From 3ec595d0e594e94b57db07feb6329a772d190cdf Mon Sep 17 00:00:00 2001
From: Jaron Kent-Dobias <jaron@kent-dobias.com>
Date: Thu, 8 Sep 2022 14:34:37 +0200
Subject: Small style changes, and title change.

---
 ising_scaling.tex | 12 ++++++++----
 1 file changed, 8 insertions(+), 4 deletions(-)

diff --git a/ising_scaling.tex b/ising_scaling.tex
index 210f63c..1933983 100644
--- a/ising_scaling.tex
+++ b/ising_scaling.tex
@@ -26,7 +26,7 @@ linkcolor=purple
 
 \begin{document}
 
-\title{Smooth and global Ising universal scaling functions}
+\title{Precision approximation of the universal scaling functions for the 2D Ising model in an external field}
 
 \author{Jaron Kent-Dobias}
 \affiliation{Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France}
@@ -133,10 +133,14 @@ $\Delta=\beta\delta=\frac{15}8$ will appear often. The flow equations are
 truncated here, but in general all terms allowed by the symmetries of the
 parameters are present on their righthand side. By making a near-identity
 transformation to the coordinates and the free energy of the form
-\begin{equation}
+\begin{align}
     \label{eq:AnalyticCOV}
-u_t(t,h)=t+\cdots, ~~~~u_h(t, h)=h+\cdots,~~~\mathrm{and}~u_f(f,u_t,u_h)\propto f(t,h)-f_a(t,h),
-\end{equation}
+  u_t(t,h)=t+\cdots
+  &&
+  u_h(t, h)=h+\cdots
+  &&
+  u_f(f,u_t,u_h)\propto f(t,h)-f_a(t,h),
+\end{align}
 one can bring
 the flow equations into the agreed upon simplest normal form
 \begin{align} \label{eq:flow}
-- 
cgit v1.2.3-70-g09d2