eigenvector = gsl_vector_alloc(3 * n + 3); temp_z = gsl_vector_alloc(3 * n + 3); hess = gsl_matrix_alloc(3 * n + 3, 3 * n + 3); eigenorder = gsl_permutation_alloc(3 * n + 3); domain_energy_fixedHessian(hess, n, z, c); domain_eigen_values(eigenvalues, 3 * n + 3, 2 * n, hess); domain_eigen_sort(eigenorder, 3 * n + 3, eigen_num, eigenvalues); kk = gsl_permutation_get(eigenorder, k); eigenval = gsl_vector_get(eigenvalues, kk); printf("Getting eigenvector.\n"); domain_energy_fixedHessian(hess, n, z, c); domain_eigen_vector(eigenvector, 3 * n + 3, 2 * n, kk, hess); a = a0; int failed = 0; printf("Starting loop.\n"); while (true) { gsl_vector_memcpy(temp_z, z); gsl_blas_daxpy(a, eigenvector, temp_z); failed = domain_minimize_fixed(z, n, c, eps, N, 0.9, g, 0.9); if (failed) { printf("Relaxation failed, reducing perturb size.\n"); a *= 0.1; } else { domain_energy_fixedHessian(hess, n, z, c); domain_eigen_values(eigenvalues, 3 * n + 3, 2 * n, hess); domain_eigen_sort(eigenorder, 3 * n + 3, eigen_num, eigenvalues); kk = gsl_permutation_get(eigenorder, k); temp_eigenval = gsl_vector_get(eigenvalues, kk); printf("BIFUR: Perturbing %i, %e, %e\n", k, eigenval, temp_eigenval); if (GSL_SIGN(temp_eigenval) != GSL_SIGN(eigenval)) { gsl_vector_memcpy(z, temp_z); break; } a *= a_fact; } } gsl_vector_free(eigenvector); gsl_vector_free(temp_z); gsl_vector_free(eigenvalues); gsl_permutation_free(eigenorder); return 0; } bool bifur_consent() { printf(" (y/n): "); char in; in = getchar(); getchar(); if (in == 'y') return true; else return false; } // Initializes the program. int main(int argc, char *argv[]) { int opt, min_fails, eigen_follow, eigen_num, examining; unsigned n, N, j, a, last_pert, ii, old_ii; double c, dc0, dc, g0, g, eigen_thres, approach_thres, eps, state, old_state; char *filename, str[19], in; bool subcrit, reset; // Setting default values. eps = 0; eigen_thres = 1e-13; approach_thres = 1e-6; eigen_follow = -1; examining = -1; eigen_num = 25; last_pert = 0; subcrit = false; reset = false; dc = 0; j = 0; gsl_vector *z, *old_z, *eigenvalues, *eigenstate, *old_eigenstate, *eigenchanges; gsl_permutation *eigenorder, *old_eigenorder; while ((opt = getopt(argc, argv, "n:c:d:g:h:i:N:p:m:j:e:t:s")) != -1) { switch (opt) { case 'n': n = atoi(optarg); break; case 'N': N = atoi(optarg); break; case 'j': j = atoi(optarg); break; case 'c': c = atof(optarg); break; case 'd': dc0 = atof(optarg); break; case 'h': dc = atof(optarg); break; case 'g': g0 = atof(optarg); break; case 'i': filename = optarg; break; case 'm': eigen_follow = atof(optarg); break; case 'e': eps = atof(optarg); break; case 's': subcrit = true; break; case 't': approach_thres = atof(optarg); break; default: exit(EXIT_FAILURE); } } z = gsl_vector_alloc(3 * n + 3); old_z = gsl_vector_alloc(3 * n + 3); eigenvalues = gsl_vector_alloc(3 * n + 3); eigenorder = gsl_permutation_alloc(3 * n + 3); old_eigenorder = gsl_permutation_alloc(3 * n + 3); old_eigenstate = gsl_vector_alloc(3 * n + 3); eigenstate = gsl_vector_alloc(3 * n + 3); FILE *f = fopen(filename, "r"); gsl_vector_fscanf(f, z); fclose(f); g = g0; if (dc == 0) dc = dc0; min_fails = domain_minimize_fixed(z, n, c, eps, N, 0.9, 1, 0.9); if (min_fails) { printf("BIFUR: Initial relaxation failed, exiting.\n"); return 1; } geteigenvalues(eigenvalues, n, z, c); domain_eigen_state(old_eigenstate, eigenvalues, n, eigen_thres); domain_eigen_sort(old_eigenorder, 3 * n + 3, eigen_num, eigenvalues); while (true) { j += 1; c += dc; reset = false; gsl_vector_memcpy(old_z, z); printf("BIFUR: Step %05d, starting with c = %f.\n", j, c); min_fails = domain_minimize_fixed(z, n, c, eps, N, 0.9, 1, 0.9); if (min_fails) { printf("BIFUR: Newton's method failed to converge, reducing step size.\n"); c -= dc; j -= 1; last_pert = 0; gsl_vector_memcpy(z, old_z); dc *= 0.1; reset = true; } else { geteigenvalues(eigenvalues, n, z, c); domain_eigen_sort(eigenorder, 3 * n + 3, eigen_num, eigenvalues); domain_eigen_state(eigenstate, eigenvalues, n, eigen_thres); if (eigen_follow > -1) examining = eigen_follow; for (unsigned i = 0; i < eigen_num; i++) { ii = gsl_permutation_get(eigenorder, i); old_ii = gsl_permutation_get(old_eigenorder, i); state = gsl_vector_get(eigenstate, ii); old_state = gsl_vector_get(old_eigenstate, old_ii); if (state != old_state) { if (i == examining) { c -= dc; gsl_vector_memcpy(z, old_z); gsl_vector_memcpy(eigenstate, old_eigenstate); gsl_permutation_memcpy(eigenorder, old_eigenorder); j -= 1; dc *= 0.1; reset = true; last_pert = 0; } if (examining == -1 && state != 0 && old_state != 0) { printf("BIFUR: Eigenvalue %i changed sign past threshold to %e. Examine?", i, gsl_vector_get(eigenvalues, ii)); if (bifur_consent()) { examining = i; c -= dc; gsl_vector_memcpy(z, old_z); gsl_vector_memcpy(eigenstate, old_eigenstate); gsl_permutation_memcpy(eigenorder, old_eigenorder); j -= 1; dc *= 0.1; reset = true; last_pert = 0; break; } } } } if (!reset && examining > -1 && fabs(dc) < approach_thres) { if (!subcrit) { c += GSL_SIGN(dc) * approach_thres; domain_minimize_fixed(z, n, c, eps, N, 0.9, 1, 0.9); } printf("BIFUR: Perturbing at c = %.8f.\n", c); domain_eigen_perturb(z, examining, n, eigen_num, 1, 1.1, c, eps, g, N, 0); geteigenvalues(eigenvalues, n, z, c); domain_eigen_sort(eigenorder, 3 * n + 3, eigen_num, eigenvalues); domain_eigen_state(eigenstate, eigenvalues, n, eigen_thres); if (subcrit) dc = - GSL_SIGN(dc) * approach_thres; else dc = GSL_SIGN(dc) * approach_thres; examining = -1; last_pert = 0; } if (!reset) { gsl_vector_memcpy(old_eigenstate, eigenstate); gsl_permutation_memcpy(old_eigenorder, eigenorder); if (last_pert > 10 && fabs(dc) < fabs(dc0)) { last_pert = 0; dc = GSL_SIGN(dc) * fmin(fabs(dc) * 10, fabs(dc0)); } last_pert += 1; double energy = domain_energy_fixedEnergy(n, z, c); sprintf(str, "output/out-%05d.dat", j); FILE *fout = fopen(str, "w"); fprintf(fout, "%.10e\t%.10e\n", c, energy); for (unsigned i = 0; i < eigen_num; i++) { ii = gsl_permutation_get(eigenorder, i); fprintf(fout, "%.10e\t", gsl_vector_get(eigenvalues, ii)); } fprintf(fout, "\n"); gsl_vector_fprintf(fout, z, "%.10e"); fclose(fout); } } } gsl_vector_free(z); }