From 8695294031dc063e4eb901cb37269395846b3935 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Wed, 19 Jan 2022 14:01:12 +0100 Subject: Finished moving PDF figures to EPS. --- ising_scaling.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/ising_scaling.tex b/ising_scaling.tex index 819ad16..210f63c 100644 --- a/ising_scaling.tex +++ b/ising_scaling.tex @@ -242,7 +242,7 @@ s=2^{1/12}e^{-1/8}A^{3/2}$, where $A$ is Glaisher's constant \begin{figure} - \includegraphics{figs/F_lower_singularities.pdf} + \includegraphics{figs/F_lower_singularities} \caption{ Analytic structure of the low-temperature scaling function $\mathcal F_-$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The circle @@ -289,7 +289,7 @@ branch cuts beginning at $\pm i\xi_{\mathrm{YL}}$ for a universal constant $\xi_{\mathrm{YL}}$. \begin{figure} - \includegraphics{figs/F_higher_singularities.pdf} + \includegraphics{figs/F_higher_singularities} \caption{ Analytic structure of the high-temperature scaling function $\mathcal F_+$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The squares @@ -491,7 +491,7 @@ $\theta$. Therefore, The location $\theta_0$ is not fixed by any principle. \begin{figure} - \includegraphics{figs/F_theta_singularities.pdf} + \includegraphics{figs/F_theta_singularities} \caption{ Analytic structure of the global scaling function $\mathcal F$ in the complex $\theta$ plane. The circles depict essential singularities of the @@ -548,7 +548,7 @@ Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes its real part up to an analytic even function $G(\theta)$, real for real $\theta$. \begin{figure} - \includegraphics{figs/contour_path.pdf} + \includegraphics{figs/contour_path} \caption{ Integration contour over the global scaling function $\mathcal F$ in the complex $\theta$ plane used to produce the dispersion relation. The -- cgit v1.2.3-70-g09d2