BeginPackage["Schofield`"] $Assumptions = {θc > 0, θc > 1, gC[_] ∈ Reals, B > 0, γ > 0, ξ0 > 0} β[D_:2] := Piecewise[ { {1/8, D == 2}, {0.326419, D == 3}, {1/2, D == 4}, {β, True} } ] δ[D_:2] := Piecewise[ { {15, D == 2}, {4.78984, D == 3}, {3, D == 4}, {δ, True} } ] α[D_:2] := Piecewise[ { {0, D == 2}, {0.11008, D == 3}, {0, D == 4}, {α, True} } ] Δ[D_:2] := β[D] δ[D] OverBar[s] := 1.357838341706595496 t[θ_] := ((θ)^2 - 1) h[n_][θ_] := (1 - (θ/θc)^2) Sum[gC[i]LegendreP[(2 * i + 1), θ/θc], {i, 0, n}] η[g_][θ_] := t[θ] / (g[θ] / I)^(1 / Δ[2]) RFLow[B_, θc_][θ_] := (1/\[Pi])(2 E^(1/( B \[Theta]c)) \[Theta]c ExpIntegralEi[-(1/(B \[Theta]c))] + E^(1/(B (-\[Theta] + \[Theta]c))) (\[Theta] - \[Theta]c) \ ExpIntegralEi[1/(B \[Theta] - B \[Theta]c)] - E^(1/(B \[Theta] + B \[Theta]c)) (\[Theta] + \[Theta]c) ExpIntegralEi[-(1/( B \[Theta] + B \[Theta]c))]) RFHigh[ξ0_][ξ_] := (ξ^2+ξ0^2)^(5/6) RF[n_][θ_] := AL RFLow[B, θc][θ] + AH RFHigh[θ0][θ] + Sum[A[i] LegendreP[(2 i), θ/θc] , {i, 0, n}] RFReg[n_][θ_] := AL (1/\[Pi])(2 E^(1/( B \[Theta]c)) \[Theta]c ExpIntegralEi[-(1/(B \[Theta]c))] - E^(1/(B \[Theta] + B \[Theta]c)) (\[Theta] + \[Theta]c) ExpIntegralEi[-(1/( B \[Theta] + B \[Theta]c))]) + AH RFHigh[θ0][θ] + Sum[A[i] LegendreP[(2 i), θ/θc], {i, 0, n}] dRFc[n_][m_] := Piecewise[{{AL m! Gamma[m - 1] B^(m - 1) / π, m>1}, {0, True}}] + D[RFReg[n][θ], {θ, m}] /. θ -> θc RFC[n_][θ_] := RF[n][θ] + AL I Sign[Im[θ]] ((θ-θc)Exp[-1/(B(θ-θc))]-(-θ-θc)Exp[-1/(B(-θ-θc))]) ddξ[h_][f_] := D[f, θ] / D[h[θ] / RealAbs[t[θ]]^Δ[2], θ] ddη[h_][f_] := D[f, θ] / D[t[θ] / h[θ]^(1 / Δ[2]), θ] dFdξLow[n_, h_][m_] := Module[{ff, hh}, Nest[ddξ[hh], ff[θ] / t[θ]^2 - Log[t[θ]^2] / (8 π), m] /. θ -> θc /. Map[Derivative[#][ff][θc] -> dRFc[n][#] &, Range[0, m]] /. hh -> h] dFdξHigh[n_, h_][m_] := Module[{ff, hh}, Nest[ddξ[hh], ff[θ] / t[θ]^2 - Log[t[θ]^2] / (8 π), m] /. θ -> 0 /. Map[Derivative[#][ff][0] -> eqHighRHS[RF[n]][#] &, Range[0, m]] /. hh -> h] dFdη[n_, h_][m_][tt_] := Module[{ff, hh}, Nest[ddη[hh], h[θ]^(-2 / Δ[]) (ff[θ] - t[θ]^2 Log[hh[θ]^2] / (8 π Δ[])), m] /. θ -> tt /. Map[Derivative[#][ff][tt] -> Derivative[#][RF[n]][tt] &, Range[0, m]] /. hh -> h] dFdξLowList[n_, h_][m_] := Module[{ff, hh}, NestList[ddξ[hh], ff[θ] / t[θ]^2 - Log[t[θ]^2] / (8 π), m] /. θ -> θc /. Map[Derivative[#][ff][θc] -> dRFc[n][#] &, Range[0, m]] /. Map[Derivative[#][hh][θc] -> Derivative[#][h][θc] &, Range[0, m]]] dFdξHighList[n_, h_][m_] := Module[{ff, hh}, NestList[ddξ[hh], ff[θ] / t[θ]^2 - Log[t[θ]^2] / (8 π), m] /. θ -> 0 /. Map[Derivative[#][ff][0] -> eqHighRHS[RF[n]][#] &, Range[0, m]] /. hh -> h] dFdηList[n_, h_][m_][tt_] := Module[{ff, hh}, NestList[ddη[hh], h[θ]^(-2 / Δ[2]) (ff[θ] - t[θ]^2 Log[hh[θ]^2] / (8 π Δ[2])), m] /. θ -> tt /. Map[Derivative[#][ff][tt] -> Derivative[#][RF[n]][tt] &, Range[0, m]] /. hh -> h] ruleB[g_] := B - (2 * OverBar[s] / π) * (- g'[θc] / t[θc]^Δ[2]) ruleθ0[g_] := Simplify[g[I θ0]/(-t[I θ0])^Δ[2]/I] - 0.18930 ruleAL[g_] := AL - Exp[Δ[2] t[θc]^(Δ[2] - 1) t'[θc] / (2 OverBar[s] / π g'[θc]) - t[θc]^Δ[2] g''[θc] / (4 OverBar[s] / π g'[θc]^2)] t[θc]^(1/8) OverBar[s] / (2 π) * g'[θc] ruleAH[g_] := AH + 1.37 * (g[I θ0]/ I)^(2 / Δ[2]) * (-η[g]'[I θ0] / (2 θ0 I))^(5/6) eqLowRHSReg[n_][m_] := dRFc[n][m] eqLowLHS[h_][m_] :=D[ t[θ]^2 (Gl[h[θ] t[θ]^-Δ[2]] + Log[t[θ]^2]/(8 π)), {θ, m} ] /. θ -> θc eqLow[n_, h_][m_] := (eqLowRHSReg[n][m] - eqLowLHS[h][m]) / m! eqHighRHS[F_][m_] := D[F[θ], {θ, m} ] /. θ -> 0 eqHighLHS[h_][m_] := D[(-t[θ])^2 (Gh[h[θ] (-t[θ])^-Δ[2]] + Log[(-t[θ])^2]/(8 π)), {θ, m} ] /. θ -> 0 eqHigh[n_, h_][m_] := (eqHighRHS[RF[n]][m] - eqHighLHS[h][m]) / m! eqMid[F_, h_][m_] := D[ F[θ] - t[θ]^2 Log[h[θ]^2]/(8 Δ[2]π) - h[θ]^((2-α[2])/Δ[2]) Φ[η] /. η -> t[θ] / h[θ]^(1 / Δ[2]), {θ, m} ] / m! /. θ -> 1 δ0 = 10^(-14); Φs = { -1.19773338379799339, -0.31881012489061, 0.110886196683, 0.01642689465, -2.639978 10^-4, -5.140526 10^-4, 2.08856 10^-4, -4.4819 10^-5, 3.16 10^-7, 4.31 10^-6, -1.99 10^-6 } Gls = { Around[0, δ0], -OverBar[s], −0.0489532897203, Around[ 0.0388639290, 1 10^(-10)], Around[-0.068362121, 1 10^(-9)], Around[ 0.18388371, 1 10^(-8)], Around[-0.659170, 1 10^(-6)], Around[ 2.937665, 3 10^(-6)], Around[-15.61, 10^(-2)], 96.76, -6.79 10^2, 5.34 10^3, -4.66 10^4, 4.46 10^5, -4.66 10^6 } Ghs = { Around[0, δ0], Around[0, δ0], -1.845228078232838, Around[0, δ0], Around[ 8.3337117508, 10^(-10)], Around[0, δ0], Around[-95.16897, 10^(-5)], Around[0, δ0], Around[1457.62, 3 10^(-2)], 0, Around[-2.5891 10^4, 2], 0, 5.02 10^5, 0, -1.04 10^7 } dRule[sym_][f_, i_] := Derivative[i[[1]] - 1][sym][0] -> f (i[[1]] - 1)! ΦRules = MapIndexed[dRule[Φ], Φs]; GlRules = MapIndexed[dRule[Gl], Gls]; GhRules = MapIndexed[dRule[Gh], Ghs]; ClearAll[gC] rules := Join[ΦRules, GlRules, GhRules] (*ξ0 := 0.18930*) (*gC[0] := 1*) tC[0] := 1 (*gC[0] := 1*) eq[n_, g_][m_, p_, q_] := Flatten[Join[{ruleB[g], ruleθ0[g], g'[0] - 1, ruleAH[g], ruleAL[g]}, eqLow[n, g][#] & /@ Range[0, m],eqMid[RF[n], g][#] & /@ Range[0, p], eqHigh[n, g] /@ Range[0, q, 2]]] //. rules /. Around[x_, _] :> x (* *) chiSquaredLow[n_, g_][m_] := Total[(((#[[1]] /. rules)["Value"] - #[[2]])^2 / (#[[1]] /. rules)["Uncertainty"]^2)& /@ ({Gls[[#+1]], dFdξLow[n, g][#] / #!} & /@ Range[0, m])] chiSquaredHigh[n_, g_][m_] := Total[(((#[[1]] /. rules)["Value"] - #[[2]])^2 / (#[[1]] /. rules)["Uncertainty"]^2)& /@ ({Ghs[[#+1]], dFdξHigh[n, g][#] / #!} & /@ Range[0, m])] chiSquared[F_, g_][m_] := chiSquaredLow[F, g][m] + chiSquaredHigh[F, g][m] + ruleB[g]^2 / δ0^2 + ruleθ0[g]^2 / 0.00005^2 newSol[eqs_, oldSol_, newVars_, δ_:0, γ_:0, opts___] := FindRoot[ eqs, Join[ {#1, #2 + γ * RandomVariate[NormalDistribution[]]} & @@@ (oldSol /. Rule -> List), Thread[{newVars, δ * RandomVariate[NormalDistribution[], Length[newVars]]}] ], MaxIterations -> 500, opts ] EndPackage[]