From 194d0bafa2d2ede2ea86b2154d482489511116fb Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Thu, 8 Sep 2022 14:33:42 +0200 Subject: Cleaned up Mathematica examples a bit and started trying to implement a robust inversion routine. --- IsingScalingFunctionExamples.nb | 3517 ++++++++------------------------------- 1 file changed, 660 insertions(+), 2857 deletions(-) diff --git a/IsingScalingFunctionExamples.nb b/IsingScalingFunctionExamples.nb index b5b6bd0..ea6931e 100644 --- a/IsingScalingFunctionExamples.nb +++ b/IsingScalingFunctionExamples.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 627149, 11594] -NotebookOptionsPosition[ 619743, 11465] -NotebookOutlinePosition[ 620138, 11481] -CellTagsIndexPosition[ 620095, 11478] +NotebookDataLength[ 539998, 9397] +NotebookOptionsPosition[ 534600, 9303] +NotebookOutlinePosition[ 534997, 9319] +CellTagsIndexPosition[ 534954, 9316] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -30,7 +30,49 @@ Cell[BoxData[ Cell[BoxData[ RowBox[{"<<", "IsingScalingFunction`"}]], "Input", CellChangeTimes->{{3.857727185315662*^9, 3.857727193227276*^9}}, - CellLabel->"In[2]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], + CellLabel->"In[11]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "2", "]"}], "]"}]], "Input", + CellChangeTimes->{{3.8716222598767567`*^9, 3.871622264931773*^9}}, + CellLabel->"In[12]:=",ExpressionUUID->"83b24d73-7cfc-4a2f-a727-53c609f967fd"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + "1.148407773492004`", ",", "0.9896669889911205`", ",", "5.088311186824942`", + ",", + RowBox[{"-", "0.011429456733838021`"}], ",", + RowBox[{"-", "0.172823989504767`"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.31018352388662596`"}], ",", "0.2474537923130002`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0.37369093055254343`", ",", + RowBox[{"-", "0.021636313152585823`"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.871622265105771*^9, 3.871622307815116*^9}, + CellLabel->"Out[12]=",ExpressionUUID->"db6d0977-ebec-4f64-a895-b2176143e8b2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]], "Input", + CellChangeTimes->{{3.871621469605801*^9, 3.87162147052512*^9}, { + 3.871621790483807*^9, 3.8716217922994432`*^9}}, + CellLabel->"In[8]:=",ExpressionUUID->"23bc2248-ea2c-498f-be5b-40dd4156709e"], + +Cell[BoxData["1.148407773492004`"], "Output", + CellChangeTimes->{ + 3.87162147103511*^9, 3.871621526682054*^9, {3.8716217875635653`*^9, + 3.871621792592815*^9}}, + CellLabel->"Out[8]=",ExpressionUUID->"108b1754-01ba-4ac1-8b36-cfe5355222e2"] +}, Open ]], Cell[CellGroupData[{ @@ -114,7 +156,7 @@ Cell[BoxData[ "data2"}]}]], "Input", CellChangeTimes->{{3.857749259001082*^9, 3.85774927262074*^9}, { 3.85774951881236*^9, 3.857749541888072*^9}, {3.857749582534094*^9, - 3.857749642863475*^9}}, + 3.857749642863475*^9}, {3.871621938166548*^9, 3.871621938294367*^9}}, CellLabel->"In[4]:=",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"], Cell[BoxData[ @@ -147,7 +189,9 @@ Cell[BoxData[ RowBox[{"Last", "[", RowBox[{ RowBox[{"(", - RowBox[{"DScriptF0D\[Eta]List", "@@", "prep2"}], ")"}], "[", + RowBox[{"DScriptF0D\[Eta]List", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", RowBox[{"6", ",", "\[Theta]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "0", ",", "1.1483"}], "}"}]}], "]"}]], "Input", @@ -156,314 +200,279 @@ Cell[BoxData[ 3.857752444697954*^9}, {3.857752478098198*^9, 3.857752537396385*^9}, 3.857752575268834*^9, {3.857753034125165*^9, 3.857753035115671*^9}, { 3.857792145892029*^9, 3.857792151035262*^9}, {3.857793200326879*^9, - 3.857793202743438*^9}}, - CellLabel->"In[5]:=",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"], + 3.857793202743438*^9}, {3.871622315917389*^9, 3.8716223509177313`*^9}}, + CellLabel->"In[17]:=",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" -1:eJwdW3k41d8TtpQvoSiRNaRIQlxFuCMhiUtCKCUUSZYWVLZIUZYsEUr2lBQS -Cudj38oSspPsO9e+tPzO/f3VM885Z+add96Zcz5ProiVk+FlBjo6Oi9GOjra -v+eO3l7P3G9GTtX/EtCjUlE4s6rmTr/zCAhWZ8uJf4wv3rRpWKyR6wS4u7VP -H2ovKa6pbK0K0T8Nfb2e8WoMrcWhLEc2PnGdhdiYO0J1XgPFJnoxMr2d5/F5 -6nvB+unikJo/h3z1L0GH78GovwzLxS4T0t92ytlAYMDYjasJf4uN2CyvvOGy -BZ1XrX/GbDahI9JhdKorV2FIcYZ+RmML4jMoi23qdIBqFzam0rsc6I/LAsmm -yAky3j6OoKpyobmT4aP39F1AusPq7XvHXWig621uZckNfL4h7e02QdR6rfz+ -NrlbEDKoeKSVUwTlBy/yJ3O5ge0VJm/2jn0oXYh9fMrfHUyMjV8e45FEsR/2 -5h1euYP9MYhMPTuIgtTIfj5292DppHflj7eyyOu7iUFdpwfQ0amFc7+TQ85W -ToJcp7xo8WqjGkno0sKjCYsib8zXkUwV7iMo6fH5Mnf9+0CSv2lfyKGC+FvG -0gWZfUFUVPTY4yoyiuS/HVpW4ovzE3j06bsa8n8XfJ5N7gFoaAxxn508jv4u -8h7PnniA8Rgap0VrIlfVtP0myf6Y/z/fv5idQHYNaPkV1yOYiPBqSRQ5hX5x -n+rVqP+/vSNfQg+ZX2wvH/cPAE7O09w82vro1NzsU/mVQJid6ZNRHD+NKhQ9 -3Do+PAamc/1rdrvPIJX7zBc87Z7g+rm4ilsbIentIgeqO4NwPqPLjVxn0Wvz -TE6H8GCQlz8jcd/PFAknK61ynAqB7M3KVyn05oiTZFhpXhQKkeTAz8MHLND6 -21IZN/0wKCrMaIgUs0KHG/9Lrs0IAxjfoX1FyBrdXNDjFmAOh3NZ/jbBIjZo -Srnrd0lJOHg2P+pt07iCJCyFnXcIRoCEp6Hxncu26PKDK4OX70RAGfe3FJen -dqjv23ztFrlIjF+23ZnpGuKjKqpahNDsBDF6Qwd0dqd31oeJSMzXNP96+nXU -ZMEabZT8DNvFhaKqzqh0Zo9NPFc01kNehLTZTfS7c7E91z0aDNYjYfvxW+hw -ZeWprz3ROH8eSU6F2+htnK38aspzqP/2rltazg0NPVR8vZUlBvPBGJSn6o52 -32Dh33s9BvIsWXUOGN5BkdoZDIYKsXi/R9GnqHuoQd7D1S4mFvdDsNDRag/E -sltvwutPLO6fN8MB9F7Ia2nme0ZlHNZHuKGCjg+yS5JL3GzyEvNp1tci4IeS -ghl3Cnx5idfXY1x++qFe99YAOaF4zG/cwYHXD5ChvqvzxZF4GI+4UFmg8xAJ -/e15dV45Aet7eCqvOxAV3qzstL2eQOsnO5umx8h0PHPHzVcJoBRyRnHk6xMU -0er1KJAxEe9XmJ1qD0bMGcJOeV8Twe+g+8TPPWEoVZjlTemfREjVl3xmXRiG -1KOoA99kkvC6RG2XSTjyvF9mMhiRhPs5smgiJgLNn7Uhc5xPhhbxy3qPDKNQ -aL2uO39IMl7nmnvBGo2kjivk7CtJhoTFmJTDtdHIVpppn6pYCq7Pkr6aYQzq -2ZTObj+VgvVl/Sj/5Qt05+7TE7eFUrFejGdWPF4i7jn3+z4GqZiPxx6Gl+LR -6e6TS1G5NDtP5rtAAqrKnuwp90jDem87ZL0zCX24IPNOkD0d96uX8eanaSjv -Tfpku3I6bR6cvSf6GhUtihwIt0+HjZRoqez816jmMddbppp0XM/jvB4T6ag/ -b+31rO8bzPcZ+es3MtAI/c3RN9lvMF+32Uv436Ep3al9Nv1vMN5r4ttr3qG1 -gb7UDtW3OL/xtJb979H2bRXJpatvsV4+TJ0JzEK7zFUH74ln4P60sLGbyEJC -qXmih00ywKF04ju/XjY6oPwm8e3HDKwfRWYnnhykYRvyKsLxHdZD2G25ko/I -lTCNuzyUifOzKvC4nI88tjR37d7xHvf/0TLtgXzka3yKr+vYe9xv5ZWzlgUo -ZFI1hvLqPa6XxqZe68/oNc+e6CPmHzCfp5ejfArRVL5r7Sa7LFyvQ23qbCXI -yUJ+/JJ3Fp6fKh/0zUvQPMMcMxGVhc+nz9i8KUGrele171Rm4fOC1e91StHm -oXPV06LZcIl1oH08pgwJcRyrbOvNxnqJZVZxqETvB0LC0GI25jPud1xtJYJP -PRZprDl43hyz3CZRhSzN3ZdvK+XADYGzc6SxKpSc8kF857Mcml4Px9yuQRJK -Qo/P6H7E+6/HJVZ+RQWsDibK1h8xf7xt2aRv6GTfZ9E9dz/i+6Xi/lDKN2Tv -Z1w4//oj9vdh42NAPcqsD5oKY8zF9ZbzY7/QiOSsNihNX3Lh1WJ2O0fCd1RG -Oslf8D0X5xuQ2dD/HZ35L3r01Vgu1uOZZyKizejWOzkfJ+5PuN7H6R6lNaP8 -5avZW2/Q7J+chnktSOVJxw69/XkYr2XyGPUH0sz91FEbnY/rP3yNp6MLRSnu -S03Kysfz5MQDG7luNFIU5XKvNh/3f/2yWXA3eljptuXgRj7mB44oa/agqjYl -lacXCvD8fxtUVtSLTqwVvzLZ+xn3t07v9sv96CS56spgzhd8Hxp56WYMIr2a -tsXf9cW4/q6WlJkJZJi/TePgcDHWm9unveKTyCRNO8LidzGu14lQbstJZPng -yyEkiUBTI0pErXkS3VCLd/R+hLC/K/vD8qdQVMHlMfpjBPZXorzdfwY5G61f -ZzQvwfP1d99/nFQ0/zXqWdzlEtwPoRbVB6no1nH5YnmXEnxf6t721KGiO3IO -bDYBJVhPFqQ6Pyry5eh7W5FXgvnymGpYoqJn30pH/XeU4n4x9Kxum0dfNAIv -MdeXYv6Krks/XEQCO4+wxHSW4vvg0Khi0iLyGh7K2j9SivGVcXGjRaT+UI3u -1L9SXH/2S8eXFlFd9Up88KEyXK9SPs1LS6hb50rP9qgynD+9+mfpZUTm53qQ -nFSG54PcO/0TyyhhsvQA6UMZxk8cSr64jGyCBO8Z15Theeg0dC90GU3Vt/I+ -X6edf9L+dXIZ/TY4flbwYjmun3X0q2cr6III9W/mtXIcL3iT+ZsVVEKNTyO7 -l+N6V+/8UrSCHoSvL10MK8f1PcJ2eWAFsbVmRyaVl+P533lSef8qcky5qCLf -VI793x9cUVpFTbfYh8p7ynH85Fo9nVUUufOq/PBSOZ4HW0nE1VUkcFa4WVyi -AveXqXpQ8iryEm+4U0CqwHg+bxnNWkX9K/dETh6rwPPAxrGheBWlPG93tjev -wPqZi1JpW0VMV/13bVypALa8B8Ilv1aRnZJ8yZObNLujoXZqFUl1hWzLDKLZ -77iv0q+hkLcq+aoxFbgfpq5tbFlDc3cnLjSkVuB+drdg51pDhqeeM13MocWP -1nopsIZy+bXez6IK3F/h99+IrSHuqQVjn68VuB/zbGWl1pB7UeIfjo4KPF8v -n5aVX0NdQfqpiUMV+L7liHqttIZULf7oylFp+ekGRcIa2lexoBPwh4ZHO6tX -Yw1tPTCh3cdSiePbmcSfXEMrYf1aJO5K7P/LeKveGupfbdN4LFpJi9/qfXoN -1V6sV++XrsT6Dvd5abSGcqrK1Q4rV2K9ZJpInV1DcQe/kINOVOJ5coCQNFtD -DyKzVAbOVOJ5+Vkk2nwNXd9IO6poWYnj2ww7nVtDJlYvFUMcKnF93zh/xDa5 -NuLwkHslrt/N/ZbYFpd9TDrqX4n7d//tW/g8R7SP3NOwSsxfVsGM6Rpa/eMq -O/KyEuvb1bTeZA39srkurfKWhselYCvGV/fVWio8rxLrU1ol22ANfZQzlxwr -o+1v1vqou4ZexBhIkBsr8Xton/IObYyX7sS+yG4avuf3GtUxXltVsYlRWv46 -9iMqGG+DvKjaYiXud9arJocxXgVJ4Si6Ksz/9U5BGYz3hbDQFFsV1mO5gLI4 -xsvII6DOW4XxSkW+E1pDa1fZ+Z7vrcLnoxOcd66hgSbGXTOHqnA/fk3yZ8V4 -j6zv1CBX4f65uTFOh/HGz+2I1anC/PGyvlhaRS82j3LOmVRhfpXlYsdX0QOH -3m1a1lVYjzrfB3pWkcnROtb5e7Tzg6u6pasIEktYtAOqcL6m6tdyVpEEc/5/ -8ZFVuN7x/vVJq2jtRzKjTibNn77H2furaEAllj7hcxXwODhR7zmtorrkp/+W -Kqto3xODvedxfBfPjcS+KszHauUZhVXk33FzbWWiCtdL8I6NMO4/sF/RW6mi -1Vf23ZZVpMZ+dmFtWzXWU4hCV88KGkyXnTx9rBrX55Gbn9sK+rZNfPy1XjWu -/499u8+voFxXwdE/ZtX4fn67NgQr6KHGlsE3N6px/QSSxzatIMn+wS76lGqs -5yTT5AfLaMeJro6zWTT/AzetrfA8yWxqyyyqxvMPltVgGdXfK242+0Gz9/fr -LS8hZ57oumymGjxfzmn7mS2hjx+pgfLba/D8C9/TKreElvV1T34SrMHfI76b -jFmXkEcAfU0BqQbHE2369XkRBaxdqySsajCf9oGb2BfR12dVD4451uD7myEg -5+cC2ionolF+p4b23oh4mL2AIu3byqqe1uB5tTYWZ7iAErvVSuoRzX+Osdnj -eTTkFuetX0dbb/ffaTKPJLiWyd9/1OB825hnhOfRe92M4tapGjz/h8mzH6no -S/HOwm6+WsxPiRxn4xxqfjXxady1Fs+n9+Jx2dNop4rm7Wu+tbg/c7c8ODCN -TDtekaaDa7E+Qlx9kqdQH4fxx7mUWqyn1wwZwZNo4j6RtdJci/vLWi9QZxwx -2ERmbJapw/mcVw2wGUKadLP2j47W4XzVTqaiQRTw4qQki1Yd1vNY0UfuQbT1 -x990Nos6rN/Qby9KfiE+ratpO57U4fitM43LvUhegpwoMlpHe1+JX+ZuRiaC -b/vjFmj2+NCOy03IfTu3MDfdV5zfh6faFvUI/Z6O38L7FffjgFCWTRXS+f7y -xYLOVwgddHf17/mALO/+ia58/xXrVeRRY08V2c/pajsUfsX1O8pAHq0jp9n8 -4P5S/RXz4ah4/XcDeZKS+ex9/1d8Px58/iy5hey6xyIievs3rBfhk64yPeSg -b0UhV12/4fqqr58VHyV/KJVoGPT9RtNDXrnxGLk5L5L9Qug3jFchc+3hOJkn -0SHIMP0bvn89y2qpk+Sk2wKPlbu+YT6CQkNvzZE/C3n4s5Prsd5Uj7d+WCKP -OCt7ZG9uwP1j9CrnBR1Yx7F6nuVswP3SUx22Sgf9ld2efwQa8Hsp8Pl2Y3ro -4vPwPklqwHjPOq5tY4CGiiLfX1YNGN/5AxbBjJC/ixzIWULzF7Pkk8YEASVq -US53G3E/mv9cPc0Omyc5onkeNuL4rff+K2MH352/oovDGnH9m3jz5LaCh/39 -GJY3jTh/p9T5ndvAmavsRWJ7I/hlkuqpLhwglZv43Y6vCST+bOR/pmyHncx7 -Op67NUFq48idt+rcEGX3wY/i2YTjb5cS9+OGXbXKMpv8miASSZCmyrlB4LHR -Q6eQJhA8QedG0eIBMbaHJK3UJsiQvDp2nbILSBzjTxeam3B8L8uRa3xguOvD -SYr0d6z/v4nrnUIQKqFcyDj8HVK3WTwsVBQD+steCV4uLeCeT2wc7pWBQl3t -HJfBVkjInfs9FKsAdcLP0afxVhyvoHAqRwE6Fkfr1mZbcT0WX03UKcDyi0eD -93+34n4zba1eVwC56Squ8J0/sD59aujMD0N6sKZbzokfOB9nN3nuIxDZoK6y -kPEDMuo2Ttf7KUJyUrj2kZwfeJ7JHOaLVYQc1wGjewU/gEdX/7dRliI0Cvle -Z6z8ARLFXnsiehRhi1Np/I6+H3BOtjFMkqQEPtvU6EkcbVgvz6Ke/FSC6waq -VbdutYGSNGVAY68ylDhle8bdbQMeKYMxF0Vl2B66V6HMpw38guU9/E8pQ149 -e8q24DaIvCBnctFFGf7q9N1/m9oGock9O9oLleGpprdqf1sblJnkbEk8pQID -NguLTL1tUJ39UJjPQgVID2zfHRzE/qafUm87qkBHmT7/vdk23O/XW1ufqoCI -mvDaTuZ2/D6y37q/VQVyjpbmnlJqhxu/xSgrRqqwyVzB4Qa0Q3alpZiPjSqY -3HmzJ0azHTxzTjCM3VSF9fyw8JHT7ZAx4T59JlwVjitYOd+3b4fAmrsKUfWq -0CrDKJUf1w48786XhKuSYZ++22BvYjuU5S1rU3XI4O44GbspvR10wEz/gCkZ -BDNbWAxz8X6pd2uyN8hwRTJldOpbO7ivRNd7pJBhRUwzWfRvO3CGlTmN0gMs -X7im/JOxA+qlTstKsGH7eVhLHEsH1oOwrhY3wCJbH+POnR0QGf9lhlcSYH7R -1eY/qQ7Q3NRlzmcAQJV++bv8UAeed3ucjpkBzNmVR/oc6QCHY/+eaVgBzPZs -q1xT74DQ8sK7fTcBpirS906ZdYCnnKPW+WcAk38bitMvdoBBF3/kxZcAE4pL -xpcvd+D67y1QTcVj9t2xh33OHZA6u3U8MBdgJLJrpOlRBwRqW5ZZfAcYbqDz -Dg7G/v1ePJPvABhiFufRieiASweAY7APYNDj5ony+A648eKsXcMkQL8NW/qn -Tx1g23baaJxeDX7Gy6ndKMT7Jw/2FmxSg74O0w7p0g4Y/6j55tZ/atCrm8qc -/g3Hk+CuzGJTg56HXxNsmjtAQ4xjXnYbtkuoiiIdHeDeXiPwklMNukjkq7GD -HTDkriGuxK0GnY429GfHO+BVytFhu11q0JH+OGbHbAdkXzaxeMCnBu0C7bVB -6x1QxF+g5CWkBm0mfy6dpOvEfSTheV4Y20/3rG9m6oRz/VxK+0TVoHWTs6Q3 -ZyeY7NzWdW+vGrSQo8qUeTpBdEDj1X/iatDsXmS+KtAJ0umaL70ksJ0zMJ8r -2gnu0bcr+verwfcp5icuEp3gcNpss/QBNWjaJ7NHWroTBP+LMrgihW1L48IJ -+U649JUaFXhQDRpj7515rdQJPB5naqOl1aChNXHSGjqBib+846kMtrfW+Alr -dsLS+NW8W7JqUK89w9+rg+O5hZ85fkgNvvly5cYYdEII45vE3zS76KiuiQnO -x1k5PEFODb4uWw5tP98JSo5r3DLyalAn+8ij8RLGV5orkk6z7TO5gmw74Ybu -pRRWkhrUprS8076O91N2hplhW/EJg//9m5iPJa/4Z9hOdzlk8eVOJ+iEftlb -gG0eU0uFBW+M73PYzlJsPySHsks97MT9+/d8FraXxNCwTVAndMxLTvpj24Z1 -uvhleCfEvrnx4Ri2W6j8UW3PO0E++VLMIMaj3qHjuO0Vzu/Ip+fXsJ2N7mhp -p3Zi3Z1/2YnzEU5NF7qfgfk75xp9ENtPn7Qvf87GfCmbuNni/P+5MDXO53eC -Z5L3wUeYL0dThdcHEMZLpL8Nwnz2kW28bSqwv11ffrphvvX2Rpx9WdeJ9dpQ -rI3rUcRaJtPWhPksJx3+h+t3YH7uv23teH+Bw9E4STWI7djdf6IX70+TLBLA -9XZP9Xz6ebwTYI2ZrgnrZfTJO7v52U7IfhaeRi+mBiY3utUOLHcC2/KtiF1Y -XwqgRH3B0AX1706zLguqQcpeu9ofzF1g8szYo4hfDbjYohO3busCnQ+V/2x5 -1WC+Y/G0D38Xvo/U2By51OD9jawca1IXOFCfTZJY1EDQ7OfjF0e7YKnWJ16U -SQ2CYKv1D7Uu/B6Y2rzEoAb2bA47Tuh1gWbFs5DQVQDxNPFbkle6gDPbeuRE -N0BUkImutUMXeG6/ou/QAsB001/sxY0uUGoI8zH7ivsdBlvZvbvw97/gQvAX -gITOeAVqdBcUbegcsYgC2FZSzy4Z3wVsUd2/K4MAvNJ+D1uldOH7lLJ5xRfA -4qZ5VGtWF75/fFKyHQH42LlX8msx3vGzLx4dB4hQCy7w2sD++AtHMwbIkHXM -0UWPvhvceey4brWR4Zu6vqTAf92Q6jSyg7WODJs0OV983t6N+2P8RmoWGVxP -PvNe3N8N9UEk3if3yGBq+FLL3rQbz2fKVW5mMtw64/VP8QJe/0Z5UbuqCk+N -Lhb8Z9MN50qM7E6Nq0KtiYhkqlM3zmdX7ZdaVTh6LpW9/2E3sFVFZ2kHqIKA -TWar8SeM50S+kehvFVC8HBIsVtiN+9n0MTGuAkZXnLQWSvD+kS3uB9pVINju -UMHTb91wwyEp1ClbBf46fIr7OkiLx67/xloF+m8XWx3b3gMGkrKy40gZUh/V -z0k59cCQ3XB3r8FRkFPIH3e73QN9er+sjA4fBTSQMFB2rwfYDp8LD+c/Cm2q -t1pNA3pAyWu/6pVhJWBa5Ct4kNgD1d+tBa+7KoGdpZ13T0sPZBsPOLKHKIKk -EuPWIMVeMJggiRhFHoa8kSmmdnIvvk8/+szdOAzqkW3/RDRptjSd6enDYD77 -hpp/Gu9/3DIVwH4YnqQa/Bi07wW/XgZXVz8FmOKMf6H8shd4gvQeJl4mwYcJ -xQOT9H0we8HnrukmOfAa1GrcxdyH62WmebH3EFB6jG5qbe3D9+PMfsW8QzBT -71yYyNcHkdLG65a2h0AqO/2UqXwfeM4fGYyoloV0t10OlTZ9UNZ256vhP2lI -2LT67lV1H2xoHFdderUfwoTypY2Cf4K0KeuM0jI/9P61+MDn3Y/fq5ENhy25 -CMfft7V3nPgFQ1khs4845Ilk/e8r1fQDkGHuugU/E4nwAWHhlE0DEBgSlq5I -p0b43HbW9vlvADgT208f2KVGXIjbFqPIPgCXzn4j5k6oEbtG9Y6+2TUA8tFS -TatpakSQV53HY5kBGHpfeWjI6hhxK7OcXs9iAJTaJg9e/K5OWKntkNxvOQA6 -jPabfoyqE6dbrAw3Ww/A0i/9JpW/6oT0Gn1ysd0ApC7c6/4leZwY01DTkL41 -AB1P1eu8/I4T53uKHm57MgBld/zfTh3SIDRY81ibCzC+r1dPDPhqEvaLLEZT -hQNAx6pxRThGkwjrtXjBROD1w19kdD5oEn0fNh9UrhyA2J3rWpbdmoS7kTEl -5fsAOLhSpCPktIiMl4tPXScGgKlyNWqtR4vYLivPzS8wCKm6w3Z/hbUJRd5H -FxR2D2L9Kv9wJ2kTFxm60/RFB8HgvblZ9wlt4l2r75EHEnh/vMgxU0dtQutO -s+k0aRA8vTVLpb9oE3fLXOIIvUGo1rBNVtQ7SfwyyhK28cbr71R+8FrqEBdO -WZid9B2E7Nv0uwyddIieY1vCpf0HweT54N8bXjpEm7QN49rjQRC1vevq+EKH -qGPeNRIcNQihWXPqOu06RE6Rd0Z+5iDwtBreeqR9ipD5KDX0ImsQ6hNXbqub -nCLevekU8P04CHTtUSLD1qeItCj5EN3Pg9Byk0f1l9cpItZ51PlXxSBEflZf -y/l4ivAV0z/M2jMIgd+LX2bt0iX+8f12nOvD+Vldrf4ppkt4cL55/ePXIGxM -fK5YktUlXP8y8CaMDoJEWiZLm7YuYd+Rt0FaGASH/FfOV9x0CcMgodILW4Zg -Cc7VFjXqEo2+X9eOsw8BqV+w+kyXLqF7x11uP8cQZP8tGWka0iW0rjQnL+wc -gj5VTRvPNV3iqNrDhwEiQ6BzIVM3XkSPEF2cPpWjOASauafmVhz0iHa1Vyk/ -lIeAk+3DxwxXPSIo2ODPKnkIirTPOar56BHL+z6+B80hYIuzTGaL0CPqzNw5 -608PAVOvGJtMvh7hnbbffs5oCNzHHALGCT2CtNBVtsN0CC796st9UKNHxAep -3jK/MAR0/P5/z3fqES4EQ/uo/RAM7Wb0jVzTI/ax5cqwOg4BILOMM/QUosv0 -coC0C8ZrlqCzwEwhNOarlW67DcGNPbnfW3goxK69wS8YHgxBdZvieV4ShSh5 -zGMl+HIIOj/H92ZfoRC322u+qCUMgafVSOdtBwohKXZ3h00yjn9d6y/vDQoR -WdxT8fYNjs/Vm8PgSSHs5hLFFfOGIHDQ0ds4jEIIqp7xOfd5CBwcBJ34oihE -c+CmTq8ibI8dvEnEUgiVPbaPK8uGIG/MMudNMoXgMJGaNmzE9RB+Mf33I4Wo -TOrVdG3G8a/6XazIpxB3Z0PiY35gm6Wu72ohhRgKoOr3dw+BaOvHzcZlFCLm -R1I6488hKPu9kBlbSSEookb04gPYn3W9TUkNhSgozMu5PjYEG0zv6d81UIjr -zHasYZPYvjk47vKdQoga89rkzuB6WG4d5mmlEEEz93ZuLOJ4J6r4NnVSiGPK -Bx2FVrG/BxxmOt0UYvlRX9WxjSGYjanLdu6lEBdFjrkH0A+D+6BkkcUvCpEX -8WDfy03DQLLkcRIYpBBsTDWt2f8NQ+xtBseiIQph7c7qV7VlGL/3+wtVRyjE -lwnKoW72Ybhk2nwuYRTzYRH+c5YDnzeTOD00RiFsG38Eb+IaBqUDF1+xTFAI -dIxXhZcH21oiOhyTFIIr9/zEQb5hEA3WMl7F9rV9Cc/VBYdh42BrRekUhSh7 -Pqh1VngYTJJ+v3CYxvVnFV+6tgev++8eWMW2k6d9ss8+HC+s9vmVGQpRNZt5 -+tl+vP9ubuUnbAtYUf+9kRoGpl9V10ewfbOV9B7J4HyUuaJWsV2n5X6+RW4Y -pEt7jk9hW/hz4ZYxhWEINAj2KMW224F/Bb8VMT4TQtMd2w0v1W05VYahpUwx -lQPbYhwPd+4DzEfPZMJjjOeeb235UXXMx/EV8gjG37zIdkNfcxjYSlP992Bb -wtZA2EZ7GPyOOd5Tx/l6d0Y0uJ8aBp6shX3HMT9tp9o9gil4fWRT6N5xCiGF -+A4kncb+n7z4Mo759ZO90JlnhG2GX1mhmP+upMRHX89iPAZid3iGKYTszmGF -fnOc7+Ig331cv0ePJIYWLYYhcqTm5TdcX5LDBzUhm2EwmPO6wtJHIR73zc/I -2Q5DPffdonWsj18Gh1+esB+GvFszOxqwfkIUitecnYdhyM9pnO8HhRh+TZfu -fxPzdeuPe2Qz7gc+DZNY12EIbWY6ONdIIcb/1uWUe+D90lbilDoKoeay9VKH -9zD0cQT6GFRTiKjB09umfYdhab11j0IF7u+ajmvcgRhPuJFzajGFiA8bEbv6 -DO8Xtybv+UAhFhklWzyfY7182NiklEEhTrlevx8eh/nSHLY79JpCrJov9hYm -DoMOMlSoi6cQZ8QYore+x/Wl5xZ9GUQh3kZpau7JHoYbI8921D6iEHQsgQtH -coch1bHtX7svhXg/vc3g0pdhyLDUX493pxDM+YIsuVXDIGjc2N1sRSE+Hf7y -OqJ2GL83A1/cs6AQVnkmWje/4fzfgRurKYUo/hTqJ9eM6+00nNavSyFu5NL/ -zeodhqLS2wesFChEd/bwfObiMNiml7N+w/Mt4JBvWPDKMHgeremYXNcjDmcL -yV5fx/ZhRq+FBT3iadbZ61J0I5DhGPzgy7AeofGhdvQt6wgIBvPOSeB5+v5d -Zs9rUbyuwckWEaBHnJPSufdo7wgUdQe/OIznNfO7EV5biRHoc7L+WeamR1hn -7D67T3oEdM6dzHt2RY/Y9Tbse4rSCH7//NHcd1yP8H19uyrRYARst1Al6FZ1 -CeMk1aw4rxH8npFb2Xwa3x/ufY6f7+P9NuJZkxq6hDDF+2D7gxG4UUS5UKCo -S0yslbzd/mQE2BLmF5iEdQmv0xqpgdEjoOR70/ve9Ckine5UrFvWCMhnc55u -8ztFrF8wfXBmYAQSPNyfr8frED9Ja+ouwyPguZ4cNxWqQ1RsiaUPHRsB6ST2 -mBofHSIkr9urbmYEznFrTpCtdIg9Wy/eObYxAi3KGqXiYjqEbvFlRxmuUaBj -+m5Ln3KSiOe/acqqNQru+99fD4/UJrr+Ovy3qD0KEr9U/+x5oE1wD1zJ6zk1 -Cuf+Fhum3tQmgtPNud6fHoUhjVfv3Ay1CQ8F9SYDC3xe+exbi23ahJk+p3bU -rVG49LnS4fjDEwSX34cjIsmjEMJZEyZ4VYt4MjHJfYRuDIoS+XWvMWsQQyIz -SgV5Y8C0w2Jf6bgqoTS6+UKpxziEsM6yc1yWI+QYLj1/qDABEqrdYrtGdxNt -FZT614oTkP0pd/C20m7i7iMVhlrlCTCpZC0XDhIiStl2ObCqT0Dgrgj6S3KC -hAFPIzylTMA5H27JRF8+wklKdTTGdgIcsq2Ev8rtJN6Z8B7OjJnA7/f2B5OZ -mwnxjO8tLX8mwCD2qtmgET2I3tu1RtBNQsvrjQ8v7BlA4NRFoXeMk5AaWn3M -z5sROCan7B6wTEK1i4lxa9pmWJdk/kvaOYm/n6+rOEyyQMNbskSU1CTQNYVU -tOzlhFtvMzxMz00CUxxYCRziBce784kaFyYhgWuifS6TF67qKFXLXpqEjaEF -BYokH1yYqOJksZ0EwdcFe5JE+OGE5EDa5xuT+PtX5WjKFkHge7vrO9/jSfw9 -Yv3mp5UwlLzx39tbMAkGN86+W5jZA+dfXUj4UjgJbFslFnzFxGA18gj/czQJ -Idd21bSYiYGszzjHmQocX2U59HO5GCSY6P2uaZyEDJ29rWGRe+E+486W3JFJ -/D7/Im8qKQ7qFik+QVxT+L2vlXxlryT0GXpuXOWZgiHTVrkJQ0m4q23ieoJv -CpiO80cd8JGEHHlmBwbhKXC488NttFMS9mxxOOt+YArYtF7xH3t8ADbly0vb -qE+B+6PG13Z9UlDJUd6t7DwF2QcLTeiNZCD2fILr2ZtTsJEy4qHoIQOO6Z6c -N12noGiSn3l3igxwqymeeOsxBZ5dBWzr8zJwxSkzZ1fgFJgca+a8qSULTA3R -gUuJU1D/4o91ZYcsdPHeFuNMnYLZmfRm0wlZeH/ZkJBKx+vPySHlG7Jg8odt -yfo9xrNDo1tI6BCkSflaNn+ZgpDX22ymLA+B1hOHIx9apkDQ6Wh+f98h4Gs/ -2VzXNgUGGuZ3R6fx95Wo+PWRzimQzlm0qvx9CKK+/EoS7Md8HTiSzMQnByPj -JluDpjAfa3WD8YZy8FD72LDd5mmofhNKES+SA/NIIZ8HzNPAdLOYSKiRA+n+ -Db4E1mkQ/d3mQG2Vgza3PIN2zmmYXW0J2DUtB/teHyjSFMK2VfQRL355qNrM -HSF6ZBouXdLLy3CWh7kLukIsR6eBk5Erc/6OPPAX+L6ZVZkGjX4Ge24/eXC2 -nyWK1KcBkrkoi5HywNdYM2VCwfEaTjhtyZcHDYl/bqqnpyFP9KSWIiEPTvcV -GMWMMN4zMTzHq+WhQj6Jl2o2DanHk6pm2/D683taTy5Pg+1Mg3TaojzEUrO/ -u9jh+EtuH4o28H6dsfOm16ZBaYLDPouBBHx/jG7udZkGiZYTWTIcJKi4JJ1A -eEyDA/+R+yH7STDzxeZAmjfGyxTUFCpDAl6uuLwgX+zfvTvFUYEEjlX/1ZsF -TAOdlt7mSjUS7Drwa20hYhrY7JPqfxiTQP0Bj39XFMb3MvtahTkJrvfqcZTG -YP8F/MNPL5KgLPTLvpBX0zD06snzcjsSTI/NZd9Kmgb5Ja2J/dexP3Vx1XOp -0yBNqtFydMHnFyPOSGRMQ1+o6+mwOyR4rlfXt/U93s9ZssvZE/tLo7NfypqG -cxRmwYP38Xmz6z5ledNg8BRxqAdgPDnJrG8+43oxZ/LFPsH+WLuiQoswn6kJ -UU0h+HyxVub5MlyPXj/+zkgSTHF7Kh6vxPksm6tlRJOAx/lj+f4anE8547bz -sSRwEBXuWq7Htq3foNkrEkTdM7nc2zQNkdwpTK8TSVDaGjRX3oLxJ0hubUkm -AfejNaawzmnw0xthqnlNArV+mXC3nmmIXarmDntDgmtKVwQv/MTnv13WVsrA -/sJfpGsMYD38fZhR8o4EJZPN8geGp+FGDa+B+HsSTGqwEJxjWK/6ylrXP2D/ -8aCzOoHxtxyKD8/C/ldu/+ibnqb9f7VddDb2b/DOsnJuGtzLX366l0OChn8j -rBML02ByUtiX8pEEsh9E8reu4PX2BYMNbEdcOG8lv47z3z59xDeXBMvs0eym -fzAebkG9QWybFn8v8KCbgZCI5jShTyQodGCzSWScgaL8qHMkbAsJnNhWxTQD -ZUwyvmLY9vl6/8sEywzQlcQdmsXnB+4WXd7GPgNK+/jvR2JbU3KFg8QxA5HL -YgFc2E7vPFRkumMG+modLzhhPFsCHWw9uWfAIWaUPxXjd1B8vT2JF9tXv3R8 -wvk1jv4qrhKYgQQNSmYizl8uWuDq5O4ZGHqumWOH+YnUOsvFsQf78/ekY8X8 -LS+FEaR9M5DayJ4dgPk1S/1mb7Z/Blr8dHp/vSVBkdF/3F5SM1AvVhbPjesj -tEm9NEkG4x1R3SaO6+fz0cOhWm4GdH6WaO9IJcGgVT7PlMIMSNsEXe5OwvhL -pRwVVGYgloX347+XGL+LLa854Ph3PHnPx2H9CSdVeKnPgMRlp4bI5xivNw9/ -jTaO11oaFheO8UobVk2dmgGNlOj2q6EkWOkNcuHUx7bHcBdXEManwlBjbjwD -Bl1nntD7Y3xTKje9TWdAPuOzy3Gs//txbkIp52ZgtkEkwAr3h9b61K3pS7he -fgxfFG+ToCm/XcTHcQYEiSIXbWsc33Z7fYrLDHi+teJ2u0CCZ9x67rW3MB// -TXX5mZHA/HZZw/Z7M8DzrRkU9UkwJJd5L/XRDATOPZ/YpoT9D4zuq3s8A7ZC -V//KyZPgTZho80zwDGwYHZZVOIjnxVy0hGIk3s/B6NIuTILVTN8fdQnYDtDa -Es1EArb9pjJzn/H+xSk74W/ywPFXTJapeAYy1A1221fIA1cLVVagZAaqOU0V -oorkQdDziZx2Fc4vJJgl6p08SH9HCgnNGO/KQSHFJ/Kgf2evisEk1mOc2prY -cXkwosyrXJmZASZ+p32pSvJguodQ9aBifabVzrDIyoNlvSmkr8xAh2/GyH0B -PJ9FgtTpNs3Cpcmdz2QW5SC8dl47S2AWDI5eiU2Ol4OoeOJk1e5Z6GNnsfWO -kIPYm0E6PaKzkOokqKweIAfJgvt0mffPgqjh7jhPFznIdTHTt1SYhaXASx8a -1fF9wltizEGZBcH2n5c3/zoEvPbBVs7eszC+J1NkgO0Q3NL9eOa07yxE/nX+ -3v9PFhqkOzXk/GdhVvrVjYZ5WXiwICa++HgWYJxDyA3fr3MeRZNuUbPAWVp4 -iCFZFqpCJ295Z85CWdTrG8IKsnDj08lHId2zMFTwm4H3pTRcpmM0aeOfA51X -LrwjxZJQuF3nXoH3HDgc8zkk3iQCWZ9YPQ7enwO/g/V3t30QgRTTeo8k3zm4 -9GR6nT5EBELiDbyC/Oegmiq1+T9dEbCUPHvf8skcSHgW/YmtEYbN6jaPmKPn -gMdh6pZTwG7Qd/GKMH1PW692Ph7KDxpcapH1H+bwe0a2YMGAHxTz6Z+pZ8/B -uazJnvrt/CD650GUVO4ceDYvqzNE88FiwJMYui9zMBHBt+SRyAsxCc9fpVfO -4ffEf83qBA8MNuZkrPbM4feKZ9Y+US5I91c9e6VvDvp6jRnOTO4AR+Uahtaf -c1DGHX7kc+4OWE3rNfswMAevFssPKWjvgK1ezMxXxuYge/O5a6su2+Go1AWb -loU5aBGPl+D4zgHhASyC77dQIVV/y/ZKH1YwJUfW8LNR8XppkuoeVhBcFLoV -yE6FjLfka8ertkD6RdJXGw4qOJSu71hj3wLo8MU7/NxUMFj3kBRMYYaJodwf -ASJUGFJkOFM6uRmOHbMMsVak2UdLoifpQFR0+uScEhXo6DgczsTSwSbGu5s9 -lam4X2R3V56kg6qKCI8oMg3PgFa08T+yrna1fa0Gbb/zp7aJ32RTfekTMqep -+H3M9U3WfJV8VLaQociQCibG/qKRDStkfk5tpG1ExfwrZ9tqrJD7mi8pWJ2l -0v4elHKRtEy2MXm255kFzX9zTPDeRbKTxe9/61dp+aA7ubpzZANyYOGja1RI -WPzsxpo1S5bbze3GdZ3Gx8Fx/9oZ8mK/zMxBZypoaqTY/d00Tb5rY91j6UoF -dzfb9t6X4+TzmnPR025UrI9LwsJfx8iq+zzP3L1DxfxP5spujJLpxqLqIjyo -WN+DW/KtR8gPr9UVVPlSQSlkB7e0ySDZTvfsrTMPqMB0rulzQcwA+eTBIZl+ -fyqMR/RJb+7/RWab/ZO2FkAF6Y7muJ5b/eTwG4eeSYXS+EvXSfPqJr+889wl -PI5K+/v6QvuM72TJX6dTN72kQiT56mfVF03kPG3WTtd42n7tSYM9jeQmHi+1 -c4k0f2UHnLi+khnyrLeJvabVM+W/z9bl5FBBweNR6VTQ0Kgw4Q8pJQv4t7ky -v6XCDYFq0pQvQVYwOtk39Y7GRwVp3r+AbDcvnfkph6aXtwcqS9PIS2Zj/eK5 -VNyPi6GURwlk39JErthPVNrvE9Y//owkxz3l8vAq+H88mae2l1GD9LrOCUTj -69zxtuOv0bmoj16fCVp9uE/qXn2Hxv445BwopWL9W3AY5GUh+vqfvBwV/8cT -n/7wEyJdqxzrqKXpxefA0nmESpu9BE59pemvYaspqQRRjioaFH+jxaeqDh8q -RbYsGfmJjVSIjYk5dYCrHC0620zu+E7DMxQwv1qOfDoEdz9spuL5mUl++KMC -xb5++tD+B00fJx1kXauQ+DadLz1tND2eLzY+Wo1yXRlnKB209UC4vFyN6jVd -jeW7qVj3A4GXTGqReaZMYGoPDQ9lwWK9Fo1wjRfx9NHWrTqto+oQ3dA5sd/9 -tPo7D77L+4qCT+00dRz4P58ddMrfEN/Hhif9gzQ9ei56539DaXwBhOEwFc+T -UQF5qXok73tsoWKEpr9jt/bE1KOS8fV9R8Zo+X02N/9bj3RP55q/Gafp/8vt -X+caUGfB9RD+SSqQ5Ftyy7Ib0BVh8bLgKVr+FWeZ6RrR/KP+pX/TVDy/Ls8X -aTUi79mY/Tdmaf7pXSf9GxHb2TMWQ3O0/WIKr4ob0XPEFmYy/3/+pwanG9He -fVUVNQs0vrMHrVibUE6w9+rRJVr+Qp8kBJoQeUlRKnOZ1p8dGyf3N6Gv5+cv -7l6l4vm3Nbhergm5jicmFq3R9velySg1IWHX04NmG7R+YbTbo9yE6hjo9678 -psJ6ysXkj4pN6FZo1pXIv1RYOvkve/JQExISsEw/RDeP68d+r31fE6pN3zbR -QD+P+2G/px8P3q9AHHBgnMf9MtX2mxHvL3O8zrJ5nvb7pldJHY2ohiL0IY1p -HvP9p1oosRHd7K6fO848T/t72aigS41IyM5T7hfLPK5fEisbH96/KHXLi3Ue -6/1WPaprQDfu93ziZ6ed9zxac7MBCW4NWinYOo/z2eqvtxOvi0/eXeCkxZPY -ba9ejwRyY4ue7pjH98GFEuOGb6haTefvwZ3zuL9sdl458w0JmL+5b7drnvb7 -HeG8k19R1Yhp+Wa+ecxXw/PzhXXI+Sbz5mR+Wn61vkv76lBlkG1ArxBt/4LP -+FQNcublqbsrPI/fz4Xk0hM1iC+tinWX6Dyu56+NBy+rkSOxN9Rw7zyeB0my -U0er0K75wWfVB+axfjr7izTLUZlXRLvNwf/7d7XyKUPXWY/zMsjQ9osyBRaU -ojKxpBcqcvOY/1n7GdES5HDWMjlb8f/8jRl1fEbcQ9uGKUdpdnFalGoBKnUm -9k0p0+IfExROzUPcj4Xe7gOafxaFq94fEVHUkxWnSePbLTGMMQPZnwyaVzxB -q1dP05h8OuJqUya1ac/T9DXm65GK7GZj8zl052m/F/u4cSkBbffQWcvU+389 -nj1neYGKmdePntL/P94/96Ojkd2zNx5jBvN43sTd+3czAm0XNUP+hvM0fT2d -1glFRe+Z6fYYzeP5syxSaBOAbJULjpUY0/CNfzJW90Xba2z9LM7OwyVWV3/G -X3dQkRFP5brp/+NF719xRld+VTE9N///OpWlyBpxOrpqK5yfx/ProP3tFENU -tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg= +1:eJwVWGk4lV0UJTJEoYyFJCIkXGW++8qQ8fIpUqGUKClEQhlSSRSFZCizMkdl +yPC+ZhIyT0nm8ZrHS/Sdfnn2s897zlprr73PuQ5dcTS5toOGhoaNjobm39+L +ync3so6eJ3JwtMi03G0onl0nudNyKYA1S37ZpYiUUnr6UZEfnKdhbnZ2uO1j +bWlddXtNsNF/kH85SFfgSF9pCLPCZh7nOdCLW95YZ5gqNTOMOv6rxwJGFIMN +aDeWS4PrtmT9jKyB4aJT/RWav6XOU9INXHI2wJp/OVc1fCd2lvWybRqnHURH +8XXmlbNiCtKvaNTWbsBmMpvjs4C92H7jiujmHge0/5d99lo82JbzkrxNiSP0 +/9ribo7hx+Z1Q8fvGzmjfPIfLp1D2FBv+pfqsjvQJrb19lmYCNZ+s/Ihm5wr +2t9DNklOHKv585N8Puku+v7ddK+YFFbwYvlAEuc9uJgz6jioLIOlCu6epDxx +h+DhdaPHIXJY9EfR/JNrHrCie1BfZd8J7DmJ+Mj3+v1/eoR61ipg3i1mxvU9 +D2AqjNhSnaWMOV1xFODU94YKbqlXObVqmPXS0ynLEh+0XtrQMYiEJQZaVLgb +PQSl4MPGS8c0sQNtE6kCTH6Qu5NlKUtCGws/cDekoswPHh3jLUrR0sGeZL6w +YJV7DClG+/ec7jXAtpf5NHKnHgMqXQ2dmRHmpvb+qFnSE5gMs9q1d8MYu96E +rcZxPgVhYeFulqYz2CC3/i/Nxqfo/KYq4bOm2IVLXZWTTwKQvh/ZambMMP35 +uZeEtWdQUnxxUM3qAlal+OBe98dAaGxgrbp60gJTfchk5XU9CBzK3UoKRaww +6b2HJGt7niN/aItdOWyNfbiQxeEQ+gJgcklqXe0KJpSktM6uH4zweEsduHYV +45A3qb5QEoL0vSsT0XsN20gvP37P6BXCtwj4rZvYyR+MSd8yXgGPA60e67oD +5rJkyM3PFAoCta/GVEJvYxSV3j9lZaHovPcPWf44YeKXhZz2CYSB8YbNqvmQ +M3btse3wNY+wf3m+py13sP6GxW+75MIhfvnGJd/vrtj+BUU1y+BwyEifCvne +eRc7x+WT83EqHPE54r827YY1W7K8OZv0GsxMX9NtyXtg5bOHbWI538CzgFQ5 +TV1v7E/PctcX9zcg7vVp8co3H+xkdbX+9743cIff6OHPDF8sPcaOsJ4cifgS +I9SM/bARf8UPe5ijkL+dTnQee4QdvMN8QPRWFMr3x+jte4yF62TsMDkRjfxK +7x68+gRrIjxwux4VjfxSolK57I8xHzSc8t6KRnxOWsZuPsW8V2ZbMqpjoNb5 +rTOvSCB2PVEuYafZOwgn6prMjgZjiS/ouPiL3oF0t55mKM9L7Jd7e4CcYCzy +z8T0ufKXmImRm9OlsVjUfzT720RCMcHtvjgLlXjEf+zae+nXWLFLdY/drXik +v3Vh7t/XmPlk1j6XuHjET+FCY2cEFtbu/fQZXcI/fZYz3kRiTBlCjvnfE5C+ +SjwGdm+xFCHmtPKthH/9oCjo8A47FbEw1HA8EeF3M1y4F4t5PawwGw5L/NdP +jwJN4rHFczZEdoskVN+WgPOZiVhIo4H7geAkNE8yhN0MkjApjROfjpQlgZ1t +LGPIfBJmJ81wRE0kGfFVJyxrpmB99Km77SnJwMHhYXpKKBXz8Hx5+q5gCtKT +33JtMBXjnnd/6GucguplPymamob991N3JeJLCvI7CEifysBqcqf7Kh+8R/rQ +vInLzsY+Wh3PFNidivinFGmrfMby01Knu1RSkf95A5yLPmMly4ckQ+1TkX+2 +z2+ofMHqAjnTGer+5XVEiNp52EA+9cOcXxo6T44q716AjdG6jKflpqF6Pa9b +3VWIUQwoR2wG0hA/hR9a8YUYdag/pVstHfFJ0Ets/YrtZatKKl9PR+sNkhbM +SjDeC2rD98UykJ6CYkXbJZhgSr7wSbMMVC8GHtW0UkxSJS0h/XMG0ieY9JAB +xzTtguPCbmeiesWIGC+UYW64ecy1kSz0vf3jr3ursAe7WnsP7stG/th1LtSr +CvMz1d/fq56N+Ds0zUxWYcHTalHkuGzkvwFcvrYa+8Bz+I3ChY+Ij0mqYngt +Rilw+0Z/PQe6/dJuxXl8xxwtCZPWPjlI/y3H+1vfscUd80x4RA6aX29ylv0a +sHXDGzoe1TmoP8tyKkMbsZ0jF2tnhHMR3ogvC9U/MEF29erOX7lIv/7ZZLVW +LHso+BW2nIv86csoGtSKQV6f5XuWT2ieKNg497Rily+4r95V+oT4MZ5wdG/D +kpI/inG9/hcTrv3F2zFxJcHAMwaf0TxRzTO724XJXdkkNxd9QfO6QPGg2y+s +Ql73QGHLFzRvWewT+n5hZxjfjMdNfIEeP8PwAY1+zDVTzteROw9Chq/rvOL8 +jRWs3sjdcycPzauvfw0uDWCqQd37DI/mo/1YHJn3D2FaX/K6v70pQPNSnd+o +YRSLUDySkphTgObFg1ButjFsrCTC+f63AjSfldckTMYw/+p7u45tFiC8j2YI +PWNYTaeS6kurQqTH0MWIqXHsNLU0zkz0K7ov9Ur/8k5husQa2+FPRWjeb1Pz +Xs9i0RUnCSXfi9B9NTmv2T+LTWl/+Bs+UoTqwxDy88gcFmgUEKnNXYzwH+nh +LJzD6i/r1ad5FKN+VSmSvzWP6T9qOuZEKkH1ONTKELyAGdZ1Lv9pLP03jz+G +YUuYSQGb5rHRUuTHW8XC/UuY2XudMMs/pQjPgysBW0vY5cdFspgEhuZZhXOL +yjJ2hxR72+cphtYfCDiev4xFFF6boFXHkb8FVIriV7DoD7EKcuY48sPa9bWS +FSwuosv/iiOO8FLyF7pXsFRXXdHKd//yLlRu9lWsWObYlccbOOJ3/sGy5yrm +dHbjFt2FMsS/qcNNfQ1b/B7xOuZaGfKLtGmB+RrmqkEoJTiXIf+yb0c6rmEe +cg6sNgFlaN7EP1R8u4b5sfenV+WXoX4da/8yv4bRB3i2WlSUIfythO/069jT +v9wby41lCG/ckgvvOvZ81khXdLQM8Xm3+y5xHXvdUD7+ZF856jf+EJon6xiv +phWb4MFyNF9mR11fr2PRxRsn8yXKUT/ZX3ZIWcdi0wn+Y+rlSM+CHb8q1zEh +4eYsb8Ny9P6YO23Suo4lRTl0cJ//93369KmBdSw1IEXktFM5wvPSI3hjHZOg +OWXw+3454ltyd5SBimXe63e597Qc4Xm0/HEvFcu15an8EFuO/OIf8kacisn3 +f56C9HLwan30OUeOiuWbGu/tzitH/Zt944QqFSvSfGbN1FiO3iN6IR6GVIyf +S4E5quff+rDkNlMq5j06knN0rBzpqdhw15KKDeSFmhct/uN71s3Shoqd8ifR +6P8tR/X4zBFgT8WSzWY//GSpQP4dZ1lypGIMYm+NHHgr0Pw3bIlxpWLX13TX +/ohUoPl5tNHHnYrV167FvpCtQOd9uPH2PhWTikzRFiRWoP032Oa8qFjw9TOz +2XoViL+5+F0fKjavSBsB5yqQP/bvl/KlYibMH9War/77HtfnQPGXHovRy04V +4H6P+bAwWs+dvuvFwoN/8Sa9BdrP3bNQ3u9ZBeKzblriScV+6tn27Y2oQPyb +PEj3qBjxAOfjpMQKdN+Uto3eoWLx0+WS8h8rQEszsibtFhXbUeLYVlX87/yy +L8/sqJjNc4H7pnUVyD86NI8uU7Eai+/CY+0VqH7ru8LMqZj4MY96t8EKVB/r +kwVGVCxw68gdxtkKNB+nhylaVIzS2M4XufFPn2lXWRUqRo71KxdnrET8P+n5 +HadiObdlbnzdV4nyYTV9wlRsL/Sz6wlVonlKq0fkomKubM8Le6Uq0f5vTiYj +P3T+Vrp8U6kSCITjsyxr65hizjjjH61KpPd0652xdeyPscY5gUuVqJ/UsgkV +65jVoYXtrJuViL/UzYDsdaxsIfY90b0S3S97h1qi1rHHoRsrl15VovnQ81Lx +1jo2diX13fy7f/k94cam65gOwUzrYXol8i/zhInqOsbanhueWFmJ5uspYVbG +dex28iVVQvO/8xZ6S6fWsGbX3SOVfZWonrbPjBrXsHCuG4TRlUqkb4M7U8ga +xn9OqFVMvAr5J6w8gH4N8xZr8iiUr0J5evXF/lVsYO3+IV31KuQ3DlWxwlUs +ObLLyf5CFaqHxZNJ21VMqjeYLet5Far3+ExA3goWnK5aoBZVhfqfvo7RfwWb +95yyakqpQvWRYiearmBfDmhnz2FVCE8iS+3cMqZmuWUgt1D1z/8HGLiWsSNV +S3oBW1VofuPdu/uWsD2SUzr9zNXovuERrUlYwgbWOzUDhatR/p41HF3CHofn +qA6dqUbzX6uES3wRu7X5XlnxcjXa/7r81ZEFzOzKO8Vgh2rE75mTUdwCJiYT +KK/8pBrp99/TTfYFrP77VanQ/GpUfyvdhpo57LPcBYmJimpU/xfKP8XnsLdR +xuLEH9WoXrGpOwNmsVt2aiJT49VI7w33t2ozGDsdD/8pvhrkj/K1S0+mMDPl +epbF+zVo/nTa1z0awSChjFknoAbps9T8MW8YE2cqYIwNr0HvzXxl15EhjNqR +RKeXVYPup+TkJ4qD2Ftnr82E/hrE7+e5H64/seFUmen/1GvRfKm5WhJQhzWw +iU1+MKxF+w99OvywCvviJjC+db4W3c/NLkcdyjB/zV3DaXdq0bxd5Ssn5GAS +A8O9tMm1aH71YsEXPhGdeN7U5zLUITx4HibWRfz8eeEZYW8d+v0V9Wfxdg9x +1chAN0+gDvVrpr5GyU/igwDaukL5OtDUHDBOkh8gBlBvVuNX6pA+uUffMYwS +E36SyhqxOlSfNoU2mCOO3IvxMaqv+/eeNw/UmyeKc64SWzrq0PyL9cRW54nZ +Bhml7ZS6f+87k+Ezi8SiUq7in/u//fs9OS99aIXYGjeVN+n2DelZIKLEtEnk +UtW6e9PvG+Kjt2rQsEk0746Tn3nxDemTR9589YfYz276eT75G7rPM6PEhbeJ +Uw/xnLXWb0ivIGw0nQZ22IRn7Dxej/Tx0hTbSQ8EcWLCofF6hD++bv0MC5gJ +pA/ELNWjflY7KtXLAu57uYW4ab6j/qmmM7JmBezPTOwuvu9oflj/sr6zG/Ra +3r1d0vuO/MR27FMcG1z23HpTnf0d8Rt6brRvLzxvKAm+4daA+pfu6/g8N4w5 +qTzI3dkEccti7ttrQnA1hsXrHEcTXJS51swscggGqn96bfE3If8y6KgZH4Le +/Q98dOWbUH00bx5IOwRNVSV+g1eaIH+gXirTQhgKeInPOMqawMvEwKi3/jAE +lJEinD1/gPjWIXGu8iPAxXS4O/JeM9pPoHLmrxSEiKsU0422oHoc3tX7Sx58 +TzS/PzHdAm0fZqsEqPJw59S1ULuFFjB7PZJyjvMEmFmE3Pi+1YL4xDzI1DsB +gi+HecK4W0FczXWsOf8EZK4FuQrrtIJXqM67gucnoa6m75h6Ris40AoKv5RS +hKI2Zz6X3FZwL4h7NqOlCJkDDDtTClqhZHOQ7uQlRQjZkOljqmqFZ0yuDf6v +FMFM+klgc18rmHWILwqsKMLI62Pjl/a0IfwnetsLlID2mne8t3Mb5IoO3dsU +V4H459UO2vfaoNHhQ1yEmgoQv7Aq7fFqQ/4m0XGbqMADupiWdwFo/c4DdmWe +KrCeULCjNK4NrL/fYS6pV4H5/nmbzcY2iJdPvbv3miqEMCjKVra1ITwvNpvv +qYK0tM9WYE8b5NPcd3EMVAUHr90R+0eRs2cHpPQ/qsL4AYlapT9twHDf191t +TRX6za8edZdoB55M2ZwrD9XAyzd9BWTaAW7oaNOGqgF/6kI548l2iOYL/Hw/ +UQ0urPlceKOO8kc9OOkq1aDj9dugfPN2mCO30pnuIEJDa8fMsn87MBQbMP7w +IMLNDf6ikuftqB+WsnYHEGGXsI3/49B2cO9yNBCJIIKO86IgZ2w72L239uvO +JUIVG5sxIa8dhBN1LczGiVBsoPPJebgdpgjlbHf1AOqFIrG8yXbUL3s32c4B +dC+P11Pn2oG1MzP23lWA1bdPhx/+aQezvL61jPsAcjM1nKFcHSC/pHYzIQ1A +vZz7UOeBDtgcGQiO/gJg/Nr22H7hDlBqGtGxwgFuqTFoJ0p3gPH+tXuaiGbq +C617n053gFZVWPLjTYAC69ePVg07YOPLwaxrO0hQc2I0RPks+t7b8r8ZBhIM +/3qcWnG5A7yGflNT2UiwmNv+hcGuA4I1ssv69pGAxl+kXO9WB8K3brrMQwJB +6aqeVo8OpOeES9NBEhzbwTnG7dsBKT5Hyl8eJoFq59XFC/4dqF6ctifFSHDe +m45lOBSdz8mjISlNgvCmU6pLGR3AsWB8rFCZBEmJoToKnzqg9lUzX6gaCT65 +DZ29X9gB/e+kvMgkEvwQ9LtFV90BF8tA7bYWCfoXWzxOf+8A4U8s11pOk4BS +c8g/qKUDKtz6o7j1SLDLsTx2Xz/CR+2u1CaTgE+DI+PcCDrf1cxf1pgE4jzW +BTFTHchvT+e3/iPByemcyt/zHcDzvGEy4wwJtHCa5sNrHajeredVTElwNsy4 +z24L5RtCxDPNSHDFLn4ig64T9Y8GcfscCZxV5pfnmDshX8bzkex5EviykWjl +2TuBcJh5UOsCCf0OCdntzt2J9NlLUrlIgtiC33wl/J1AU0YXyGFBgsyg40do +DnfCM/eI1DoUF1/ykdM82gnWQc1PLluSoJ7wgxhwHH0fQs/ag+JuxoP6DSc6 +4Q6lRVTOigTjP2+fY1fthOgbothNFK9+xK6ePdUJHIeUyp6geOfjPU6ROgjv +idc8vijmNLd60EfuRL//2HIuoPiwVHaAkCk6L6bhLheK5Wi2w20udkK4FZjm +oPPU2w0TUq07of/FURVJFBunvsui2HXChshbTn+E1+rBzFeZ253w6NZaUxni +d8tYrcbVtRPNk+lzPxH/MsdcrxjPTjTPJnJ6kT57Q0RPVPh2gjvP7sEicxLY +ZEdRJvw7Ic51vOs+0jO/cXcy2wuULzB6IoD0Zpp5ePFkWCfUPrzRE3eWBBdY +V/daRnWCgF1S1Q5Ur229/ofpKZ3AMJ1x2N4I4bM3UWrJQPu1t3jcNiRB4rOa ++bXcTqgYq5E8o0+C03XZl7QwhH+E42apNgmix4V5HKqQfs+Efp3SRH5ieNMU +Wt+J+snJNVWdBC+1fNQGOjvh4kDI732qJBiyWVpm+IX2/+ITzadEAvnHdpnH +hjuBh3Ve5+8JVJ8KowP35zrBbmzkP/vjJJAYqmxNWOkEh8Hl13OSJHhAqxhY +t9kJwZVv48+Kk+AQSYjKxdQFtYMiA6VCJHC9hB5Ye7rQfrS0FfyoX72Zrl/l +7IISyVtlKbwksC+d78wR6oLgMINVFnbUL8rlX/SVumDz8bN3yRsA9BdOONwB +tF5FdjR5HsDMI+1wlFbXv/9njl8dA9goeBU69l8Xwpc2KtACoHHiitND+y4I +32Zx800CiDjbKZbq1AVK0meV7r4BmHDR+93k1gUC45IW4kEAzz/JkfkfdaH3 +x3jsN2eA9uN0UgUxXWDGddB4TQXgiNG94V8JXRAfvk+j/xiA++3paPrULjQP +wq88OgggkNXGbPKlC+Q/x/Ix7QCwlUgepzR0QU9iguRmJRHWRLSShLe7gMNZ +jzVAhQirVjdVftN1w5SLZtULCRRHvmqLYe6G3Opd+hf4iLDM2k/HxdWN5rdC +7+lVNVhcdrNhlOoGGl/x7LtZakCpShWlnO+G/Hha2cMcajC93VSaeqkbpCMz +DaL+qMKU4orptWvd4K5QUNE5rgqTmer+/U7d//5fsfChVBXGwnvHmp92w0Wn +Yz3JtqowYMOampfXDXPBq1e5s1Xgd6wc6U5xN5rnZYLMESrQ323eLV2O4vxf +J6u8VOCXQQpTakM3ND7//SPMQAV65Yk3ooe7obZFdDl6XBna6Z0kfDh6IKO+ +mGqxTxm+Jbdl6tzqQe/TiWXbU4qgGLTjyUOXHugeYmJYE1KEVGdZyyKPHnSf +/orT/asA/sSQ3VL+PWDs+YlfoVgBTnXr3WaL60H92yuiKKMAJSwVxzube0Dv +YNXbzT0nIftOzqer8r3Q75XxYzaeAGGkF4Xem70Q3eP6YVJbCnLUbzsb0v5E +7zkatfVZSWg4ZSTBz/gTHs3wr+RFSAK9Fsfbr3t/ovOUv5JGJcBN97XP8tGf +6D4PFE/wPgrmJu+07c1/Ir2PnPmTeAT4bbLaTfN+gvvaX5qPeUKQ8rRxXsqx +D/FL2eR7QgMfpxQlp2n7gRBmMflA6Sj+SrBA+uyL37CiLh1MlVTB98jd+8wT +9hvmIqRdci6r4IFaCoo/I3+DdeWV7LOvVfDHDgXqV5J/g/iKFYvNtgruVlRw +1qn4N5ToO6RE/FDFLcwKPZ9PovWHXwnvuU3E99VaXB0SHgCl6JOXPzeQ8F/b +lh/3+wyAwOZEaHGjBt5uVfFK2W8A7Mjlt9LGNPB67IjrhScDQBNe2+n3VwPP +955TjA5C60+/rlyT0cRfbvtW8EUOwEVFQ5GxUE381HZSB2/uAJRc+v0o30QL +f781uck9PADPaA7xqZZr428tyf0nxwagYnUTO9+ljYeWfiozm0TrDzq3W81o +4z5e959EzA1Abt5WlyDfadx8i5WN+88AiIuS9ro4nsZ3bR0X5uIahKmPd4PO +8Ojgt//c1dl3ehAYslTTlc7o4sU3CAe2dQfB/fjhXS02ujhT1/zMhMEgVEgb +iBq76eIJuTfDMJNBGDHv19gZpYu321r337BC+/3uF9f9pYurtBi4lt1Feb8t +c3FrPTyAuOt0hvsgiJ/rO0pw1sPbM2r5Iu4PwsoNPEnkoR5+2/8UfvPhIERT +mc4Wx+vhiSqKu3heDILSwJuNvH49nOn94fhbyYPAI5f4ss1UHzfdN3jH/MMg +cLx2o6rb6OOJvrFaGunovHkN0Yg7+rjqRb5p3pxBkH55IXQuWB93ZGc7WVWM +9rsjaXOtRh/v9Nz4vr8N5UfZ/U1kDPAko5a1WtohcGes/D0xZ4CHDgkJJdMP +gbTGxQ8VGwa4710nHV/GIfBy0Np6uNMQt4phi1LcPQSPwjwVc/cb4rzjhspp +vEMgbKMg36JhiD/3rn8QeHwIHAIN6fe+MsQ9Ofan2MoNgbiZ0zf1aEP8RvKN +xlMn0PcuY2VmSYa4dj2T4KbyENzRMjwhk2eI03Cfxm9qo+95tSriuwxx16xK +WkPLIWDI0LG+y0PGr5D2SRy9PARtE3tfrQqS8f/arpjsvDoESmRZ3OIIGZem +0iaVXh+CZ62Ne7rlyfiEJklT2nUIcscryIHGZLyzK8Rh1z2E9+p5DcI5Ml5t +/zt8zGMI5Ou2JMotyXjiS+/RWJ8hCPmY2RxkT8Yt+kr82YKGgMcnx77Pj4zr +ObJ+nH6B8NvnTWcGkHGlHRZdtS+RPtdEra4Ek3Fu8U0x3wiEz0aX70EUGW92 +Ufo2nzAE8e+o2/bZZBxjeLbQkDwEm6PJQlc/k/GsqG6+tA+IH91rFVIhGQ/E +79lbZw2h+3T9alo5GddkyWdpLRwCM5FfeQptZNx+mfkspXgI8l95KOR0kfFX +vyzfMuBDUHtteJupj4z3f9x5TKV6CMJNs25dHCHj9FHn75rWofXRrfymE2Rc +0i+r1PE7wmNidOg4hYy7nzUlJ7cMwYoprerjJTIeq5YWgbWj+t97fvHvKtLn +yFZ/d9cQsF7bP3xhg4zvpSY77u5H53WxwGcaI1xxaL1AbHAI9KT+E8yhM8Kt +vhvQnBoZgqkEi/svGIzwjHfLL92mhqDEIblmksUIb/XX6Xk5g+KvuuXX9xjh +645vD2XMD4FWib9JHbsRLnh+/kb10hBwzDM9ZNpnhGue0vz0e3UIKiazzhzl +MsLtJSM3qNQhMD7+qEWCxwh/xUk5xbmF+HDV0O7mM8L7x8LadOiGQZjV/Y0L +vxFO3zx+4CrDMEyRjFjXBYxwya8qNl7Mw/CM1cbE8qARbpIYkvmGdRgYTg04 +JwkZ4e5Bw8u5bOj7p/wu9YeM8FhXBbWGvcMgIBBv1SpshFdbBj0Z4xoGr1oh +teLDRjhF+3cjDR+KA/14nogY4XtlCNwH+Idh5WXX6nFRpA/fU6sTB4fBffnS +SDGKL+34+d5IeBi9z59Nih8xwv2npeduiA6Dw655tnsozmz3U3gsPgyPxCys +36O4tbTTJ1ZyGHqEq8bzUUx9L1FXKD0MrCT9rFQUC730Zm+TReuT1Uvuo1jb +o9V8Rn4Y2ggiB2VQ7HDlSAKj4jCUnHs7UI3OD9P3nDykMgzQ5sOihuIi+SZZ +VSLiH9+c/hrhHxAQ9jRTHwbrzJJvPxA/Bka3CifNYdj8+s5lGvE/Nv9tV9Dp +YeA4Tv08gfQ52yNwJkVvGPT6fCJqkX6eFc4xuCHC07dbLADpG59RPdxjPAwV +xunOEoJGeG04n9TyGcRX86lfNqrPrNct1z3n0HnOtLacB4xwTrvyEvELCD9b +vLgFqqeyMddODcthyP3E2fUE1dta6Yah5WVUj01l71fID9ksHP2vbFF9s/qm +yBxGePuyzZHMG0gv8kA9DZsRvvmr8HaNA9I/MaU7nNUI18m5/HfjzjCIz+l/ +ucpohA+ezRGy8UHrnX4sv9sk41b6lud1/ZAetgJr0etkvE99V6j0k2GwozW9 +6r2C5oe0DR01EOH9y5u+PkvG65l4x15EIL5RMfolA2T89N8qQZco5Acyy9oM +6seqFedz5m+R31heOzH0oP4f+l4nnIjWmyntoDST8U8lPhkFWUhfx+59QTgZ +P/5ZauRtzjBIx15OWi4i45lpPfx+nxHeMXsHrXwy/j6CEGzwFfHnaxp6m0nG +o53GnQarhqEWOz0jEknG/USMTrL0DcNc5uET79H8+rv/z+35fsRHliQYaEPG +H3CkfegYHIaRaTEpMysy7ra9gy9+HNVj7uvy+//QfOnO35RfQnre3bkkpUDG +TZ4LllvtGgGaj/eru7cM8R9+36kau0fgTn6El/aqIW7g4S53lH0EHj3ffend +LJrntq1JS1wjsKl7c4jhtyGuTPL3Dzg0ArWXLjbVY4a48PKM/ifFEWi70xUr +6mmId5HikjtURqD7w88iByd0f7ww3lonjsCKY+V/0baG+OqRz9mgNQLW9GLk +NBNDvP68O0fjfyOg5JnIG3XUEHfGd3SN24+APFWDsaPVAC8L5Lki8A7tVzXM +5rDPAL/bVVdEih+B3J/4XC6DAS4h4rnPJmkEjCWY7Qep+nh4aV9Vehrix1v/ +Zuu3Pn59PkFMMX8EHM5klh/L0MfZzaRmTH6MgJ3UUO9jNX380iF19wDaUXBQ +2HeoyUQPzw97fOQd/SiU6BYWVWro4awMde25jKPQ6P1jzwd5Pbxoiiz7czfK +P9Q1UeDWwzm/WEwd2z8KI4XJqg+7dfF6bXeLNrlRqGA1cW09r4vLO3wkCdqM +Qr6IAruksQ7OVCDA/KVmFPUzn0ALhzZumqiWE+M9BnNMIVZ6Lup47AEXcxbt +cXhU/vidsb4iHjQ1za1AMwHxNi82WrmO4SOHZpUK8yfQe1o94kouN0719bZq +/joBdtoqL+mEuPE9A3seTZRMQHi28PO1YC5cKfZ4A2/lBGiOlCr03uLEg/c7 +W3n8mIAVPs/V18f34kr7lv2UJyZgat+FKj9/FjyYfuN7Cd8kCNRGShoWLmNK +4zutyh9Mot/nUwsj+Tsh+czcnWSfSZgj94hJRDMAe1n306d+kyC+VXy86AEj +TERm5BoGTMLKN/NjX4EZIvX+29kbNonwNtiIl7LCetbbzMX0SXCvtSktreeA +fFfC5uGeSXgWqa7QYcELwoP87Ix9k2A8lUZoruCFYEMG0al+dJ60m89NcT6w +PdJDzhlBeK77PPFb5AOubu9E1flJcPBQn5L2OwCuKvW6poxTILyLBbcLEQS5 +HdaR/iemgOftwvezMsLQWUVu/KA4BdG/aE7RWguD51PVHd9UpiD8wnq+yyth +KGfldWA5NQW1Kb530xeEwZjnB7wkT4G0eDvR6uNhcJRSG4+ymwKBN7PjXQdF +IdOM72RW1BRwjHL1TreLgTEf482mt1NA+PluUW9bDJZ/LsfNxU3BZqrwdUcx +cVC1bmaWez8F4ta7bzJ5iMP3m09/5X+agrno1nFPvqMw5bvyuOw7wmNb63rV +SALEMlra2ramwM68huFyiBQI3+el4jTTEM90jFX2oxTw618SzKSbhvDoBZcf +TVLAPk25/ph5GkpqVZ+57j4GGxJM2/Jc09C4SMm8HHAMmtKJ4hFS08ifHGF1 +rtJQ5/nE0O/4NPTMB5S7vJKGSr2GO7flpkFL3maEkiUNhVPnS7UVp9F7NktO +d0waEiTumqxpTIMXSVIq4+xxcE3PeGB+cRo6H6k/YuOUgdueiwmaVtPw/Bjj +/S4hGbihp1QrYz0NPGfKmvyPyYDVVA0Hs900OBzLT4nRloHTEkPvv96ZhlPF +5O7YezKwP523ZX/gNDCqzjZxdMhAWdoT0V+F05CfUO805CULFnFW8UXF07DM +OCXt+lQW1sMVDkRiiE/wNeW5l7Ig4zvJfqZqGgjXfCwTkmQh3szwT92PaegV +CWpfrZWFh3RcbV/GpsFDaLv8NqscCFJnDEMnp2E9cdeXKE45KJqtqXOkTENb +e2RQNr8cLPa4YxKLiM/P8H0RUnJwJacvLX5rGnxzOFMs9eXglGWy73NOCkjH +/FjseiwH/SZemzd4KMBzsZz3fZAceOqYuZ3eT4E9n1sarELl4BOByWGHEAX0 +3gWzvIyTg8O7HM65S1Jgc9WZf6lQDsr+araaSlMgXHNimhuXA4sVAUOCLAWe +3XRPEq2Wg/CBH6dmT1IAbJfW6VrkgL6AIG1zCp1/sNCvelwO4jNZ09S1KMBh +st2lPiMHqomjhw/qoLx0/520RTlwffGGr9eQArkskmnKW3IwcnWT3vg8wqvD +c8OWgwDV7JU/VZwoYDzHPDlzggDRFvFu51wQPsPUfG9lAtxO9eJwcaPAHDWL +eZ1IAG6S4un0BxSgaez3TT5NAFvHrE+8zyhAONTvNXaOAMrFgYbyzylgfcCA +VHqRAHsYr08YhVCA4VUUi9clAuTHCgs+fU2BWutPfwtsCcDQ9ObZSgIFghdk +Tgi4EqCX764IRwoFxLuecBHvESD7mgkulYr2+7X0RMeTAGZbrCtXsymgdLb6 +4n5fAkjoToX45FIgjjV+eNCPANvhtRIxX1C8y48U9oQA76X8LrcWUeBi5C/s +cyABPN0vbc6UIv75inSHXxCAXKUawVyO+GxYXnkQQoDVi2vfSbVIb7ZzBTNh +BKj/0G5rUU8BAdk7zTsjCBC7lEvr3kiBiqFRPaZIAmgHOSh8bKOAuxElvSGG +APu7dFvrO1G9Y8S+BL8jwKyw2K2xHlRPK1ZblTgCRBQNJgoMUMCrO4nFNJEA +9gy4mtIw4jt48XBFEgGIJm+7z44hfIW1kvtTCDA2abbnOYUCKZVwLugDAYpO +yKd9mKNAd0BabHIqAYIfcmhWLlJAmMHvYFoaAa40zvb3r1BA885eSmQ6AU7y +NXhsrFMg3z6b2zWDALuupXFy/6HAo8rPucqZBOjP8f8o+5cCJUaBPygo/vTn +qp7hjhkInkzyC8wigL+O+uj1nTPQxvfg175sAlwIF/R9zDQDHIcjFwNQLD2w +uT+eZQY26/3bJ1G8Q6onr3jPDLCeHHh98iMBOu/lG3dxzIB0iZauI4rTK8Om +FzlnoHbYmjYcxd5szv57eGegW3CiORnFJhfJhyQOzAADHl6fgOIjHyRLtARn +gKZBijYIxRuLTOesD6H9mryeXkZxE3Fs4YHIv7ylkzCKEwMrn0eKoZg3o6kZ +4XHrjBf7IjEDKQSDvJso1hP2rvhxDOGNPK6whPgJ3r5oOS3zD5++nR2KF78q +rjPIz0BjVax5HdKjZid3mLAC+j5IWpAbxfNWBoLMyjOQQd8QZIX0PFDolzan +OgO5Ci9sI5De2hxf5TthBhzebJSWono42c/hJafQ+tmEhHZUr+hKUf0kLcTv +Bvehn6ie1fwWnc90ZqDfcl6/5T3yz486ihl5BuIKjYaeJxNAU/zvPbX/UCxy +8JYJ8ofjwxN0ImdnQOD3+CAj8k8VIZFv4fwM8p903SnkL8fI+9pB12ZA/AQb +aQP5M3oht8X5+gxUHGFsI71B6/UmLMxvou+ntxvvvUbnbZ11EXWegeg8dZWC +VyhvLR2PP5gB4cSTH72eIf8W2Ui+90H1L5Yj6j4lAB9nTP5zP4SnT+HLTtRf +t2sYG88HID2bRV7/h/qRV3KQuhQ2A0rZ2ZMn3Qhw6jHPk96IGTBLoHEKciHA +rV+G7OVRCJ+osmWLEwEqQoqOBMfNQHh+QKbsTZRfDjsjnoHWNwoNaKF5UVGq +nWVRgfTM6siu1yQAhdtLUaMa1et6opSaOgF4nD5XHq2bAb2/Q3sT1QjgICzU +u9qIYker8xon0bx6SmV41YPw8baFjh4hwE3jzMvV8+g8f+Xf+TuRf/6OsUwt +IT8uUIhUGgLIfDxUsGdtBghXd/dK/ZGD1d1vdptvzaB5Sc91Hc1T3+8Pi6aY +Z6H79qd+mX40n7XPcbIfnkXvt9s1Ap/loER1R90FU5QvqvuxbILuG4qqi4/5 +LEzOjd3zN5CDhzH3BJMvzoJAlzuFRVsOtDcorjPWs5DL4f58UVEOmgu6Dvne +noXw2ahBGUE0r+Wy7qc8RfmdDAmPxmSB9aj58fmvs2Ad9zxgj6MssG+LyDCU +zqJ6UW2v2ckCZ9uCDH/ZLLgr3Jz9dEkWBLyC5HRqZsG4iEtDzlgWpFuwE/Gt +CN8Ojd1VMrJg5CGqajw9C2Bdbak5LwOh3xZ1cvjnoP+JooHiDRngs39xxcln +DkLaAhOyXkjDNRo6s84D8yBs4ofvWT4KxXv17hf6zEMwna9vcYMIDP/4lLHe +Nw+PXnRhXVJCoK5+Ofiq4gJwtNwXDDyA3nvCM7rzSgugtGeVlmODB+jpPHd6 +qSyAsXKlZFY3D9RUhT2IIC5ARjp/lGgEDxjo1Np/01wAhgNEnHcvD5gbSZ8+ +/t8CBA/3feXeww2Oln/+btxA+7+iv/yTmxPeeUQ6h8YsoPe53pjybXaQGPwv +hf7dAtJPW/nCWXbI12HpcYtdQPoMpwYrs0MzjzfpYsICTLY1TJ5kZIcd+VfZ +RD4sgJ1twuYuDTa4viidlfdpAbr9fmuofdkN8jerJ7q/LUB0lKFQTv4uKG/1 +5tf/vgBTYf0rGgG7gKysaFzasACNDVo1Oy7sAjvmjIKEHwvoPfzoMu02M0R/ +eOlv37EA0t0hmTt0mIFm5KLIn4EFgElRN+4RRvhusXjp4Pq/9dJrXqo7wW0y +IaGEugA0vt1zWXt2gpDbf8PnNxfgogyH/r5BenANybEN31749/5m8/anB8GK +27eYdy6C3kEh5rY2OrgjNu25xLGI9JB/5eK+A3gXh1/XSi5C/mUHSlDrX2KF +d1iXzbFFcL+HSQk9/ku8xaLBt+P4IvT/qnTlP4nyIolvVeUWQZ7QE2sQs010 +OHc5KVdxEbQ0VVqf2m8R8ZK+nBitf98fLNPn3yTa6yIbn14E4429FcbtG0TO +ThX5Tp1FpOfBt8XPN4jX56IL2A0WoYLbUKVim0rcK3wee2KyiPRbwoLH14kl +2Uw0h88uwtwskyCWuE60UylULzNdhEfHgveYWKH8WZ7qDfNF2Ez+sfa+c41o +O1jDEHlhEdXXIsoubI3IcdtN54TFv/VUgefGa8SSDdHAVstF5Ltlc849aP3T +ju+OlxaRv0QFaBpWif8DvBoyLQ== "]]}, - Annotation[#, "Charting`Private`Tag$8760#1"]& ]}, {}}, + Annotation[#, "Charting`Private`Tag$98991#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, @@ -495,7 +504,7 @@ tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg= Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, - PlotRange->{{0, 1.1483}, {-0.0009440149116545116, 0.0014743693013206751`}}, + PlotRange->{{0, 1.1483}, {-0.0009506600468124029, 0.000499549205820878}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], @@ -503,10 +512,227 @@ tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg= Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", - CellChangeTimes->{3.857793273501688*^9, 3.857799947911737*^9, - 3.8588497580654993`*^9, 3.867387198157053*^9, 3.867392576035952*^9, - 3.867399192057679*^9, 3.867807033354333*^9, 3.8705036374745817`*^9}, - CellLabel->"Out[5]=",ExpressionUUID->"1beeabe4-ee06-48f6-86f2-eb131e832f9d"] + CellChangeTimes->{ + 3.857793273501688*^9, 3.857799947911737*^9, 3.8588497580654993`*^9, + 3.867387198157053*^9, 3.867392576035952*^9, 3.867399192057679*^9, + 3.867807033354333*^9, 3.8705036374745817`*^9, {3.871622322431304*^9, + 3.871622353837566*^9}}, + CellLabel->"Out[17]=",ExpressionUUID->"7d82a994-0e66-45e2-9f9d-23085d92d885"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"tt", "==", + RowBox[{"R", + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[Theta]", "2"], "-", "1"}], ")"}]}]}], ",", + RowBox[{"h", "==", + RowBox[{ + SuperscriptBox["R", + RowBox[{"15", "/", "8"}]], + RowBox[{ + RowBox[{"g", "[", + RowBox[{ + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], + ",", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\\"", "]"}]}], "]"}], + "[", "\[Theta]", "]"}]}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"R", ",", "h"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.871628972194471*^9, 3.871628981154234*^9}}, + CellLabel->"In[77]:=",ExpressionUUID->"d0b98ea5-26fd-48d2-9fd3-094018a22423"], + +Cell[BoxData[ + TemplateBox[{ + "Solve", "nongen", + "\"There may be values of the parameters for which some or all solutions \ +are not valid.\"", 2, 77, 41, 31834900206562845425, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.87162898136685*^9}, + CellLabel-> + "During evaluation of \ +In[77]:=",ExpressionUUID->"54591efa-3e06-4780-a52d-356be312bb3b"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"R", "\[Rule]", + FractionBox["tt", + RowBox[{ + RowBox[{"-", "1.`"}], "+", + SuperscriptBox["\[Theta]", "2"]}]]}], ",", + RowBox[{"h", "\[Rule]", + RowBox[{ + RowBox[{ + RowBox[{"-", "0.2885788587440556`"}], " ", "tt", " ", "\[Theta]", " ", + + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", + FractionBox[ + RowBox[{"1.`", " ", "tt"}], + RowBox[{"1.`", "\[VeryThinSpace]", "-", + RowBox[{"1.`", " ", + SuperscriptBox["\[Theta]", "2"]}]}]]}], ")"}], + RowBox[{"7", "/", "8"}]]}], "+", + RowBox[{"0.016405558185319673`", " ", "tt", " ", + SuperscriptBox["\[Theta]", "3"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", + FractionBox[ + RowBox[{"1.`", " ", "tt"}], + RowBox[{"1.`", "\[VeryThinSpace]", "-", + RowBox[{"1.`", " ", + SuperscriptBox["\[Theta]", "2"]}]}]]}], ")"}], + RowBox[{"7", "/", "8"}]]}], "-", + FractionBox[ + RowBox[{"0.0851120718084878`", " ", "tt", " ", "\[Theta]", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", + FractionBox[ + RowBox[{"1.`", " ", "tt"}], + RowBox[{"1.`", "\[VeryThinSpace]", "-", + RowBox[{"1.`", " ", + SuperscriptBox["\[Theta]", "2"]}]}]]}], ")"}], + RowBox[{"7", "/", "8"}]]}], + RowBox[{"1.`", "\[VeryThinSpace]", "-", + RowBox[{"1.`", " ", + SuperscriptBox["\[Theta]", "2"]}]}]]}]}]}], "}"}], "}"}]], "Output", + CellChangeTimes->{ + 3.8716230762709217`*^9, {3.87162897892483*^9, 3.871628981372864*^9}}, + CellLabel->"Out[77]=",ExpressionUUID->"3e64dfbd-1d75-4bd6-b63e-4e5bec743e80"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"InverseCoordinates", "[", + RowBox[{"\[Theta]0_", ",", "gs_"}], "]"}], "[", + RowBox[{"ut_", ",", "uh_"}], "]"}], ":=", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"ut", "==", + RowBox[{"R", + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[Theta]", "2"], "-", "1"}], ")"}]}]}], ",", + RowBox[{ + RowBox[{"-", "uh"}], "==", + RowBox[{ + SuperscriptBox[ + RowBox[{"Abs", "[", "R", "]"}], + RowBox[{"15", "/", "8"}]], + RowBox[{ + RowBox[{"g", "[", + RowBox[{"\[Theta]0", ",", "gs"}], "]"}], "[", "\[Theta]", + "]"}]}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"R", ",", "1", ",", "0", ",", + SuperscriptBox["10", "8"]}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", + RowBox[{ + RowBox[{"Sign", "[", "uh", "]"}], "1"}], ",", + RowBox[{"-", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + ",", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "}"}]}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.871623051098364*^9, 3.87162311994796*^9}, { + 3.871623153141858*^9, 3.8716231605568438`*^9}, {3.871623563300939*^9, + 3.8716235634680767`*^9}, {3.8716238133855333`*^9, 3.871623826096807*^9}, { + 3.871624083622401*^9, 3.871624365683359*^9}, 3.871624437060791*^9, { + 3.871624474669331*^9, 3.871624494893714*^9}, {3.87162891423326*^9, + 3.871628921457245*^9}}, + CellLabel->"In[74]:=",ExpressionUUID->"27f70f50-5ebf-4a6d-94af-1a6bfe816e28"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"InverseCoordinates", "[", + RowBox[{ + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\\"", "]"}]}], "]"}], "[", + + RowBox[{ + RowBox[{"6", "/", "10"}], ",", "0.2"}], "]"}]], "Input", + CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, { + 3.871628883904001*^9, 3.871628909432775*^9}}, + CellLabel->"In[75]:=",ExpressionUUID->"8965277f-d2d2-40c8-b8ca-7816448c9503"], + +Cell[BoxData[ + TemplateBox[{ + "FindRoot", "reged", + "\"The point \\!\\(\\*RowBox[{\\\"{\\\", \ +RowBox[{\\\"0.543260400931124`\\\", \\\",\\\", \\\"1.148407773492004`\\\"}], \ +\\\"}\\\"}]\\) is at the edge of the search region \ +\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1.148407773492004`\ +\\\"}], \\\",\\\", \\\"1.148407773492004`\\\"}], \\\"}\\\"}]\\) in coordinate \ +\\!\\(\\*RowBox[{\\\"2\\\"}]\\) and the computed search direction points \ +outside the region.\"", 2, 75, 40, 31834900206562845425, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.871624424018366*^9, 3.871624495554133*^9}, { + 3.8716288885286217`*^9, 3.871628922299012*^9}}, + CellLabel-> + "During evaluation of \ +In[75]:=",ExpressionUUID->"a3d42e0f-bd1e-49b1-8d2a-a9faf8854a08"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"R", "\[Rule]", "0.543260400931124`"}], ",", + RowBox[{"\[Theta]", "\[Rule]", "1.148407773492004`"}]}], "}"}]], "Output", + CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, { + 3.871628888535161*^9, 3.8716289223051*^9}}, + CellLabel->"Out[75]=",ExpressionUUID->"0e650aa6-b018-45af-8c81-ff1b91e82c5a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"tt", "==", + RowBox[{"R", + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[Theta]", "2"], "-", "1"}], ")"}]}]}], ",", + RowBox[{"h", "==", + RowBox[{ + SuperscriptBox["R", "\[CapitalDelta]"], + RowBox[{"g", "[", "\[Theta]", "]"}]}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"R", ",", "\[Theta]"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.871622894456358*^9, 3.871623007057829*^9}}, + CellLabel->"In[21]:=",ExpressionUUID->"6c1d3718-7a8d-41a6-98ea-98fe3318bcfa"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{ + 3.871622938634961*^9, {3.8716229813491297`*^9, 3.871623000110902*^9}, + 3.8716230715991173`*^9}, + CellLabel->"Out[21]=",ExpressionUUID->"8b0315bf-6d61-4278-a829-dedfe692066f"] }, Open ]], Cell[CellGroupData[{ @@ -580,2081 +806,92 @@ Zyga716mL1QhvhGTtS3nJYlvjswzTWK2SWpYXS2NQ70JI7rEdNf5rB9vaCzu 6GsyIJ6ecJo96x3Jp5bJzYuJtS1DeCbNNAIXp55cQmzTGyi+tZVG1Ka4DUuJ 96b4LghpJ/GLv1f5v8+t3rEp8xONBPsPH8yI8/pdgqo6aXgLtyebEr+5tj6Z 5pJ8Vzj7y4j4h+3qUtFuEq+hxxMLiKVHzT/qfSX7K63M0SY2vGU4uaGPhtkv -/ogasaOjjmZgP4370jd7FYgPTf1llTRIQ5ajGyFJnJQn71MyQmOc71I2ReL1 -yFXyXPsYjZ+1U6l84lYRwfyJPzTcRn4r08SjD0bfaggwSJ0+Z3kzcU1W6DpT -IQYFXu+3sP9/X+cF2OtEGEwvEJh7n9j3xGlLD3EGdOPh9GvE5j5ij4KkGJjW -iFGxxBLO8YtipBnERl9OD/r//a6QuZMuy0BS4rumG/EJVeUMSplB4W5PC11i -W9EMhbbZDPytDF5LEasOqSf0qTHInNKS6if5WPZGJ0pxPoMnq3qTi4jHI8x8 -fY0YHAje9VqH+PWBJ12hJgwexQnWTSPO2Aa3RDMG7i7Rwe2kXixNrDeWLWfg -UnqpKYY4tHuziZQtg5z9NtcbSX2ub27P19jAoLssVvAG8ZwqDx1TewbmUXuk -A4gr0rxVPTYz2H7TQV+MeHJDsEChJwMH9UgfXVL/9Ra/j1N7GPwRNtbsI/0j -Uyd88IMvg/XyFmcKiVnTonnT/Bl4bMy3W0x88mHya6cQBokuhW90Sf+xv66y -1jecQenl3PecZAoaF649C41kMHGlJDqduNLnVtGtGAYWM325YsQCs4uv/LrM -QF78UVTTZVKvouayUqkMOura6qOIs4bK4zTSGLC6XlcbEq+sp8LXZTHwu3jy -eizpl1GRzV7peQwMc/NNdUl/FeoZNMRzBrO9fiRrk37csHN7ploNA5mMyqUv -Sb/OaHshOVnLQO3YcL438ZK6q7zyBgaqHcLSN0h/9y1AhkUHWd9QP0eCzIPX -h+NElwwy2OmkrZodQ/Knb+iwwggDEX2myZB4j7cHZ2iUAad/cnsFmS+TW4wq -Hkwy0HhaxWkk88hwWWuQkQQPB1f8zv15iuTzNK3PCzSJfX6q9JP5tvNEvJ3U -PB4SxE1r/YgXDg6XftPmYT7VYEOTefiCrrmcu4CHkKKzhU1kXo6+PLhOdykP -L71CtW+GUNh+oeyh1iYeEo3WXpQ8Sup7tmOcahgPS2bOCBncT5G+dkV+aQQP -CrksXXPi7m2fr7mc4sGJYe0NI/M7J82v8OJZHgYbxG5PI/NdT/XUe5EUsl6U -o8iYNwUDlYfqgwU8KPJsWdk7SbyUFB/WdfLwK1sukCb3C0Uz9+W9XB7i7zxZ -98eBwq/NN16IdPPg16p9X5a4NMWgbWUfD94Ot/WXkfuLhaL1ZMkYD3oLempP -2JF8Ujhmc1O2G/8kHEt4uJqCtVx7R6hVNxxT76nMIvepec+mb9tj3Y2cp1Kz -ZhiTfNln1LrBtpt8LzhXixqReqqOfadm3w2VOfMcxwzI8waZvah064ZivaXW -Gz3yfO+S7gkf6oaboKW/2VzSHy9sioq/3o0AzsZ6BRkKkRLPdTImu/Fxj30R -v5vch0fCxo9M64GC3+xvN3hsXOla8naTcA/uzOdxHBg2CktzgoUkenDvrLB0 -HoeNTu/4534KPZDX0Nvs8IkNFttpt/mCHtzabRe9o5GN8RBOZotrD74oqWWd -fcLGkb4phVnFPejkfnGZeY4N+Yjk6X+X9mDbt+BP62LZeCirP7ziSQ/sLMI5 -p6LZGDLb3BxQ1YM5V229BqPYOByVd6nhTQ+8St+vqgxhI0jJVfoirwduFZl2 -sw6wcXBlkZi0ci/ksvXjEzay4Z3sNS4V0ovETZptQ1JsBFguaH+++Cusc2bl -DEdW41jOX4XT/3yFYshw4+HGKlyRCzopWPINJhud814pViHIT5HvfPA7hqqt -PGbZVMI2mnYzMO1DzdHqlk/pT7HsusIz6kcf6mMd1oSlluPvyAAVTskPZLsL -QdGoDI3rZyu5hP3EpnbrmLhrJXgVJx9TrdoP8bnaNhAqRo6T4eS18H7MrMke -dBm9D7n0iYHWj/2wk/cxH2nJh9uHoBJLswEM2jmnGAT/i7mjoaNeaQPoy3n0 -64xSFo6kLn30bWQAwl+5CcWXE1EfYdUROzqAWm54S5p9InT97AW1fw/gbpFf -nP+MRLRb+m7cOTGArdnly7ujL2IFJ5XXLMSHhd9sb3X+BUgs/KX4VIaP69KX -CmIfnkNmdfHRi3p8mOZZXQ7QiMKvu1XXFi7gY8+T+a7yKZGwT37Drl3IR81a -yfcpkpEQ8mWkpxvxQd/Y0ez//SR8ZyjkHDfjQ/m8amPz5RAYbz38wdOKD7Mx -c1/1liDErYyYnFrDR1W1Y4ZlRSBovfh516zJekWrlJRuBiB1Ijug1ZYPbtVY -oShnP/7caBJb78CHQiX74jFpL2yO/2LQ68iHj/FeXnTbLtw78s052pmPofFT -tuprd8DTRuh65RY+Prf0XNHYuxlPjKRfbnfl42tE/BaZMQfIz57d93sbH+qW -P2N7pe1wUFhH7oo7H21tW/LT9VfhZZ+xuakHHzLG5fIHzxnjPw2YIaM= - "]]}, - Annotation[#, "Charting`Private`Tag$8964#1"]& ]}, {}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0.5, 0.4]], - ImagePadding->All, - Method->{ - "DefaultBoundaryStyle" -> Automatic, - "DefaultGraphicsInteraction" -> { - "Version" -> 1.2, "TrackMousePosition" -> {True, False}, - "Effects" -> { - "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, - "Droplines" -> { - "freeformCursorMode" -> True, - "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> - AbsolutePointSize[6], "ScalingFunctions" -> None, - "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ - (Identity[#]& )[ - Part[#, 1]], - (Identity[#]& )[ - Part[#, 2]]}& ), "CopiedValueFunction" -> ({ - (Identity[#]& )[ - Part[#, 1]], - (Identity[#]& )[ - Part[#, 2]]}& )}}, - PlotRange->{{0, 1.148}, {0., 0.16104802521213}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, { - Scaled[0.05], - Scaled[0.05]}}, - Ticks->{Automatic, Automatic}]], "Output", - CellChangeTimes->{{3.85779130533657*^9, 3.8577913091623983`*^9}, - 3.857793276120146*^9, 3.857799951294331*^9, 3.8588497581844807`*^9, - 3.867387198268334*^9, 3.86739257677225*^9, 3.867399192185546*^9, - 3.867807033499033*^9, 3.8705036390135803`*^9}, - CellLabel->"Out[6]=",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData["s"], "Input", - CellChangeTimes->{{3.867807054536924*^9, 3.867807065392228*^9}, - 3.8679107297497873`*^9}, - CellLabel->"In[7]:=",ExpressionUUID->"58adee79-610c-4fdb-8124-fbf6f3d2f4f7"], - -Cell[BoxData["s"], "Output", - CellChangeTimes->{3.87050364038545*^9}, - CellLabel->"Out[7]=",ExpressionUUID->"76f32142-c2e3-4b66-9e61-ffed298db318"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"DufDuh", "[", - RowBox[{ - "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",", - RowBox[{"{", "}"}], ",", - RowBox[{"{", - RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], ")"}], "[", "2", "]"}], - "[", - RowBox[{"R", ",", "\[Theta]"}], "]"}]], "Input", - CellChangeTimes->{{3.8674005827236223`*^9, 3.867400611996139*^9}}, - CellLabel->"In[23]:=",ExpressionUUID->"4534127d-b193-401a-b594-a6abec8f7edb"], - -Cell[BoxData[ - RowBox[{ - FractionBox[ - RowBox[{ - SuperscriptBox["R", "2"], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ", - RowBox[{"Log", "[", - RowBox[{ - SuperscriptBox["R", "2"], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]}], "]"}]}], - RowBox[{"8", " ", "\[Pi]"}]], "+", - FractionBox["1", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{"R", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}]}], "]"}], - RowBox[{"7", "/", "4"}]]], - RowBox[{"(", - RowBox[{ - RowBox[{ - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"15", " ", - SuperscriptBox["\[Theta]", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], " ", - RowBox[{"(", - RowBox[{"1", "-", - FractionBox[ - SuperscriptBox["\[Theta]", "2"], - SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", - RowBox[{"g", "[", "0", "]"}]}], - RowBox[{"4", " ", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"31", "/", "8"}]]}]]}], "+", - FractionBox[ - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", - FractionBox[ - SuperscriptBox["\[Theta]", "2"], - SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", - RowBox[{"g", "[", "0", "]"}]}], - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"15", "/", "8"}]]], "-", - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["\[Theta]", "2"], " ", - RowBox[{"g", "[", "0", "]"}]}], - RowBox[{ - SuperscriptBox["\[Theta]0", "2"], " ", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"15", "/", "8"}]]}]]}], ")"}], "3"]], - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox["\[Theta]", - RowBox[{"2", " ", "\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}]}]]}], "+", - FractionBox[ - RowBox[{ - RowBox[{"CYL", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"5", " ", "\[ImaginaryI]"}], - RowBox[{"6", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]}]]}], "+", - FractionBox[ - RowBox[{"5", " ", "\[ImaginaryI]"}], - RowBox[{"6", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]}]]}], ")"}]}], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], - ")"}]}]]}]], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], - "]"}]}], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], - ")"}]}]]}]], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], - "]"}]}], - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}], - ")"}]}], "\[Pi]"], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", - - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], - "+", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", - - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}], ")"}]}], - "\[Pi]"]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]], "-", - FractionBox[ - RowBox[{"4", " ", "\[Theta]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], - ")"}]}]]}]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ", - - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], - "]"}]}], "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], - "\[Pi]"], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", - - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], - "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], - "\[Pi]"]}], ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]]}], ")"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"465", " ", - SuperscriptBox["\[Theta]", "3"], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ", - RowBox[{"(", - RowBox[{"1", "-", - FractionBox[ - SuperscriptBox["\[Theta]", "2"], - SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", - RowBox[{"g", "[", "0", "]"}]}], - RowBox[{"16", " ", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"47", "/", "8"}]]}]]}], "+", - FractionBox[ - RowBox[{"15", " ", - SuperscriptBox["\[Theta]", "3"], " ", - RowBox[{"(", - RowBox[{"1", "-", - FractionBox[ - SuperscriptBox["\[Theta]", "2"], - SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", - RowBox[{"g", "[", "0", "]"}]}], - RowBox[{"2", " ", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"31", "/", "8"}]]}]], "+", - FractionBox[ - RowBox[{"45", " ", "\[Theta]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], " ", - RowBox[{"(", - RowBox[{"1", "-", - FractionBox[ - SuperscriptBox["\[Theta]", "2"], - SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", - RowBox[{"g", "[", "0", "]"}]}], - RowBox[{"4", " ", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"31", "/", "8"}]]}]], "-", - FractionBox[ - RowBox[{"15", " ", - SuperscriptBox["\[Theta]", "3"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], " ", - RowBox[{"g", "[", "0", "]"}]}], - RowBox[{ - SuperscriptBox["\[Theta]0", "2"], " ", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"31", "/", "8"}]]}]], "+", - FractionBox[ - RowBox[{"6", " ", "\[Theta]", " ", - RowBox[{"g", "[", "0", "]"}]}], - RowBox[{ - SuperscriptBox["\[Theta]0", "2"], " ", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"15", "/", "8"}]]}]]}], ")"}]}]}], "+", - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"15", " ", - SuperscriptBox["\[Theta]", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], " ", - RowBox[{"(", - RowBox[{"1", "-", - FractionBox[ - SuperscriptBox["\[Theta]", "2"], - SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", - RowBox[{"g", "[", "0", "]"}]}], - RowBox[{"4", " ", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"31", "/", "8"}]]}]]}], "+", - FractionBox[ - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", - FractionBox[ - SuperscriptBox["\[Theta]", "2"], - SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", - RowBox[{"g", "[", "0", "]"}]}], - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"15", "/", "8"}]]], "-", - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["\[Theta]", "2"], " ", - RowBox[{"g", "[", "0", "]"}]}], - RowBox[{ - SuperscriptBox["\[Theta]0", "2"], " ", - SuperscriptBox[ - RowBox[{"RealAbs", "[", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], "]"}], - RowBox[{"15", "/", "8"}]]}]]}], ")"}], "2"]], - RowBox[{"(", - RowBox[{ - FractionBox[ - SuperscriptBox["\[Theta]", "2"], - RowBox[{"\[Pi]", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]}]], "-", - FractionBox["1", - RowBox[{"2", " ", "\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{"CYL", " ", - RowBox[{"(", - RowBox[{ - FractionBox["5", - RowBox[{"36", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"7", "/", "6"}]]}]], "+", - FractionBox["5", - RowBox[{"36", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"7", "/", "6"}]]}]]}], ")"}]}], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], - "2"]}]]}], "-", - FractionBox["1", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}]], "+", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], - ")"}]}]]}]], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], - "]"}]}], - RowBox[{ - SuperscriptBox["B", "2"], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], - "3"]}]]}], ")"}]}], "\[Pi]"], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], "2"]}]]}], - "-", - FractionBox["1", - RowBox[{"\[Theta]", "-", "\[Theta]0"}]], "+", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], - RowBox[{ - SuperscriptBox["B", "2"], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], "3"]}]]}], - ")"}]}], "\[Pi]"]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]], "-", - FractionBox[ - RowBox[{"8", " ", "\[Theta]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"5", " ", "\[ImaginaryI]"}], - RowBox[{"6", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]}]]}], "+", - FractionBox[ - RowBox[{"5", " ", "\[ImaginaryI]"}], - RowBox[{"6", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]}]]}], ")"}]}], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], - ")"}]}]]}]], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], - "]"}]}], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], - ")"}]}]]}]], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], - "]"}]}], - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}], - ")"}]}], "\[Pi]"], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", - - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], - "+", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", - - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}], ")"}]}], - "\[Pi]"]}], ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]], "+", - FractionBox[ - RowBox[{"24", " ", - SuperscriptBox["\[Theta]", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], - ")"}]}]]}]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], - "]"}]}], "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], - "\[Pi]"], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", - - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], - "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], - "\[Pi]"]}], ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "4"]], "-", - FractionBox[ - RowBox[{"4", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], - ")"}]}]]}]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], - "]"}]}], "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], - "\[Pi]"], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", - - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], - "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], - "\[Pi]"]}], ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]]}], ")"}]}], - ")"}]}]], "Output", - CellChangeTimes->{ - 3.867399663278276*^9, {3.8674005829418097`*^9, 3.867400612249578*^9}}, - CellLabel->"Out[23]=",ExpressionUUID->"1d11593c-279f-48a7-b332-deeff602eead"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"\[Chi]0", "=", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"DufDuh", "[", - RowBox[{ - "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",", - - RowBox[{"{", "}"}], ",", - RowBox[{"{", - RowBox[{ - RowBox[{"g", "[", "0", "]"}], ",", - RowBox[{"g", "[", "1", "]"}]}], "}"}]}], "]"}], ")"}], "[", "2", - "]"}], "[", - RowBox[{"R", ",", "\[Theta]"}], "]"}], ",", - RowBox[{"\[Theta]", "->", "\[Theta]0"}], ",", - RowBox[{"Direction", "->", "\"\\""}], ",", - RowBox[{"Assumptions", "->", - RowBox[{"{", - RowBox[{ - RowBox[{"\[Theta]0", ">", "1"}], ",", - RowBox[{"R", ">", "0"}], ",", - RowBox[{"B", ">", "0"}], ",", - RowBox[{"\[Theta]0", ">", "0"}], ",", - RowBox[{"\[Theta]YL", ">", "0"}], ",", - RowBox[{ - RowBox[{"g", "[", "0", "]"}], ">", "0"}], ",", - RowBox[{ - RowBox[{"g", "[", "1", "]"}], ">", "0"}]}], "}"}]}]}], - "]"}]}]], "Input", - CellChangeTimes->{{3.867399306978856*^9, 3.867399362899951*^9}, { - 3.867399492127166*^9, 3.867399492566269*^9}, {3.8673995729447317`*^9, - 3.867399586808991*^9}, {3.867399697155163*^9, 3.867399722330738*^9}, { - 3.867400597443878*^9, 3.867400646940031*^9}, {3.867400765926566*^9, - 3.86740078743888*^9}, {3.86740167647156*^9, 3.8674016895355988`*^9}}, - CellLabel->"In[30]:=",ExpressionUUID->"7b4a2b19-eb62-4fb5-9666-a81b70aa0106"], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - FractionBox["1", - RowBox[{"8", " ", - SuperscriptBox["R", - RowBox[{"7", "/", "4"}]], " ", - SuperscriptBox[ - RowBox[{"g", "[", "0", "]"}], "2"]}]], - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox["1", "\[Pi]"]}], "+", - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["\[Theta]0", "2"]}], - RowBox[{"\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}]}]], "+", - FractionBox[ - RowBox[{"48", " ", - SuperscriptBox["\[Theta]0", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", "\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", - " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], - ")"}]}], - RowBox[{"\[Pi]", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]], "-", - FractionBox[ - RowBox[{"8", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", "\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", - " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], - ")"}]}], - RowBox[{"\[Pi]", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}]], "-", - FractionBox[ - RowBox[{"16", " ", "\[Theta]0", " ", - RowBox[{"(", - RowBox[{ - FractionBox["C0", "\[Pi]"], "-", - RowBox[{ - FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ", - RowBox[{"(", - RowBox[{ - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]], "-", - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-", - FractionBox[ - RowBox[{"C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}], - RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}], - ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]], "+", - FractionBox[ - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", "B", " ", "C0"}], "\[Pi]"], "+", - RowBox[{ - FractionBox["5", "36"], " ", "CYL", " ", - RowBox[{"(", - RowBox[{ - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"7", "/", "6"}]]], "+", - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"7", "/", "6"}]]]}], ")"}]}], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"2", " ", "B", " ", "\[Theta]0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}]}], "-", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], - ")"}]}], - RowBox[{"8", " ", - SuperscriptBox["B", "2"], " ", "\[Pi]", " ", - SuperscriptBox["\[Theta]0", "3"]}]]}], ")"}]}], - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}]], "-", - FractionBox[ - RowBox[{"3", " ", - RowBox[{"(", - RowBox[{"2", "+", - RowBox[{"3", " ", - SuperscriptBox["\[Theta]0", "2"]}]}], ")"}], " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"\[Theta]0", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}], "\[Pi]"], - "+", - FractionBox[ - RowBox[{"8", " ", "\[Theta]0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", "\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", - "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], - ")"}]}], "\[Pi]"], "-", - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ", - RowBox[{"(", - RowBox[{ - FractionBox["C0", "\[Pi]"], "-", - RowBox[{ - FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ", - RowBox[{"(", - RowBox[{ - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]], "-", - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-", - FractionBox[ - RowBox[{"C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}], - RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}], - ")"}]}]}], ")"}]}], - RowBox[{"2", " ", "\[Theta]0", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]]}], ")"}]}]}], - "+", - FractionBox[ - RowBox[{ - SuperscriptBox["R", "2"], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"], " ", - RowBox[{"Log", "[", - RowBox[{"R", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}]}], "]"}]}], - RowBox[{"4", " ", "\[Pi]"}]]}]], "Output", - CellChangeTimes->{{3.8673993112840843`*^9, 3.8673993768209543`*^9}, - 3.867399506274879*^9, 3.867399581147868*^9, 3.867399616196063*^9, - 3.86739971032502*^9, 3.86740056902387*^9, 3.867400605222789*^9, - 3.867400763951229*^9, 3.867401303236107*^9}, - CellLabel->"Out[25]=",ExpressionUUID->"49d3eb26-ffe6-47e7-8e76-81dd108d6570"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{ - FractionBox["1", - RowBox[{"8", " ", - SuperscriptBox["R", - RowBox[{"7", "/", "4"}]], " ", - SuperscriptBox[ - RowBox[{"g", "[", "0", "]"}], "2"]}]], - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox["1", "\[Pi]"]}], "+", - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["\[Theta]0", "2"]}], - RowBox[{"\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}]}]], "+", - FractionBox[ - RowBox[{"48", " ", - SuperscriptBox["\[Theta]0", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", "\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", - " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], - ")"}]}], - RowBox[{"\[Pi]", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]], "-", - FractionBox[ - RowBox[{"8", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", "\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", - " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], - ")"}]}], - RowBox[{"\[Pi]", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}]], "-", - FractionBox[ - RowBox[{"16", " ", "\[Theta]0", " ", - RowBox[{"(", - RowBox[{ - FractionBox["C0", "\[Pi]"], "-", - RowBox[{ - FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ", - RowBox[{"(", - RowBox[{ - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]], "-", - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-", - FractionBox[ - RowBox[{"C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}], - RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}], - ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]], "+", - FractionBox[ - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", "B", " ", "C0"}], "\[Pi]"], "+", - RowBox[{ - FractionBox["5", "36"], " ", "CYL", " ", - RowBox[{"(", - RowBox[{ - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"7", "/", "6"}]]], "+", - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"7", "/", "6"}]]]}], ")"}]}], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"2", " ", "B", " ", "\[Theta]0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}]}], "-", - - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], - ")"}]}], - RowBox[{"8", " ", - SuperscriptBox["B", "2"], " ", "\[Pi]", " ", - SuperscriptBox["\[Theta]0", "3"]}]]}], ")"}]}], - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}]], "-", - FractionBox[ - RowBox[{"3", " ", - RowBox[{"(", - RowBox[{"2", "+", - RowBox[{"3", " ", - SuperscriptBox["\[Theta]0", "2"]}]}], ")"}], " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"\[Theta]0", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}], "\[Pi]"], - "+", - FractionBox[ - RowBox[{"8", " ", "\[Theta]0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", "\[Pi]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", - RowBox[{"2", " ", "C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", - "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], - ")"}]}], "\[Pi]"], "-", - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ", - RowBox[{"(", - RowBox[{ - FractionBox["C0", "\[Pi]"], "-", - RowBox[{ - FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ", - - RowBox[{"(", - RowBox[{ - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]], "-", - FractionBox["1", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-", - FractionBox[ - RowBox[{"C0", " ", - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}], - RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}], - ")"}]}]}], ")"}]}], - RowBox[{"2", " ", "\[Theta]0", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]]}], ")"}]}], - "+", - FractionBox[ - RowBox[{ - SuperscriptBox["R", "2"], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"], " ", - RowBox[{"Log", "[", - RowBox[{"R", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]0", "2"]}], ")"}]}], "]"}]}], - RowBox[{"4", " ", "\[Pi]"}]]}], "/.", - RowBox[{"B", "->", - RowBox[{"ruleB", "[", - RowBox[{"\[Theta]0", ",", - RowBox[{"{", - RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}]}]}], "/.", - RowBox[{"C0", "->", - RowBox[{"ruleAL", "[", - RowBox[{"\[Theta]0", ",", - RowBox[{"{", - RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}]}]}], "/.", - "data2"}]], "Input", - CellChangeTimes->{{3.867401430819233*^9, 3.8674014482667217`*^9}, { - 3.867401479324093*^9, 3.867401519892399*^9}}, - CellLabel->"In[29]:=",ExpressionUUID->"df04d6a6-7870-45a4-a6f0-74b19e0194f0"], - -Cell[BoxData[ - RowBox[{ - FractionBox[ - RowBox[{"1.443675578109905`", "\[VeryThinSpace]", "+", - RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], - SuperscriptBox["R", - RowBox[{"7", "/", "4"}]]], "+", - RowBox[{"0.008090042376531648`", " ", - SuperscriptBox["R", "2"], " ", - RowBox[{"Log", "[", - RowBox[{"0.3188455280999998`", " ", "R"}], "]"}]}]}]], "Output", - CellChangeTimes->{ - 3.867401448565897*^9, {3.8674014930013247`*^9, 3.867401520373138*^9}}, - CellLabel->"Out[29]=",ExpressionUUID->"911979f9-954d-47ec-b0a6-8c3dacdfaa49"] -}, Open ]], - -Cell[BoxData[ - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "2", "]"}], "[", - RowBox[{"R", ",", "\[Theta]"}], "]"}], ",", - RowBox[{"\[Theta]", "->", "\[Theta]"}]}], "]"}]], "Input", - CellChangeTimes->{{3.867399396604781*^9, - 3.8673993968872347`*^9}},ExpressionUUID->"626c9442-a5ca-460d-9253-\ -fd9b4c2f2227"], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"ComplexPlot", "[", - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "\[Theta]", "]"}], ",", - RowBox[{"{", - RowBox[{"\[Theta]", ",", "3"}], "}"}]}], "]"}]], "Input", - CellChangeTimes->{{3.857755068199889*^9, 3.857755069519574*^9}, { - 3.857790321737791*^9, 3.8577903601065702`*^9}, {3.85779160038527*^9, - 3.857791646178491*^9}, {3.867399210226221*^9, 3.867399214577518*^9}, - 3.8673993211077833`*^9}, - CellLabel->"In[10]:=",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"], - -Cell[BoxData[ - GraphicsBox[{GraphicsComplexBox[CompressedData[" -1:eJx12z2oXlUQheFPr2gQQbEwYBeC2NiI6VTWYGElCGkUtFERfxohgohaRrCJ -FmodSKeNsRJsFBEby0saSRGCYGWhIgoKEQlrF8/hVJsFl+/sPS/7nJk1c0+9 -+MbZl289HA7njw6H/9cv7nv05xs37vi264PX7nz/yWdvX/riZz89cOHybUuf -fPPzH45PHC390WPvvHL/C7csffddn9zz3bkb31QfLj5y9unT/y7928PHH189 -/nvp69+fu/La+T+XPn7m3pN/nfl96Q+uvPTliR9/Xfr1fy6dOf3QL0s/der6 -V49fuLb0cx8+8dblq8dLv/3q0R+fvvv10u/d1Kl+/ubfh98Lzwv7CfsN5wnn -DfEI8QrxHOI98Bh4DRzVi6tr+VaXb3X5VpdvdflWl291+VaXb3X5VpdvdflW -l291+VaXb3X58nvheWE/Yb/hPOG8IR4hXiGeQ7wHHgOn4V6qNxyrXcu3unyr -y7e6fKvLt7p8q8u3unyry7e6fKvLt7p8q8u3unz5vfC8sJ+w33CecN4QjxCv -EM8h3gOHgdfS5bv33vWeytW1fKvLt7p8q8u3unyry7e6fKvLt7p8q8u3unyr -y7e6fPm98Lywn7DfcJ5w3hCPEK8QzyHOA4+B19Llu/cd9b3rPZWra/lWl291 -+VaXb3X5VpdvdflWl291+VaXb3X5VpcvvxeeF/YT9hvOE84b4hHiFeI4xHvg -MfBaunz38iK/o753vadydS3f6vKtLt/q8q0u3+ryrS7f6vKtLt/q8q0uX34v -PC/sJ+w3nCecN8QjxCnEc4j3wGPgtXT57uW55kV+R33vek/l6lq+1eVbXb7V -5VtdvtXlW12+1eVbXb7V5cvvheeF/YT9hvOE84Y4hHiFeA7xHngMvJYu3726 -xTzXvMjvqO9d76lcXcu3unyry7e6fKvLt7p8q8u3unyry5ffC88L+wn7DecJ -5wzxCPEK8RziPfAYeC1dvnt1qHWLea55kd9R37veU7m6lm91+VaXb3X5Vpdv -dflWl291+fJ74XlhP2G/4RzhvCEeIV4hnkO8Bx4Dr6XLd89XsA61bjHPNS/y -O+p713sqV9fyrS7f6vKtLt/q8q0u3+ry5ffC88J+wj7DecJ5QzxCvEI8h3gP -PAZeS5fvnk+kr2Adat1inmte5HfU9673VK6u5VtdvtXlW12+1eVbXb78Xnhe -2EfYbzhPOG+IR4hXiOcQ74HHwGvp8t3z/fSJ9BWsQ61bzHPNi/yO+t71nsrV -tXyry7e6fKvLt7p8+b3wnLCfsN9wnnDeEI8QrxDPId4Dj4HX0uW75+Pq++kT -6StYh1q3mOeaF/kd9b3rPZWra/lWl291+VaXL78Tnhf2E/YbzhPOG+IR4hXi -OcR74DHwWrp893x5fVx9P30ifQXrUOsW81zzIr+jvne9p3J1Ld/q8q0uX34v -PC/sJ+w3nCecN8QjxCvEc4j3wGPgtXT57vVZ9OX1cfX99In0FaxDrVvMc82L -/I763vWeytW1fKvLl98Lzwv7CfsN5wnnDfEI8QrxHOI98Bh4LV2+e30z+yz6 -8vq4+n76RPoK1qHWLea55kV+R33vek/l6lq+/F54XthP2G84TzhviEeIV4jn -EO+Bx8Br6fLd64PaN7PPoi+vj6vvp0+kr2Adat1inmte5HfU9673VK6u5cvz -wn7CfsN5wnlDPEK8QjyHeA88Bl5Ll+9eX9s+qH0z+yz68vq4+n76RPoK1qHW -Lea55kV+R33vek/l6kp+FfKrkF+F/CrkVyG/CvlVyK9CfhXyq5BfhfxqM6dg -X9s+qH0z+yz68vq4+n76RPoK1qHWLea55kV+R33vek/l6kp9FOqjUB+F+ijU -R6E+CvVRqI9CfRTqo1AfbeZOnFOwr20f1L6ZfRZ9eX1cfT99In0F61DrFvNc -8yK/o753vadydcXfCP5G8DeCvxH8jeBvBH8j+BvB3wj+xmaOyLkT5xTsa9sH -tW9mn0VfXh9X30+fSF/BOtS6xTzXvMjvqO9d76lcXfEngz8Z/MngTwZ/MviT -wZ8M/mTwJzdzYc4ROXfinIJ9bfug9s3ss+jL6+Pq++kT6StYh1q3mOeaF/kd -9b3rPZWrK/2F0F8I/YXQXwj9hdBfCP2F0F/YzPk5F+YckXMnzinY17YPat/M -Pou+vD6uvp8+kb6Cdah1i3mueZHfUd+73lO5utIfDP3B0B8M/cHQHwz9wdAf -3MxtOufnXJhzRM6dOKdgX9s+qH0z+yz68vq4+n76RPoK1qHWLea55kV+R33v -ek/l6kp/f/El3gOPgdfS9Pc3c7jObTrn51yYc0TOnTinYF/bPqh9M/ss+vL6 -uPp++kT6Ctah1i3mueZFfkd973pP5erKfM7iC4+B19LM52zmqp3DdW7TOT/n -wpwjcu7EOQX72vZB7ZvZZ9GX18fV99Mn0lewDrVuMc81L/I76nvXeypXV+br -ymPgtTTzdZs5eeeqncN1btM5P+fCnCNy7sQ5Bfva9kHtm9ln0ZfXx9X30yfS -V7AOtW4xzzUv8jvqe9d7KldX5mMXX/7PQb2Zi3eO2rlb5zSd63MOzLkh50yc -S7CPbd/TPpl9FX14fVt9Pn0hfQTrTusU81rzIL+bvme9l3KEx8BraebbN//H -4v89OCfvXLVzuM5tOufnXJhzRM6dOKdgX9s+qH0z+yz68vq4+n76RPoK1qHW -Lea55kV+R33vek/l6sr/p2z+L8n/Y/H/HpyTd67aOVznNp3zcy7MOSLnTpxT -sK9tH9S+mX0WfXl9XH0/fSJ9BetQ6xbzXPMiv6O+d72ncnX9DytUJ10= - "], {{ - {Texture[ - GraphicsBox[ - TagBox[ - RasterBox[CompressedData[" -1:eJztyMEJwkAUBNAlXjzagl14ErwEvEZSQIJr8LKBTUDsIm3aRTbgORU8ePOZ -+ed+bF5VCGE6ltN0n1vO3fdxKqNN03tI8XlPcxxivvSH8lz+2fqvvgIAAAAA -AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -AAAAAAAAAAAAALBjBcshkTw= - "], {{0, 144.}, {144., 0}}, {0, 255}, ColorFunction -> RGBColor], - BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], - Selectable -> False], DefaultBaseStyle -> "ImageGraphics", - ImageSizeRaw -> {144., 144.}, PlotRange -> {{0, 144.}, {0, 144.}}]], - EdgeForm[None], GraphicsGroupBox[PolygonBox[CompressedData[" -1:eJxNm3V01UfXhXPvD3e3oMGCBQlO0QDBA4Hg7u4uwSluhQKlRYsXCsXdnUIL -xd0dSpGi5T17zfOt9f2xV0/3nXNmZj/DhVSytO4R2d0fEBBQ1QsIiGF/9Zn0 -95lNmajto4AseKq1LghPdUxTVjzVsUzZ8FTHNmXHUx3HlANPdVxTTjzV8UzB -eKrjm3LhqU5gyo2XxpTWVMxUlDqdqTheIlNiUz5TXuokphA81UlN+fFUJzMV -wFOd3FQQT3UKUyE81SlNoXiqU5kK46lObSqCl5ozF8XTXRKa8nCnhJw5L57u -EmgqwZ2CuXe4qbIpvSmDqZSpJHVG0zd4meBWxlSaWtzK4mWBWzm8ILiVx8sK -twp42eAWhpcdbhXxcsCtEl4o94401eEu6TlrCe6ie1fhTrm5d1W8PGRRDS8v -3Krj5YNbDbwQuNXEyw+3WngF4BaBVxButfEKceY6eDnJvDJ3Kgy3utypCCzr -4anWu4vCK849G5jqU+vuDfHKk2NLUwt6i7M2irXi2IieUrBtjFcWTs1NzajL -M0teaTg3NTVhL3FqxZ5lmNGMNWFwa82aGuTWxdSZDJRFW1MbanFrhxcOt/Z4 -VeDWAa8anDqZOjK3q2miaQJ71cLrQi0u3fCqc6bOzKjImdpw5gi4daenNix7 -4NWBW0+8unDqbepFrdz74EXBoi9efbj1w2sAl/54DeEyAK8RrAbiNSHnwaZB -1Mp+CF4zuA3Fi+SMvThzc9gOY01LOA03RZOBshhpGkEtLqPwWtATzYxW9Ixg -RmdyF4vx9IrjaGa0h+VY0xhqcRyH1xEu3+J1YuZ4vHbMGMNMvY1q9HWAsbhN -CnBvYotpq+m86S8YitsU02Rq5TIVrydZTcPrBcfpeL3hOAOvDxxn4vWF43d4 -/eA4C68/HGfjDYDt93hjuffPpqXUuvcyvCFw+8E0j1oc5uMNg82PeNFw+Qlv -OKwW4I2A60K8kXBahDeKnBfjjSb7JXhjOPNSPL1JvcO5pjnUQzjrXO4ilsu5 -0yzuvdH0W4B7N+K20rSCWixX4U2C22q8yXBbgzcFbr/gTYXbWrxpcFuHNx1u -v+LNgNt6vJlw24C3iHvvNe3hLhM463LuIpabuNMc7q13uJlaWWzFmwe3bXg/ -wG073ny47cD7EW478X6C2y68BXDbjbeQM+/B+47Mf+NOi+G2jzstgeV+PNV6 -dwfwlnHPQ6aD1Lr7Yby15HjKdJLeZaw9wFpxPELPSjgexVsDpxOm49RrmXWC -teJ8jJ51cPqdPVcz4zhrfoXbadZsJ7dLpotkoCz+MJ2hFrc/8TbC8izeZrjp -u+QczMTpQoD7jtF3j75j9C4nsZe4XGbPnXC5greNM11kxnrOdIYz74LbVXp2 -w/Ia3h64XcfbB6ebphvUyv0W3gFY3MY7CLc7eIfgchfvMFzu4R0h9/t4R8n5 -Ad4xsn+Idxxuj/D2csYbnPkEbB+z5hScnpqekIGyeG56Ri0uL/BO0vOEGb/T -84wZF8n9nektveL4khnnYPmP6RW1OL7GOw+XN3gXmPkWT7P0Nv5m5iW4/sue -l+H2Hu8K3D7gXSOHT6aP1MrmM949cvXsByu/z/VeY+0H1orrF3puwvU/vDtw -8+kHM5+rNVOz5N2C+1d67sMths/teZsZ6v3KZ+IY0+fWvOTuiaxO6HMMxSG2 -1bF8rhabOD7nPYFLXJ/znsIqns95z+GSwOr4zNTsvKY8PsdIXJJYndjnanFJ -6nPeCzioTzMe8q50Fp35Ge9Gs7Xnazgm87kZb+GWwurkPsdIOae2OpXP1co+ -jc95AeSYyZTR5xirR2tT+txacUzrcz2f4JTO57z/yD6D1enJOIBZ8j7DMdDn -et7xjjRbZ3zDW9RZk3EWsc3MmeKRYy5TMBkoi2ymrNTikh3PD/cszIhBj9YG -sVbcctATB2458eKTe272TADDPHhxOVMwPR57BLHnb6aNpj9Nf8BYXENM+WCk -exYw5YeRcihkKkitbELxAsm1pKkEvclZW4C1YlWYnlRwLYKXltyLm4pRBzKr -OGvFtSg96eFWij3TMKMYazLA9hvW5CCHSqaKMFPuZUylqZVLWbwsZFUOLwg2 -5fGywSXMVIHskpJVCHsp+8rsGQyncLzsnKkiMzJyptKcORccq9CTG7ZV8VTr -12o1vBD2rmmqQa3ca+EVgEUEXkG41cYrBJc6eKFwicQrTO518YqQcz28omQf -hVcMbvXx8nFGna06n4ltA9aUhFMjU0MyUBZNTI2pxaUpXgl6GjKjFD2NmfGF -71m9k0B6xbEZM8rBsoWpObU4tsSrAJdWeGGwao1XlhnNmVkRzm1YUwnObfEq -w7EdXlXYdTR1IBNl09nUiYyVay9TT5hXZW171oprF3pqwrUrXm249TB1p45k -Vg/Wins3elpyr+GmaD6rTW83ziKuvTlTU+49xDQYBmLR39SPWhwG4NXjHfRh -Rn16tLYva8VuID2N4TwIrxlZD2XP5nAahteEMw2mJ4o9+rJnC+4YTU8rOI3g -zoOZO880F2biNMo0klrsRuO1g8MYvPawGYvXAbbj8DrBabzpW2pxmoDXBQ4T -8bqS+yS8brCYjNeaM47kDt3hOoU1PeE0zTSVzJXDDNN0amUzE68HPVOZ0Yue -6cwYQs4/kFFf2H3HjP5wm22aRS1u3+MNhMscvEFkPhevHzNmMXODz/0epd+b -zrC3uM3nDItMi017TXvIQFksNC0gU+W4wrScWjmuxBtOj9b+5HPvYjj1j8wa -xT4LYTaeWctgLs5LOMcovMX0TITTKvbUG9Bb+Nm0lM/EaTVrZpHTRu49BRa/ -mNZQi8NavOlw+9W0jllTWLuatdP5bC1rxWk9PbPhsIk9Z/6/3LVG31X6ztG7 -bsdnszjbBu4+lrssYZY4bmbmHNhuwZtPrjtM26mV9U68pWRzwLQfxvNZu421 -YrWLngVw2Y23mHPs87k3sYSZ+/EWwmUPPfPYQ7O3wlRsD5kO+twbEbcjpsPk -qNx+N50iY2V93HSM3hWsPcTd5zF7C4xXs/aoz73laHKYz16r+OwIjMXtpOkE -e4vLac6wHg5n8NZyxlP0rGHGCc6oP7vozyz6fa08zMXprM/9GfCi336mMr0z -vfU7Zjr3X6Zz1LrLebytZHcBbxusLuJth+slvB1wu4y3E25X8HbB5Sreblhd -w9sD1+t4p8jhqekJtXJ4hifueku3TDdhKi53TLepxeou3mFyv4d3BBb38Y7C -7gHeMXJ9iHecrB/hnYDDY7yTnPkJnu6id3mDO+3jzDfxTsP2OXe6yr0/mj74 -3PeiuL00vaAWy7/xzsLtFd45uP2D9xfcXuOdh9sbvAtwe4t3EW7v8C7B7V+8 -y3B7j/eQe8eytxTT7+7yB2d9zl1070/c6Tr3/ox3gyy+4N2E5X94t+Gmf/H5 -lVrcfH7n3YWb3++8e3Dz/M67D7cYfuc94Mw6q7wrZP6BOz2CW2y/u9NjWMbx -O0+13l1cv/Oecc/4Vsfzu1p3T+B33htyTG51Mr/rVY/WasYLOCb0u56XcEzk -d94/cEpqdRK/qzVTs+T9DefEftfzFk4p/G7PV3BXr9a8g1tKv1sTQG6ZTBn9 -LgNlkdrqVH5Xi1sav/M+wi2t33mf4JbO77wvsEtvdSBzM5vKmEqzlx8vE7W4 -ZMH7CmudJYPfnVVn0llSslbcguiJwbvLihcTbtnwYsMphyk7tXLPiRcXbsF4 -8eCWCy8+XHLjJYBLHryE5J4XLxE558NLDLcQvCRwy48XizNm58xJeScFWJMc -ToVMBclAWRQ2hVKLSxG8ZPQUZEYKekKZkZHcxeIbesWxKDPEUCyLm4pRi2MJ -PNViWxIvAzM1qxSz0tKrmZ/5dRzIrMxwK8ub6GTqbBpv+haG4lbeVI5auVTA -y0ZWYXjZ4VgRLwccK+HlhGNlvGA4huPlgmMVvNxwrIqXB47V8Ipz7wam+tTK -oiFeCNxqmmpQi0MtvAKwicArCJfaeIVgVQcvFK6ReIXhVBevCDnXwytK9lF4 -xThzfTzdRe+wOnfKx5lr4JWCZWNTIzLQvTuY2vvduxG3pqYm1GLZDK8s3Jrj -lYNbC7zycGuJVwFurfDC4NYaryLc2uBVgltbvMpwa4dXl3v3NvXiLqU5a2Pu -ont35E7VuHcnvOpk0RmvBty64NWEW1e8WnDrhhcBt+54teHWA68O3HriRXLm -XnjhZN6eO9WDWx/uFAXLvniq9e764TXingNNA6h190F4rchxhGk4vXq7/ZnR -BI6D6WkKxyF4LeAUbRpG3YpZ0awV56H0tIbTSPZszoxhrGkDt1Gs6Upuk0wT -yUBZjDGNpha3sXgd4DYOryPcvsXrDKcJfvcdo+8efcfoXZZlL3GZzJ7d4TIF -rwtnmsiMtpxpNGfuAbep9PSE5TS8XnCbjtcHTjNNM6iV+3d4/WAxC28A3L43 -zaYWlzl4g+AyF28wuc/DG0LOP+ANJfv5eMPg9iNeb844gzNHw/Yn1oyA00LT -AjJQFotNi6jFZQnecHoWMGMkPYuYMZHcV5lW0iuOS5kxDpbLTD9Ti+NyvPFw -WYE3gZkr8cYy42dmToLravacDLc1eFPg9gveNHJYZ1pLrWx+xZtLrltNW+id -xtpfWCuu6+mZCdcNeN/DbbNpE/VcZm1mrd7Cb/TMg9s29pzNDPVu5DNx3M6a -pdz9gGk/DMVhp2kHtdjswlsAl914C2G1B28xXPaZ9jJTs2+ZbrKXuBzEXwaX -Q3hLONN+ZsznTDs48yL22Muey+F4mBkr4XbUdARGyvmE6Ti1sj+Jt4kcz5nO -wngNa4+xVhxP0bMOTr/jbSD7P0xnyHgTs/5krTiepmcVexzjjCs48xHusBm2 -f3GmPdz1uukaGSgL/Yx+kVpcLuNtgft5ZmyjR2svsFbcrtCzC25X8faS+w32 -3AeLm3i7OdM1erayxwX21D9L2MzPmfrZ8wBcb/MGDnHPu6Y73Fs53Dfdo1Y2 -D/BOk+tz0zN6j7D2LmvF6iE9x+H6CO8UuT81PaE+zaynrBXXx/ScgeUL9jzJ -jCes+RO2f5tekply+GB6DzPl/o/pFbVyeY13nqze4F2AzVu8S3D51+/+GcxB -MrtDhlfJ/iN7XoPTJ7zLnOk9M85yplec+TocP9NzA7Zf8G7C6T+82+yt/5D4 -K7Vy93nOuwsLv+e8e3DzPOfdh0sMz3kP4BLTc95Dco/lOe8ROcf2nPeY7ON4 -znsCt7ie825xxq+c+Sls43luzXNYJrA6vucyUBaJrU7kuVpcknjOewZ3rdWM -l+SmtQk992t5A+/kNL3imNRzM97AMrnVyTxXi2MKz3nv4JLSc96/sErlOe81 -70C9mvkezqk9t+YDnNN4zvsIx7Se876QQ3qrAz1XK5sMnvNikms2U1bPMVeP -1qaDsbhm9FxPAFwz4XlwCzJloY7JrCDWintmelJwr1BTIT7z6M3MWcQ1O2dK -wr3zm0JgIBa5TMHUYpkbLzbvIAcz4tKjtTlhJnZ5TXmoxTkfXlI4FWDPZHAq -iJeYM4XQE4c9crJncu5YiJ6UcCrMnUOYW9NUA2biVNRUhFrsiuGlhUNxvHRw -LIEXCMeSeOnhVAovA5y+wcsIh9J4mci9DF5mWJTFS8UZi3CHLHAtx5qscKpg -Kk/myqGiKYxa2VTCC6KnPDOy0RPGjPzkXIuMcsKuMjNywbqKKRyG4lbNc/8P -RF64VMfLR+Y18IKZEc7MtqZ2ptGmUewtbhGcoZ4pytTH1JsMlEVdUySZKsfG -pkbUyrEJXig9WlvHc+8ilLo2s4qyT12YlWJWQ5iLc33OURQvip7ScGrKniWY -od4GfCZOzVgTTnbtuXc5WLQwNacWh5Z4YXBrbWrFrHKsbcbaMD5ryVpxakNP -VTh0NHXgs//LXWs+8fuM3nVaPgvnbG25ewnuUp9Z4tiJmdVh2xkvgly7m7pR -K+seeA3Ipr+pH4wjWNuVtWLVk55IuPTCi+IcfT33Juozsx9eXbj0pqcme2h2 -F/YW2wGcoTHcBpkGkqNyG2EaTsbKeqhpCL2NWTuAu9dkdmcYN2PtYM+95ULk -EMFeTflsEIzFLdo0jL3FZSRnaAOHUXgtOeNwepozYxhnFDe9rTGe+zX1P4uT -Py0= - "]]]}, {}, {}, {}, {}}, LineBox[CompressedData[" -1:eJwt0bdNgwEQBtAfTMY2OdsgWsIChJ7QURE6CrDJyYmcBAsQFoAFCAvAAoQF -YAHCAsCzRPGkK06nu+86p5fHlgqCIEhRSL7uYJApclxyzyvfVGnqZZQkp1zz -yDu/xA3rZ4IM59zyzCeRUBB0M8wsCZLMMc8CiyyxzAqrrLHOBinSZMiSY5Mt -ttlhlz32OeCQI46ZYYguwnzY64kbzkgzTh8xftz1xgNXnJBghB6ifMnnhTsu -yDLJAO3EidFGKy0000QjDdRTRy01VOczJ0qEMJVUUE4ZpZRQTBGh/3/+Ac0Z -Le4= - "]]}, - VertexTextureCoordinates->CompressedData[" -1:eJx121+o33Mcx/ETrbY7507DBcqV2AVuxJoyKTeopVzIaiku/Gl340Jb7Ga1 -dnEuRkPKKRc6w8XOJGHIlBJJzGyYMTYtyoWLob6Pj3rW93fz6Xn7ffb5fN6f -1/v9u3Lro/dsu2hhYWHXxQsL/63//m7avHPrrdZD957cfnj5pY147VUfnVhd -Pjh4w/4rnl3acXjwdesOL60uvzv4tttP/bK8+OHgLU9fcsvSjqODH3775r27 -Tn06+J0n33h8dfmzwR+vv/O5lWOfD/780PEjy4tfDv52y/ZzBzZ/Nfj0n+su -Xdrx9eDz+17YtGfl2OC/N9z4yK5TxwfvfGjb0Vv2nBi8+6YND6wunxy8Z83f -f9zw3veD933xwe6VYz8MXnp57xXX/vXj4OefuP/15cWfBr+46Zo7rr729OBX -Ljn/zYHNPw9+9bu3Hlv/4C+DV157Zs3SjjOD33zq7v2LS78OPnzX5dfvWfnt -/+912en3135ydvCRMwfv23Xq3OCjq0+evXDh941zXrvyi/nF/GJ+Mb+YX8wv -5hfzi/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8wv5hfzO77X5Bfzi/md26f1 -2pVfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4x -v+N7TX4xv5jfuXO3+7Reu/KL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hfzC/m -F/OL+cX8Yn4xv5hfzO/4XpNfzC/md+4e7bnbfVqvXfnF/GJ+Mb+YX8wv5hfz -i/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8zv+F6TX8wv5neuLuo92nO3+7Re -u/KL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv+N7TX4x -v5jfuTq3dVHv0Z673af12pVfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4x -v5hfzC/mF/M7vtfkF/OL+Z17t7TObV3Ue7TnbvdpvXblF/OL+cX8Yn4xv5hf -zC/mF/OL+cX8Yn4xv5hfzC/mF/OL+R3fa/KL+cX8zr1D+25pndu6qPdoz93u -03rtyi/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hfzC/md3ynyS/mF/M7 -lyv0Hdp3S+vc1kW9R3vudp/Wa1d+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8wv5hfz -i/nF/GJ+x/ea/GJ+Mb9zOVFzhb5D+25pndu6qPdoz93u03rtyi/mF/OL+cX8 -Yn4xv5hfzC/mF/OL+cX8Yn4xv5jf8b0mv5hfzO9c7tecqLlC36F9t7TObV3U -e7TnbvdpvXblF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5jf8b0mv5hfzO9c -jtvcrzlRc4W+Q/tuaZ3buqj3aM/d7tN67cov5hfzi/nF/GJ+Mb+YX8wv5hfz -i/nF/GJ+x/ea/GJ+Mb9zuXxz3OZ+zYmaK/Qd2ndL69zWRb1He+52n9ZrV34x -v5hfzC/mF/OL+cX8Yn4xv5hfzC/md3yvyS/mF/M712dpLt8ct7lfc6LmCn2H -9t3SOrd1Ue/Rnrvdp/XalV/ML+YX84v5xfxifjG/mF/ML+YX8zu+1+QX84v5 -neubtc/SXL45bnO/5kTNFfoO7buldW7rot6jPXe7T+u1K7+YX8wv5hfzi/nF -/GJ+Mb+YX8zv+F6TX8wv5neuD9q+WfsszeWb4zb3a07UXKHv0L5bWue2Luo9 -2nO3+7Reu/KL+cX8Yn4xv5hfzC/mF/OL+R3fa/KL+cX8zvW12wdt36x9luby -zXGb+zUnaq7Qd2jfLa1zWxf1Hu25231ar135xfxifjG/mF/ML+YX84v5Hd9r -8ov5xfzOzSm0r90+aPtm7bM0l2+O29yvOVFzhb5D+25pndu6qPdoz93u03rt -yi/mF/OL+cX8Yn4xv5jf8b0mv5hfzO/c3EnnFNrXbh+0fbP2WZrLN8dt7tec -qLlC36F9t7TObV3Ue7TnbvdpvXblF/OL+cX8Yn4xv5jf8b0mv5hfzO/cHFHn -Tjqn0L52+6Dtm7XP0ly+OW5zv+ZEzRX6Du27pXVu66Leoz13u0/rtSu/mF/M -L+YX84v5Hd9r8ov5xfzOzYV1jqhzJ51TaF+7fdD2zdpnaS7fHLe5X3Oi5gp9 -h/bd0jq3dVHv0Z673af12pVfzC/mF/OL+R3fa/KL+cX8zs35dS6sc0SdO+mc -Qvva7YO2b9Y+S3P55rjN/ZoTNVfoO7Tvlta5rYt6j/bc7T6t1678Yn4xv5jf -8b0mv5hfzO/c3Gbn/DoX1jmizp10TqF97fZB2zdrn6W5fHPc5n7NiZor9B3a -d0vr3NZFvUd77naf1mtXfjG/mN/xvSa/mF/M79wcbuc2O+fXubDOEXXupHMK -7Wu3D9q+WfsszeWb4zb3a07UXKHv0L5bWue2Luo92nO3+7Reu/KL+R3fa/KL -+cX8zs1Vdw63c5ud8+tcWOeIOnfSOYX2tdsHbd+sfZbm8s1xm/s1J2qu0Hdo -3y2tc1sX9R7tudt9Wq9d+R3fa/KL+cX8zs3Jd666c7id2+ycX+fCOkfUuZPO -KbSv3T5o+2btszSXb47b3K85UXOFvkP7bmmd27qo92jP3e7Teu3KL+YX8zv3 -v4fOyXeuunO4ndvsnF/nwjpH1LmTzim0r90+aPtm7bM0l2+O29yvOVFzhb5D -+25pndu6qPdoz93u03rtOuZzJh7zOTP/Y+n/Hjon37nqzuF2brNzfp0L6xxR -5046p9C+dvug7Zu1z9Jcvjluc7/mRM0V+g7tu6V1buui3qM9d7tP67Urv3P/ -S+r/WPq/h87Jd666c7id2+ycX+fCOkfUuZPOKbSv3T5o+2btszSXb47b3K85 -UXOFvkP7bmmd27qo92jP3e7Teu36D7BDs/w= - "]], {}}, - Axes->{False, False}, +/ogasaOjjmZgP4370jd7FYgPTf1llTRIQ5ajGyFJnJQn71MyQmOc71I2ReL1 +yFXyXPsYjZ+1U6l84lYRwfyJPzTcRn4r08SjD0bfaggwSJ0+Z3kzcU1W6DpT +IQYFXu+3sP9/X+cF2OtEGEwvEJh7n9j3xGlLD3EGdOPh9GvE5j5ij4KkGJjW +iFGxxBLO8YtipBnERl9OD/r//a6QuZMuy0BS4rumG/EJVeUMSplB4W5PC11i +W9EMhbbZDPytDF5LEasOqSf0qTHInNKS6if5WPZGJ0pxPoMnq3qTi4jHI8x8 +fY0YHAje9VqH+PWBJ12hJgwexQnWTSPO2Aa3RDMG7i7Rwe2kXixNrDeWLWfg +UnqpKYY4tHuziZQtg5z9NtcbSX2ub27P19jAoLssVvAG8ZwqDx1TewbmUXuk +A4gr0rxVPTYz2H7TQV+MeHJDsEChJwMH9UgfXVL/9Ra/j1N7GPwRNtbsI/0j +Uyd88IMvg/XyFmcKiVnTonnT/Bl4bMy3W0x88mHya6cQBokuhW90Sf+xv66y +1jecQenl3PecZAoaF649C41kMHGlJDqduNLnVtGtGAYWM325YsQCs4uv/LrM +QF78UVTTZVKvouayUqkMOura6qOIs4bK4zTSGLC6XlcbEq+sp8LXZTHwu3jy +eizpl1GRzV7peQwMc/NNdUl/FeoZNMRzBrO9fiRrk37csHN7ploNA5mMyqUv +Sb/OaHshOVnLQO3YcL438ZK6q7zyBgaqHcLSN0h/9y1AhkUHWd9QP0eCzIPX +h+NElwwy2OmkrZodQ/Knb+iwwggDEX2myZB4j7cHZ2iUAad/cnsFmS+TW4wq +Hkwy0HhaxWkk88hwWWuQkQQPB1f8zv15iuTzNK3PCzSJfX6q9JP5tvNEvJ3U +PB4SxE1r/YgXDg6XftPmYT7VYEOTefiCrrmcu4CHkKKzhU1kXo6+PLhOdykP +L71CtW+GUNh+oeyh1iYeEo3WXpQ8Sup7tmOcahgPS2bOCBncT5G+dkV+aQQP +CrksXXPi7m2fr7mc4sGJYe0NI/M7J82v8OJZHgYbxG5PI/NdT/XUe5EUsl6U +o8iYNwUDlYfqgwU8KPJsWdk7SbyUFB/WdfLwK1sukCb3C0Uz9+W9XB7i7zxZ +98eBwq/NN16IdPPg16p9X5a4NMWgbWUfD94Ot/WXkfuLhaL1ZMkYD3oLempP +2JF8Ujhmc1O2G/8kHEt4uJqCtVx7R6hVNxxT76nMIvepec+mb9tj3Y2cp1Kz +ZhiTfNln1LrBtpt8LzhXixqReqqOfadm3w2VOfMcxwzI8waZvah064ZivaXW +Gz3yfO+S7gkf6oaboKW/2VzSHy9sioq/3o0AzsZ6BRkKkRLPdTImu/Fxj30R +v5vch0fCxo9M64GC3+xvN3hsXOla8naTcA/uzOdxHBg2CktzgoUkenDvrLB0 +HoeNTu/4534KPZDX0Nvs8IkNFttpt/mCHtzabRe9o5GN8RBOZotrD74oqWWd +fcLGkb4phVnFPejkfnGZeY4N+Yjk6X+X9mDbt+BP62LZeCirP7ziSQ/sLMI5 +p6LZGDLb3BxQ1YM5V229BqPYOByVd6nhTQ+8St+vqgxhI0jJVfoirwduFZl2 +sw6wcXBlkZi0ci/ksvXjEzay4Z3sNS4V0ovETZptQ1JsBFguaH+++Cusc2bl +DEdW41jOX4XT/3yFYshw4+HGKlyRCzopWPINJhud814pViHIT5HvfPA7hqqt +PGbZVMI2mnYzMO1DzdHqlk/pT7HsusIz6kcf6mMd1oSlluPvyAAVTskPZLsL +QdGoDI3rZyu5hP3EpnbrmLhrJXgVJx9TrdoP8bnaNhAqRo6T4eS18H7MrMke +dBm9D7n0iYHWj/2wk/cxH2nJh9uHoBJLswEM2jmnGAT/i7mjoaNeaQPoy3n0 +64xSFo6kLn30bWQAwl+5CcWXE1EfYdUROzqAWm54S5p9InT97AW1fw/gbpFf +nP+MRLRb+m7cOTGArdnly7ujL2IFJ5XXLMSHhd9sb3X+BUgs/KX4VIaP69KX +CmIfnkNmdfHRi3p8mOZZXQ7QiMKvu1XXFi7gY8+T+a7yKZGwT37Drl3IR81a +yfcpkpEQ8mWkpxvxQd/Y0ez//SR8ZyjkHDfjQ/m8amPz5RAYbz38wdOKD7Mx +c1/1liDErYyYnFrDR1W1Y4ZlRSBovfh516zJekWrlJRuBiB1Ijug1ZYPbtVY +oShnP/7caBJb78CHQiX74jFpL2yO/2LQ68iHj/FeXnTbLtw78s052pmPofFT +tuprd8DTRuh65RY+Prf0XNHYuxlPjKRfbnfl42tE/BaZMQfIz57d93sbH+qW +P2N7pe1wUFhH7oo7H21tW/LT9VfhZZ+xuakHHzLG5fIHzxnjPw2YIaM= + "]]}, + Annotation[#, "Charting`Private`Tag$8964#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, - Frame->{{True, True}, {True, True}}, + Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ - "DefaultMeshStyle" -> Automatic, "GridLinesInFront" -> True, - "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, - "AxesInFront" -> True}, - PlotRange->{All, All}, + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 1.148}, {0., 0.16104802521213}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { - Scaled[0.02], - Scaled[0.02]}}, + Scaled[0.05], + Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", - CellChangeTimes->{{3.857790326376232*^9, 3.857790371760695*^9}, - 3.8577912617645617`*^9, {3.857791601138686*^9, 3.857791647292798*^9}, - 3.857793207906136*^9, 3.8577932784582577`*^9, 3.857799952996063*^9, - 3.858849758989471*^9, 3.8673872033934526`*^9, 3.867392578825694*^9, - 3.867399193184537*^9, {3.8673993021765738`*^9, 3.867399322064127*^9}}, - CellLabel->"Out[10]=",ExpressionUUID->"85a2d28b-ab9a-4905-9bf4-82b4db4297e8"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"(", - RowBox[{"uf", "@@", - RowBox[{"Most", "[", "prep2", "]"}]}], ")"}], "[", - RowBox[{"1", ",", "\[Theta]"}], "]"}]], "Input", - CellChangeTimes->{{3.85779358958924*^9, 3.8577935913652163`*^9}}, - CellLabel->"In[38]:=",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - RowBox[{"-", "0.172824`"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1.9827634441176143`"}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"0.989667`", "\[VeryThinSpace]", "-", - RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}]}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"0.989667`", "\[VeryThinSpace]", "+", - RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}]}], ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "-", - RowBox[{"0.310183`", " ", - SuperscriptBox["\[Theta]", "2"]}], "+", - RowBox[{"0.247454`", " ", - SuperscriptBox["\[Theta]", "4"]}], "-", - RowBox[{"0.0036379842860216702`", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1.8426784734295618`"}], "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["0.19653478447668765`", - RowBox[{ - RowBox[{"-", "1.14841`"}], "-", "\[Theta]"}]]}]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1.14841`"}], "-", "\[Theta]"}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["0.19653478447668765`", - RowBox[{ - RowBox[{"-", "1.14841`"}], "-", "\[Theta]"}]], "]"}]}]}], ")"}]}], - "-", - RowBox[{"0.0036379842860216702`", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1.8426784734295618`"}], "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["0.19653478447668765`", - RowBox[{ - RowBox[{"-", "1.14841`"}], "+", "\[Theta]"}]]}]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1.14841`"}], "+", "\[Theta]"}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["0.19653478447668765`", - RowBox[{ - RowBox[{"-", "1.14841`"}], "+", "\[Theta]"}]], "]"}]}]}], - ")"}]}]}]], "Output", - CellChangeTimes->{{3.8577935448317623`*^9, 3.857793591563696*^9}, - 3.857799954963155*^9, 3.858849759739835*^9, 3.867387206768237*^9, - 3.867392580100976*^9}, - CellLabel->"Out[38]=",ExpressionUUID->"e7286934-338d-4dca-a6d6-10f11548d20b"] + CellChangeTimes->{{3.85779130533657*^9, 3.8577913091623983`*^9}, + 3.857793276120146*^9, 3.857799951294331*^9, 3.8588497581844807`*^9, + 3.867387198268334*^9, 3.86739257677225*^9, 3.867399192185546*^9, + 3.867807033499033*^9, 3.8705036390135803`*^9}, + CellLabel->"Out[6]=",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"] }, Open ]], Cell[CellGroupData[{ @@ -2934,405 +1171,6 @@ V+/R6xksIBmXGzxuF2Jh6mbOpWhjnPkewZRADKRpNaa/NltACkYv6swpUaAn CellLabel->"Out[39]=",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"] }, Open ]], -Cell[BoxData[ - RowBox[{ - RowBox[{"test", "=", - RowBox[{ - RowBox[{ - RowBox[{"DufDut", "[", - RowBox[{ - "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",", - RowBox[{"{", "}"}], ",", - RowBox[{"{", - RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], "[", "2", "]"}], "[", - RowBox[{"R", ",", "\[Theta]"}], "]"}]}], ";"}]], "Input", - CellChangeTimes->{{3.857794485726139*^9, 3.8577945302700653`*^9}, { - 3.857794587583695*^9, 3.8577945880472517`*^9}, {3.857795457439773*^9, - 3.857795485439518*^9}, {3.857795618698229*^9, 3.857795618786149*^9}, - 3.857795708619981*^9, {3.857795871030658*^9, 3.857795877569642*^9}, { - 3.857801114854151*^9, 3.857801121726325*^9}, 3.857801663786502*^9, { - 3.858849847281784*^9, 3.8588498617377768`*^9}, {3.8588511148250217`*^9, - 3.858851126714478*^9}, {3.858851205810751*^9, 3.85885120581146*^9}, - 3.85885146277564*^9}, - CellLabel->"In[10]:=",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Series", "[", - RowBox[{"test", ",", - RowBox[{"{", - RowBox[{"\[Theta]", ",", "0", ",", "0"}], "}"}], ",", - RowBox[{"Assumptions", "->", - RowBox[{"{", - RowBox[{ - RowBox[{"R", ">", "0"}], ",", - RowBox[{"\[Theta]0", ">", "0"}], ",", - RowBox[{ - RowBox[{"g", "[", "0", "]"}], ">", "1"}]}], "}"}]}]}], "]"}]], "Input",\ - - CellChangeTimes->{{3.857794589623781*^9, 3.857794596335291*^9}, { - 3.857795427006524*^9, 3.857795440446805*^9}, 3.8577962389098873`*^9, - 3.857801064357966*^9, {3.8588511121776543`*^9, 3.858851141707258*^9}, - 3.858851460264333*^9}, - CellLabel->"In[11]:=",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"], - -Cell[BoxData[ - InterpretationBox[ - RowBox[{ - FractionBox[ - RowBox[{"45", "-", - RowBox[{"8", " ", - RowBox[{"Log", "[", - RowBox[{ - SuperscriptBox["\[Theta]", "2"], " ", - SuperscriptBox[ - RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}], "+", - RowBox[{"16", " ", - RowBox[{"Log", "[", - RowBox[{ - SuperscriptBox["R", - RowBox[{"15", "/", "4"}]], " ", - SuperscriptBox["\[Theta]", "2"], " ", - SuperscriptBox[ - RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}]}], - RowBox[{"120", " ", "\[Pi]"}]], "+", - InterpretationBox[ - SuperscriptBox[ - RowBox[{"O", "[", "\[Theta]", "]"}], "1"], - SeriesData[$CellContext`\[Theta], 0, {}, 0, 1, 1], - Editable->False]}], - SeriesData[$CellContext`\[Theta], 0, { - Rational[1, 120] - Pi^(-1) (45 - 8 Log[$CellContext`\[Theta]^2 IsingScalingFunction`g[0]^2] + - 16 Log[$CellContext`R^Rational[15, 4] $CellContext`\[Theta]^2 - IsingScalingFunction`g[0]^2])}, 0, 1, 1], - Editable->False]], "Output", - CellChangeTimes->{ - 3.857794613859312*^9, {3.8577954191240473`*^9, 3.8577954879568157`*^9}, - 3.857795607947109*^9, 3.857795641907249*^9, {3.857795846772442*^9, - 3.8577958986806803`*^9}, 3.857796259719755*^9, {3.8578010619941587`*^9, - 3.857801086738715*^9}, 3.8578011236295357`*^9, 3.8578020831196413`*^9, - 3.858849768101416*^9, 3.858849849927265*^9, 3.8588498882662687`*^9, { - 3.858851116580223*^9, 3.858851124971182*^9}, 3.858851163937449*^9, - 3.8588512104999847`*^9, 3.858851461109468*^9, 3.8588515200472*^9, - 3.8588516053495693`*^9, 3.858851645594129*^9, 3.867387230042351*^9}, - CellLabel->"Out[11]=",ExpressionUUID->"b14ef501-bb22-4221-909a-74857a964dbd"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Series", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"DScriptF0D\[Eta]List", "[", - RowBox[{ - "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",", - RowBox[{"{", "}"}], ",", - RowBox[{"{", - RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], "[", - RowBox[{"2", ",", "\[Theta]"}], "]"}], "[", - RowBox[{"[", - RowBox[{"-", "1"}], "]"}], "]"}], ",", - RowBox[{"{", - RowBox[{"\[Theta]", ",", "0", ",", "0"}], "}"}], ",", - RowBox[{"Assumptions", "->", - RowBox[{"{", - RowBox[{ - RowBox[{"R", ">", "0"}], ",", - RowBox[{"\[Theta]0", ">", "0"}], ",", - RowBox[{ - RowBox[{"g", "[", "0", "]"}], ">", "1"}]}], "}"}]}]}], "]"}]], "Input",\ - - CellChangeTimes->{{3.867392252744265*^9, 3.867392308104785*^9}, { - 3.867392401627043*^9, 3.86739242170674*^9}}, - CellLabel->"In[30]:=",ExpressionUUID->"564592fe-1f79-46a8-bf0c-12430c5a848d"], - -Cell[BoxData[ - InterpretationBox[ - RowBox[{ - FractionBox[ - RowBox[{"45", "-", - RowBox[{"8", " ", - RowBox[{"Log", "[", - RowBox[{ - SuperscriptBox["\[Theta]", "2"], " ", - SuperscriptBox[ - RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}]}], - RowBox[{"120", " ", "\[Pi]"}]], "+", - InterpretationBox[ - SuperscriptBox[ - RowBox[{"O", "[", "\[Theta]", "]"}], "1"], - SeriesData[$CellContext`\[Theta], 0, {}, 0, 1, 1], - Editable->False]}], - SeriesData[$CellContext`\[Theta], 0, { - Rational[1, 120] - Pi^(-1) (45 - 8 - Log[$CellContext`\[Theta]^2 IsingScalingFunction`g[0]^2])}, 0, 1, 1], - Editable->False]], "Output", - CellChangeTimes->{{3.867392275309338*^9, 3.867392325117755*^9}, - 3.867392402170586*^9, 3.867392436325769*^9}, - CellLabel->"Out[30]=",ExpressionUUID->"a64bfe21-ffa8-4116-9178-4a9bd1ff53e8"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"8", "/", "60"}]], "Input", - CellChangeTimes->{{3.8588515122487593`*^9, 3.858851514504118*^9}}, - CellLabel->"In[12]:=",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"], - -Cell[BoxData[ - FractionBox["2", "15"]], "Output", - CellChangeTimes->{3.858851520077345*^9, 3.8673872300867767`*^9}, - CellLabel->"Out[12]=",ExpressionUUID->"ad62f5d9-ff96-4126-bac4-f13c7cefde52"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"16", "/", "120"}]], "Input", - CellChangeTimes->{{3.858851523424665*^9, 3.858851524816543*^9}}, - CellLabel->"In[13]:=",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"], - -Cell[BoxData[ - FractionBox["2", "15"]], "Output", - CellChangeTimes->{3.8588515254659557`*^9, 3.867387230110116*^9}, - CellLabel->"Out[13]=",ExpressionUUID->"e1ce7d09-44f9-4c6c-a067-9b21492174d3"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"96", " ", - SuperscriptBox["B", "2"], " ", - SuperscriptBox["\[Theta]0", "3"], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"7", "/", "6"}]], " ", - RowBox[{"Log", "[", - RowBox[{ - SuperscriptBox["\[Theta]", "2"], " ", - SuperscriptBox[ - RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}], " ", - SuperscriptBox["\[Theta]", "2"]}], ",", - RowBox[{"{", - RowBox[{"\[Theta]", ",", "2"}], "}"}]}], "]"}]], "Input", - CellChangeTimes->{{3.858851275396508*^9, 3.858851299116581*^9}}, - CellLabel->"In[38]:=",ExpressionUUID->"772ae4ea-2c0e-47ab-b71c-c3d75bfbcf38"], - -Cell[BoxData[ - RowBox[{ - RowBox[{"576", " ", - SuperscriptBox["B", "2"], " ", - SuperscriptBox["\[Theta]0", "3"], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"7", "/", "6"}]]}], "+", - RowBox[{"192", " ", - SuperscriptBox["B", "2"], " ", - SuperscriptBox["\[Theta]0", "3"], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"7", "/", "6"}]], " ", - RowBox[{"Log", "[", - RowBox[{ - SuperscriptBox["\[Theta]", "2"], " ", - SuperscriptBox[ - RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}]}]], "Output", - CellChangeTimes->{{3.858851283265959*^9, 3.858851299278167*^9}}, - CellLabel->"Out[38]=",ExpressionUUID->"2382e905-c55d-4fe5-a155-2e47ebb339a1"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Series", "[", - RowBox[{"test", ",", - RowBox[{"{", - RowBox[{"\[Theta]", ",", "\[Theta]0", ",", "0"}], "}"}], ",", - RowBox[{"Assumptions", "->", - RowBox[{"{", - RowBox[{ - RowBox[{"R", ">", "0"}], ",", - RowBox[{"\[Theta]0", ">", "0"}], ",", - RowBox[{ - RowBox[{"g", "[", "0", "]"}], ">", "1"}]}], "}"}]}]}], "]"}]], "Input",\ - - CellChangeTimes->{{3.858850469422965*^9, 3.8588504784292717`*^9}}, - CellLabel->"In[26]:=",ExpressionUUID->"6125225e-666f-4c16-afa0-2771438e275a"], - -Cell[BoxData["$Aborted"], "Output", - CellChangeTimes->{{3.85885047612123*^9, 3.858850496890915*^9}, - 3.858850586242086*^9}, - CellLabel->"Out[26]=",ExpressionUUID->"36e624ac-a319-4213-9012-0eee8ede07d1"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"uf", "[", - RowBox[{ - "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",", - RowBox[{"{", "}"}]}], "]"}], "[", - RowBox[{"R", ",", "\[Theta]"}], "]"}]], "Input", - CellChangeTimes->{{3.867391939682372*^9, 3.867391982506528*^9}}, - CellLabel->"In[23]:=",ExpressionUUID->"8a72abe3-fe5f-4db1-bdff-5188d3d18d6e"], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - SuperscriptBox["R", "2"], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"CYL", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", - SuperscriptBox["\[Theta]YL", - RowBox[{"5", "/", "6"}]]}], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", - "\[Theta]YL"}], ")"}], - RowBox[{"5", "/", "6"}]], "+", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", "\[Theta]YL"}], - ")"}], - RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}]], - " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], - "]"}]}], "+", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], "\[Pi]"], - "+", - FractionBox[ - RowBox[{"C0", " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ", - RowBox[{"ExpIntegralEi", "[", - FractionBox["1", - RowBox[{"B", " ", - RowBox[{"(", - RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], "+", - - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", - RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], - "\[Pi]"]}], ")"}]}], "+", - FractionBox[ - RowBox[{ - SuperscriptBox["R", "2"], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "1"}], "+", - SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ", - RowBox[{"Log", "[", - SuperscriptBox["R", "2"], "]"}]}], - RowBox[{"8", " ", "\[Pi]"}]]}]], "Output", - CellChangeTimes->{{3.8673919604421053`*^9, 3.8673919827729807`*^9}}, - CellLabel->"Out[23]=",ExpressionUUID->"55f9a443-3a9c-4c58-b340-624c596abd0b"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Series", "[", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", - FractionBox["1", - SuperscriptBox[ - RowBox[{ - RowBox[{"g", "[", - RowBox[{"\[Theta]0", ",", - RowBox[{"{", - RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], "[", "\[Theta]", - "]"}], - RowBox[{"2", "/", "\[CapitalDelta]"}]]]}], ")"}], ",", - RowBox[{"{", - RowBox[{"\[Theta]", ",", "0", ",", "1"}], "}"}], ",", - RowBox[{"Assumptions", "->", - RowBox[{"{", - RowBox[{"\[Theta]", ">", "0"}], "}"}]}]}], "]"}]], "Input", - CellChangeTimes->{{3.858852235030468*^9, 3.858852278182721*^9}}, - CellLabel->"In[55]:=",ExpressionUUID->"8ba93997-a470-457b-9874-6c8096818135"], - -Cell[BoxData[ - RowBox[{"1", "+", - RowBox[{ - SuperscriptBox["\[Theta]", - RowBox[{ - RowBox[{"-", "2"}], "/", "\[CapitalDelta]"}]], " ", - RowBox[{"(", - InterpretationBox[ - RowBox[{ - RowBox[{"-", - SuperscriptBox[ - RowBox[{"g", "[", "0", "]"}], - RowBox[{ - RowBox[{"-", "2"}], "/", "\[CapitalDelta]"}]]}], "+", - InterpretationBox[ - SuperscriptBox[ - RowBox[{"O", "[", "\[Theta]", "]"}], "2"], - SeriesData[$CellContext`\[Theta], 0, {}, 0, 2, 1], - Editable->False]}], - SeriesData[$CellContext`\[Theta], - 0, {-IsingScalingFunction`g[0]^((-2)/$CellContext`\[CapitalDelta])}, 0, - 2, 1], - Editable->False], ")"}]}]}]], "Output", - CellChangeTimes->{3.8588522786443157`*^9}, - CellLabel->"Out[55]=",ExpressionUUID->"b6a790f8-ee2e-4fd5-8d78-21f66e34e2a1"] -}, Open ]], - Cell[CellGroupData[{ Cell[BoxData[ @@ -11463,8 +9301,8 @@ Cell[BoxData[ CellLabel->"Out[9]=",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"] }, Open ]] }, -WindowSize->{1915.5, 1019.25}, -WindowMargins->{{0, Automatic}, {3, Automatic}}, +WindowSize->{1914., 1019.25}, +WindowMargins->{{0.75, Automatic}, {3, Automatic}}, FrontEndVersion->"13.1 for Linux x86 (64-bit) (June 16, 2022)", StyleDefinitions->"Default.nb", ExpressionUUID->"3a2ec9ae-362f-42b0-9bfc-c766461c7128" @@ -11481,120 +9319,85 @@ CellTagsIndex->{} (*NotebookFileOutline Notebook[{ Cell[558, 20, 290, 7, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"], -Cell[851, 29, 209, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], -Cell[CellGroupData[{ -Cell[1085, 36, 829, 21, 22, "Input",ExpressionUUID->"874f84cd-149c-43b3-8711-b9fd0129e036"], -Cell[1917, 59, 1110, 24, 25, "Output",ExpressionUUID->"2569ec7f-06f8-4d96-90ad-f6881e3c95ff"] -}, Open ]], -Cell[CellGroupData[{ -Cell[3064, 88, 1076, 29, 22, "Input",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"], -Cell[4143, 119, 918, 18, 25, "Output",ExpressionUUID->"d356300d-fbd5-438e-842f-b2e2d92bd3a0"] -}, Open ]], -Cell[CellGroupData[{ -Cell[5098, 142, 823, 17, 24, "Input",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"], -Cell[5924, 161, 20093, 347, 162, "Output",ExpressionUUID->"1beeabe4-ee06-48f6-86f2-eb131e832f9d"] -}, Open ]], -Cell[CellGroupData[{ -Cell[26054, 513, 606, 16, 22, "Input",ExpressionUUID->"516a4819-1b7b-40d4-a8ad-e2086998c231"], -Cell[26663, 531, 7198, 136, 175, "Output",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"] -}, Open ]], -Cell[CellGroupData[{ -Cell[33898, 672, 199, 3, 22, "Input",ExpressionUUID->"58adee79-610c-4fdb-8124-fbf6f3d2f4f7"], -Cell[34100, 677, 147, 2, 25, "Output",ExpressionUUID->"76f32142-c2e3-4b66-9e61-ffed298db318"] -}, Open ]], -Cell[CellGroupData[{ -Cell[34284, 684, 505, 13, 22, "Input",ExpressionUUID->"4534127d-b193-401a-b594-a6abec8f7edb"], -Cell[34792, 699, 30824, 838, 1017, "Output",ExpressionUUID->"1d11593c-279f-48a7-b332-deeff602eead"] -}, Open ]], -Cell[CellGroupData[{ -Cell[65653, 1542, 1533, 38, 24, "Input",ExpressionUUID->"7b4a2b19-eb62-4fb5-9666-a81b70aa0106"], -Cell[67189, 1582, 12878, 342, 472, "Output",ExpressionUUID->"49d3eb26-ffe6-47e7-8e76-81dd108d6570"] -}, Open ]], -Cell[CellGroupData[{ -Cell[80104, 1929, 13821, 355, 496, "Input",ExpressionUUID->"df04d6a6-7870-45a4-a6f0-74b19e0194f0"], -Cell[93928, 2286, 545, 13, 43, "Output",ExpressionUUID->"911979f9-954d-47ec-b0a6-8c3dacdfaa49"] -}, Open ]], -Cell[94488, 2302, 402, 11, 22, "Input",ExpressionUUID->"626c9442-a5ca-460d-9253-fd9b4c2f2227"], -Cell[CellGroupData[{ -Cell[94915, 2317, 560, 12, 22, "Input",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"], -Cell[95478, 2331, 14364, 251, 283, "Output",ExpressionUUID->"85a2d28b-ab9a-4905-9bf4-82b4db4297e8"] -}, Open ]], +Cell[851, 29, 210, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], Cell[CellGroupData[{ -Cell[109879, 2587, 316, 7, 22, "Input",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"], -Cell[110198, 2596, 2173, 60, 41, "Output",ExpressionUUID->"e7286934-338d-4dca-a6d6-10f11548d20b"] +Cell[1086, 36, 246, 4, 22, "Input",ExpressionUUID->"83b24d73-7cfc-4a2f-a727-53c609f967fd"], +Cell[1335, 42, 621, 15, 25, "Output",ExpressionUUID->"db6d0977-ebec-4f64-a895-b2176143e8b2"] }, Open ]], Cell[CellGroupData[{ -Cell[112408, 2661, 526, 13, 22, "Input",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"], -Cell[112937, 2676, 14567, 257, 179, "Output",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"] +Cell[1993, 62, 295, 5, 22, "Input",ExpressionUUID->"23bc2248-ea2c-498f-be5b-40dd4156709e"], +Cell[2291, 69, 241, 4, 25, "Output",ExpressionUUID->"108b1754-01ba-4ac1-8b36-cfe5355222e2"] }, Open ]], -Cell[127519, 2936, 999, 20, 22, "Input",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"], Cell[CellGroupData[{ -Cell[128543, 2960, 700, 17, 24, "Input",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"], -Cell[129246, 2979, 1737, 40, 48, "Output",ExpressionUUID->"b14ef501-bb22-4221-909a-74857a964dbd"] +Cell[2569, 78, 829, 21, 22, "Input",ExpressionUUID->"874f84cd-149c-43b3-8711-b9fd0129e036"], +Cell[3401, 101, 1110, 24, 25, "Output",ExpressionUUID->"2569ec7f-06f8-4d96-90ad-f6881e3c95ff"] }, Open ]], Cell[CellGroupData[{ -Cell[131020, 3024, 948, 26, 24, "Input",ExpressionUUID->"564592fe-1f79-46a8-bf0c-12430c5a848d"], -Cell[131971, 3052, 874, 24, 48, "Output",ExpressionUUID->"a64bfe21-ffa8-4116-9178-4a9bd1ff53e8"] +Cell[4548, 130, 1122, 29, 22, "Input",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"], +Cell[5673, 161, 918, 18, 25, "Output",ExpressionUUID->"d356300d-fbd5-438e-842f-b2e2d92bd3a0"] }, Open ]], Cell[CellGroupData[{ -Cell[132882, 3081, 197, 3, 22, "Input",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"], -Cell[133082, 3086, 194, 3, 39, "Output",ExpressionUUID->"ad62f5d9-ff96-4126-bac4-f13c7cefde52"] +Cell[6628, 184, 954, 19, 24, "Input",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"], +Cell[7585, 205, 17997, 314, 164, "Output",ExpressionUUID->"7d82a994-0e66-45e2-9f9d-23085d92d885"] }, Open ]], Cell[CellGroupData[{ -Cell[133313, 3094, 197, 3, 22, "Input",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"], -Cell[133513, 3099, 194, 3, 39, "Output",ExpressionUUID->"e1ce7d09-44f9-4c6c-a067-9b21492174d3"] +Cell[25619, 524, 878, 26, 25, "Input",ExpressionUUID->"d0b98ea5-26fd-48d2-9fd3-094018a22423"], +Cell[26500, 552, 377, 9, 22, "Message",ExpressionUUID->"54591efa-3e06-4780-a52d-356be312bb3b"], +Cell[26880, 563, 1835, 50, 58, "Output",ExpressionUUID->"3e64dfbd-1d75-4bd6-b63e-4e5bec743e80"] }, Open ]], +Cell[28730, 616, 1735, 47, 25, "Input",ExpressionUUID->"27f70f50-5ebf-4a6d-94af-1a6bfe816e28"], Cell[CellGroupData[{ -Cell[133744, 3107, 651, 17, 25, "Input",ExpressionUUID->"772ae4ea-2c0e-47ab-b71c-c3d75bfbcf38"], -Cell[134398, 3126, 678, 18, 28, "Output",ExpressionUUID->"2382e905-c55d-4fe5-a155-2e47ebb339a1"] +Cell[30490, 667, 523, 13, 22, "Input",ExpressionUUID->"8965277f-d2d2-40c8-b8ca-7816448c9503"], +Cell[31016, 682, 794, 15, 22, "Message",ExpressionUUID->"a3d42e0f-bd1e-49b1-8d2a-a9faf8854a08"], +Cell[31813, 699, 368, 7, 25, "Output",ExpressionUUID->"0e650aa6-b018-45af-8c81-ff1b91e82c5a"] }, Open ]], Cell[CellGroupData[{ -Cell[135113, 3149, 536, 14, 24, "Input",ExpressionUUID->"6125225e-666f-4c16-afa0-2771438e275a"], -Cell[135652, 3165, 205, 3, 25, "Output",ExpressionUUID->"36e624ac-a319-4213-9012-0eee8ede07d1"] +Cell[32218, 711, 608, 17, 25, "Input",ExpressionUUID->"6c1d3718-7a8d-41a6-98ea-98fe3318bcfa"], +Cell[32829, 730, 235, 4, 25, "Output",ExpressionUUID->"8b0315bf-6d61-4278-a829-dedfe692066f"] }, Open ]], Cell[CellGroupData[{ -Cell[135894, 3173, 366, 8, 22, "Input",ExpressionUUID->"8a72abe3-fe5f-4db1-bdff-5188d3d18d6e"], -Cell[136263, 3183, 3306, 98, 91, "Output",ExpressionUUID->"55f9a443-3a9c-4c58-b340-624c596abd0b"] +Cell[33101, 739, 606, 16, 22, "Input",ExpressionUUID->"516a4819-1b7b-40d4-a8ad-e2086998c231"], +Cell[33710, 757, 7198, 136, 175, "Output",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"] }, Open ]], Cell[CellGroupData[{ -Cell[139606, 3286, 728, 20, 39, "Input",ExpressionUUID->"8ba93997-a470-457b-9874-6c8096818135"], -Cell[140337, 3308, 847, 24, 28, "Output",ExpressionUUID->"b6a790f8-ee2e-4fd5-8d78-21f66e34e2a1"] +Cell[40945, 898, 526, 13, 22, "Input",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"], +Cell[41474, 913, 14567, 257, 179, "Output",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"] }, Open ]], Cell[CellGroupData[{ -Cell[141221, 3337, 1501, 38, 22, "Input",ExpressionUUID->"47f1d4ba-afc2-44f3-aeb8-a071f0e8c4f9"], -Cell[142725, 3377, 574, 12, 32, "Message",ExpressionUUID->"a415b118-1097-4155-84e3-609dd9a85a38"], -Cell[143302, 3391, 614, 13, 22, "Message",ExpressionUUID->"8871feea-390b-4d51-8323-ededa45e1a08"], -Cell[143919, 3406, 574, 12, 32, "Message",ExpressionUUID->"d90fd7e9-775c-4fd4-8a1d-aa407ff8abe4"], -Cell[144496, 3420, 576, 12, 32, "Message",ExpressionUUID->"e5d7a12d-1671-4c8c-989b-ec0f9f4c67a0"], -Cell[145075, 3434, 652, 13, 22, "Message",ExpressionUUID->"bdad9088-50c1-4d40-ad09-4fbb47c24899"], -Cell[145730, 3449, 614, 13, 22, "Message",ExpressionUUID->"4c080a0f-6df2-46f1-bc2d-7a054fb75363"], -Cell[146347, 3464, 616, 13, 22, "Message",ExpressionUUID->"cbf1491d-6d6b-408a-9961-e6e37a65a0a6"], -Cell[146966, 3479, 656, 13, 22, "Message",ExpressionUUID->"c77564c1-0ba4-4c7f-959b-735db191f7a0"] +Cell[56078, 1175, 1501, 38, 22, "Input",ExpressionUUID->"47f1d4ba-afc2-44f3-aeb8-a071f0e8c4f9"], +Cell[57582, 1215, 574, 12, 32, "Message",ExpressionUUID->"a415b118-1097-4155-84e3-609dd9a85a38"], +Cell[58159, 1229, 614, 13, 22, "Message",ExpressionUUID->"8871feea-390b-4d51-8323-ededa45e1a08"], +Cell[58776, 1244, 574, 12, 32, "Message",ExpressionUUID->"d90fd7e9-775c-4fd4-8a1d-aa407ff8abe4"], +Cell[59353, 1258, 576, 12, 32, "Message",ExpressionUUID->"e5d7a12d-1671-4c8c-989b-ec0f9f4c67a0"], +Cell[59932, 1272, 652, 13, 22, "Message",ExpressionUUID->"bdad9088-50c1-4d40-ad09-4fbb47c24899"], +Cell[60587, 1287, 614, 13, 22, "Message",ExpressionUUID->"4c080a0f-6df2-46f1-bc2d-7a054fb75363"], +Cell[61204, 1302, 616, 13, 22, "Message",ExpressionUUID->"cbf1491d-6d6b-408a-9961-e6e37a65a0a6"], +Cell[61823, 1317, 656, 13, 22, "Message",ExpressionUUID->"c77564c1-0ba4-4c7f-959b-735db191f7a0"] }, Open ]], Cell[CellGroupData[{ -Cell[147659, 3497, 356, 5, 22, "Input",ExpressionUUID->"c6e27107-d1c1-4def-bce7-5bfc77efa117"], -Cell[148018, 3504, 431003, 7099, 264, 351059, 5788, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"65425ede-668b-4584-b959-e541ddaed240"] +Cell[62516, 1335, 356, 5, 22, "Input",ExpressionUUID->"c6e27107-d1c1-4def-bce7-5bfc77efa117"], +Cell[62875, 1342, 431003, 7099, 264, 351059, 5788, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"65425ede-668b-4584-b959-e541ddaed240"] }, Open ]], Cell[CellGroupData[{ -Cell[579058, 10608, 474, 12, 22, "Input",ExpressionUUID->"d91d527e-9cac-4ce1-9ae6-5ff3208121a2"], -Cell[579535, 10622, 4330, 89, 171, "Output",ExpressionUUID->"559d6958-bbd1-42f4-b122-f3904597675f"] +Cell[493915, 8446, 474, 12, 22, "Input",ExpressionUUID->"d91d527e-9cac-4ce1-9ae6-5ff3208121a2"], +Cell[494392, 8460, 4330, 89, 171, "Output",ExpressionUUID->"559d6958-bbd1-42f4-b122-f3904597675f"] }, Open ]], Cell[CellGroupData[{ -Cell[583902, 10716, 1771, 32, 24, "Input",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"], -Cell[585676, 10750, 14400, 247, 630, "Output",ExpressionUUID->"a6b30fc2-c088-4262-94f2-edcc475c95da"] +Cell[498759, 8554, 1771, 32, 24, "Input",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"], +Cell[500533, 8588, 14400, 247, 630, "Output",ExpressionUUID->"a6b30fc2-c088-4262-94f2-edcc475c95da"] }, Open ]], -Cell[600091, 11000, 162, 3, 22, "Input",ExpressionUUID->"536d20a8-587f-4cd2-8d38-d67784bf6d33"], +Cell[514948, 8838, 162, 3, 22, "Input",ExpressionUUID->"536d20a8-587f-4cd2-8d38-d67784bf6d33"], Cell[CellGroupData[{ -Cell[600278, 11007, 347, 7, 24, "Input",ExpressionUUID->"91e758ec-72b9-4894-b62d-8872e6b4ee42"], -Cell[600628, 11016, 369, 7, 28, "Output",ExpressionUUID->"7ebcdde0-d788-47fa-bc62-df9697e7a7a4"] +Cell[515135, 8845, 347, 7, 24, "Input",ExpressionUUID->"91e758ec-72b9-4894-b62d-8872e6b4ee42"], +Cell[515485, 8854, 369, 7, 28, "Output",ExpressionUUID->"7ebcdde0-d788-47fa-bc62-df9697e7a7a4"] }, Open ]], Cell[CellGroupData[{ -Cell[601034, 11028, 1225, 20, 24, "Input",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"], -Cell[602262, 11050, 4606, 106, 179, "Output",ExpressionUUID->"9cd66a8a-65ca-4fb7-ba2c-0e30d1efdb75"] +Cell[515891, 8866, 1225, 20, 24, "Input",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"], +Cell[517119, 8888, 4606, 106, 179, "Output",ExpressionUUID->"9cd66a8a-65ca-4fb7-ba2c-0e30d1efdb75"] }, Open ]], Cell[CellGroupData[{ -Cell[606905, 11161, 1327, 21, 24, "Input",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"], -Cell[608235, 11184, 11492, 278, 179, "Output",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"] +Cell[521762, 8999, 1327, 21, 24, "Input",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"], +Cell[523092, 9022, 11492, 278, 179, "Output",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"] }, Open ]] } ] -- cgit v1.2.3-70-g09d2