From 1b15f980bc16ef3abeb456fe214584f80bff88eb Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Tue, 12 Oct 2021 16:19:15 +0200 Subject: Removed appendix. --- ising_scaling.tex | 37 ------------------------------------- 1 file changed, 37 deletions(-) diff --git a/ising_scaling.tex b/ising_scaling.tex index e6e559e..2c540e6 100644 --- a/ising_scaling.tex +++ b/ising_scaling.tex @@ -778,41 +778,4 @@ The successful smooth description of the Ising free energy produced in part by a \bibliography{ising_scaling} -\appendix - -\section{Legendre series to power series} - -In the work, we examine a series of the form -\[ - h(\theta)=\left(1-\frac{\theta^2}{\theta_c^2}\right)\sum_{i=0}^\infty h_iP_{2i+1}(\theta/\theta_c), -\] -where $P_n$ is the $n$th Legendre polynomial. This form is useful for iteratively fitting the $h_i$, since these polynomials are orthogonal on the domain $[-\theta_c,\theta_c]$, but is not useful for evaluating the convergence of the function. For this a simple power expansion in $\theta$ is better. To make the conversion, first recall that -\[ - P_n(x)=2^n\sum_{k=0}^n\binom nk\binom{\frac{n+k-1}2}nx^k -\] -\[ - \begin{aligned} - \sum_{i=0}^\infty h_iP_{2i+1}(\theta/\theta_c) - &=\sum_{i=0}^\infty h_i2^{2i+1}\sum_{k=0}^{2i+1}\frac{\theta^k}{\theta_c^k}\binom{2i+1}k\binom{\frac{2i+k}2}{2i+1} \\ - &=\sum_{k=0}^\infty\theta^k\frac1{\theta_c^k}\sum_{i=(k-1)/2}^\infty h_i2^{2i+1}\binom{2i+1}k\binom{\frac{2i+k}2}{2i+1} \\ - &=\sum_{j=0}^\infty\theta^{2j+1}\frac1{\theta_c^{2j+1}}\sum_{i=j}^\infty h_i2^{2i+1}\binom{2i+1}{2j+1}\binom{\frac{2i+2j+1}2}{2i+1} - \end{aligned} -\] -We saw in our fitting that at higher order the coefficients $h_i$ approached roughly the pattern $h_i/h_{i-1}=-b+m/i$ for positive constants $b$ and $m$. This recurrence relation can be solved to give -\[ - h_i\simeq\frac{(-1)^i}{i!}b^{i-1}(b-m)h_0\frac{\Gamma(2-\frac mb+i-1)}{\Gamma(2-\frac mb)} -\] -\[ - \sum_{i=0}^\infty h_iP_{2i+1}(\theta/\theta_c) - =\sum_{j=0}^\infty\theta^{2j+1}\frac1{\theta_c^{2j+1}} - \frac{\Gamma(1+j-m/b)}{\Gamma(1-m/b)\Gamma(1+j)}2^{1+2j}(-b)^jh_0\binom{2j+\frac12}{2j+1}{}_2F_1(2j+\tfrac32,1+j-m/b;1+j;b) -\] -If we call this coefficient $H_j$, then -\[ - h(\theta)=\left(1-\frac{\theta^2}{\theta_c^2}\right)\sum_{i=0}^\infty H_i\theta^{2i+1} - =\sum_{i=0}^\infty H_i\theta^{2i+1}-\frac1{\theta_c^2}\sum_{i=0}^\infty H_i\theta^{2i+3} - =\sum_{i=0}^\infty(H_i-H_{i-1}/\theta_c^2)\theta^{2i+1} -\] -for $H_{-1}=0$. - \end{document} -- cgit v1.2.3-70-g09d2