/* domain_energy.cpp
*
* Copyright (C) 2013 Jaron Kent-Dobias
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/* A lightweight and efficient model of two dimensional phase-modulated domains
* using Newton's method to minimize a Lagrangian.
*
* Best viewed in an 80 character terminal with two character hard tabs.
*/
#include
#include
// GSL includes.
#include
#include
#include
#include
#include
#include
#include
void domain_energy_x(gsl_vector *x, unsigned n, const gsl_vector *z) {
// Gets the full set of x coordinates from the state array.
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
}
void domain_energy_y(gsl_vector *y, unsigned n, const gsl_vector *z) {
// Gets the full set of y coordinates from the state array.
gsl_vector_set(y, 0, 0);
#pragma omp parallel for
for (unsigned i = 1; i < n; i++) {
gsl_vector_set(y, i, gsl_vector_get(z, n + i - 1));
}
}
void gsl_permutation_over(unsigned n, gsl_permutation *perm, bool right) {
// Shifts a GSL permutation object circularly. If right is true, then the
// permutation is shifted to the right; if false, then it is shifted to the
// left.
gsl_permutation_swap(perm, 0, n - 1);
if (right) {
for (unsigned i = 0; i < n - 2; i++) {
gsl_permutation_swap(perm, n - 1 - i, n - 2 - i);
}
}
else {
for (unsigned i = 0; i < n - 2; i++) {
gsl_permutation_swap(perm, i, i + 1);
}
}
}
double domain_energy_area(unsigned n, const gsl_vector *x, const gsl_vector *y) {
// Computes the area of a domain.
double area, x_i, y_i, x_ii, y_ii;
unsigned ii;
gsl_permutation *indices_left;
indices_left = gsl_permutation_alloc(n);
gsl_permutation_init(indices_left);
gsl_permutation_over(n, indices_left, false);
area = 0;
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_left, i);
x_i = gsl_vector_get(x, i);
y_i = gsl_vector_get(y, i);
x_ii = gsl_vector_get(x, ii);
y_ii = gsl_vector_get(y, ii);
area += (x_i * y_ii - x_ii * y_i) / 2;
}
gsl_permutation_free(indices_left);
return area;
}
void domain_energy_rt(gsl_vector *rt, unsigned n, const gsl_vector *x,
double p) {
// Converts x and y coordinates to r_x, r_y, t_x, or t_y, depending on input.
double x_i, x_ii;
unsigned ii;
gsl_permutation *indices_left;
indices_left = gsl_permutation_alloc(n);
gsl_permutation_init(indices_left);
gsl_permutation_over(n, indices_left, false);
#pragma omp parallel for private(ii, x_i, x_ii)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_left, i);
x_i = gsl_vector_get(x, i);
x_ii = gsl_vector_get(x, ii);
gsl_vector_set(rt, i, x_ii + p * x_i);
}
gsl_permutation_free(indices_left);
}
void domain_energy_tdots(gsl_matrix *tdots, unsigned n, const gsl_vector *tx,
const gsl_vector *ty) {
// Creates a matrix of dotted tangent vectors.
gsl_matrix_set_zero(tdots);
gsl_blas_dger(1, tx, tx, tdots);
gsl_blas_dger(1, ty, ty, tdots);
}
void domain_energy_dists(gsl_matrix *dists, unsigned n, const gsl_vector *rx,
const gsl_vector *ry) {
// Creates a matrix of distances between points on the domain boundary..
double rx_i, rx_j, ry_i, ry_j;
#pragma omp parallel for private(rx_i, rx_j, ry_i, ry_j)
for (unsigned i = 0; i < n; i++) {
for (unsigned j = 0; j < n; j++) {
rx_i = gsl_vector_get(rx, i);
rx_j = gsl_vector_get(rx, j);
ry_i = gsl_vector_get(ry, i);
ry_j = gsl_vector_get(ry, j);
gsl_matrix_set(dists, i, j,
2 / sqrt(gsl_pow_2(rx_i - rx_j) + gsl_pow_2(ry_i - ry_j)));
}
}
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
gsl_matrix_set(dists, i, i, 0);
}
}
double domain_energy_dconst(unsigned n, double L, double *ld,
const gsl_vector *tx, const gsl_vector *ty) {
// Computes the value of the Lagrangian constraint on the distances.
double dconst, tx_i, ty_i;
dconst = 0;
for (unsigned i = 0; i < n; i++) {
tx_i = gsl_vector_get(tx, i);
ty_i = gsl_vector_get(ty, i);
dconst += ld[i] * (gsl_pow_2(L / n)
- (gsl_pow_2(tx_i) + gsl_pow_2(ty_i)));
}
return dconst;
}
double domain_energy_dval(unsigned n, double L, double *ld,
const gsl_vector *tx, const gsl_vector *ty) {
// Computes the value of the Lagrangian constraint on the distances.
double dconst, tx_i, ty_i;
dconst = 0;
for (unsigned i = 0; i < n; i++) {
tx_i = gsl_vector_get(tx, i);
ty_i = gsl_vector_get(ty, i);
dconst += gsl_pow_2(gsl_pow_2(L / n)
- (gsl_pow_2(tx_i) + gsl_pow_2(ty_i)));
}
return dconst;
}
double domain_energy_init(unsigned n, const gsl_vector *z, gsl_vector *rx,
gsl_vector *ry, gsl_vector *tx, gsl_vector *ty, gsl_matrix *tdots,
gsl_matrix *dists) {
// Get useful objects from the state vector. Fills all GSL matrix and vector
// objects, and returns the value of the area.
double area;
gsl_vector *x, *y;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
domain_energy_x(x, n, z);
domain_energy_y(y, n, z);
domain_energy_rt(rx, n, x, 1);
domain_energy_rt(ry, n, y, 1);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
domain_energy_tdots(tdots, n, tx, ty);
domain_energy_dists(dists, n, rx, ry);
area = domain_energy_area(n, x, y);
gsl_vector_free(x);
gsl_vector_free(y);
return area;
}
double domain_energy_energy(unsigned n,
double c, const gsl_vector *rx, const gsl_vector *ry, const gsl_vector *tx, const gsl_vector *ty, gsl_matrix *tdots, gsl_matrix *dists, double L) {
// Computes the Lagrangian.
double energy_mu, energy, lagrangian, H;
gsl_vector *v_temp_a, *v_temp_b;
v_temp_a = gsl_vector_alloc(n);
v_temp_b = gsl_vector_alloc(n);
gsl_vector_set_all(v_temp_a, 1);
gsl_vector_set_all(v_temp_b, 1);
gsl_matrix_mul_elements(tdots, dists);
gsl_blas_dtrmv(CblasUpper, CblasNoTrans, CblasNonUnit, tdots, v_temp_a);
gsl_blas_ddot(v_temp_a, v_temp_b, &energy_mu);
H = log(0.5 * (n - 1)) + M_EULER + 1.0 / (n - 1)
- 1.0 / (12 * gsl_pow_2(0.5 * (n - 1)));
L = fabs(L);
energy = c * L - L * log(L) - energy_mu + L * H;
gsl_vector_free(v_temp_a);
gsl_vector_free(v_temp_b);
return energy;
}
double domain_energy_lagrangian(unsigned n,
double c, const gsl_vector *rx, const gsl_vector *ry, const gsl_vector *tx, const gsl_vector *ty, gsl_matrix *tdots, gsl_matrix *dists, double L, double area, double la, double *ld) {
// Computes the Lagrangian.
double energy, lagrangian;
energy = domain_energy_energy(n, c, rx, ry, tx, ty, tdots, dists, L);
L = fabs(L);
lagrangian = energy - la * (area - M_PI) - domain_energy_dconst(n, L, ld, tx, ty);
return lagrangian;
}
void domain_energy_gradient(gsl_vector *grad, unsigned n,
double c, const gsl_vector *rx, const gsl_vector *ry, const gsl_vector *tx, const gsl_vector *ty, const gsl_matrix *tdots, const gsl_matrix *dists, double L, double area, double la, double *ld) {
// Computes the gradient of the Lagrangian.
double rx_i, rx_ii, rx_j, tx_i, tx_ii, tx_j, ry_i, ry_ii,
ry_j, ty_i, ty_ii, ty_j, d_ij, d_iij, tdt_ij, tdt_iij, d_ij3, d_iij3;
unsigned ii, jj;
gsl_vector *v_ones, *v_storage;
gsl_matrix *m_dx, *m_dy;
gsl_permutation *indices_right;
gsl_permutation *indices_left;
v_ones = gsl_vector_alloc(n);
v_storage = gsl_vector_alloc(n);
m_dx = gsl_matrix_alloc(n, n);
m_dy = gsl_matrix_alloc(n, n);
indices_right = gsl_permutation_alloc(n);
indices_left = gsl_permutation_alloc(n);
gsl_vector_set_zero(grad);
gsl_vector_set_all(v_ones, 1);
gsl_permutation_init(indices_right);
gsl_permutation_over(n, indices_right, true);
gsl_permutation_init(indices_left);
gsl_permutation_over(n, indices_left, false);
#pragma omp parallel for private(rx_i, rx_j, tx_j, tdt_ij, d_ij, rx_ii, ry_i, ry_j, ty_j, ry_ii, tdt_iij, d_iij, d_ij3, d_iij3, ii)
for (unsigned i = 0; i < n; i++) {
for (unsigned j = 0; j < n; j++) {
ii = gsl_permutation_get(indices_right, i);
rx_i = gsl_vector_get(rx, i);
rx_ii = gsl_vector_get(rx, ii);
rx_j = gsl_vector_get(rx, j);
tx_j = gsl_vector_get(tx, j);
ry_i = gsl_vector_get(ry, i);
ry_ii = gsl_vector_get(ry, ii);
ry_j = gsl_vector_get(ry, j);
ty_j = gsl_vector_get(ty, j);
d_ij = gsl_matrix_get(dists, i, j);
d_iij = gsl_matrix_get(dists, ii, j);
tdt_ij = gsl_matrix_get(tdots, i, j);
tdt_iij = gsl_matrix_get(tdots, ii, j);
d_ij3 = gsl_pow_3(d_ij);
d_iij3 = gsl_pow_3(d_iij);
gsl_matrix_set(m_dx, i, j,
- tx_j * d_ij - (rx_i - rx_j) * tdt_ij * d_ij3 / 4
+ tx_j * d_iij - (rx_ii - rx_j) * tdt_iij * d_iij3 / 4);
gsl_matrix_set(m_dy, i, j,
- ty_j * d_ij - (ry_i - ry_j) * tdt_ij * d_ij3 / 4
+ ty_j * d_iij - (ry_ii - ry_j) * tdt_iij * d_iij3 / 4);
}
}
#pragma omp parallel for private(ii)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
gsl_matrix_set(m_dx, i, ii, 0);
gsl_matrix_set(m_dx, i, i, 0);
gsl_matrix_set(m_dy, i, ii, 0);
gsl_matrix_set(m_dy, i, i, 0);
}
gsl_blas_dgemv(CblasNoTrans, 1, m_dx, v_ones, 0, v_storage);
#pragma omp parallel for private(ii, tx_i, tx_ii, d_ij)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
tx_i = gsl_vector_get(tx, i);
tx_ii = gsl_vector_get(tx, ii);
d_ij = gsl_matrix_get(dists, i, ii);
gsl_vector_set(grad, i,
- (gsl_vector_get(v_storage, i) + (tx_i - tx_ii) * d_ij));
}
gsl_blas_dgemv(CblasNoTrans, 1, m_dy, v_ones, 0, v_storage);
#pragma omp parallel for private(ii, ty_i, ty_ii, d_ij)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
ty_i = gsl_vector_get(ty, i);
ty_ii = gsl_vector_get(ty, ii);
d_ij = gsl_matrix_get(dists, i, ii);
gsl_vector_set(grad, i + n,
- (gsl_vector_get(v_storage, i) + (ty_i - ty_ii) * d_ij));
}
// darea/dx_i or y_i
#pragma omp parallel for private(ii, jj)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
jj = gsl_permutation_get(indices_left, i);
gsl_vector_set(grad, i, gsl_vector_get(grad, i) -
0.5 * (gsl_vector_get(ty, i) + gsl_vector_get(ty, ii)) * la);
gsl_vector_set(grad, n + i, gsl_vector_get(grad, n + i) +
0.5 * (gsl_vector_get(tx, i) + gsl_vector_get(tx, ii)) * la);
}
#pragma omp parallel for private(ii, jj, tx_i, tx_ii, ty_i, ty_ii)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
jj = gsl_permutation_get(indices_left, i);
tx_i = gsl_vector_get(tx, i);
tx_ii = gsl_vector_get(tx, ii);
ty_i = gsl_vector_get(ty, i);
ty_ii = gsl_vector_get(ty, ii);
gsl_vector_set(grad, i, gsl_vector_get(grad, i) -
2 * (ld[i] * tx_i - ld[ii] * tx_ii));
gsl_vector_set(grad, i + n, gsl_vector_get(grad, i + n) -
2 * (ld[i] * ty_i - ld[ii] * ty_ii));
}
// The gradient with respect to L.
L = fabs(L);
double gradLDist = 0;
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
jj = gsl_permutation_get(indices_left, i);
tx_i = gsl_vector_get(tx, i);
tx_ii = gsl_vector_get(tx, ii);
ty_i = gsl_vector_get(ty, i);
ty_ii = gsl_vector_get(ty, ii);
gradLDist += 2 * L / gsl_pow_2(n) * ld[i];
}
double H = log(0.5 * (n - 1)) + M_EULER + 1.0 / (n - 1)
- 1.0 / (12 * gsl_pow_2(0.5 * (n - 1)));
double gradL = GSL_SIGN(L) * (c - (1 + log(L) - H) - gradLDist);
gsl_vector_set(grad, 2 * n, gradL);
// The gradients with respect to the undetermined coefficients are simply
// the constraints.
double gradla = M_PI - area;
gsl_vector_set(grad, 2 * n + 1, gradla);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
gsl_vector_set(grad, 2 * n + 2 + i, gsl_pow_2(gsl_vector_get(tx, i)) +
gsl_pow_2(gsl_vector_get(ty, i)) - gsl_pow_2(L / n));
}
gsl_vector_free(v_ones);
gsl_vector_free(v_storage);
gsl_matrix_free(m_dx);
gsl_matrix_free(m_dy);
gsl_permutation_free(indices_right);
gsl_permutation_free(indices_left);
}
void domain_energy_halfHessian(gsl_matrix *hess, unsigned n,
double c, const gsl_vector *rx, const gsl_vector *ry, const gsl_vector *tx, const gsl_vector *ty, const gsl_matrix *tdots, const gsl_matrix *dists, double L, double la, double *ld) {
/* Computes the Hessian of the Lagrangian without the center of mass
* constraints and fixed point.
*/
gsl_matrix *m_dxidxj, *m_dyidyj, *m_dxidxi, *m_dyidyi, *m_dxidxii,
*m_dyidyii, *m_dxidyj, *m_dxidyi, *m_dxiidyi, *m_dxidyii;
gsl_vector *v_ones, *v_storage;
gsl_permutation *indicesRight, *indicesLeft, *indices2Right;
unsigned ii, jj, iii;
double rx_i, rx_j, tx_i, tx_j, tdt_ij, d_ij, rx_ii, rx_jj, tx_ii, tx_jj,
ry_i, ry_j, ty_i, ty_j, ry_ii, ry_jj, ty_ii, ty_jj, tdt_iij, d_iij,
tdt_ijj, d_ijj, tdt_iijj, d_iijj, rx_iii, tx_iii, ry_iii, ty_iii,
d_ij3, d_iij3, d_ijj3, d_iijj3, d_ij5, d_iij5, d_ijj5, d_iijj5;
m_dxidxj = gsl_matrix_alloc(n, n);
m_dyidyj = gsl_matrix_alloc(n, n);
m_dxidxi = gsl_matrix_alloc(n, n);
m_dyidyi = gsl_matrix_alloc(n, n);
m_dxidxii = gsl_matrix_alloc(n, n);
m_dyidyii = gsl_matrix_alloc(n, n);
m_dxidyj = gsl_matrix_alloc(n, n);
m_dxidyi = gsl_matrix_alloc(n, n);
m_dxiidyi = gsl_matrix_alloc(n, n);
m_dxidyii = gsl_matrix_alloc(n, n);
v_ones = gsl_vector_alloc(n);
v_storage = gsl_vector_alloc(n);
indicesRight = gsl_permutation_alloc(n);
indicesLeft = gsl_permutation_alloc(n);
indices2Right = gsl_permutation_alloc(n);
gsl_matrix_set_zero(hess);
gsl_vector_set_all(v_ones, 1);
gsl_permutation_init(indicesRight);
gsl_permutation_init(indicesLeft);
gsl_permutation_over(n, indicesRight, true);
gsl_permutation_over(n, indicesLeft, false);
gsl_permutation_memcpy(indices2Right, indicesRight);
gsl_permutation_over(n, indices2Right, true);
#pragma omp parallel for private(rx_i, rx_j, tx_i, tx_j, tdt_ij, d_ij, rx_ii, rx_jj, tx_ii, tx_jj, ry_i, ry_j, ty_i, ty_j, ry_ii, ry_jj, ty_ii, ty_jj, tdt_iij, d_iij, tdt_ijj, d_ijj, tdt_iijj, d_iijj, rx_iii, tx_iii, ry_iii, ty_iii, d_ij3, d_iij3, d_ijj3, d_iijj3, d_ij5, d_iij5, d_ijj5, d_iijj5, ii, jj)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
for (unsigned j = 0; j < n; j++) {
jj = gsl_permutation_get(indicesRight, j);
rx_i = gsl_vector_get(rx, i);
rx_j = gsl_vector_get(rx, j);
tx_i = gsl_vector_get(tx, i);
tx_j = gsl_vector_get(tx, j);
ry_i = gsl_vector_get(ry, i);
ry_j = gsl_vector_get(ry, j);
ty_i = gsl_vector_get(ty, i);
ty_j = gsl_vector_get(ty, j);
rx_ii = gsl_vector_get(rx, ii);
rx_jj = gsl_vector_get(rx, jj);
tx_ii = gsl_vector_get(tx, ii);
tx_jj = gsl_vector_get(tx, jj);
ry_ii = gsl_vector_get(ry, ii);
ry_jj = gsl_vector_get(ry, jj);
ty_ii = gsl_vector_get(ty, ii);
ty_jj = gsl_vector_get(ty, jj);
d_ij = gsl_matrix_get(dists, i, j);
tdt_ij = gsl_matrix_get(tdots, i, j);
d_iij = gsl_matrix_get(dists, ii, j);
tdt_iij = gsl_matrix_get(tdots, ii, j);
d_ijj = gsl_matrix_get(dists, i, jj);
tdt_ijj = gsl_matrix_get(tdots, i, jj);
d_iijj = gsl_matrix_get(dists, ii, jj);
tdt_iijj = gsl_matrix_get(tdots, ii, jj);
d_ij3 = gsl_pow_3(d_ij);
d_iij3 = gsl_pow_3(d_iij);
d_ijj3 = gsl_pow_3(d_ijj);
d_iijj3 = gsl_pow_3(d_iijj);
d_ij5 = gsl_pow_5(d_ij);
d_iij5 = gsl_pow_5(d_iij);
d_ijj5 = gsl_pow_5(d_ijj);
d_iijj5 = gsl_pow_5(d_iijj);
// d^2E / dx_i dx_j for i != j, j - 1.
gsl_matrix_set(m_dxidxj, i, j,
(rx_i - rx_j) * (tx_i - tx_j) * d_ij3 / 4 + d_ij
- 3 * gsl_pow_2(rx_i - rx_j) * tdt_ij * d_ij5 / 16
+ tdt_ij * d_ij3 / 4
+ (rx_ii - rx_j) * (tx_ii + tx_j) * d_iij3 / 4 - d_iij
- 3 * gsl_pow_2(rx_ii - rx_j) * tdt_iij * d_iij5 / 16
+ tdt_iij * d_iij3 / 4
- (rx_i - rx_jj) * (tx_i + tx_jj) * d_ijj3 / 4 - d_ijj
- 3 * gsl_pow_2(rx_i - rx_jj) * tdt_ijj * d_ijj5 / 16
+ tdt_ijj * d_ijj3 / 4
- (rx_ii - rx_jj) * (tx_ii - tx_jj) * d_iijj3 / 4 + d_iijj
- 3 * gsl_pow_2(rx_ii - rx_jj) * tdt_iijj * d_iijj5 / 16
+ tdt_iijj * d_iijj3 / 4
);
// d^2E / dy_i dy_j for i != j, j - 1.
gsl_matrix_set(m_dyidyj, i, j,
(ry_i - ry_j) * (ty_i - ty_j) * d_ij3 / 4 + d_ij
- 3 * gsl_pow_2(ry_i - ry_j) * tdt_ij * d_ij5 / 16
+ tdt_ij * d_ij3 / 4
+ (ry_ii - ry_j) * (ty_ii + ty_j) * d_iij3 / 4 - d_iij
- 3 * gsl_pow_2(ry_ii - ry_j) * tdt_iij * d_iij5 / 16
+ tdt_iij * d_iij3 / 4
- (ry_i - ry_jj) * (ty_i + ty_jj) * d_ijj3 / 4 - d_ijj
- 3 * gsl_pow_2(ry_i - ry_jj) * tdt_ijj * d_ijj5 / 16
+ tdt_ijj * d_ijj3 / 4
- (ry_ii - ry_jj) * (ty_ii - ty_jj) * d_iijj3 / 4 + d_iijj
- 3 * gsl_pow_2(ry_ii - ry_jj) * tdt_iijj * d_iijj5 / 16
+ tdt_iijj * d_iijj3 / 4
);
// d^2E / dx_i^2
gsl_matrix_set(m_dxidxi, i, j,
(rx_i - rx_j) * tx_j * d_ij3 / 2
+ 3 * gsl_pow_2(rx_i - rx_j) * tdt_ij * d_ij5 / 16
- tdt_ij * d_ij3 / 4
- (rx_ii - rx_j) * tx_j * d_iij3 / 2
+ 3 * gsl_pow_2(rx_ii - rx_j) * tdt_iij * d_iij5 / 16
- tdt_iij * d_iij3 / 4
);
// d^2E / dy_i^2
gsl_matrix_set(m_dyidyi, i, j,
(ry_i - ry_j) * ty_j * d_ij3 / 2
+ 3 * gsl_pow_2(ry_i - ry_j) * tdt_ij * d_ij5 / 16
- tdt_ij * d_ij3 / 4
- (ry_ii - ry_j) * ty_j * d_iij3 / 2
+ 3 * gsl_pow_2(ry_ii - ry_j) * tdt_iij * d_iij5 / 16
- tdt_iij * d_iij3 / 4
);
// d^2E / dx_i dx_(i-1)
gsl_matrix_set(m_dxidxii, i, j,
3 * gsl_pow_2(rx_ii - rx_j) * tdt_iij * d_iij5 / 16
- tdt_iij * d_iij3 / 4
);
// d^2E / dy_i dy_(i-1)
gsl_matrix_set(m_dyidyii, i, j,
3 * gsl_pow_2(ry_ii - ry_j) * tdt_iij * d_iij5 / 16
- tdt_iij * d_iij3 / 4
);
gsl_matrix_set(m_dxidyj, i, j,
(rx_i - rx_j) * ty_i * d_ij3 / 4
- (ry_i - ry_j) * tx_j * d_ij3 / 4
- 3 * (rx_i - rx_j) * (ry_i - ry_j) * tdt_ij * d_ij5 / 16
+ (rx_ii - rx_j) * ty_ii * d_iij3 / 4
+ (ry_ii - ry_j) * tx_j * d_iij3 / 4
- 3 * (rx_ii - rx_j) * (ry_ii - ry_j) * tdt_iij * d_iij5 / 16
- (rx_i - rx_jj) * ty_i * d_ijj3 / 4
- (ry_i - ry_jj) * tx_jj * d_ijj3 / 4
- 3 * (rx_i - rx_jj) * (ry_i - ry_jj) * tdt_ijj * d_ijj5 / 16
- (rx_ii - rx_jj) * ty_ii * d_iijj3 / 4
+ (ry_ii - ry_jj) * tx_jj * d_iijj3 / 4
- 3 * (rx_ii - rx_jj) * (ry_ii - ry_jj) * tdt_iijj * d_iijj5 / 16
);
gsl_matrix_set(m_dxidyi, i, j,
(ry_i - ry_j) * tx_j * d_ij3 / 4
+ (rx_i - rx_j) * ty_j * d_ij3 / 4
+ 3 * (rx_i - rx_j) * (ry_i - ry_j) * tdt_ij * d_ij5 / 16
- (ry_ii - ry_j) * tx_j * d_iij3 / 4
- (rx_ii - rx_j) * ty_j * d_iij3 / 4
+ 3 * (rx_ii - rx_j) * (ry_ii - ry_j) * tdt_iij * d_iij5 / 16
);
gsl_matrix_set(m_dxiidyi, i, j,
(ry_ii - ry_j) * tx_j * d_iij3 / 4
- (rx_ii - rx_j) * ty_j * d_iij3 / 4
+ 3 * (rx_ii - rx_j) * (ry_ii - ry_j) * tdt_iij * d_iij5 / 16
);
gsl_matrix_set(m_dxidyii, i, j,
- (ry_i - ry_j) * tx_j * d_ij3 / 4
+ (rx_i - rx_j) * ty_j * d_ij3 / 4
+ 3 * (rx_i - rx_j) * (ry_i - ry_j) * tdt_ij * d_ij5 / 16
);
}
}
// Setting terms of d^2E / dy_i dy_j and d^2E / dx_i dx_j in the Hessian.
#pragma omp parallel for
for (unsigned i = 2; i < n; i++) {
for (unsigned j = 0; j < i - 1; j++) {
gsl_matrix_set(hess, i, j, - gsl_matrix_get(m_dxidxj, i, j));
gsl_matrix_set(hess, n + i, n + j, - gsl_matrix_get(m_dyidyj, i, j));
}
}
// Zeroing out terms which aren't supposed to appear in the sums.
#pragma omp parallel for private(ii, iii, jj)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
iii = gsl_permutation_get(indices2Right, i);
jj = gsl_permutation_get(indicesLeft, i);
gsl_matrix_set(m_dxidxi, i, i, 0);
gsl_matrix_set(m_dxidxi, i, ii, 0);
gsl_matrix_set(m_dyidyi, i, i, 0);
gsl_matrix_set(m_dyidyi, i, ii, 0);
gsl_matrix_set(m_dxidxii, i, i, 0);
gsl_matrix_set(m_dxidxii, i, ii, 0);
gsl_matrix_set(m_dxidxii, i, iii, 0);
gsl_matrix_set(m_dyidyii, i, i, 0);
gsl_matrix_set(m_dyidyii, i, ii, 0);
gsl_matrix_set(m_dyidyii, i, iii, 0);
gsl_matrix_set(m_dxidyi, i, i, 0);
gsl_matrix_set(m_dxidyi, i, ii, 0);
gsl_matrix_set(m_dxiidyi, i, i, 0);
gsl_matrix_set(m_dxiidyi, i, ii, 0);
gsl_matrix_set(m_dxiidyi, i, iii, 0);
gsl_matrix_set(m_dxidyii, i, ii, 0);
gsl_matrix_set(m_dxidyii, i, jj, 0);
gsl_matrix_set(m_dxidyii, i, i, 0);
}
gsl_blas_dgemv(CblasNoTrans, 1, m_dxidxi, v_ones, 0, v_storage);
// Setting terms of d^2E / dx_i^2 in the Hessian.
#pragma omp parallel for private(ii, d_iij)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
d_iij = gsl_matrix_get(dists, i, ii);
gsl_matrix_set(hess, i, i,
- (gsl_vector_get(v_storage, i) - 2 * d_iij)
+ 2 * (ld[i] + ld[ii])
);
}
gsl_blas_dgemv(CblasNoTrans, 1, m_dyidyi, v_ones, 0, v_storage);
// Setting terms of d^2E / dy_i^2 in the Hessian.
#pragma omp parallel for private(ii, d_iij)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
d_iij = gsl_matrix_get(dists, i, ii);
gsl_matrix_set(hess, n + i, n + i,
- (gsl_vector_get(v_storage, i) - 2 * d_iij)
+ 2 * (ld[i] + ld[ii])
);
}
gsl_blas_dgemv(CblasNoTrans, 1, m_dxidxii, v_ones, 0, v_storage);
#pragma omp parallel for private(ii, rx_i, rx_ii, tx_i, tx_ii, d_ij)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
rx_i = gsl_vector_get(rx, i);
rx_ii = gsl_vector_get(rx, ii);
tx_i = gsl_vector_get(tx, i);
tx_ii = gsl_vector_get(tx, ii);
d_ij = gsl_matrix_get(dists, i, ii);
gsl_vector_set(v_storage, i, gsl_vector_get(v_storage, i)
- (rx_ii - rx_i) * (tx_i - tx_ii) * gsl_pow_3(d_ij) / 4
+ d_ij);
}
#pragma omp parallel for private(ii, iii, rx_i, rx_ii, rx_iii, tx_i, tx_ii, tx_iii, d_ij, d_iij, d_iijj, tdt_ij)
for (unsigned i = 0; i < n; i++) {
iii = gsl_permutation_get(indices2Right, i);
ii = gsl_permutation_get(indicesRight, i);
rx_i = gsl_vector_get(rx, i);
rx_ii = gsl_vector_get(rx, ii);
rx_iii = gsl_vector_get(rx, iii);
tx_i = gsl_vector_get(tx, i);
tx_ii = gsl_vector_get(tx, ii);
tx_iii = gsl_vector_get(tx, iii);
d_ij = gsl_matrix_get(dists, i, ii);
d_iij = gsl_matrix_get(dists, i, iii);
d_iijj = gsl_matrix_get(dists, ii, iii);
tdt_ij = gsl_matrix_get(tdots, i, iii);
gsl_vector_set(v_storage, i, gsl_vector_get(v_storage, i)
- 3 * gsl_pow_2(rx_iii - rx_i) * tdt_ij * gsl_pow_5(d_iij) / 16
+ (tx_iii + tx_i) * (rx_iii - rx_i) * gsl_pow_3(d_iij) / 4
+ tdt_ij * gsl_pow_3(d_iij) / 4 - d_iij
- (tx_ii - tx_iii) * (rx_ii - rx_iii) * gsl_pow_3(d_iijj) / 4 + d_iijj);
}
gsl_matrix_set(hess, n - 1, 0,
- gsl_vector_get(v_storage, 0) - 2 * ld[n - 1]);
#pragma omp parallel for
for (unsigned i = 1; i < n; i++) {
gsl_matrix_set(hess, i, i - 1,
- gsl_vector_get(v_storage, i) - 2 * ld[i - 1]
);
}
gsl_blas_dgemv(CblasNoTrans, 1, m_dyidyii, v_ones, 0, v_storage);
#pragma omp parallel for private(ii, ry_i, ry_ii, ty_i, ty_ii, d_ij)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
ry_i = gsl_vector_get(ry, i);
ry_ii = gsl_vector_get(ry, ii);
ty_i = gsl_vector_get(ty, i);
ty_ii = gsl_vector_get(ty, ii);
d_ij = gsl_matrix_get(dists, i, ii);
gsl_vector_set(v_storage, i, gsl_vector_get(v_storage, i)
- (ry_ii - ry_i) * (ty_i - ty_ii) * gsl_pow_3(d_ij) / 4
+ d_ij);
}
#pragma omp parallel for private(ii, iii, ry_i, ry_ii, ry_iii, ty_i, ty_ii, ty_iii, d_ij, d_iij, d_iijj, tdt_ij)
for (unsigned i = 0; i < n; i++) {
iii = gsl_permutation_get(indices2Right, i);
ii = gsl_permutation_get(indicesRight, i);
ry_i = gsl_vector_get(ry, i);
ry_ii = gsl_vector_get(ry, ii);
ry_iii = gsl_vector_get(ry, iii);
ty_i = gsl_vector_get(ty, i);
ty_ii = gsl_vector_get(ty, ii);
ty_iii = gsl_vector_get(ty, iii);
d_ij = gsl_matrix_get(dists, i, ii);
d_iij = gsl_matrix_get(dists, i, iii);
d_iijj = gsl_matrix_get(dists, ii, iii);
tdt_ij = gsl_matrix_get(tdots, i, iii);
gsl_vector_set(v_storage, i, gsl_vector_get(v_storage, i)
- 3 * gsl_pow_2(ry_iii - ry_i) * tdt_ij * gsl_pow_5(d_iij) / 16
+ (ty_iii + ty_i) * (ry_iii - ry_i) * gsl_pow_3(d_iij) / 4
+ tdt_ij * gsl_pow_3(d_iij) / 4 - d_iij
- (ty_ii - ty_iii) * (ry_ii - ry_iii) * gsl_pow_3(d_iijj) / 4 + d_iijj);
}
#pragma omp parallel for
for (unsigned i = 1; i < n; i++) {
gsl_matrix_set(hess, n + i, n + i - 1,
- gsl_vector_get(v_storage, i) - 2 * ld[i - 1]
);
}
gsl_matrix_set(hess, 2 * n -1, n,
- gsl_vector_get(v_storage, 0) - 2 * ld[n-1]);
// dxdy boring style
#pragma omp parallel for
for (unsigned j = 2; j < n; j++) {
for (unsigned i = 0; i < j - 1; i++) {
gsl_matrix_set(hess, n + j, i,
- gsl_matrix_get(m_dxidyj, i, j));
}
}
#pragma omp parallel for
for (unsigned j = 0; j < n - 2; j++) {
for (unsigned i = j + 2; i < n; i++) {
gsl_matrix_set(hess, n + j, i,
- gsl_matrix_get(m_dxidyj, i, j));
}
}
// d^2E / dx_i dy_i
gsl_blas_dgemv(CblasNoTrans, 1, m_dxidyi, v_ones, 0, v_storage);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
gsl_matrix_set(hess, n + i, i,
- gsl_vector_get(v_storage, i)
);
}
// d^2 E / dx_ii dy_i
gsl_blas_dgemv(CblasNoTrans, 1, m_dxiidyi, v_ones, 0, v_storage);
#pragma omp parallel for private(ii, iii, rx_i, rx_ii, rx_iii, tx_i, tx_ii, tx_iii, ry_i, ry_ii, ry_iii, ty_i, ty_ii, ty_iii, d_ij, d_iij, d_iijj, tdt_iij)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
iii = gsl_permutation_get(indices2Right, i);
rx_i = gsl_vector_get(rx, i);
rx_ii = gsl_vector_get(rx, ii);
rx_iii = gsl_vector_get(rx, iii);
tx_i = gsl_vector_get(tx, i);
tx_ii = gsl_vector_get(tx, ii);
tx_iii = gsl_vector_get(tx, iii);
ry_i = gsl_vector_get(ry, i);
ry_ii = gsl_vector_get(ry, ii);
ry_iii = gsl_vector_get(ry, iii);
ty_i = gsl_vector_get(ty, i);
ty_ii = gsl_vector_get(ty, ii);
ty_iii = gsl_vector_get(ty, iii);
d_ij = gsl_matrix_get(dists, i, ii);
d_iij = gsl_matrix_get(dists, i, iii);
d_iijj = gsl_matrix_get(dists, ii, iii);
tdt_iij = gsl_matrix_get(tdots, i, iii);
gsl_vector_set(v_storage, i, gsl_vector_get(v_storage, i)
- (rx_ii - rx_i) * (ty_i - ty_ii) * gsl_pow_3(d_ij) / 4
- 3 * (rx_iii - rx_i) * (ry_iii - ry_i) * tdt_iij * gsl_pow_5(d_iij) / 16
+ (rx_iii - rx_i) * ty_iii * gsl_pow_3(d_iij) / 4
+ (ry_iii - ry_i) * tx_i * gsl_pow_3(d_iij) / 4
- (tx_ii - tx_iii) * (ry_ii - ry_iii) * gsl_pow_3(d_iijj) / 4
);
}
#pragma omp parallel for
for (unsigned i = 0; i < n - 1; i++) {
gsl_matrix_set(hess, n + i + 1, i,
- gsl_vector_get(v_storage, i + 1) - la / 2
);
}
gsl_matrix_set(hess, n, n - 1,
-gsl_vector_get(v_storage, 0) - la / 2);
// Upper off-diagonal of dxdy submatrix.
gsl_blas_dgemv(CblasNoTrans, 1, m_dxidyii, v_ones, 0, v_storage);
#pragma omp parallel for private(ii, jj, rx_i, rx_ii, rx_jj, tx_i, tx_ii, tx_jj, ry_i, ry_ii, ry_jj, ty_i, ty_ii, ty_jj, d_ij, d_ijj, d_iijj, tdt_iijj)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
jj = gsl_permutation_get(indicesLeft, i);
rx_i = gsl_vector_get(rx, i);
rx_ii = gsl_vector_get(rx, ii);
rx_jj = gsl_vector_get(rx, jj);
tx_i = gsl_vector_get(tx, i);
tx_ii = gsl_vector_get(tx, ii);
tx_jj = gsl_vector_get(tx, jj);
ry_i = gsl_vector_get(ry, i);
ry_ii = gsl_vector_get(ry, ii);
ry_jj = gsl_vector_get(ry, jj);
ty_i = gsl_vector_get(ty, i);
ty_ii = gsl_vector_get(ty, ii);
ty_jj = gsl_vector_get(ty, jj);
d_ij = gsl_matrix_get(dists, i, ii);
d_ijj = gsl_matrix_get(dists, i, jj);
d_iijj = gsl_matrix_get(dists, ii, jj);
tdt_iijj = gsl_matrix_get(tdots, ii, jj);
gsl_vector_set(v_storage, i, gsl_vector_get(v_storage, i)
- (rx_i - rx_ii) * (ty_i - ty_ii) * gsl_pow_3(d_ij) / 4
- (tx_jj - tx_i) * (ry_i - ry_jj) * gsl_pow_3(d_ijj) / 4
+ tx_ii * (ry_ii - ry_jj) * gsl_pow_3(d_iijj) / 4
- (rx_jj - rx_ii) * ty_jj * gsl_pow_3(d_iijj) / 4
+ 3 * (rx_jj - rx_ii) * (ry_ii - ry_jj) * tdt_iijj * gsl_pow_5(d_iijj) / 16
);
}
gsl_matrix_set(hess, 2 * n - 1, 0,
- gsl_vector_get(v_storage, n - 1) + la / 2
);
#pragma omp parallel for
for (unsigned i = 0; i < n-1; i++) {
gsl_matrix_set(hess, n + i, i + 1,
- gsl_vector_get(v_storage, i) + la / 2
);
}
// dLdL
double gradLDist = 0;
for (unsigned i = 0; i < n; i++) {
gradLDist += 2 * ld[i] / gsl_pow_2(n);
}
L = fabs(L);
double gradL = - 1 / L - gradLDist;
gsl_matrix_set(hess, 2 * n, 2 * n, gradL);
// dLdlambdad
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
gsl_matrix_set(hess, i + 2 * n + 2, 2 * n, - 2 * L / gsl_pow_2(n));
}
#pragma omp parallel for private(ii)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
gsl_matrix_set(hess, 2 * n + 1, i, -
0.5 * (gsl_vector_get(ty, i) + gsl_vector_get(ty, ii)));
gsl_matrix_set(hess, 2 * n + 1, n + i,
0.5 * (gsl_vector_get(tx, i) + gsl_vector_get(tx, ii)));
}
#pragma omp parallel for private(ii)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
gsl_matrix_set(hess, 2 * n + 2 + i, i, -
2 * (gsl_vector_get(tx, i)));
gsl_matrix_set(hess, 2 * n + 2 + i, n + i, -
2 * (gsl_vector_get(ty, i)));
}
#pragma omp parallel for private(ii)
for (unsigned i = 1; i < n; i++) {
ii = gsl_permutation_get(indicesRight, i);
gsl_matrix_set(hess, 2 * n + i + 1, i,
2 * gsl_vector_get(tx, ii));
gsl_matrix_set(hess, 2 * n + i + 1, n + i,
2 * gsl_vector_get(ty, ii));
}
gsl_matrix_set(hess, 3 * n + 1, 0,
2 * gsl_vector_get(tx, n-1));
gsl_matrix_set(hess, 3 * n + 1, n,
2 * gsl_vector_get(ty, n-1));
gsl_vector_free(v_ones);
gsl_vector_free(v_storage);
gsl_matrix_free(m_dxidxj);
gsl_matrix_free(m_dyidyj);
gsl_matrix_free(m_dxidxi);
gsl_matrix_free(m_dyidyi);
gsl_matrix_free(m_dxidxii);
gsl_matrix_free(m_dyidyii);
gsl_matrix_free(m_dxidyj);
gsl_matrix_free(m_dxidyi);
gsl_matrix_free(m_dxiidyi);
gsl_matrix_free(m_dxidyii);
gsl_permutation_free(indicesLeft);
gsl_permutation_free(indicesRight);
gsl_permutation_free(indices2Right);
}
double domain_energy_nakedEnergy(unsigned n, const gsl_vector *z, double c) {
double lagrangian;
gsl_vector *x, *y;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(y, i, gsl_vector_get(z, i + n));
double L = gsl_vector_get(z, 2 * n);
unsigned ii;
gsl_vector *rx, *ry, *tx, *ty;
gsl_matrix *tdots, *dists;
rx = gsl_vector_alloc(n);
ry = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
tdots = gsl_matrix_alloc(n, n);
dists = gsl_matrix_alloc(n, n);
domain_energy_rt(rx, n, x, 1);
domain_energy_rt(ry, n, y, 1);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
domain_energy_tdots(tdots, n, tx, ty);
domain_energy_dists(dists, n, rx, ry);
lagrangian = domain_energy_energy(n, c, rx, ry, tx, ty, tdots, dists, L);
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(rx);
gsl_vector_free(ry);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_matrix_free(tdots);
gsl_matrix_free(dists);
return lagrangian;
};
double domain_energy_nakedLagrangian(unsigned n, const gsl_vector *z, double c) {
double lagrangian;
gsl_vector *x, *y;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(y, i, gsl_vector_get(z, i + n));
double L = gsl_vector_get(z, 2 * n);
double la = gsl_vector_get(z, 2 * n + 1);
double ld[n];
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
ld[i] = gsl_vector_get(z, 2 * n + 2 + i);
}
unsigned ii;
gsl_vector *rx, *ry, *tx, *ty;
gsl_matrix *tdots, *dists;
rx = gsl_vector_alloc(n);
ry = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
tdots = gsl_matrix_alloc(n, n);
dists = gsl_matrix_alloc(n, n);
domain_energy_rt(rx, n, x, 1);
domain_energy_rt(ry, n, y, 1);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
domain_energy_tdots(tdots, n, tx, ty);
domain_energy_dists(dists, n, rx, ry);
double area = domain_energy_area(n, x, y);
lagrangian = domain_energy_lagrangian(n, c, rx, ry, tx, ty, tdots, dists, L, area, la, ld);
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(rx);
gsl_vector_free(ry);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_matrix_free(tdots);
gsl_matrix_free(dists);
return lagrangian;
};
void domain_energy_nakedGradient(gsl_vector *grad, unsigned n, const gsl_vector *z, double c) {
gsl_permutation *indices_right;
indices_right = gsl_permutation_alloc(n);
gsl_permutation_init(indices_right);
gsl_permutation_over(n, indices_right, true);
gsl_vector *x, *y;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
// Setting pointers to give the elements of z more convenient names.
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(y, i, gsl_vector_get(z, i + n));
double L = gsl_vector_get(z, 2 * n);
double la = gsl_vector_get(z, 2 * n + 1);
double ld[n];
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
ld[i] = gsl_vector_get(z, 2 * n + 2 + i);
}
unsigned ii;
gsl_vector *rx, *ry, *tx, *ty;
gsl_matrix *tdots, *dists;
rx = gsl_vector_alloc(n);
ry = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
tdots = gsl_matrix_alloc(n, n);
dists = gsl_matrix_alloc(n, n);
domain_energy_rt(rx, n, x, 1);
domain_energy_rt(ry, n, y, 1);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
domain_energy_tdots(tdots, n, tx, ty);
domain_energy_dists(dists, n, rx, ry);
double area = domain_energy_area(n, x, y);
domain_energy_gradient(grad, n, c, rx, ry, tx, ty, tdots, dists, L, area, la, ld);
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(rx);
gsl_vector_free(ry);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_matrix_free(tdots);
gsl_matrix_free(dists);
gsl_permutation_free(indices_right);
}
void domain_energy_nakedHalfHessian(gsl_matrix *hess, unsigned n, const gsl_vector *z, double c) {
gsl_permutation *indices_right;
indices_right = gsl_permutation_alloc(n);
gsl_permutation_init(indices_right);
gsl_permutation_over(n, indices_right, true);
gsl_vector *x, *y;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
// Setting pointers to give the elements of z more convenient names.
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(y, i, gsl_vector_get(z, i + n));
double L = gsl_vector_get(z, 2 * n);
double la = gsl_vector_get(z, 2 * n + 1);
double ld[n];
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
ld[i] = gsl_vector_get(z, 2 * n + 2 + i);
}
unsigned ii;
gsl_vector *rx, *ry, *tx, *ty;
gsl_matrix *tdots, *dists;
rx = gsl_vector_alloc(n);
ry = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
tdots = gsl_matrix_alloc(n, n);
dists = gsl_matrix_alloc(n, n);
domain_energy_rt(rx, n, x, 1);
domain_energy_rt(ry, n, y, 1);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
domain_energy_tdots(tdots, n, tx, ty);
domain_energy_dists(dists, n, rx, ry);
double area = domain_energy_area(n, x, y);
domain_energy_halfHessian(hess, n, c, rx, ry, tx, ty, tdots, dists, L, la, ld);
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(rx);
gsl_vector_free(ry);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_matrix_free(tdots);
gsl_matrix_free(dists);
gsl_permutation_free(indices_right);
}
void domain_energy_nakedHessian(gsl_matrix *hess, unsigned n, const gsl_vector *z, double c) {
domain_energy_nakedHalfHessian(hess, n, z, c);
#pragma omp parallel for
for (unsigned i = 1; i < 3 * n + 2; i++) {
for (unsigned j = 0; j < i; j++) {
gsl_matrix_set(hess, j, i, gsl_matrix_get(hess, i, j));
}
}
}
double domain_energy_fixedEnergy(unsigned n, const gsl_vector *z, double c) {
double lagrangian;
gsl_vector *x, *y;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
gsl_vector_set(y, 0, 0);
#pragma omp parallel for
for (unsigned i = 0; i < n - 1; i++) gsl_vector_set(y, i + 1, gsl_vector_get(z, i + n));
double L = gsl_vector_get(z, 2 * n - 1);
unsigned ii;
gsl_vector *rx, *ry, *tx, *ty;
gsl_matrix *tdots, *dists;
rx = gsl_vector_alloc(n);
ry = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
tdots = gsl_matrix_alloc(n, n);
dists = gsl_matrix_alloc(n, n);
domain_energy_rt(rx, n, x, 1);
domain_energy_rt(ry, n, y, 1);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
domain_energy_tdots(tdots, n, tx, ty);
domain_energy_dists(dists, n, rx, ry);
lagrangian = domain_energy_energy(n, c, rx, ry, tx, ty, tdots, dists, L);
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(rx);
gsl_vector_free(ry);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_matrix_free(tdots);
gsl_matrix_free(dists);
return lagrangian;
};
// The fixed functions.
double domain_energy_fixedLagrangian(unsigned n, const gsl_vector *z, double c) {
double lagrangian;
gsl_vector *x, *y;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
gsl_vector_set(y, 0, 0);
#pragma omp parallel for
for (unsigned i = 0; i < n - 1; i++) gsl_vector_set(y, i + 1, gsl_vector_get(z, i + n));
double L = gsl_vector_get(z, 2 * n - 1);
double la = gsl_vector_get(z, 2 * n);
double ld[n];
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
ld[i] = gsl_vector_get(z, 2 * n + 1 + i);
}
double lx = gsl_vector_get(z, 3 * n + 1);
double ly = gsl_vector_get(z, 3 * n + 2);
unsigned ii;
gsl_vector *rx, *ry, *tx, *ty;
gsl_matrix *tdots, *dists;
rx = gsl_vector_alloc(n);
ry = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
tdots = gsl_matrix_alloc(n, n);
dists = gsl_matrix_alloc(n, n);
domain_energy_rt(rx, n, x, 1);
domain_energy_rt(ry, n, y, 1);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
domain_energy_tdots(tdots, n, tx, ty);
domain_energy_dists(dists, n, rx, ry);
double area = domain_energy_area(n, x, y);
lagrangian = domain_energy_lagrangian(n, c, rx, ry, tx, ty, tdots, dists, L, area, la, ld);
double xtot = 0;
for (unsigned i = 0; i < n; i++) xtot += gsl_vector_get(z, i);
double ytot = 0;
for (unsigned i = 1; i < n; i++) ytot += gsl_vector_get(z, i + n - 1);
lagrangian += - lx * xtot - ly * ytot;
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(rx);
gsl_vector_free(ry);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_matrix_free(tdots);
gsl_matrix_free(dists);
return lagrangian;
};
void domain_energy_fixedGradient(gsl_vector *grad, unsigned n, const gsl_vector *z,
double c) {
// Setting pointers to give the elements of z more convenient names.
double L = gsl_vector_get(z, 2 * n - 1);
double la = gsl_vector_get(z, 2 * n);
double ld[n];
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
ld[i] = gsl_vector_get(z, 2 * n + 1 + i);
}
double lx = gsl_vector_get(z, 3 * n + 1);
double ly = gsl_vector_get(z, 3 * n + 2);
unsigned ii;
gsl_vector *rx, *ry, *tx, *ty, *freegrad;
gsl_matrix *tdots, *dists;
rx = gsl_vector_alloc(n);
ry = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
tdots = gsl_matrix_alloc(n, n);
dists = gsl_matrix_alloc(n, n);
freegrad = gsl_vector_alloc(3 * n + 2);
double area = domain_energy_init(n, z, rx, ry, tx, ty, tdots, dists);
domain_energy_gradient(freegrad, n, c, rx, ry, tx, ty, tdots, dists, L, area, la, ld);
#pragma omp parallel for private(ii)
for (unsigned i =0; i < 3 * n + 2; i++) {
if (i != n) {
if (i < n) ii = i;
if (i > n) ii = i - 1;
gsl_vector_set(grad, ii, gsl_vector_get(freegrad, i));
}
}
#pragma omp parallel for private(ii)
for (unsigned i = 0; i < n; i++) {
gsl_vector_set(grad, i, gsl_vector_get(grad, i) - lx);
if (i != 0) gsl_vector_set(grad, n + i - 1, gsl_vector_get(grad, i + n - 1) -ly);
}
double xtot = 0;
for (unsigned i = 0; i < n; i++) xtot += gsl_vector_get(z, i);
double ytot = 0;
for (unsigned i = 1; i < n; i++) ytot += gsl_vector_get(z, i + n - 1);
gsl_vector_set(grad, 3 * n + 1, -xtot);
gsl_vector_set(grad, 3 * n + 2, -ytot);
gsl_vector_free(rx);
gsl_vector_free(ry);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_vector_free(freegrad);
gsl_matrix_free(tdots);
gsl_matrix_free(dists);
}
void domain_energy_fixedHalfHessian(gsl_matrix *hess, unsigned n, const gsl_vector *z,
double c) {
// Setting pointers to give the elements of z more convenient names.
double L = gsl_vector_get(z, 2 * n - 1);
double la = gsl_vector_get(z, 2 * n);
double ld[n];
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
ld[i] = gsl_vector_get(z, 2 * n + 1 + i);
}
double lx = gsl_vector_get(z, 3 * n + 1);
double ly = gsl_vector_get(z, 3 * n + 2);
gsl_vector *rx, *ry, *tx, *ty;
gsl_matrix *tdots, *dists, *freehess;
rx = gsl_vector_alloc(n);
ry = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
tdots = gsl_matrix_alloc(n, n);
dists = gsl_matrix_alloc(n, n);
freehess = gsl_matrix_alloc(3 * n + 2, 3 * n + 2);
double area = domain_energy_init(n, z, rx, ry, tx, ty, tdots, dists);
domain_energy_halfHessian(freehess, n, c, rx, ry, tx, ty, tdots, dists, L, la, ld);
gsl_matrix *m_dxidxj, *m_dyidyj, *m_dxidxi, *m_dyidyi, *m_dxidxii,
*m_dyidyii, *m_dxidyj, *m_dxidyi, *m_dxiidyi, *m_dxidyii;
gsl_vector *v_ones, *v_storage;
gsl_permutation *indicesRight, *indicesLeft, *indices2Right;
unsigned ii, jj, iii;
double rx_i, rx_j, tx_i, tx_j, tdt_ij, d_ij, rx_ii, rx_jj, tx_ii, tx_jj,
ry_i, ry_j, ty_i, ty_j, ry_ii, ry_jj, ty_ii, ty_jj, tdt_iij, d_iij,
tdt_ijj, d_ijj, tdt_iijj, d_iijj, rx_iii, tx_iii, ry_iii, ty_iii,
d_ij3, d_iij3, d_ijj3, d_iijj3, d_ij5, d_iij5, d_ijj5, d_iijj5;
gsl_matrix_set_zero(hess);
#pragma omp parallel for private(ii, jj)
for (unsigned i = 0; i < 3 * n + 2; i++) {
if (i != n) {
if (i < n) ii = i;
if (i > n) ii = i - 1;
for (unsigned j = 0; j <= i; j++) {
if (j != n) {
if (j < n) jj = j;
if (j > n) jj = j - 1;
gsl_matrix_set(hess, ii, jj, gsl_matrix_get(freehess, i, j));
}
}
}
}
indicesRight = gsl_permutation_alloc(n);
indicesLeft = gsl_permutation_alloc(n);
indices2Right = gsl_permutation_alloc(n);
gsl_permutation_init(indicesRight);
gsl_permutation_init(indicesLeft);
gsl_permutation_over(n, indicesRight, true);
gsl_permutation_over(n, indicesLeft, false);
gsl_permutation_memcpy(indices2Right, indicesRight);
gsl_permutation_over(n, indices2Right, true);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) {
gsl_matrix_set(hess, 3 * n + 1, i, -1);
if (i != 0) gsl_matrix_set(hess, 3 * n + 2, n + i - 1, -1);
}
gsl_vector_free(rx);
gsl_vector_free(ry);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_matrix_free(tdots);
gsl_matrix_free(dists);
gsl_matrix_free(freehess);
gsl_permutation_free(indicesLeft);
gsl_permutation_free(indicesRight);
gsl_permutation_free(indices2Right);
}
void domain_energy_fixedHessian(gsl_matrix *hess, unsigned n, const gsl_vector *z,
double c) {
domain_energy_fixedHalfHessian(hess, n, z, c);
#pragma omp parallel for
for (unsigned i = 1; i < 3 * n + 3; i++) {
for (unsigned j = 0; j < i; j++) {
gsl_matrix_set(hess, j, i, gsl_matrix_get(hess, i, j));
}
}
}
// The random functions.
double domain_energy_randEnergy(unsigned n, const gsl_vector *z,
unsigned ord, const gsl_vector *k, const gsl_vector *a,
const gsl_vector *phi) {
double energy;
gsl_vector *x, *y;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(y, i, gsl_vector_get(z, i + n));
unsigned ii;
gsl_vector *tx, *ty;
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
energy = 0;
for (unsigned i = 0; i < n; i++) {
for (unsigned j = 0; j < ord; j++) {
energy += gsl_vector_get(a, j) * gsl_sf_sin(gsl_vector_get(k, j) * gsl_vector_get(x, i) + gsl_vector_get(k, j + ord) * gsl_vector_get(y, i) + gsl_vector_get(phi, j)) * (gsl_vector_get(ty, i) / gsl_vector_get(k, j) - gsl_vector_get(tx, i) / gsl_vector_get(k, j + ord)) / 2;
}
}
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(tx);
gsl_vector_free(ty);
return energy;
};
void domain_energy_randGradient(gsl_vector *grad, unsigned n,
const gsl_vector *z, unsigned ord, const gsl_vector *k,
const gsl_vector *a, const gsl_vector *phi) {
gsl_permutation *indices_right;
indices_right = gsl_permutation_alloc(n);
gsl_permutation_init(indices_right);
gsl_permutation_over(n, indices_right, true);
gsl_vector *x, *y, *tx, *ty;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(y, i, gsl_vector_get(z, i + n));
unsigned ii;
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
double thesumx, thesumy, aj, kxj, kyj, phij, xi, yi, xii, yii, txi, tyi;
#pragma omp parallel for private(ii, xi, yi, xii, yii, txi, tyi, thesumx, thesumy, aj, kxj, kyj, phij)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
xi = gsl_vector_get(x, i);
yi = gsl_vector_get(y, i);
xii = gsl_vector_get(x, ii);
yii = gsl_vector_get(y, ii);
txi = gsl_vector_get(tx, i);
tyi = gsl_vector_get(ty, i);
thesumx = 0;
thesumy = 0;
for (unsigned j = 0; j < ord; j++) {
aj = gsl_vector_get(a, j);
kxj = gsl_vector_get(k, j);
kyj = gsl_vector_get(k, ord + j);
phij = gsl_vector_get(phi, j);
thesumx += aj * (kxj * gsl_sf_cos(kxj * xi + kyj * yi + phij) * (tyi / kxj - txi / kyj) +
(gsl_sf_sin(kxj * xi + kyj * yi + phij) - gsl_sf_sin(kxj * xii + kyj * yii + phij)) / kyj);
thesumy += aj * (kyj * gsl_sf_cos(kxj * xi + kyj * yi + phij) * (tyi / kxj - txi / kyj) -
(gsl_sf_sin(kxj * xi + kyj * yi + phij) - gsl_sf_sin(kxj * xii + kyj * yii + phij)) / kxj);
}
gsl_vector_set(grad, i, gsl_vector_get(grad, i) + thesumx / 2);
gsl_vector_set(grad, n + i, gsl_vector_get(grad, n + i) + thesumy / 2);
}
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_permutation_free(indices_right);
}
void domain_energy_randHalfHessian(gsl_matrix *hess, unsigned n,
const gsl_vector *z, unsigned ord, const gsl_vector *k, const gsl_vector *a,
const gsl_vector *phi) {
gsl_permutation *indices_right;
indices_right = gsl_permutation_alloc(n);
gsl_permutation_init(indices_right);
gsl_permutation_over(n, indices_right, true);
gsl_vector *x, *y, *tx, *ty;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(y, i, gsl_vector_get(z, i + n));
unsigned ii;
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
double thesumx, thesumy, thesumxy, thesumxx, thesumyy, thesumxxy, thesumxyy, aj, kxj, kyj, phij, xi, yi, xii, yii, txi, tyi;
#pragma omp parallel for private(ii, xi, yi, xii, yii, txi, tyi, thesumx, thesumy, thesumxy, thesumxx, thesumyy, thesumxxy, thesumxyy, aj, kxj, kyj, phij)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
xi = gsl_vector_get(x, i);
yi = gsl_vector_get(y, i);
xii = gsl_vector_get(x, ii);
yii = gsl_vector_get(y, ii);
txi = gsl_vector_get(tx, i);
tyi = gsl_vector_get(ty, i);
thesumx = 0;
thesumy = 0;
thesumxy = 0;
thesumxx = 0;
thesumyy = 0;
thesumxxy = 0;
thesumxyy = 0;
for (unsigned j = 0; j < ord; j++) {
aj = gsl_vector_get(a, j);
kxj = gsl_vector_get(k, j);
kyj = gsl_vector_get(k, ord + j);
phij = gsl_vector_get(phi, j);
thesumx += aj * ( - gsl_pow_2(kxj) * gsl_sf_sin(kxj * xi + kyj * yi + phij) * (tyi / kxj - txi / kyj) +
2 * gsl_sf_cos(kxj * xi + kyj * yi + phij) * kxj / kyj);
thesumy += aj * ( - gsl_pow_2(kyj) * gsl_sf_sin(kxj * xi + kyj * yi + phij) * (tyi / kxj - txi / kyj) -
2 * gsl_sf_cos(kxj * xi + kyj * yi + phij) * kyj / kxj);
thesumxy += - aj * kxj * kyj * gsl_sf_sin(kxj * xi + kyj * yi + phij) * (tyi / kxj - txi / kyj);
thesumxx += - aj * gsl_sf_cos(kxj * xii + kyj * yii + phij) * kxj / kyj;
thesumyy += aj * gsl_sf_cos(kxj * xii + kyj * yii + phij) * kyj / kxj;
thesumxyy += - aj * gsl_sf_cos(kxj * xii + kyj * yii + phij);
thesumxxy += aj * gsl_sf_cos(kxj * xii + kyj * yii + phij);
}
gsl_matrix_set(hess, i, i, gsl_matrix_get(hess, i, i) + thesumx / 2);
gsl_matrix_set(hess, n + i, n + i, gsl_matrix_get(hess, n + i, n + i) + thesumy / 2);
gsl_matrix_set(hess, i + n, i, gsl_matrix_get(hess, n + i, i) + thesumxy / 2);
if (i == 0) {
gsl_matrix_set(hess, n - 1, 0, gsl_matrix_get(hess, n - 1, 0) + thesumxx / 2);
gsl_matrix_set(hess, 2 * n - 1, n, gsl_matrix_get(hess, 2 * n - 1, n) + thesumyy / 2);
} else {
gsl_matrix_set(hess, i, ii, gsl_matrix_get(hess, i, ii) + thesumxx / 2);
gsl_matrix_set(hess, n + i, n + ii, gsl_matrix_get(hess, n + i, n + ii) + thesumyy / 2);
}
gsl_matrix_set(hess, n + i, ii, gsl_matrix_get(hess, n + i, ii) + thesumxxy / 2);
gsl_matrix_set(hess, n + ii, i, gsl_matrix_get(hess, n + ii, i) + thesumxyy / 2);
}
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_permutation_free(indices_right);
}
// The random naked functions.
double domain_energy_nakedRandLagrangian(unsigned n, const gsl_vector *z,
double c, unsigned ord, const gsl_vector *k, const gsl_vector *a,
const gsl_vector *phi) {
double lagrangian, randEnergy;
lagrangian = domain_energy_nakedLagrangian(n, z, c);
randEnergy = domain_energy_randEnergy(n, z, ord, k, a, phi);
return lagrangian + randEnergy;
}
void domain_energy_nakedRandGradient(gsl_vector *grad, unsigned n,
const gsl_vector *z, double c, unsigned ord, const gsl_vector *k,
const gsl_vector *a, const gsl_vector *phi) {
domain_energy_nakedGradient(grad, n, z, c);
domain_energy_randGradient(grad, n, z, ord, k, a, phi);
}
void domain_energy_nakedRandHessian(gsl_matrix *hess, unsigned n,
const gsl_vector *z, double c, unsigned ord, const gsl_vector *k,
const gsl_vector *a, const gsl_vector *phi) {
domain_energy_nakedHalfHessian(hess, n, z, c);
domain_energy_randHalfHessian(hess, n, z, ord, k, a, phi);
#pragma omp parallel for
for (unsigned i = 1; i < 3 * n + 2; i++) {
for (unsigned j = 0; j < i; j++) {
gsl_matrix_set(hess, j, i, gsl_matrix_get(hess, i, j));
}
}
}
// The well functions.
double domain_energy_wellEnergy(unsigned n, const gsl_vector *z, double w,
double s) {
double xi, yi, txi, tyi, energy;
gsl_vector *x, *y, *tx, *ty;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(y, i,
gsl_vector_get(z, i + n));
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
energy = 0;
for (unsigned i = 0; i < n; i++) {
xi = gsl_vector_get(x, i);
yi = gsl_vector_get(y, i);
txi = gsl_vector_get(tx, i);
tyi = gsl_vector_get(ty, i);
energy += ((gsl_sf_exp(s * (xi - w)) - gsl_sf_exp(-s * (xi + w))) * tyi -
(gsl_sf_exp(s * (yi - w)) - gsl_sf_exp(-s * (yi + w))) * txi) / s;
}
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(tx);
gsl_vector_free(ty);
return energy;
};
void domain_energy_wellGradient(gsl_vector *grad, unsigned n,
const gsl_vector *z, double w, double s) {
unsigned ii;
double xi, yi, xii, yii, txi, tyi, grad_xi, grad_yi;
gsl_vector *x, *y, *tx, *ty;
gsl_permutation *indices_right;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
indices_right = gsl_permutation_alloc(n);
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
#pragma omp parallel for
for (unsigned i = 0; i < n; i++) gsl_vector_set(y, i, gsl_vector_get(z, i + n));
gsl_permutation_init(indices_right);
gsl_permutation_over(n, indices_right, true);
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
#pragma omp parallel for private(ii, xi, yi, xii, yii, txi, tyi, grad_xi,\
grad_yi)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
xi = gsl_vector_get(x, i);
yi = gsl_vector_get(y, i);
xii = gsl_vector_get(x, ii);
yii = gsl_vector_get(y, ii);
txi = gsl_vector_get(tx, i);
tyi = gsl_vector_get(ty, i);
grad_xi = tyi * (gsl_sf_exp(s * (xi - w)) + gsl_sf_exp(-s * (xi + w))) +
(gsl_sf_exp(s * (yi - w)) - gsl_sf_exp(-s * (yi + w)) -
gsl_sf_exp(s * (yii - w)) + gsl_sf_exp(-s * (yii + w))) / s;
grad_yi = - txi * (gsl_sf_exp(s * (yi - w)) + gsl_sf_exp(-s * (yi + w))) +
(- gsl_sf_exp(s * (xi - w)) + gsl_sf_exp(-s * (xi + w)) +
gsl_sf_exp(s * (xii - w)) - gsl_sf_exp(-s * (xii + w))) / s;
gsl_vector_set(grad, i, gsl_vector_get(grad, i) + grad_xi);
gsl_vector_set(grad, n + i, gsl_vector_get(grad, n + i) + grad_yi);
}
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_permutation_free(indices_right);
}
void domain_energy_wellHalfHessian(gsl_matrix *hess, unsigned n,
const gsl_vector *z, double w, double s) {
unsigned ii;
double xi, yi, xii, yii, txi, tyi, hess_xi, hess_yi, hess_xiyi, hess_xiiyi,
hess_xiyii, exp_mxi, exp_pxi, exp_myi, exp_pyi, exp_mxii, exp_myii,
exp_pxii, exp_pyii;
gsl_vector *x, *y, *tx, *ty;
gsl_permutation *indices_right;
x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);
tx = gsl_vector_alloc(n);
ty = gsl_vector_alloc(n);
indices_right = gsl_permutation_alloc(n);
for (unsigned i = 0; i < n; i++) gsl_vector_set(x, i, gsl_vector_get(z, i));
for (unsigned i = 0; i < n; i++) {
gsl_vector_set(y, i, gsl_vector_get(z, i + n));
}
domain_energy_rt(tx, n, x, -1);
domain_energy_rt(ty, n, y, -1);
gsl_permutation_init(indices_right);
gsl_permutation_over(n, indices_right, true);
#pragma omp parallel for private(ii, xi, yi, xii, yii, txi, tyi, hess_xi,\
hess_yi, hess_xiyi, hess_xiiyi, hess_xiyii, exp_mxi, exp_pxi, exp_myi,\
exp_pyi, exp_mxii, exp_myii, exp_pxii, exp_pyii)
for (unsigned i = 0; i < n; i++) {
ii = gsl_permutation_get(indices_right, i);
xi = gsl_vector_get(x, i);
yi = gsl_vector_get(y, i);
xii = gsl_vector_get(x, ii);
yii = gsl_vector_get(y, ii);
txi = gsl_vector_get(tx, i);
tyi = gsl_vector_get(ty, i);
exp_mxi = gsl_sf_exp(-s * (xi + w));
exp_pxi = gsl_sf_exp(s * (xi - w));
exp_myi = gsl_sf_exp(-s * (yi + w));
exp_pyi = gsl_sf_exp(s * (yi - w));
exp_mxii = gsl_sf_exp(-s * (xii + w));
exp_pxii = gsl_sf_exp(s * (xii - w));
exp_myii = gsl_sf_exp(-s * (yii + w));
exp_pyii = gsl_sf_exp(s * (yii - w));
hess_xi = tyi * s * (exp_pxi - exp_mxi);
hess_yi = - txi * s * (exp_pyi - exp_myi);
hess_xiyi = - exp_pxi - exp_mxi + exp_pyi + exp_myi;
hess_xiyii = - exp_pyii - exp_myii;
hess_xiiyi = exp_pxii + exp_mxii;
gsl_matrix_set(hess, i, i, gsl_matrix_get(hess, i, i) + hess_xi);
gsl_matrix_set(hess, n + i, n + i, gsl_matrix_get(hess, n + i, n + i) +
hess_yi);
gsl_matrix_set(hess, i + n, i, gsl_matrix_get(hess, n + i, i) + hess_xiyi);
gsl_matrix_set(hess, n + i, ii, gsl_matrix_get(hess, n + i, ii) +
hess_xiiyi);
gsl_matrix_set(hess, n + ii, i, gsl_matrix_get(hess, n + ii, i) +
hess_xiyii);
}
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(tx);
gsl_vector_free(ty);
gsl_permutation_free(indices_right);
}
// The naked well functions.
double domain_energy_nakedWellLagrangian(unsigned n, const gsl_vector *z,
double c, double w, double s) {
double nakedLagrangian, wellEnergy;
nakedLagrangian = domain_energy_nakedLagrangian(n, z, c);
wellEnergy = domain_energy_wellEnergy(n, z, w, s);
return nakedLagrangian + wellEnergy;
}
void domain_energy_nakedWellGradient(gsl_vector *grad, unsigned n,
const gsl_vector *z, double c, double w, double s) {
domain_energy_nakedGradient(grad, n, z, c);
domain_energy_wellGradient(grad, n, z, w, s);
}
void domain_energy_nakedWellHessian(gsl_matrix *hess, unsigned n,
const gsl_vector *z, double c, double w, double s) {
domain_energy_nakedHalfHessian(hess, n, z, c);
domain_energy_wellHalfHessian(hess, n, z, w, s);
#pragma omp parallel for
for (unsigned i = 1; i < 3 * n + 2; i++) {
for (unsigned j = 0; j < i; j++) {
gsl_matrix_set(hess, j, i, gsl_matrix_get(hess, i, j));
}
}
}
// The random well functions.
double domain_energy_randWellLagrangian(unsigned n, const gsl_vector *z,
double c, unsigned ord, const gsl_vector *k, const gsl_vector *a,
const gsl_vector *phi, double w, double s) {
double lagrangian, randEnergy, wellEnergy;
lagrangian = domain_energy_nakedLagrangian(n, z, c);
randEnergy = domain_energy_randEnergy(n, z, ord, k, a, phi);
wellEnergy = domain_energy_wellEnergy(n, z, w, s);
return lagrangian + randEnergy + wellEnergy;
}
void domain_energy_randWellGradient(gsl_vector *grad, unsigned n,
const gsl_vector *z, double c, unsigned ord, const gsl_vector *k,
const gsl_vector *a, const gsl_vector *phi, double w, double s) {
domain_energy_nakedGradient(grad, n, z, c);
domain_energy_randGradient(grad, n, z, ord, k, a, phi);
domain_energy_wellGradient(grad, n, z, w, s);
}
void domain_energy_randWellHessian(gsl_matrix *hess, unsigned n,
const gsl_vector *z, double c, unsigned ord, const gsl_vector *k,
const gsl_vector *a, const gsl_vector *phi, double w, double s) {
domain_energy_nakedHalfHessian(hess, n, z, c);
domain_energy_randHalfHessian(hess, n, z, ord, k, a, phi);
domain_energy_wellHalfHessian(hess, n, z, w, s);
#pragma omp parallel for
for (unsigned i = 1; i < 3 * n + 2; i++) {
for (unsigned j = 0; j < i; j++) {
gsl_matrix_set(hess, j, i, gsl_matrix_get(hess, i, j));
}
}
}