From 8695294031dc063e4eb901cb37269395846b3935 Mon Sep 17 00:00:00 2001
From: Jaron Kent-Dobias <jaron@kent-dobias.com>
Date: Wed, 19 Jan 2022 14:01:12 +0100
Subject: Finished moving PDF figures to EPS.

---
 ising_scaling.tex | 8 ++++----
 1 file changed, 4 insertions(+), 4 deletions(-)

diff --git a/ising_scaling.tex b/ising_scaling.tex
index 819ad16..210f63c 100644
--- a/ising_scaling.tex
+++ b/ising_scaling.tex
@@ -242,7 +242,7 @@ s=2^{1/12}e^{-1/8}A^{3/2}$, where $A$ is Glaisher's constant
 
 
 \begin{figure}
-  \includegraphics{figs/F_lower_singularities.pdf}
+  \includegraphics{figs/F_lower_singularities}
   \caption{
     Analytic structure of the low-temperature scaling function $\mathcal F_-$
     in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The circle
@@ -289,7 +289,7 @@ branch cuts beginning at $\pm i\xi_{\mathrm{YL}}$ for a universal constant
 $\xi_{\mathrm{YL}}$.
 
 \begin{figure}
-  \includegraphics{figs/F_higher_singularities.pdf}
+  \includegraphics{figs/F_higher_singularities}
   \caption{
     Analytic structure of the high-temperature scaling function $\mathcal F_+$
     in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The squares
@@ -491,7 +491,7 @@ $\theta$. Therefore,
 The location $\theta_0$ is not fixed by any principle.
 
 \begin{figure}
-  \includegraphics{figs/F_theta_singularities.pdf}
+  \includegraphics{figs/F_theta_singularities}
   \caption{
     Analytic structure of the global scaling function $\mathcal F$ in the
     complex $\theta$ plane. The circles depict essential singularities of the
@@ -548,7 +548,7 @@ Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes
 its real part up to an analytic even function $G(\theta)$, real for real $\theta$.
 
 \begin{figure}
-  \includegraphics{figs/contour_path.pdf}
+  \includegraphics{figs/contour_path}
   \caption{
     Integration contour over the global scaling function $\mathcal F$ in the
     complex $\theta$ plane used to produce the dispersion relation. The
-- 
cgit v1.2.3-70-g09d2