(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 548992, 10652] NotebookOptionsPosition[ 543628, 10559] NotebookOutlinePosition[ 544025, 10575] CellTagsIndexPosition[ 543982, 10572] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}]], "Input", CellChangeTimes->{{3.857727143976652*^9, 3.857727184451297*^9}, { 3.872827316271285*^9, 3.8728273233104467`*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"], Cell[BoxData[ RowBox[{"<<", "IsingScalingFunction`"}]], "Input", CellChangeTimes->{{3.857727185315662*^9, 3.857727193227276*^9}}, CellLabel->"In[2]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], Cell[CellGroupData[{ Cell["Checking Convergence", "Section", CellChangeTimes->{{3.88717558687833*^9, 3.8871755894618473`*^9}},ExpressionUUID->"c6615333-57fa-470a-9d07-\ 45b7998853ef"], Cell[BoxData[ RowBox[{ RowBox[{"expansionData", "=", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"Rest", "@", RowBox[{ RowBox[{"(", RowBox[{"DScriptFPlusMinusD\[Xi]\[Theta]0List", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", "10", "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Rest", "@", RowBox[{ RowBox[{"(", RowBox[{"DScriptFPlusMinusD\[Xi]\[Theta]0List", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", "10", "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"DScriptMCasD\[Xi]List", "[", RowBox[{"10", ",", "\[Theta]0Cas"}], "]"}], RowBox[{"Table", "[", RowBox[{ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"m", "-", "1"}], ")"}], "!"}], RowBox[{"m", "!"}]], ",", RowBox[{"{", RowBox[{"m", ",", "1", ",", "11"}], "}"}]}], "]"}]}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.8886448431935587`*^9, 3.8886448702334423`*^9}, { 3.893236672936851*^9, 3.893236714190187*^9}}, CellLabel->"In[7]:=",ExpressionUUID->"80831edd-bcaa-4fc0-b1cf-e561a87ed645"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"lowExpansion", "=", RowBox[{"ListLogPlot", "[", RowBox[{ RowBox[{"Abs", "@", RowBox[{"Prepend", "[", RowBox[{ RowBox[{"N", "@", "expansionData"}], ",", RowBox[{"Rest", "@", "Gls"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\) acc. \ (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",", " ", "\"\<\!\(\*SuperscriptBox[\(10\), \(-7\)]\) acc. \ (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 6)\>\"", ",", " ", "\"\\"Italic\"]\)\!\(\*StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\ \*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "m", ",", "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"-\"], \ RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)(0)\>\""}], "}"}]}], ",", RowBox[{"AspectRatio", "->", "1"}], ",", RowBox[{"ImageSize", "->", "300"}], ",", RowBox[{"LabelStyle", "->", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"FontSize", "->", "14"}], ",", RowBox[{"FontFamily", "->", "Times"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.857749647216098*^9, 3.8577496994157143`*^9}, { 3.857749922049673*^9, 3.85774992576917*^9}, {3.8577499613439693`*^9, 3.857749992122797*^9}, 3.85775012053415*^9, {3.857750706878583*^9, 3.857750707403603*^9}, {3.857751644877963*^9, 3.857751657226074*^9}, { 3.8577517214782124`*^9, 3.857751736522636*^9}, {3.857752278605008*^9, 3.857752279401206*^9}, {3.857752310485083*^9, 3.857752324517762*^9}, { 3.857752360898025*^9, 3.857752363157537*^9}, {3.857753041193503*^9, 3.85775304373606*^9}, {3.857753117795965*^9, 3.8577531179827213`*^9}, { 3.85775377848352*^9, 3.8577537891272383`*^9}, {3.8577539046194077`*^9, 3.857753911831979*^9}, {3.8577541823791513`*^9, 3.857754190311756*^9}, { 3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9, 3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, { 3.857792220388947*^9, 3.857792221589129*^9}, {3.887175734000527*^9, 3.887175745176688*^9}, {3.887175776777956*^9, 3.887175890987341*^9}, { 3.887175927630155*^9, 3.887175941140204*^9}, {3.887175972652753*^9, 3.887175999053248*^9}, {3.8871760552145844`*^9, 3.887176082574828*^9}, { 3.8871762157611847`*^9, 3.8871762198011923`*^9}, {3.887177053185808*^9, 3.887177056768643*^9}, {3.887177274797546*^9, 3.887177275893218*^9}, { 3.887182861536953*^9, 3.887182887361492*^9}, {3.888644779680475*^9, 3.888644805864798*^9}, {3.888645052645789*^9, 3.888645082429496*^9}, { 3.8886469041838827`*^9, 3.888646906527582*^9}, {3.888651934772694*^9, 3.888651946156498*^9}, {3.8886519793259983`*^9, 3.888651979938348*^9}, { 3.888652017390772*^9, 3.888652019678075*^9}, {3.8886521205763397`*^9, 3.8886521472005053`*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"43cfc45b-1fff-4120-afd4-982fd6195a7d"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{{Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{3., -3.2476887336074802`}, {3., -3.247688656415082}}], LineBox[{{3., -3.247688656415082}, {3., -3.2476885792226895`}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{4., -2.682936452811683}, {4., -2.6829364235557143`}}], LineBox[{{4., -2.6829364235557143`}, { 4., -2.6829363942997464`}}]}}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{5., -1.6934518408101742`}, {5., -1.6934517864279734`}}], LineBox[{{5., -1.6934517864279734`}, { 5., -1.6934517320457758`}}]}}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{6., -0.41677183895602404`}, {6., -0.4167716872504016}}], LineBox[{{6., -0.4167716872504016}, {6., -0.4167715355448022}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{7., 1.077614026885801}, {7., 1.077615048105556}}], LineBox[{{7., 1.077615048105556}, {7., 1.0776160693242682`}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{8., 2.747270914255491}, {8., 2.7479117345273405`}}], LineBox[{{8., 2.7479117345273405`}, {8., 2.7485521444115397`}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{9., 4.572130331909891}, {9., 4.572233685741827}}], LineBox[{{9., 4.572233685741827}, {9., 4.572337028892852}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{10., 6.519147287940395}, {10., 6.520621127558696}}], LineBox[{{10., 6.520621127558696}, {10., 6.522092798170153}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{11., 8.58110651715989}, {11., 8.582980931954241}}], LineBox[{{11., 8.582980931954241}, {11., 8.584851839890053}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{12., 10.747207591575448`}, {12., 10.749355820113736`}}], LineBox[{{12., 10.749355820113736`}, {12., 10.751499443656988`}}]}}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{13., 13.005829561148378`}, {13., 13.008074231002201`}}], LineBox[{{13., 13.008074231002201`}, {13., 13.010313873595706`}}]}}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{14., 15.35237777756354}, {14., 15.354526006101828`}}], LineBox[{{14., 15.354526006101828`}, {14., 15.35666962964508}}]}}}}, {{{Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{3., -3.2476885792226895`}, Offset[{3, 0}, {3., -3.2476885792226895`}]}, {{ 3., -3.2476885792226895`}, Offset[{-3, 0}, {3., -3.2476885792226895`}]}, {{ 3., -3.2476887336074802`}, Offset[{3, 0}, {3., -3.2476887336074802`}]}, {{ 3., -3.2476887336074802`}, Offset[{-3, 0}, {3., -3.2476887336074802`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{4., -2.6829363942997464`}, Offset[{3, 0}, {4., -2.6829363942997464`}]}, {{ 4., -2.6829363942997464`}, Offset[{-3, 0}, {4., -2.6829363942997464`}]}, {{ 4., -2.682936452811683}, Offset[{3, 0}, {4., -2.682936452811683}]}, {{ 4., -2.682936452811683}, Offset[{-3, 0}, {4., -2.682936452811683}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{5., -1.6934517320457758`}, Offset[{3, 0}, {5., -1.6934517320457758`}]}, {{ 5., -1.6934517320457758`}, Offset[{-3, 0}, {5., -1.6934517320457758`}]}, {{ 5., -1.6934518408101742`}, Offset[{3, 0}, {5., -1.6934518408101742`}]}, {{ 5., -1.6934518408101742`}, Offset[{-3, 0}, {5., -1.6934518408101742`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{6., -0.4167715355448022}, Offset[{3, 0}, {6., -0.4167715355448022}]}, {{ 6., -0.4167715355448022}, Offset[{-3, 0}, {6., -0.4167715355448022}]}, {{ 6., -0.41677183895602404`}, Offset[{3, 0}, {6., -0.41677183895602404`}]}, {{ 6., -0.41677183895602404`}, Offset[{-3, 0}, {6., -0.41677183895602404`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{7., 1.0776160693242682`}, Offset[{3, 0}, {7., 1.0776160693242682`}]}, {{7., 1.0776160693242682`}, Offset[{-3, 0}, {7., 1.0776160693242682`}]}, {{7., 1.077614026885801}, Offset[{3, 0}, {7., 1.077614026885801}]}, {{7., 1.077614026885801}, Offset[{-3, 0}, {7., 1.077614026885801}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{8., 2.7485521444115397`}, Offset[{3, 0}, {8., 2.7485521444115397`}]}, {{8., 2.7485521444115397`}, Offset[{-3, 0}, {8., 2.7485521444115397`}]}, {{8., 2.747270914255491}, Offset[{3, 0}, {8., 2.747270914255491}]}, {{8., 2.747270914255491}, Offset[{-3, 0}, {8., 2.747270914255491}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{9., 4.572337028892852}, Offset[{3, 0}, {9., 4.572337028892852}]}, {{9., 4.572337028892852}, Offset[{-3, 0}, {9., 4.572337028892852}]}, {{9., 4.572130331909891}, Offset[{3, 0}, {9., 4.572130331909891}]}, {{9., 4.572130331909891}, Offset[{-3, 0}, {9., 4.572130331909891}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{10., 6.522092798170153}, Offset[{3, 0}, {10., 6.522092798170153}]}, {{10., 6.522092798170153}, Offset[{-3, 0}, {10., 6.522092798170153}]}, {{10., 6.519147287940395}, Offset[{3, 0}, {10., 6.519147287940395}]}, {{10., 6.519147287940395}, Offset[{-3, 0}, {10., 6.519147287940395}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{11., 8.584851839890053}, Offset[{3, 0}, {11., 8.584851839890053}]}, {{11., 8.584851839890053}, Offset[{-3, 0}, {11., 8.584851839890053}]}, {{11., 8.58110651715989}, Offset[{3, 0}, {11., 8.58110651715989}]}, {{11., 8.58110651715989}, Offset[{-3, 0}, {11., 8.58110651715989}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{12., 10.751499443656988`}, Offset[{3, 0}, {12., 10.751499443656988`}]}, {{12., 10.751499443656988`}, Offset[{-3, 0}, {12., 10.751499443656988`}]}, {{12., 10.747207591575448`}, Offset[{3, 0}, {12., 10.747207591575448`}]}, {{12., 10.747207591575448`}, Offset[{-3, 0}, {12., 10.747207591575448`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{13., 13.010313873595706`}, Offset[{3, 0}, {13., 13.010313873595706`}]}, {{13., 13.010313873595706`}, Offset[{-3, 0}, {13., 13.010313873595706`}]}, {{13., 13.005829561148378`}, Offset[{3, 0}, {13., 13.005829561148378`}]}, {{13., 13.005829561148378`}, Offset[{-3, 0}, {13., 13.005829561148378`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{14., 15.35666962964508}, Offset[{3, 0}, {14., 15.35666962964508}]}, {{14., 15.35666962964508}, Offset[{-3, 0}, {14., 15.35666962964508}]}, {{14., 15.35237777756354}, Offset[{3, 0}, {14., 15.35237777756354}]}, {{14., 15.35237777756354}, Offset[{-3, 0}, {14., 15.35237777756354}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}}}}, {{{ Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], PointBox[{{1., 0.3058939805973386}, {2., -3.016888706538089}, { 3., -3.247688656415082}, {4., -2.6829364235557143`}, { 5., -1.6934517864279734`}, {6., -0.4167716872504016}, {7., 1.077615048105556}, {8., 2.7479117345273405`}, {9., 4.572233685741827}, {10., 6.520621127558696}, {11., 8.582980931954241}, {12., 10.749355820113736`}, {13., 13.008074231002201`}, {14., 15.354526006101828`}}]}, { Directive[ PointSize[0.012833333333333334`], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], PointBox[{{1., 0.30589398059712153`}, {2., -3.0168887065353793`}, { 3., -3.215068310215657}, {4., -2.5725384548275394`}, { 5., -1.4892648280226084`}, {6., -0.13860489379333457`}, {7., 1.3936280651899522`}, {8., 3.0682292980253587`}, {9., 4.868772070631323}, {10., 6.787701993282296}}]}, { Directive[ PointSize[0.012833333333333334`], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], PointBox[{{1., 0.3058939805973111}, {2., -3.016888706529401}, { 3., -3.2476886917736394`}, {4., -2.6829364131573383`}, { 5., -1.6934517950284986`}, {6., -0.4167716527892342}, {7., 1.077920988068182}, {8., 2.751072257647312}, {9., 4.580918298498121}, {10., 6.559514124245457}}]}, { Directive[ PointSize[0.012833333333333334`], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], PointBox[{{1., 0.30713407270311166`}, {2., -3.067110308065294}, { 3., -3.4304577212393763`}, {4., -3.0879090822971853`}, { 5., -2.4123077494594973`}, {6., -1.5399609645024661`}, { 7., -0.5375360276296015}, {8., 0.5571798344870343}, {9., 1.7206870273901242`}, {10., 2.937388810483148}, {11., 4.196416462160851}}]}}}, {{}, {}}}, { DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox["m", HoldForm], TraditionalForm], FormBox[ TagBox[ "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\ \"-\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \ \\\")\\\"}]]\\)(0)\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0., -4.900657053954936}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 15.954589770191003`, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> 300, LabelStyle -> { GrayLevel[0], FontSize -> 14, FontFamily -> Times}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[ 0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Exp[ Part[#, 2]]}& )}}, PlotRange -> {{0., 14.}, {-4.900657053954936, 15.35666962964508}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 15.954589770191003`, RotateLabel -> 0]}}], FormBox[ FormBox[ TemplateBox[{ "\"True value\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\) acc. \ (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = 2)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-7\\)]\\) acc. \ (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = 6)\"", "\"Casselle \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\ \\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\ \"al\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\ \\\"Italic\\\"]\\)\""}, "PointLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #}, { GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #2}, { GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #3}, { GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #4}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontSize -> 14, FontFamily -> Times}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"PointLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", RowBox[{"Joined", "\[Rule]", RowBox[{"{", RowBox[{"False", ",", "False", ",", "False", ",", "False"}], "}"}]}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", RowBox[{ TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"], ",", RowBox[{"FontSize", "\[Rule]", "14"}], ",", RowBox[{"FontFamily", "\[Rule]", "Times"}]}], "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{ 3.85775236362393*^9, {3.857753041693356*^9, 3.857753064352551*^9}, { 3.857753109883153*^9, 3.8577531212700233`*^9}, {3.857753778726769*^9, 3.857753797688981*^9}, {3.85775390996132*^9, 3.8577539129626293`*^9}, { 3.857753956594308*^9, 3.857753978345298*^9}, {3.857754182953856*^9, 3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, { 3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9, 3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9, 3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9, 3.8871757582795773`*^9, 3.887175832439167*^9, 3.887175881031187*^9, 3.8871759132706127`*^9, {3.887177050408825*^9, 3.887177079176489*^9}, 3.8871778469623938`*^9, 3.887182910688779*^9, 3.8886448295691757`*^9, { 3.888646811017542*^9, 3.888646814560216*^9}, 3.888646910080586*^9, 3.8886519498592653`*^9, 3.888651983555497*^9, 3.88865202351644*^9, { 3.8886521263516397`*^9, 3.888652150779788*^9}, 3.893236723869225*^9}, CellLabel->"Out[8]=",ExpressionUUID->"7e2943f8-381c-42b0-8f9b-5bee0ef91468"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLogPlot", "[", RowBox[{ RowBox[{"Abs", "@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Rest", "@", "\[CapitalPhi]s"}], ",", "\[IndentingNewLine]", RowBox[{"Rest", "@", RowBox[{ RowBox[{"(", RowBox[{"DScriptF0D\[Eta]List", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", RowBox[{"10", ",", "1"}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Rest", "@", RowBox[{ RowBox[{"(", RowBox[{"DScriptF0D\[Eta]List", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", RowBox[{"10", ",", "1"}], "]"}]}]}], "\[IndentingNewLine]", "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"Italic\"]\) = 2)\>\"", ",", " ", "\"\\"Italic\"]\) = \ 6)\>\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "m", ",", "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"0\"], \ RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)\>\""}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.887176095335842*^9, 3.887176195096656*^9}, { 3.887177268477648*^9, 3.887177312454509*^9}, {3.88717809517518*^9, 3.887178096950481*^9}}, CellLabel->"In[9]:=",ExpressionUUID->"8fa1ecb3-1ecc-4bba-8fa1-06377280f14b"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{{Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{2., -2.199250858729474}, {2., -2.1992508587114377`}}], LineBox[{{2., -2.1992508587114377`}, {2., -2.199250858693401}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{3., -4.108835370883289}, {3., -4.108835369665774}}], LineBox[{{3., -4.108835369665774}, {3., -4.108835368448258}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{4., -8.23957016697712}, {4., -8.239569788186014}}], LineBox[{{4., -8.239569788186014}, {4., -8.23956940939505}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{5., -7.57318515764723}, {5., -7.573184963114589}}], LineBox[{{5., -7.573184963114589}, {5., -7.573184768581987}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{6., -8.473827235511466}, {6., -8.473822447718424}}], LineBox[{{6., -8.473822447718424}, {6., -8.473817659948304}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{7., -10.012900713523315`}, {7., -10.012878401308493`}}], LineBox[{{7., -10.012878401308493`}, { 7., -10.012856089591494`}}]}}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{8., -14.970693198120777`}, {8., -14.967523623359499`}}], LineBox[{{8., -14.967523623359499`}, {8., -14.96436406306913}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{9., -12.356895535264757`}, {9., -12.354572653848617`}}], LineBox[{{9., -12.354572653848617`}, { 9., -12.352255155708255`}}]}}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{10., -13.13241371325783}, {10., -13.127375919227873`}}], LineBox[{{10., -13.127375919227873`}, { 10., -13.122363377404328`}}]}}}}, {{{Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{2., -2.199250858693401}, Offset[{3, 0}, {2., -2.199250858693401}]}, {{ 2., -2.199250858693401}, Offset[{-3, 0}, {2., -2.199250858693401}]}, {{ 2., -2.199250858729474}, Offset[{3, 0}, {2., -2.199250858729474}]}, {{ 2., -2.199250858729474}, Offset[{-3, 0}, {2., -2.199250858729474}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{3., -4.108835368448258}, Offset[{3, 0}, {3., -4.108835368448258}]}, {{ 3., -4.108835368448258}, Offset[{-3, 0}, {3., -4.108835368448258}]}, {{ 3., -4.108835370883289}, Offset[{3, 0}, {3., -4.108835370883289}]}, {{ 3., -4.108835370883289}, Offset[{-3, 0}, {3., -4.108835370883289}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{4., -8.23956940939505}, Offset[{3, 0}, {4., -8.23956940939505}]}, {{ 4., -8.23956940939505}, Offset[{-3, 0}, {4., -8.23956940939505}]}, {{ 4., -8.23957016697712}, Offset[{3, 0}, {4., -8.23957016697712}]}, {{ 4., -8.23957016697712}, Offset[{-3, 0}, {4., -8.23957016697712}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{5., -7.573184768581987}, Offset[{3, 0}, {5., -7.573184768581987}]}, {{ 5., -7.573184768581987}, Offset[{-3, 0}, {5., -7.573184768581987}]}, {{ 5., -7.57318515764723}, Offset[{3, 0}, {5., -7.57318515764723}]}, {{ 5., -7.57318515764723}, Offset[{-3, 0}, {5., -7.57318515764723}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{6., -8.473817659948304}, Offset[{3, 0}, {6., -8.473817659948304}]}, {{ 6., -8.473817659948304}, Offset[{-3, 0}, {6., -8.473817659948304}]}, {{ 6., -8.473827235511466}, Offset[{3, 0}, {6., -8.473827235511466}]}, {{ 6., -8.473827235511466}, Offset[{-3, 0}, {6., -8.473827235511466}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{7., -10.012856089591494`}, Offset[{3, 0}, {7., -10.012856089591494`}]}, {{ 7., -10.012856089591494`}, Offset[{-3, 0}, {7., -10.012856089591494`}]}, {{ 7., -10.012900713523315`}, Offset[{3, 0}, {7., -10.012900713523315`}]}, {{ 7., -10.012900713523315`}, Offset[{-3, 0}, {7., -10.012900713523315`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{8., -14.96436406306913}, Offset[{3, 0}, {8., -14.96436406306913}]}, {{ 8., -14.96436406306913}, Offset[{-3, 0}, {8., -14.96436406306913}]}, {{ 8., -14.970693198120777`}, Offset[{3, 0}, {8., -14.970693198120777`}]}, {{ 8., -14.970693198120777`}, Offset[{-3, 0}, {8., -14.970693198120777`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{9., -12.352255155708255`}, Offset[{3, 0}, {9., -12.352255155708255`}]}, {{ 9., -12.352255155708255`}, Offset[{-3, 0}, {9., -12.352255155708255`}]}, {{ 9., -12.356895535264757`}, Offset[{3, 0}, {9., -12.356895535264757`}]}, {{ 9., -12.356895535264757`}, Offset[{-3, 0}, {9., -12.356895535264757`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{10., -13.122363377404328`}, Offset[{3, 0}, {10., -13.122363377404328`}]}, {{ 10., -13.122363377404328`}, Offset[{-3, 0}, {10., -13.122363377404328`}]}, {{ 10., -13.13241371325783}, Offset[{3, 0}, {10., -13.13241371325783}]}, {{ 10., -13.13241371325783}, Offset[{-3, 0}, {10., -13.13241371325783}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}}}}, {{{ Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], PointBox[{{1., -1.1431595731895612`}, {2., -2.1992508587114377`}, { 3., -4.108835369665774}, {4., -8.239569788186014}, { 5., -7.573184963114589}, {6., -8.473822447718424}, { 7., -10.012878401308493`}, {8., -14.967523623359499`}, { 9., -12.354572653848617`}, {10., -13.127375919227873`}}]}, { Directive[ PointSize[0.012833333333333334`], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], PointBox[{{1., -1.142336471413771}, {2., -2.1989962191985897`}, { 3., -4.103810189060422}, {4., -8.065760593479503}, { 5., -7.572071121129541}, {6., -8.412217606083276}, { 7., -9.901326241951773}, {8., -14.355261061061876`}, { 9., -12.066885002703703`}, {10., -12.97499027628151}}]}, { Directive[ PointSize[0.012833333333333334`], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], PointBox[{{1., -1.1431591915024921`}, {2., -2.199250198756966}, { 3., -4.108834678398851}, {4., -8.239399371579477}, { 5., -7.5732366791273495`}, {6., -8.47382080668392}, { 7., -10.01266927712387}, {8., -14.940294452135808`}, { 9., -12.353924318358052`}, { 10., -13.127410732077774`}}]}}}, {{}, {}}}, { DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox["m", HoldForm], TraditionalForm], FormBox[ TagBox[ "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\ \"0\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \ \\\")\\\"}]]\\)\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0., -16.052840588323026`}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 15.954589770191003`, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[ 0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Exp[ Part[#, 2]]}& )}}, PlotRange -> {{0., 10.}, {-16.052840588323026`, -1.142336471413771}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 15.954589770191003`, RotateLabel -> 0]}}], FormBox[ FormBox[ TemplateBox[{ "\"Numerics\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \ 2)\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \ 6)\""}, "PointLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"PointLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", RowBox[{"Joined", "\[Rule]", RowBox[{"{", RowBox[{"False", ",", "False", ",", "False"}], "}"}]}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{3.8871762120034847`*^9, 3.8871773104168453`*^9, 3.88717753344375*^9, 3.887178350360724*^9, 3.893236946450159*^9}, CellLabel->"Out[9]=",ExpressionUUID->"22fc8cc4-070f-4958-a56e-3747a3946f91"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLogPlot", "[", RowBox[{ RowBox[{"Abs", "@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Rest", "@", "Ghs"}], ",", "\[IndentingNewLine]", RowBox[{"Rest", "@", RowBox[{ RowBox[{"(", RowBox[{"DScriptFPlusMinusD\[Xi]List", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", RowBox[{"10", ",", "0"}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Rest", "@", RowBox[{ RowBox[{"(", RowBox[{"DScriptFPlusMinusD\[Xi]List", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", RowBox[{"10", ",", "0"}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"DScriptMCasD\[Xi]List", "[", RowBox[{"9", ",", "0"}], "]"}], RowBox[{"Table", "[", RowBox[{ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"m", "-", "1"}], ")"}], "!"}], RowBox[{"m", "!"}]], ",", RowBox[{"{", RowBox[{"m", ",", "1", ",", "10"}], "}"}]}], "]"}]}]}], "\[IndentingNewLine]", "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"Italic\"]\) = 2)\>\"", ",", " ", "\"\\"Italic\"]\) = \ 6)\>\"", ",", " ", "\"\\"Italic\"]\)\!\(\*StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\ \*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "m", ",", "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"+\"], \ RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)\>\""}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.857749647216098*^9, 3.8577496994157143`*^9}, { 3.857749922049673*^9, 3.85774992576917*^9}, {3.8577499613439693`*^9, 3.857749992122797*^9}, 3.85775012053415*^9, {3.857750706878583*^9, 3.857750707403603*^9}, {3.857751644877963*^9, 3.857751657226074*^9}, { 3.8577517214782124`*^9, 3.857751736522636*^9}, {3.857752278605008*^9, 3.857752279401206*^9}, {3.857752310485083*^9, 3.857752324517762*^9}, { 3.857752360898025*^9, 3.857752363157537*^9}, {3.857753041193503*^9, 3.85775304373606*^9}, {3.857753117795965*^9, 3.8577531179827213`*^9}, { 3.85775377848352*^9, 3.8577537891272383`*^9}, {3.8577539046194077`*^9, 3.857753911831979*^9}, {3.8577541823791513`*^9, 3.857754190311756*^9}, { 3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9, 3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, { 3.857792220388947*^9, 3.857792221589129*^9}, {3.887175734000527*^9, 3.887175745176688*^9}, {3.887175776777956*^9, 3.887175890987341*^9}, { 3.887175927630155*^9, 3.887175941140204*^9}, {3.887175972652753*^9, 3.887175999053248*^9}, {3.8871760552145844`*^9, 3.887176082574828*^9}, { 3.8871762157611847`*^9, 3.8871762198011923`*^9}, {3.887177053185808*^9, 3.887177056768643*^9}, {3.887177274797546*^9, 3.887177275893218*^9}, { 3.8871780781341352`*^9, 3.8871780927035418`*^9}, 3.8871829559006443`*^9}, CellLabel->"In[10]:=",ExpressionUUID->"98d70064-2bee-4c5b-a8fe-984577f41f88"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ \\\", SuperscriptBox[\\\"11429856398034503\\\", RowBox[{\\\"1\\\", \\\"/\\\", \ \\\"8\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", \ RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\"-\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]], \\\ \" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\ \\\"}]], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"+\\\", RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", \ FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}]]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \ \\\"[\\\", RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\ \"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\ \", \\\"\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \\\"-\\\", \ FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ \\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ SuperscriptBox[RowBox[{\\\"\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"17\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ \\\", \\\"\[Pi]\\\"}], RowBox[{\\\"107668955486287134775550584515499446643328\ \\\", \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\ \[RightSkeleton]\\\"}]}]]}], \\\"]\\\"}]}], \ RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \ SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ \\\", SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"4\\\ \"}]], \\\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\ \", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \ RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ \\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \ FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \ RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \ RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\ \"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}]}], \ RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \ SuperscriptBox[\\\"2\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"8\\\", \\\"\[RightSkeleton]\\\"}], \ RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \ RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ \\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}]\\).\"", 2, 10, 3, 31977068536072594118, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9, 3.893236947358164*^9}, CellLabel-> "During evaluation of \ In[10]:=",ExpressionUUID->"0a6c061e-9d22-469f-9a77-bdafbf23ad0b"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ \\\", SuperscriptBox[\\\"11429856398034503\\\", RowBox[{\\\"1\\\", \\\"/\\\", \ \\\"8\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", \ RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\"-\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]], \\\ \" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\ \\\"}]], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"+\\\", RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", \ FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}]]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \ \\\"[\\\", RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\ \"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\ \", \\\"\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \\\"-\\\", \ FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ \\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ SuperscriptBox[RowBox[{\\\"\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"17\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ \\\", \\\"\[Pi]\\\"}], RowBox[{\\\"107668955486287134775550584515499446643328\ \\\", \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\ \[RightSkeleton]\\\"}]}]]}], \\\"]\\\"}]}], \ RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \ SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ \\\", SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"4\\\ \"}]], \\\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\ \", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \ RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ \\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \ FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \ RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \ RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\ \"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}]}], \ RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \ SuperscriptBox[\\\"2\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"8\\\", \\\"\[RightSkeleton]\\\"}], \ RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \ RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ \\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}]\\).\"", 2, 10, 4, 31977068536072594118, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9, 3.8932369473905067`*^9}, CellLabel-> "During evaluation of \ In[10]:=",ExpressionUUID->"373d98dd-b1a2-4d6f-95ae-eed0eb8466ed"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"\ 46681463692889041973700532620906696296885587180818594561\\\", \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\ \\\", \\\"\[RightSkeleton]\\\"}]}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\ \", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", RowBox[{\\\"Times\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"7\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", \ RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"7\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"]\\\"}]}], \\\"-\\\", \ FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ \\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"13\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\")\\\"}]}], \ RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ \\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \ FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], \ RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ SuperscriptBox[RowBox[{\\\"\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"9\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[Pi]\\\ \", \\\"2\\\"]}]]}], \\\")\\\"}]}], \ \\\"383435814415399100830298627422256492275580379991986176\\\"]}], \\\"+\\\", \ FractionBox[RowBox[{\\\"1995291215029551557786949\\\", \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ \\\", SuperscriptBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"17\\\", \\\"\ \[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[\\\"Glaisher\ \\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\\\"}]], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}], \\\")\\\"}]}], \ RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ \\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \ FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}]], \\\"+\\\", RowBox[{\\\"12\\\", \\\" \\\", RowBox[{\\\ \"(\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\ \", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\"-\\\", FractionBox[RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \ \\\")\\\"}]}]}], \\\")\\\"}]}], \\\"104122350499534957937152\\\"]}]\\).\"", 2, 10, 5, 31977068536072594118, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9, 3.893236947398655*^9}, CellLabel-> "During evaluation of \ In[10]:=",ExpressionUUID->"dd61bf6b-294b-4bed-aba1-2e9c5e3c51b1"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \ \\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ calculation.\"", 2, 10, 6, 31977068536072594118, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9, 3.893236947406246*^9}, CellLabel-> "During evaluation of \ In[10]:=",ExpressionUUID->"e21c2683-2071-4eaf-8b43-f1a927c53e45"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{{Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{4., 2.1203089445691155`}, {4., 2.1203089451690884`}}], LineBox[{{4., 2.1203089451690884`}, {4., 2.120308945769061}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{6., 4.555653733134874}, {6., 4.555653838211157}}], LineBox[{{6., 4.555653838211157}, {6., 4.555653943287428}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{8., 7.284539665889405}, {8., 7.28456024759707}}], LineBox[{{8., 7.28456024759707}, {8., 7.284580828881137}}]}}, { Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{10., 10.161573447047902`}, {10., 10.161650696951378`}}], LineBox[{{10., 10.161650696951378`}, {10., 10.161727940887767`}}]}}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{12., 13.124361380067}, {12., 13.126355398673866`}}], LineBox[{{12., 13.126355398673866`}, {12., 13.128345449081875`}}]}}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], {}, { LineBox[{{14., 16.147654453199863`}, {14., 16.1573163641116}}], LineBox[{{14., 16.1573163641116}, {14., 16.166885815127753`}}]}}}}, {{{Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{4., 2.120308945769061}, Offset[{3, 0}, {4., 2.120308945769061}]}, {{4., 2.120308945769061}, Offset[{-3, 0}, {4., 2.120308945769061}]}, {{4., 2.1203089445691155`}, Offset[{3, 0}, {4., 2.1203089445691155`}]}, {{4., 2.1203089445691155`}, Offset[{-3, 0}, {4., 2.1203089445691155`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{6., 4.555653943287428}, Offset[{3, 0}, {6., 4.555653943287428}]}, {{6., 4.555653943287428}, Offset[{-3, 0}, {6., 4.555653943287428}]}, {{6., 4.555653733134874}, Offset[{3, 0}, {6., 4.555653733134874}]}, {{6., 4.555653733134874}, Offset[{-3, 0}, {6., 4.555653733134874}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{8., 7.284580828881137}, Offset[{3, 0}, {8., 7.284580828881137}]}, {{8., 7.284580828881137}, Offset[{-3, 0}, {8., 7.284580828881137}]}, {{8., 7.284539665889405}, Offset[{3, 0}, {8., 7.284539665889405}]}, {{8., 7.284539665889405}, Offset[{-3, 0}, {8., 7.284539665889405}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{10., 10.161727940887767`}, Offset[{3, 0}, {10., 10.161727940887767`}]}, {{10., 10.161727940887767`}, Offset[{-3, 0}, {10., 10.161727940887767`}]}, {{10., 10.161573447047902`}, Offset[{3, 0}, {10., 10.161573447047902`}]}, {{10., 10.161573447047902`}, Offset[{-3, 0}, {10., 10.161573447047902`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{12., 13.128345449081875`}, Offset[{3, 0}, {12., 13.128345449081875`}]}, {{12., 13.128345449081875`}, Offset[{-3, 0}, {12., 13.128345449081875`}]}, {{12., 13.124361380067}, Offset[{3, 0}, {12., 13.124361380067}]}, {{12., 13.124361380067}, Offset[{-3, 0}, {12., 13.124361380067}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}, {Antialiasing -> False, Directive[ RGBColor[0.368417, 0.506779, 0.709798]], GeometricTransformationBox[ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], GeometricTransformationBox[ LineBox[{{{14., 16.166885815127753`}, Offset[{3, 0}, {14., 16.166885815127753`}]}, {{14., 16.166885815127753`}, Offset[{-3, 0}, {14., 16.166885815127753`}]}, {{14., 16.147654453199863`}, Offset[{3, 0}, {14., 16.147654453199863`}]}, {{14., 16.147654453199863`}, Offset[{-3, 0}, {14., 16.147654453199863`}]}}], {{{1., 0.}, {0., 1.}}, {0., 0.}}]}}}}, {{{ Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], PointBox[{{2., 0.6126028894906074}, {4., 2.1203089451690884`}, {6., 4.555653838211157}, {8., 7.28456024759707}, {10., 10.161650696951378`}, {12., 13.126355398673866`}, {14., 16.1573163641116}}]}, { Directive[ PointSize[0.012833333333333334`], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], PointBox[{{2., 0.6126028894906093}, {4., 2.125551226398849}, {6., 4.569765668638038}, {8., 7.309210808612832}, {10., 10.196845411019185`}}]}, { Directive[ PointSize[0.012833333333333334`], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], PointBox[{{2., 0.6126028894906148}, {4., 2.1203089451602413`}, {6., 4.555653877221086}, {8., 7.284512472617333}, {10., 10.160831450583395`}}]}, { Directive[ PointSize[0.012833333333333334`], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], PointBox[{{2., 0.6126028894906075}, {4., 2.1203076183853526`}, {6., 4.555652330600042}, {8., 7.284510465974837}, {10., 10.161378578451433`}}]}}}, {{}, {}}}, { DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox["m", HoldForm], TraditionalForm], FormBox[ TagBox[ "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\ \"+\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \ \\\")\\\"}]]\\)\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0., -0.6046080204606854}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 15.954589770191003`, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[ 0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Exp[ Part[#, 2]]}& )}}, PlotRange -> {{0., 14.}, {-0.6046080204606854, 16.166885815127753`}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 15.954589770191003`, RotateLabel -> 0]}}], FormBox[ FormBox[ TemplateBox[{ "\"Numerics\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \ 2)\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \ 6)\"", "\"Casselle \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\ \\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\ \"al\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\ \\\"Italic\\\"]\\)\""}, "PointLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], PointBox[ NCache[{ Scaled[{ Rational[1, 2], Rational[1, 2]}]}, { Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, ImageSize -> {10, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"PointLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", RowBox[{"Joined", "\[Rule]", RowBox[{"{", RowBox[{"False", ",", "False", ",", "False", ",", "False"}], "}"}]}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{ 3.85775236362393*^9, {3.857753041693356*^9, 3.857753064352551*^9}, { 3.857753109883153*^9, 3.8577531212700233`*^9}, {3.857753778726769*^9, 3.857753797688981*^9}, {3.85775390996132*^9, 3.8577539129626293`*^9}, { 3.857753956594308*^9, 3.857753978345298*^9}, {3.857754182953856*^9, 3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, { 3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9, 3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9, 3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9, 3.8871757582795773`*^9, 3.887175832439167*^9, 3.887175881031187*^9, 3.8871759132706127`*^9, {3.887177050408825*^9, 3.887177079176489*^9}, 3.8871778469623938`*^9, 3.88717835171142*^9, 3.887182957347884*^9, 3.893236947863029*^9}, CellLabel->"Out[10]=",ExpressionUUID->"ff6a7053-cfa6-438c-814c-b29d04a9cf5a"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"freeEnergyData", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"ut", "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], SuperscriptBox[ RowBox[{ RowBox[{"uh", "[", RowBox[{ RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\\"", "]"}]}], "]"}], "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], RowBox[{ RowBox[{"-", "8"}], "/", "15"}]]}], ",", RowBox[{"Re", "@", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"DScriptF0D\[Eta]List", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "n", "]"}], "]"}]}], ")"}], "[", RowBox[{"0", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"n", ",", "2", ",", "6"}], "}"}], ",", RowBox[{"Evaluate", "@", RowBox[{"N", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Gamma]", ",", SuperscriptBox["10", RowBox[{"-", "4"}]], ",", RowBox[{"1", "-", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", SuperscriptBox["10", RowBox[{"-", "4"}]]}], "}"}], ",", "40"}], "]"}]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.8763698032393303`*^9, 3.876369884026998*^9}, { 3.876369997688293*^9, 3.876370007596018*^9}, {3.876370093855591*^9, 3.876370097827559*^9}, {3.876370373799559*^9, 3.87637037853475*^9}, { 3.876370465791544*^9, 3.876370497109497*^9}, {3.8763705296866293`*^9, 3.8763705300592623`*^9}, {3.87637087516536*^9, 3.876370917886569*^9}, { 3.8871830446215487`*^9, 3.8871830462680683`*^9}, {3.888652445838126*^9, 3.888652445910111*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"ffc53174-430d-4e0b-b71f-902d34f687b7"], Cell[BoxData[ RowBox[{ RowBox[{"freeEnergyDataInterpolation", "=", RowBox[{"Interpolation", "/@", "freeEnergyData"}]}], ";"}]], "Input", CellChangeTimes->{{3.876369897948588*^9, 3.876369916907255*^9}, { 3.876370456614004*^9, 3.87637045960681*^9}, {3.8763707444350023`*^9, 3.876370747760907*^9}, {3.8871830509234037`*^9, 3.887183054611264*^9}, { 3.88718324727179*^9, 3.887183248687171*^9}}, CellLabel->"In[12]:=",ExpressionUUID->"249e2bea-239f-4870-bccb-94af3730f0b6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pCovergence", "=", RowBox[{"LogPlot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"Abs", "[", RowBox[{ RowBox[{"#", "[", "x", "]"}], "-", RowBox[{ RowBox[{"Last", "[", "freeEnergyDataInterpolation", "]"}], "[", "x", "]"}]}], "]"}], ")"}], "&"}], "/@", RowBox[{"Most", "[", "freeEnergyDataInterpolation", "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3", ",", "4", ",", "5"}], "}"}], ",", RowBox[{"LegendLabel", "->", "\"\\""}]}], "]"}]}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "\"\<\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"h\",FontSlant->\"\ Italic\"], RowBox[{RowBox[{RowBox[{\"-\", \"1\"}], \"/\", \"\[Beta]\"}], \" \ \", \"\[Delta]\"}]]\)\>\"", ",", "\"\<| \[CapitalDelta]\[ScriptCapitalF] |\>\""}], "}"}]}], ",", RowBox[{"LabelStyle", "->", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"FontSize", "->", "14"}], ",", RowBox[{"FontFamily", "->", "Times"}]}], "}"}]}], ",", RowBox[{"ImageSize", "->", "300"}], ",", RowBox[{"AspectRatio", "->", "1"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.876369918582409*^9, 3.876369955823151*^9}, { 3.8763704278400583`*^9, 3.876370441157851*^9}, {3.876370738463645*^9, 3.876370807838629*^9}, {3.876371122391995*^9, 3.876371134526176*^9}, { 3.8763711865989513`*^9, 3.8763713519982843`*^9}, {3.8763718721351347`*^9, 3.876371879486059*^9}, {3.8871830602203217`*^9, 3.8871830720200863`*^9}, { 3.887183263600458*^9, 3.887183269024135*^9}, {3.8886524322381153`*^9, 3.888652436725748*^9}, {3.888652836485338*^9, 3.888652845517272*^9}, { 3.88866054306837*^9, 3.8886605513076878`*^9}, {3.888660587340844*^9, 3.8886606095808287`*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"a6d0fc76-cf0a-4234-9fe3-d57ae603ad2e"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwt13k0Vfv7B/BDSJTC4WTa+zgcw066KUNFtkoZUhENt0Shay6SqTShkEyh DNdwSaYQZSo+z6VcpZIMRaHIMRzzkCl892+t3x977fVa+5/P3p/neX+eLX/u goUDL41G66Wu/7vbFUaNrawwgOXbTKysIYC+KK206zcD6O699YcFCXi1/9Fp 7zkGJN79vDlNgAClroo3w+MM4Nutr0OuImBobW9G+w8GmGLpbgG/VeGis+aJ kloGxPOpbxseVYVr7A44f4cBn7wvdSQ2q0JikkLMexEGtAwmau1IVoXU7pAL 5mskYeDswfoEpipIfjx6WFVCAoKb6RZR2SpQf+TovgY2HTJuSvw0U1cBI1W2 lwJLHIRGV0YNM5VhZ8HprMYtYtDQPh7ExJRhIey8uIaqKLioGx4vva0EM7OZ cWeUN0Bn8COPRi4bXrFitle7icD7HIcH/1qxYRf/9ZJN9mvBtbMkjXyiCLGk trZBgBBs8oknmcKKYJd8om8oVRAslZ6PIEcFaHyMreFJFICznxxSX5SyAFtb tBWV8sGeSElUL8oCISancTCXF5L7zVG3vTy4WgY/zM6mQSR3bv/u/5iQvly5 jUinQarsWwWx10xoyx7/kJdAg5k34ev7a5hALp3iLwyjQe7FbdKx1UygZ2l4 Pnelgbe1msricyZUzXab1vxBA599YSHLmUyQ1bq8XOaxgjroQ659gUywre1u wGKWUKUnNnfXkAkH9OYcOm8uoe1REq/u7GWCetkGWrLHEjK1gX3BBkz4nWuw Xcp8Cb37p98lWI8JD2MyksU3LKGsUr07iZpM+Hj2LzfBiN9oQV4nWUqJCQa0 MZHJ0EXU983X1FeQCSr+q3OK/BZRdEelRYEAEzZM43svOC2i+rkeYw4fE7r6 j/gMGy2iJv8ekdM8TPBvLO7mrF5EM22kUfU0DsUp3kVfgxdQs0vKZGg7Diy9 ZfPXN+cR/7hQqmYWDh9F9dQSPOfRePODoycycLjGuSLgZjeP8IvRNdfScOiI nK+kG84jy4327W2JONzvmVawF5xHZVd/qD2LxIEvhDvDGzmH0jS1Pdj+OHA+ fUkgk2dR2uvaNxPmOMQ+ZnjR780iu601SlGHcdhz9dihgYBZNMCrF6hhhkMK u4U3ymYWHWQTewKNcDju2+jSzZpFso+8hK30caiXq9O7lvMLnUozPfliMw45 jiU/XpTOIOb95eMp63BoOZeKm2bNoC1vTNkPhXGgWd+17oibQYdcrn2PX4PD MXO79jmvGbQisVE5gx8H3p3iTZrbZtBQzi752SUM/hS+BIWF02hUtlQ8YgyD YH6b5d2p06gpMMvr8wgGRSsmuh8ippFzwMUO9jAGAtOs8mG3aXRH73RF0wAG xd8+FaqqTSPNLUk/HXowECrQSM3InkIx22Q6brRhoJmNdWo8nELRTwWEZFox sP1HSKbmzhRyH2s8VNmMQWl8T/z381PoTaSgtGATBueux0TIsafQgeuct98b MLjnd+1dPn0KZfS8ep7xFoPyS85CunxTaGt5X6XLGwxEHPfc/rN3EnlzZSWF /8Og8shkwIP0STR4jIndqcGgz6TrhVI09byPZ9DzXww2GL6df35jEmkofGiy AwzO7/jncovNJBqO8Fm2rMZAjGXhJopNorTpmgavSgz0ZHfnpa2bRByj7nuh FRg4ShKDW5Ym0K3g1gsZ5RhUC/E6HPo2gXq9Xt/nlGLgPPX09N3ECVTa5W6d W4JBgtbErr/CJpD70YG/ucUY1Pv9IbPXfwKt3oE3bqXMphW2L5ycQENcx1Xv izCw3Dta3mY8gRbn9QRYlG/d3vyweMcEMl1lNX+lEIPva/OPOUtNoKd/hRbu LqDe/whXc/+aCfQ4XNvz8RNqvfcJCdb8ONqua6woQTlRKqe5/cs4cna/bLWS h4GVUtYR44fjSGZdQY9ILgZBTn1b2CHjyLTTlpGaQ+1nvuJ6Ht9xxLKN09lO ecO2jPflx8fRxGDqbrdsDPS9e/JjD4wjF63LLFHK7hXy4Re1x1HS27fjFY8x aNBPM1FhjKMWnmcm0pQXbnWr8q0eR1I3GK1NWRiYh+uJwcgYKudJOhBBuUDs 5Uef92Mo8M2D9MOU1ybsjNzyZAzxGZztkaDshFeY9YePoTlewzU/HmFQ90h7 barrGEr9FibxlLKiWunbYwfHkF+bl8BtyjeLt4eKqI2hlq36X20od+mUHKgT HkPqfsz7uynroq0C17ijSO6a8WYW5QTDoleaDaMo9lRfthDlXw3qgSO5o6gt WIp/LpPaD4snBo/CRlFdLb/BEOWnXzbRrJ1HkYbeq1M/KIvY5FbTTajnfk6W nZRd+1QC3qmOokYPPqKL8luXx7uC1owi9o2Ur72UlSfZC7sGR1DRlV2Oo5SD fDPLp+pHkERx+4clyj3LLJ+87BHUOughIkathwxO17QLGUFefrPsTZT/FmZO SzuOIA/tE3RjygvRKcWfDoygL5FXv7hQPrFRziNMeQQZBh7wuE+5NCVpy57V I8izIL4TURZnS4/Oc4bRO+M9shOUL+Y9zH9aN4zkDOTUlKnv/WErw8Upaxjx ys8In6O8qTxOVf72MCK2xFSmUw7ZTR/44jCMNrmVaXEo7zUVdTBiD6MfGuEx AdR+pzVFKtD4h1F/5OMLHykvHxfpKfvJRbLvWRIqVL2U2wvbKGdyUdiTzyV9 lCW5oXLdgVwU3X8015Sqt0segt/i7bjoneZzu1LK6tf4TwoocBHTxUsqkapX 6cqPDwb4uCi/ltYoRNUz/6+ktrecIdT91THzOuVvbhqWkblDKEl0JOdyPgZh 1jaHN2oMoZdhHb9jqH7xTiAiFsSHULKpV4Qi1U9nW2fefZsZRD/xBs1Kyjpm 4SbpFYOIY3IKJqj+69etMCQMBpHU2eGUaKqfP/kGBa1VGERpP9zL9z6j+v/Z 4dpRvkF0Ji372zzleDUOWVI/gGSMr+p7UnmwT1ZcV/fIAAoYCzC8T+VH2qKr xiGbfvQxPm85lsqfcG0djz8M+lHYxNX1d6h88rm0qkhMoR8tXHIWC6Dy6xA3 YfNnDgdZ7ucZ8HqFwVJHnYqtOweFG+/NuF9P5XclE/cM6EMWK9rtd6n83P+L a21p04cG6sP1X37CYKtGWbKWQR+qndxxdZzKW8FcM+lFvj4kFWzoYU/lc2mC v0RQ+E90iy4n6f+Vqg+/FuH4pF60zfZx+p8cDOZW5kXH/HvRdfDz4PRT/XQb 32j0Zy86e6Yr1XsQg+xYZ8WFjb2ozVxJJJM6H3YX0fTOxPegE+A4oDFF9W+/ mrtS9A9EcAP2YzzU+ZonlO62rhsp1R1J2MjEwbjC6gn+rguFpy8KbWLhQP8v raIprAtJGl8MNFCkzrserU+agl0otnP5qr8Kdd5J2a1a5u1EnS/kSNmtOBAh Lxwi5jqQ0WqOk+xeHD7buxKFvW3Iwk5rat4Jh+rOI9qlWW3oNJEzdsoVh6xj mvuqnNrQ3KkLUv+64+BltGzdMNaKhlPjhmIv4bBBLSq6f7EF1erY7TwXQK1v qmQOpzcjZZq4YXQ0DpdXzd6TD/2ANDZ/8VN/iYOPPxHxJq4arasS0exfy4RD o+NthVlVSP33XLSLCBOUzpXh8WUvqdmtjzWxngmtxvuenmuvRMOFsV9XxJiw TepMy6JsGXLmWR+0SYqaZy4oaJ42KkT9fOcjK9nUfJSPdVtanEf24jduFegz ITdSh8z8o0o/4Wba6CNvJkQ43WyzvfVZv2XU+KzFPBPWTR/clW/eq2+tn3RR LkAevnvVbfcO4uq3HTZsfEPNj6MVZjU+9RP6RoXRCegRC7LupNvah87oq7tu VvilrgDsX3nivknz+vWq3r7ToABdxXjVLsclfdcmr4wLhopg9eB7CDeKRk6s U/ORrFWElEfhVQfjeUlZibqgo/vZwHfKbYTfj48MpBFiHS/Y8ME257FFkABZ 96AmaEhTCZ6vk7aedRUkY1ulxHkzlEApUX5g9UEhskh7gCdiDTVfewct5R1d S7LcazZKeikDd0FGJFtHhIwWNdSyalaGtL/utMgobCALX5dmGmipQJTBu3Ap tij539/aVab3VUDkQt6eWgkxki7fkVbAUYHqfeVVpdLipLaRmm28niosudlo HROhk6tKLOlxd1WBZ/WnhE1LdNIuK1fmRKsqaBl51pjQJMkYyRSrOBYBC9/y ByQmJUmzuyVFLEcC9rnWR5n9kiQ/HHI303ci4N5ir07wgiTJKfYeOeNMAFNa JnSal0EmPEvRynYl4MDxUNVmcQb5uWb1gqMHAbFNDs5RmgwyK+4rRr9CgHod NizkxyATJbS8e+4R4Gu1M3ZPAINs1hrWnYkg4N+fVrr+NxnkZrpItXAUAZar 7oUPhjLI52ZiIftiCLhCLqrVJzLIkxfXeA3HE1Bf+dkt+CWDNGccLYtJI0DM ZEqiChjktOnpnSnpBJxuF6mefsUgY7rwsfx/CBibNRSxf88gZQ85DbRmEiCp +axgTxeDNEkuHz2bQ4Dtq8Zj/j0Msv6u9UJ0LgE5R7nLTzkMcn1jTGddHgG6 nqzD8mMMMsQ/ZpV+AQG3eXbPnphikNoHl8ZvFhLwMepkatQsgxRzifOoLyJA mnn5QP0ig2T6tayIFhPw//+H5MzXksQtJQT8D5MIPME= "]]}, Annotation[#, "Charting`Private`Tag$3858825#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwt13k0Vd37APDbDYncyHANIfuijLkkMh5FvIYMRUrSKymiDEkUpVSihLeU oTS9QqWkVJL99CYJoRIpGct0M917zeG3v2v9/jjrrM/aZ52z93Oe59lrq/ge dNtDp9FoQ+T63333w5Th+XkmOJ/4/uH7hBZIzcirm/5hQmJskpfOuBZUbPx3 x+FJJmyptL0Wy9cC9bYX73+PMEH5WEDSilEtGFjSfbulkwnrM7cH/z2gBSGB hp7Fb5hQazL1trlVC2LVvoH/WSaYLRWTTH+tBZlZrLQPDCbY7x9b6JGoBTnt CQddF8uAs8qiHNGlWiDTsNlZQ1oazj+5Led3RROqXDZb16hJwYWAn1JXFTXB TkPtEAtJwiLHXj32JQ0wKdyRW796GaT7WuytZmjAdKK/pL6GBIwfe/At4Mgq GJu4c3nnSnGAnArplraVUIHS1pQHM4D2JT7wgP1KMBU8XqzltwS2q33d6nhH HS5RRkZWMSJwTdLRR0tQHXZne/4ayBEGG7fgx2/91aD+rtLiBZlCQA/VN3pZ qgpKSx6xcYkAnDWuWp2qqAoiK3rq+wvoMFTo6H3iGAtas4VrOm7RQbZQ6Z1q NAseyGlVNmfSobv3u1l1JAtcJEPK3ibSgdUaukU2nAXpQtN5NwPpoHmj9sDr ABagQbGT2zTpIBiQp/nXVhaYlhqueZ+/ACoj/D6bG7AgaMvpq3l5NIj8xvhl NIzg5lypgeZNGvRca/HfPIigKW+k7l4GDb731TmGcBBQs16CDxNp4C2e71jY i0AqVz/saRANKt9pu5h2IHg10e7wnx4NjitxhbI+Ili+NmLuWeg8vjJ8SC/2 KYIziR1rXvrO44er7RreFyMYaXPYX755Hh+Ii1/KfIyg4iz6WmE4j+9+Swgv KUQQ3FJf9HFqDhff+yiwOA9B+THNPZy4OayKnnfNZSLY9aa9RiltFie5fJc0 OYnA1nxyz4+4Weyuumoy+wQC3WfitOzQWbxrcLMw/TiCPwVWa+RcZ/HRQwJP Px1FcDXtdrak+Cwu+nHmWHIEgoa/9wYLJ//B3Q53bocGIHj2/fiidzF/8Npb fNvJvQiuu1+9eTr4Dy4RZJvE+SMI+uv9F7rTHxyTmyueuRuBMFvLYlb0D5aO vFDe643AijbM4J6bwdfXRbfx3RCsil6U/yhqBu95ydp80xWBOF95w8GAGRxs eszQxQVBW69L5G+7GeziVGf/1AlBdP3j9p5FM3hT1O7f2XYIHl8//Oj76WnM mRP+t9sCATKfc30bN4XntD5Ie+mQ+UuYa2eETWGHmuuNAdoIYnuOCgXvnsJf zmR0RGsh+HZxqlTKZgqLhXX+vK2B4J8uPstPeArrx81jCXUEAgmcMfrFSazx x+y1tzL53g7Nhqbjk3iFN+9HqhKJNzugoCBkEi906d5WpYig7FvPTje3Sfxm 3YVws+UIInS63t2UnsTiVdr2VnIIej59zaCyJzB/XYFXuSSCS3eZh6QuTGDH RulOWeL1xzw29cVM4JiltY0Ry0h81RrpKT4TeIPJQREjCQRbj9Tvb0cT+KKw +dsmBgIhJ8bGYskJzL4Dn62Jn6g4rTgrMIFN1/Z7PBUj8aypbtTtGcdmFnLl 15YgqFKsNI/NH8eO9nWs8yIIDnMFZN0yx/HepgCOGLHquw1ctaRxvCDOUCdt MYITIa9zPwSNY5FzP1VuCSMwflO2VFFvHA+FZHe0C5H1XJnpH1kxjukt1YkR xJeCTCoqJMYxsu4qFiMekX5+JIg3hlc96I+3EUSQv6+482XJGA6yOaj3eSGC Rt8cZYdcMj5zojKCmOad5P3t8hgWebTNWYHYw3V3y+ShMRwwfMb0IB1BnIMz M8FvDHcf685RJL5vY+rO3DKGrUZkpuoWIKCbSH40NBjDhZ3tSSbEOmvmGW/R GNZK9Kzk0xB46nIctywbw5phByaKiAvRm6qwUT52ui9oaUjcsvyhEL2Tj1P9 bDxm5lVAgJllndrAx5HKOXsqiLeLhsPDh3xc9nUg2If4tKDPnEUOHyecPbyX Tfxo3t6sLpmPbyc7bxci/j61Nto7lo9TvJ5tbJtTASE+ev47mI+bXg5ovyBm DzHGj3rzseOEitgV4h190waiTnysXZ7SG0l8tqsnNNOMj/vW+Zd5ET9u/fRQ Q5uPoxd/SFpP/KOpfPC5Ah/zzTju2sTCHwu07ET5WNWzS16O2KAmPaB5mocd dtV/Eybe+fbkXf8BHt75sfryzKwKnMMHfo218LBOQZ/DKPGTF9tZp9/z8BJf 49l+4vbijX9LvSDPT1Tk/yIWKdTPuZ3Hw8mcS64/iQ3zlH7oX+VhzY0F/P+N 77olovDfWR7efpH+zwBxUva4p2skDy/uT9fmEpekd6V3+PMwbdrr9R/izpS6 xoMePPxgxspVhMxvSVLpsnkbHvZ4uaZVntjodK5LsiEPh19X8NUl9j2elqyo Rt5/o6XLmvhCVGztfSkeFtjmtHMn8fPwQBEzAR5WmHdpjCbuDvawq+Fx8arQ UutMYsa+9We2d3OxjbbXwzLidb66Ff2fuDjtb5pUF7HfDnl61H9cnNweFiZC /l+pCzfmyk0uNv7ng4If8S/7tpfqqVxcPMj2v0wsblM99fQEF/fyvfLfE/uv uxXR6MPFTiHVsqYkn1INkot3O3PxdUaA9RHiMp3oUa4FFwtmxO19TrwMuQVL KHExXMtNsyL5ar7c4t4NMS4WyedkJBLvk9HsXz07is26Fa40EZeL0Pdsah3F z0LiQiNJ/gfyinYkZY5i6YPuGa2kXjLWjpruTRzFwtwXUaYCpN6j9BQ2RI/i AVu+3jViNdrDlulto3jkZ41KAKnHjiX3PQLlRrFX6+5ZtAgBw4VjuHHxKLYf GYy/Smz+j6Y0mhrBFRNFbeKk/jPl8j+3fB3Bz6LchURIf3BXz3X56+oITqi1 llQSRRAf8Gu1WsIIzmoelSsgfnxfdemCIyPYWWrboDHpP+IGtz883zqCpwe3 TOwk/anG8ob9KuYIdsk0PVm7lNT34zXnGNrDmPPoZam2NOn/xsW2laLD+IG0 gPYvYjPMForlDOGxU6d23JBBMF6je2qwYAirJW6dUJIl+8+vVTG1GkPYvW5q 0kyB1LusYmjiykG8sSrTdkYFQcn1rNXrFw3izemVBu0IgaSa/NBUz298azat 7i0LQR2buT8g9zcOb40XzVJDsMFBYo+d2m/8PSnq5B6yP+jGCm4TYnHw27KY bVFsBPKlDVf6BDg4WvJNYIQ+AsHxrKbqngHsMd4B4QYIWoP1t1wsGMA4PcIo 0hBBorePs6z+ALYq+EsvYx2CXrMXNppW/Vja2sLbbj2CGzNB+pt8erEqZ+CJ gzuC80bGoXpWvfjfIieTZA8EkeELHy1j9eLMwaH2T1sRbOJk6DT39ODjfZNn fLcjmP1WuWrXgR78tMNIJcsHwfbSFcphMb9w1YMvgSGBZL1RjaLpWd14i+s1 01txCCbnpySGo7txSqCNhO0pEu8zyrJ227vxZN1hw6F4BHmXAlWnZbtxi8NR 3w0JCCwe0cx3pndhfd9xxcUXEQT0ah9QT+3EaVqFybRrZH+9J3IzWKwdq382 fJdWiqDZL0jzYXcTtuz3+fpjhuTvDxejktwmHF4fbt49iyDXw9D6VUATXrFe y3JgHsEhuznvmuEv+M4m/2WzC1kgrp2S2jvTiH9YGX0wXMKCv3jFk8pSn3F1 63Vz7nIWRCycuKByrg7P2XZtPW/JgshozeT3l8txydqg8JEEFhRcNKbu6L2y lPbSTkhVV4XkgLimXSebLZuky3WEO1VBjO9oet+12/LLu2MaR66qQcehyjWH 4zmWZ0Ls39X6qcPQC6f/IqtGLSvZkh81V6+E3LM3d/mdG7O8FO61oWdgJaiN 35M8kjVl2Vjkq+lavAraHiu/Mt03a5l2ra1MIVAD3K90JHBSaJTrSjHhCFlN uP7v+VeO6XTqtd/j9nv1miDgFTwoGCVAGb455VZ+SAvqduXfdYsXopK6DV7o q2jDUzF574kgYaquvyROt0wb1DNV+hY5ilCZ/HuWlzfpwPTh+Nl7m5dQFQZ9 0r69OsCZVmDkGTMo45yRx5dCdOHG3rONCixx6uCmTfF35nUhxar2vJyaBDVd FSZadGY1MA7eW/9Gehnl7YZ7GDQ9KLd+/qpEXpIy7PfcddJSD2aDfdZ6MKSo jNmWwMIjerBg0acMrVkpyk1I7PtAoR6stQv7z54mQ+3sXragrVcPplvv90lz ZShRz6glcgpssA6qSnEal6G2rT3f8I74wky38elpGWq59XBS9XI2NCXOd5TN yVA+ep4/mhXZsEJe4RyfzqSe1zIym5XYEJi/lq29iEnRjwtlVyiz4YmxW8tu USb1oCGTmbqCDXPvguOyljKplwJJbxxV2GC79ZzGZ0kmxRTwtpghvvRxT2CK IZNS9Lz8z9AqNuhWKv0WiWJSTfv0Ti43YsMRd5NL62OYVOxJuirbmA2vf7qb Rccxqc7leX1q69ggcij0Z9FpJvU2yZA3R7xl4YXz/eeYVFwD2/6NCRuOUjPa VZlM6lDv7VSWBRuqSpuDT5cxKYlJVoqyDRuW2fOkXwGTuuN045vCRjbsaGGU 8yuY1BWXLZ9otmzI3afpr/2eSQWV7F9QTzw8YcPw+8CkDH90ZsTZsUHG8Enh +jYm5WnUsFPIkQ27Kuo9oruYlHxtdfgCJzbkb+bMFfUwKYa4SswvYm6X0N3+ AbJe66jNRZvYYBaGnFWGmRQH/xvv7syGMwssJjx5TCrD0fZjG3FDyraclAkm ldD89WKKCxvkV0TYVs0wqf0d/Tk1rmz4//Ms5ZYxlt3pxob/AxlbfUM= "]]}, Annotation[#, "Charting`Private`Tag$3858825#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwt2Hk4Vd/XAPBLptD9ynRKyZThXDIfY3IQSRlDo8hQUUIklEohJEkqQ0mT TKUoU8NeRVKpkCEVQuZ5nsJvv8/z/nWfz3POvnfvs9de66wr5epj58HOYDCY bAzG/3265cUPLy0RMNAkcPHzaQqE58Xk9P8RkHaMxdQ5RUG52cN9gTMERCYf KmwPpkCupeTjwAgBqkxPy/lACvr4O+43tREgE8s03udHga8XtaugjABZdZX0 cQ8Kzsj+hIMXCTjre3X5khUFKakyCV+YBEiK+6z3kaTgTmuUj+1yUVCevzgS VawJotU7rEkRERhuSfR8sEMTKm12bP4sKwwtmi+fdAxogDkpGyAjLQQXe62/ dgdpgN6TfRnfVAShKLmapcmjAXMxB4XUyZXw0G0hkyNaHSanH1zfLy8ATn9W 6I9wqUO5dILmG28mcJ48lTwTpQb6nGcLFN35oTTOsfvavCok0traRqG88Jnj 8v7b/qrgdmtXZ98dHsh4yGgRaVSBb4/WLWdL4QKBkRdJ3I+VYR3/UzVUyAFs YnNTOskbgFey61tvNjv4CgsHJwUpwVH7iKTMTAbEvn90dclPEe4ulmqw7jLg vmkVm+sxRWjIHPmak8yAoLZcvQovRaAX9nLmxTDgQuULgUQ3RRDOUD/+4igD SudMr5s6KMLr6dZt71QZoPpDR49dVxHWap1YLPJbQsUR9c/H2RTBpaz187qE BWR8yi7SJIUFWwxmPJrDFlCI9Aqh3hssUC4SYNzyW0Dvef/6X73Ggn/ZRpqr bRdQSljl675YFiQl3L8lJLCADnqy3qOzLKg+cMibJ+4fkt1Hq0x5sMCIMcwc i55HeY1chpmaLFAI4c56GjyPjGV3Nz9WY4HAhISJj+c8qkduWYXKLGjptjk5 YD6PLBvG6moUWBDyLb+1i3semWa7v1UWZ0F+WuDTXxFzKOLorHgEFwukDRZt 34fNokBF3dDnv0ioXmmglHx8Fl3RW7nOpomEM12nuLzdZpFCQFH5UAMJP6/M lgqbzqK7TCaLqiXhWvuEjDvPLFpuHnq+q5IEjqj+SfYrM0jty5NPvwtJ6Kr9 kUzfmkb5PuVDUtdJSHxEBAhfnkb8q3u0pK6RYHza0aondBpVd4Tmy1wlIU22 jj3eeRrFmKWbq18mYWfQtyOt0tNoxMdTIDCChErxCoMzWVOIW5Z3ISmQhKzD BW0vCydRYalzu91eEupc70hsy5hEghnn4pJ2k8BwuuT08/okUlkxuK59JwmO tm5NMwGTqO7c9+Fz9iSw6wnVUBqTKHt/wcFBSxL28PlDXt4EMjNp1j9vREIE p/PipjsT6Jjv9rNcNAlPlyw2fo2bQEzP+adxm0jgmpAuHvCeQFoO8Cdbn4T8 37V5pNIE6vPcflpQiwTeJ+p37meOowlOhY40RRKozHXN6knjSEpun6oriwSX e7xr3l0cR8ueVPuQJAmFN9pv/Dk4jmzR4/dlciS4nk2IE5cdRweDXL7IS5Nw OfhMVa7wOLJP6crllSKh2N+LdyPHOCJvnz0zKkEC87Bx5J6OMfT5i8f0J3ES Sm3GQm/eHUMHnmjpP15NQqdFy0u5q2OoWTw7I28VCQKmn2ZfnBtDDz4lsRcS JBzUvXeiznkMbTHMj/kqQoKgtJ33ynVjyGNGpVZZkASv8Wf7LqWMIscJn9Yc PhKStUb1D8WMou1W+tdGePH+BKuuMQkZRc+ZEvy62LKMvKa53aPIROyTRT0P CX/4cx29Vo+irSrNvXpceL42/ZTZ8lEUxfn6+W1OEgyusUSkZ0dQzT9vQw7s lNVZ35t+jKAP5VZXfy8jwUEuw2Zr0gj6Mi+7spSNhHDPThXZqBE0Wd9croed n7v+P7agEVS9cUENMfD6NO5/Kd45gk7d7NL8vqQAhoHtuYlbRpC6Y1ulK/ax EqlYX+0RNGF8X3BqUQE+G6ZbKBAjyELmSZk89tz5VpKDewRdleckKxYUwDbW QBAGh5EItyF9GJs/We+KyuNh1Glkca7onwJ4SpRYdscOo+u7eB65Y1c81Oa/ c3QYNb8/f0oEOyxfM5qpNIzOSe8mz88rQItOwZYKvmE0sXCOsQl7I1LjOtM/ hCK5Fs8tzClAsunTcurzELKKz8kC7KnPyhcGs4dQxxHX4IvY9naPjR7GDKGn N6eGbLGf/VBkOHkNoZ2ndZZLYjOds98IWwyhkx0TFaOzCnC0UyG0ihxCdccm 5T5gfzrySD98+RDyMVuUT8eWH5Od0+8dREPCNZWnscODHhSPVw6ivilFHifs 9kXpkzmZg8i658NfGpuOuEu5RQ2iRYN9TgrYt/kkJ8QOD6K7fKm+QthzV9Py a7cMol1JGuLs2LtWifvFyA8ij081ByZmFKAwLVXFmHsQWdmKG/RhC8mKDc12 DSBxwdLHHdi+OUm5zyoG0GSjRf4f7K9qxBHPjAG0dOzI1jZsxeLrpFTkAIr5 VejXiR21Sbjnh8cA2hZSTg5id5UnZMSbDiC9+3K+M9gm21Z6mMsOoHMN3ibc eD7pNVdkGJwDKNRJ/t5q7MWdzPaiv/3IZPB3jAr23pbYdJ/yflRQIfTPHLvY nc9Z/kE/kvljPeGBLdofLd56oR/dXxQ4Hont78fz+4ZbP6pMqfPPxq6ejkyx MulHUdOCMzXYymc4d3PJ9CM+5uaFf9hipdU3ezj6UZdDo5kC3i/OqdSGT119 KFL7aIoj9m9vdfsr2X1IsOPMnlfYlVkLCX6xfaj7++HyceyCzsqaHcf6kN20 koYyjp8YJ2frVep9yKqUUywXOzCZFTcn1Id6twdcGcY+UD9Z9XuyF/WZ+XNo 4XjUsYy1uFvSi86eR92fsbs3lpiyjHpRbkyA9xoc/7VB4eH8Mr3oo4N9SSD2 m+fWZUMcvejhu6rZOuwbSl10QWUP6o/tsEvB52nzWqGNG2160C+jXwbm+Dyq 7moJWafegwY9C7leYq9JzCphCPcgl6kXxarsJIzx0drvG7vR9Ujz2vX4fKfP H1W3cu5GhjF2+Sr4/Mdq6/ipGnWjA87zKSXYJ/2XPRWU6Ub3GjtdzHD+sOpP 3tDY1YX0vnqdOcxNwsLPCgWXY13o9KtD9V+Xk9AjmnDI2KYL3XxrG+qD81Gd nVPGevUudDhdbUoQ56/cT+MyvZOd6Fdpgr0rP87/pZISx0M7kbTS25vS/5Fg NtXvZO/ciWT4rFObsNXUi25pGXUinTOKbtcESODJthSb5+hEJzwP6f6H82Nh cohIeOxf1BaTWyuP86dQcB3fjdQOlGZz2+LXGhJmlmZXDod0IGLBmL1mLQkt kRKrzPd0IN3O6F8fcb7OTPRaP7eqA1Vf9ukrx/l801OGwf4b7ahMO9TgjwwJ nt1Kx+SutiFtG/Q9Swmv/5hdwFnfNiRVGHavegMJmpMnQ35Yt6HJMdJ3TpmE RfayyBhmG8qR3bnkqIbr77rdd4Yu/UEmL9fnaeD6dCaH9673ilZEZ9UeCMb1 bWuJw2OJqhbU99Va+Buuf8If0ktqYlrQ5lcc9+RNcL1t16qleFpQlQ2fWZsp fp6r3ZYtsjcjk6l9foHbSGBFvfSIm/mJ+vcX7pbD9bbR/Sgrr6MBEc8fhsf6 kvCm2Ua7MKMBSaq/L1h7nIQMR2rza88GVHTtn2SePwkB5otOn4frUW6uxZOf uL4LKMVf7Z6vQ7O6li7bQ/H8xgtmJIS/I8b+wbCkGBJOLJu+LBX9Ff0Ug7KK DBwfIay4j9ffIH9tlq9wJ34+QyMNeRmvkUM0pbemmwQ51yKJG0WvkMz1By9l ekmo37r5mWtTKfr3cL5Zd5AEjdX76+bXFiFeLbbjIZN4f3xkqH3meeiAXIz7 Nvy+VJ27rtXe7iAyNlm/IEmyIPuKDv1A9bVhARwIMfJnQZxnWIPL+UbDm9bv ru2TVYQVE9v1c207DLWdBq27finCn4AKzcDwfkPt/E11Xx4rwVCJ5buTlaOG JTd3ible2AAZF++6uEdPGjZWjX6ZslQG2akcoaDUWUNnv52OkSwVaMmXeK1/ eMGw/5PkMtNpFXC4+SeqP55B25YcEHu/XxXSHsa+3n6DnR5+Fql+tFIVOPZ6 D3IGc9CCdrclGhTU4KtL1iO7cC5aTUc8uDRODV6sEHOaPspDF/JeW2ncrwZy KVI93Nt56UMSjF3HTdRhLjB8IWcHP61rqDtplK4O/XNrmJk6TPrzEFeY7oQ6 pB+6WLdGRoB+q+FX4LBdA+KNqmJXy66kFVs/klzpGsD0yTEuExGkN3KpxyX2 a8CbzcWvC8WEaP69Hzi36GvCgrezliNTmN5EX2ah85rAxl2brLggTFt/TgO9 Ck3QMj/+zoIhSmuO5TRP81Mw9zu3R2RMlG5pdt3Ltp2CzUcr4y2nROmVe5hq my0puDzfoRMxJ0oXmDx4MWBLQUPM0p9Xi6L0na3hb9rsKJAUWxM9wU7QHWUS cQk2FHhlaakpcRN0Q1HZ6p/WFDzXsWty48NeVaKqbE/B4gfvsNT/CFpw1QfF U7sp2LIzmvwuRND+P2zUDRwpSKzx8IqnCDqzxjjhhzMFLS5hgpW6BD1nSRiJ ulMgP3KrdMmAoF+7fbe85IL7tbPFrtrGBP2t8u8/2/0UlDLreH3MCPo0dZJ/ 4AAFHGnD+RkWBP1yzw6OXwcpsNrAt7fFiqB3m3Je+HqIgqRXcstEdxD0mvXy rp/w97dtM86x3EnQNeDqEIT7P9Yvpx0RewlaL9Kg9gK+P8AreP6VM0Hv9/xQ VO1FwZvZxPsTbgSd7vtK19ObAp7op9uUDhN01Cv7u0JHKLBbVTXudpSgW294 qjZ5UpD6qDs11ZegCwNzlh7j63+1lm3+HkDQKWVzSv7HKVCuWDfAG0zQ4X2T C0x/CoIc9BKNQwn6l+uG9GvHKHj712FjSBhBq8ht8prA5g3w+/ssgqB5fOZM nuHx9ssux/ZGE7Sspu6J9JMUpCVkakrFEbRH6oZWTdzv9kiV/96VgNd77Kfq TAAF6s9aw+NvELR55bos8RMUnKLnlSpTCHrTpqB9b/D95d9E65fSCNq5aji8 DPfTTGf1UO37BN3X7x669gwFu4YsZX0eEXT+vEb8nRAK7oV6fsnIwfHQLst+ PIiCAf6IEy15BK1cUPL+HR5P3UoXF31O0J6n6zWiz+P+WvHVe8tivH86O3Tv XqCgsrTRO+IVQS+WjZ5+EUqBoMW4yGsg6Kvf9oQX4d/b18R8M1FO0Eo6plcq wijIOMw6qPSRoFe9de/Sj6RgeNqU6f6FoPnN6o+sj6JA5+KBwtQagm5xz4rM iaDgvGjo/u/1BP2qgn1FcDgFVQ+TuPh+EvQU2xa2XmxR6vkT4xaCXr3x/L+Z aApcyr85hrQT9MbiSqfReAqydvQvPusiaJHtlx7mX6JgrJ3rUW8fQf/+2fQo 6yIFG49LW0sNE3SiUif3Dzw+km3T9K5xgo4slJptvUJBdfzuO/HTBG0qZdnG eZMCMckTWyrnCXpteOPyMHz9///PoJc3DDQeiKPgf1Ddh4M= "]]}, Annotation[#, "Charting`Private`Tag$3858825#3"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmXk0ld/3x5Hpo0h4nouSkOFe83gfU06izIWSBiUqQ6T6lEqlKIUKTSr6 GFIyFEpJprOTSikapEhpMs/XTPie31q/v+56rXPO3vvs8977nGddJZ8Qtx0C fHx8Mfx8fP/365uf0D87y4JZF2O+TC1jkJmSVzP/ywIh5eaYDZrGULXy9ubQ cRY06lql/2Abg9r3J696BlgwdPSLjby6MXTN+53R+JMFdSrzM7cpGcOeQGPP wmdkXCTn5nzaGMJVm2DnGRbAPNMpjVkjSEpWufhWggVLVMx7K98ZQWpLdIjr PzQovU8OWRlgBPQ799VsigK0nLfhj6ARVK9xt6lRlYGZ2FJRnGIIdmzV/SrK 0nB9bcqHBE1DMMvbnFmnKwUmi5pf1pYawGTsTmkD9gL4z+eyS6+lAYyM3bqy RV0SlH8tU4oo14cq5YtGFcES4O2x1StmuT6YCx0v1Nw+D+b3+ipPFenBZcTl Lj8mBiqNS56cMtAD3xuerV2ponBu1jayy0sX6u4s/oc/SRiWJF7e3Yl0YPG8 An1cJAj7OyJ4Gy21QWxJW11njgB0V/fnqxtpQfMN0ZofNwUgYbW01io9Lbgn p/nic5IA7Ile4++vpQVrpPeUPY8VAFkxWZ2CpVqQKDyZlR4oAFT8Cod1lBYo 94pHbuAIQLwGO3N8VBPMS4yNXmXzA3z9ZVZaqglBa6OuZWXxQRHvxb5eR01I nykx5KTzgYmERd07O01oyBqozb3OB9kl2sFFtpqApjcJ5cfywVDI7UPRVpog k2mw71EQH1B35i+0M9SE8rEWx0o9PsigWke4CzVhkcmBmcd7Z7HSrgOyvT0c OB37w6jUZxZfs3ozqNDFgYHvjrsq3GfxJoUIX9d2DlSdUf5SZTyLww9fkIef HAhurLv/fmIGF1/8tKS8gQMVRzk7uiNm8IfNYfXcpxzwftZSs/jiNP5R0JG1 /BoHVlmO7/gWMY0vHVtge+UKB3QeS/Ld2DuNW9rFXXoucuBvznIjOddpfML2 9oNb5zlw7WLGDWnJadzcskne6iQH3m3zCxaN+4u/XakcWxTCgeV8/RK8mCls 32Cen2DPAY0wkeyCw1N4pdzdw+tXcUByWHFFSMAU1gwXF1O25cD39jUHe+ym 8Lhc7OlKxIGwugctbSJT+GtFvYE+w4EHKaEFX6MmsXyjQuBLdQ4oW864Po+Y wArFR8rb/iH+F1hqXd83gddgq6V2ohwIbzsiHOw7ge+7H5S8J8yBpviJEhnb CTzHRPh4xBwOXPo1rLJddAKnreR9XTvNBsHo7hGB+HG8dtEEzhxkw4PNnHcN x8fxiwBppeUDbPDWD8jJ2TOOI4POLGrpY0NZU9sWN7dxnPRXqF21hw0HtH+9 TKfG8QUN087vbWxo+/DlOroxhrfzpUbPNrPh8h3WfpnzY9jB5p54/Vc2WB/1 cOk4NoYDrs+1vNvEhhTVeoGErWP4IiOS4veFDesP1e1qUR7DX//tDRerZ4Ow s8TKQukxvEXtv6C/H9jwUMl5yRnBMZwW80CM954NkjWv63XaRvHo60cbO+rY UK3wwjI8exS/E7qzif8NG0J5grJuSaNYpU/ju2QNG5a+XMFTPTuKZ6abqaWv 2XBiz9PMt0GjWHfHr8x11WxgnpXNV9AbxdpzAze3VrEh27/wZ2nRCC4IKwh6 XMGGep9URcfMEdzz9uXxoXI28Hmd9Wq6MoKfdikNGxL2cPVtHN8/gjMOn+Ov LGWDgJn0e2PDEXyPbfhQ6gkbtI1mJZ4rj+Di5piGvcVs8NTpdlorNYJ3+Tls +vSYDXnKz6r3DQ7jIrkF57KL2LBx7r+Qnz+Mu1IzY04/ZEOU0NaZZanDuKPa s0KUcMGsg0Vt3DAun/y2Nr6Q5GtYubgneBijd4mZ2Q/YoN8nMXrEaxg3nHDf Zkl4c8ek4VznYZxqMXL0031y3s0f8tlawzi88/4nKcLfGip6ixcOY/2RJVLF BWwQfZ+jaTd3GLc5LMzbRtiwJjHg8+QQzrW3yJ5PeMvzyDs7u4bwuLbMnMp8 NsTg3a0jjUO4q1av9BDhh082qkS9GsI3K6j3hoTF8gxSM7KG8EJffZnHeWww zlr8zeDaED7o5YaOE/a+Kbaw8swQLrOVrHYkfPbGqKfrwSG8behdziLCRYm/ En/sHMLS1FD74D02/EyorQ/xGMLbDWvDawjPO1siNWs7hBWMH+3OJsyNylwT ZzyEw57zis4S9jl+MU5BdQhTaW899hE+fzj8zV2ZIfxL/aSzF+HifwPFLASH 8KlKpyQnwr+DPexqhng4R2CLBSIs4W99euNvHg4S+mnAEDb10anq/MDDHn3T R40Ib98sL3C4kodDy+vljAnHewgj0Qc8PAXHRc0Il6zhHbuazsODwVJ2Kwi3 OnwvVbvAw25bkj6vISxp+3ri0QkeNs9eUuRD2NyqiGu7h4e9uzJ/HSK80/Tm gfqtPMzOYW++RPiCYVyh72oe/hSdqvSAcJl22CBvGQ/H+o3rfyLcrr5TN1KH h91DFM/9JSyl7Ba8YDEPZyhP6GiQfFouWpabJs7D/YI75DwJ+9OcTt3pQbzb 28LhHOFLkrQ67hnETgbuUEW4Qkxgh0vzIC6wOxjGT86zU7Dv5reaQaz+Z+9B a8Iys40/gkoH8YptQkVnCAcO3d98NmkQR0l08BYTvVw3GTT3ix3E3idrd4YQ rj6st3BF2CBOzRUZeEZYlS+/cXLDILZSWW95mOhx7Yq+4gb7QXwnq36mkXDk ae1rD0wH8f6bIe+WET3/mHfXI1BuEHPLrqfIEP1LrOk2XvnPIH4ssfNaFGHL SxxKeWIAS919d2OScJJc9sfGLwN49YUqPEDqZ51a5hr7awPYVUfPVpzU36mA Vl3V6AFsNCKyK4Xwg7tL5/MfGsDBO67GG5J6lTTMeFu8fgCvKrheG0DqucYq zUGDNYBX2q8aEypjw2RkC1tQZADL2iq0FRF2PWcpBb39OMQy78Uu0h/mXTeL 173Xj6+91PX4SfpJxAOjGAmtftzprBI+9ZQN35nCVS/m9uPUkk2vayrZYIH1 hcO7+/Cf0VWTqc/YMFqjc7I3pw+78Q9Muz9nQ1CrxrE37D5898pZ7y7Svzxl FfbGqvdimzm57bXvSL2kJOtai/Ti4u7Yc82kX0qryvdNtPXgJn/H0V7ST2v1 WbsCMnvw2wZzyUWf2LDCccEOO9UeHL5jztLbjWzQCRfaIKzSjX9rbuf5/2aD fMm7qx2C3bhOUbUk+Q8bhEaTG163deE6MfW771vZ0BxssDY+pwvfeVgssqqD DbFeW1fLGnRh59V6get7iR4tnthylnfiouhgK/FxNqRNBRm4bG3HmjcX9eD5 HDjHZfbqLW/HTxQcvdYu4MDBf+cUSKm0Y4HoH6XdUhxw6b6u/bmtDTeZuJiq 0ByYbnqh4b27DWvWK04/XMSBjSVLFPcda8UwK9q6jcMB6cP1cxOTf+Ml7ke6 PpD7d3x2YkF/2G9sxOlp6CL38/fTirJ2G3/jgnKVdiEnDmRdDlw6KfsbX51Z 5m+7hgPLCvgstyT+wumO4Tc7PTkQ0K61W+3CTyxtZp5WFUju21yx9GDxFuxz pHLifgIHPm8P4uT/bsDVEd0jH/+Q98e3NdyizAbc02Omt4e8VzI9jG3KAxqw W2roRQnyntlvN+NV0/8Jf81SeeHaT94HWgkX2qfqsXb6UN7gBAfshwrHFWU+ YrtHCXevzNeEA3PGzivF1OKtz5YXbLXQhINhnLhXVyrwilO6a2OSNSEnnkG3 9MqtSvXja0/4a0FcQESDd+RnK02l07J/N2mD+LCT+V3X31aLzCS2dDjpwI/9 L4xCT3VbLd77WnjHJl3oe+JcebB60KpEK2P7jJEeZJ5J994eM2K1I+2kVluh HqiO5kofSp6wQrVNc4Qs9eH7A8Vyc/9pq8ur/TZkl+rDuqs/orsT+NDzbac2 9hgbQMrtc+VOiQLoDYi+/fvYAAQ3BfcKHRZEsr3Hay/rGEKtd/Ydt1PC6POt bbfacw3hkbi811iQKPrE8O94qWAEaklKHSJOYsj1RygVHGsEk6GnpnPd56GH p2X5O/8aQffkQoksRgIdl1V7mbTdGNL8ztQvVJFEcXHI/fN7Y0hY/uacnOoC lMK8dlQ1MwGJkFzrZ5QUOpnbYBN+1QQqbIrLi+SlkdZoa9uSaROYDt5q4iEh g6Y7WtdWe3KBX+TDdc1pGdS7QHj36YdcEI7eTzP8FIpYdtSng7DYP6xLNkIU EtyxuEkrjwvzY5/Md/2HQs5dVXETj7kgM3fzOS9xCmlZmTHvK7ggd25GNHAB WR/o6eGcz4XF4ulRoRSFNh69KR9XzAWVuBUCJ+Uo9F9l6i/vF1zQmN8WHq9A oUCPV53LS7mgnRA9laxEodbzB9+pFXHBYIHmoSxVClH3C+vvv+aCycW3ww/Z FFp18+7Ej+dcMJfes/epNoVq9q2ZYEi86LJU31t9CmmrNJcsqeGCDfUosMmY QiZKNuyBt1ywT1zf3mZKIc1lhbrHnnLBhTXpO2RJISONqbsXXnLB/dqNH7PL KRRbv8ht7QcueMpZec1bSaF5Gqa7eG+44JX0s1HWgUJzx1P5v1VxwWfhKQ9V Fwo9zVa4tYXM97uh9lHfjUILI/TNBT9xIUjh1eplHhTaZuPnv+EjF/ak7Hrj sJFC7fS1VJFaLhxQlLBfv4VCQX/3PtnwhQthaQXPfX0otGG6yUKuhQvhSu7W e3ZS6MYp2uVSHRdO3hypOBpI5l+g79s2cCFa5Zp5zG4KpYrU7afauHD+llnx lX0UUpPe45X5gwsXVb8Z3QylkLD1LzkVsv5q5vH7eWEUkr968Gk1mX9DXVmn NJxC07cVn0b2cSE9qyrnZSSF+FbjCZvPXMhk+6nXn6bQ29XKf+uIvZycf279 iCX7eZwu9GiUC/mad5f0xlFIOq7ua0w7Fx7edflv4iKF1qYveLacxFesPSgn fJVC+lZ9vv+NcaE871KiVDKFVurHi9XyuFCpayKtmEoh65htkVs6uPCy4Eu8 ZgaFjIcWHNDs58Ib/SPzmDsUij5+xPUy8ff+gUKMTS6FNuelPjEl3GAIQq75 FBoayfGSGuTC14c+kV6FFIoZDFWfJfzDWGg24DHRS1RseuhfLvwpunMktJRC T17euvyKn4FOrsN4JKaQZNpGvxjiv6+4Z3/8MwplBu8WNpzgAs80fjD5JYm/ pJFXIcbAWIn+7qwaCoW3tFlpCTDw17y+62Ed0VuPeopGL6mn8lC/px8ppDwl XflOlAHhZXJ/3n4m+ZGc4/mRZmAuLvVu+kqhn2nLou+Nc0ESbfnW1kKhxlq7 4P4pLlBP+TYO/abQ+53O/SlLGJC3zmiYbadQ/KX6x2clGFj8zNZ9Xg+F+M/9 Tgol+VSx6aiTHSD+lka/WyTNgMbzWCfVYQr1bT/i+kueAa2V2q/0xylU9ihx 75Q4A/ov62yX/aWQwegkfXKG1JPdvkoHPhqdD1lqPyjHQIzB3P4FgjQ6k/Os Zc1CBpoX3VrYKEKjddceH58m8euKWNqlzaXRjpHuozxiL3Lw036/+TRy4YiH 9ZLxT193p+tI0+hIjqKllxKJ54VI7QhNo6+ZAvPYagwcKUibLJMn602TVfLI +tokU/VTi2kUUPPvazWyXinqg7ujMo3UMprFsjgM7A/ZdUJKjUbnjuRbjzEM vNwgeK+RTcbLlHrXS5L82PzXmKZNo8jleWa7WAwE65gI++vTaFu8RWKOCQMg W2ega0wjVw0Nq1YzBmTm+G8dZWik/uIYz4H48+vlO1duQSPktrnakeSr5PP1 4lOIRiGesbbXbRiQqDRodbShkWKj2uPj5gxsu1uzQNqORlJFuuFJigw8TNy+ rMmRRnnPU08sXcyASMR0YPpqGmnlJq2psWNg467Eq/7uNFooWfd3ypKBe+t0 q3TX0yj10LbLGloM8KHqgdGNNPLWbNqkp8yAO2ebQsUWGlVa71FwWc5Apsyk fZQPjXbOBh0eJzwxczHUaSeNaoRx2w0Sj1OnZoZ0II3wDv8NbnoMpH6sqmsK plGj89x9b0wZ4JV7/U3fSyMrdofi+5UM2GaNagQcoBFHzpYd4syQ7/34dXqH aSRT1rP6M7HXfVQjcuwojfrEc2rnGDCwzO9pXsUJGs2x5JPMd2TgguvGr1Gn aLRfeZPEc28G/pgPiThH02jw56jIEMmXXqtHScBVGj0bP3DDaTUDJ+v62/SS yf7T/VbIqzDQ8CRaejyFRtWWL2RVXRlg31JC+CaNrq8PPXwsjIGjcSVBpzNp dNlysEJmIwN1h9yvO+fQaEGc19Bjcp7Kvj3PZfJoRJ2un7lN7Ic6R/G+3qfR VbdJ/fr9DLziLlbMeEQj3z1qkfO3M7BI+bFj4BMaaXivbjrlxMCeeWsO6ZfT KJ2lrr7FgYFnox23xoFG+YXdDk67GKB/RrzHVWQ/G5DgFcIBNfIzp6uJHkaU kk19GSh7VMhxeUMjL32v/tdrGZif5rSeekejPUfH0qK9GPCJbT3Z/JFGSdvb y+t2M/Bof3hBxmeiL9a3jIZDDIhuZX0L/Eojybpf6c77GNhkX/CPQQuNWhTs jpeS/OYZ2ptM/KKR8e5PRVJBDPAv/uUDbTQyenYsPSqWgbWiR+LPdNFILERu QOoMA3d40mUufUSfncOBC6wZmGy+20HxaNTQYb1zuw8DNkHVCc6jNDp78Vxi bhID56d+M1GTNKKp3ZIHib2G2NkfZTM0Gi495vTXnoEl8gtjhgVY6MGq0KM3 QhgIzDbR1xJhoT2rH086FhK9M26NvnNZ6L1/TPfHUwzMvAyOSJ7PQjzGL7DK nYFV62PYH6VZaPWM5GzYSQYS2m69F5NlIcZ2yxf7DAaaDsBh60UsdKAvIds4 moGlQs1KYUtYqMZi/ZmmnQzsvjz26v5SFto3nt/5MYGBYhXpfZ0aLDRln6eo TuLnL9SRV9JmoRcdb27cvcyAg7VDpac+C/0++WUil/i7/H5HYIIxC/m8umAx eISB794RUtWmLGRdmSh69ioD6gM3SmYtWchr35zW+TlED8eLfbjWLGS+Z6FX 5G1S/xL1YiErWWjc7ZagODl/wZT+B5kOLDT0/XrLceLfRXvupu8uLFT2bxnH oprUT5naHNqdhfg2evCfvcnAT0frXOf1LGSz6I/TPaIHzlcv96hNLHTo0YnF t9JJPws8PFW2lYXywncHPOtjoGLicsawLwtNJzd8YIh/0ZgCRy1/FnJI1fGD DQy4yb4Z8g1ioVg4dF48l4HkO+3JyXtYqGGX0PrwblJ/JnNsPu4n9u4HDoTc Y0DnxeIescMsZJp2bvbRXgYOrTO7bH2MhV5PF44dfsjA0z/rLMIiWGj91WEq o4kBsf17/9yPIvmtsFh6oIToa875c50xLLRETu/nuwsMpFzMMlKKYyF7ya1O /MUMdChVNXteZKGk81fWHnrNgMH9llMJiSxk52ko+JXwETSlVZ3EQuJlr/4t Jfaq6uhPsykspHQt23+c2JPYanCMm0H0sVO698oTBjz7nFVD7hB9mUnyfJsZ uHks4G1mLgt1bPvPU6CXgZ55UQe+57NQVcSotNpZBoxvpCnQD0m8C5VrzmYy EK5Z9ty5mIXYOLoji+SjuuRzcFQZC8mamX0P0zAFKYchqhxYaPTZbx87or/N jRIVw1UstMqMr3A70VemP2en1iuy/tCOEL9hBvrHbCW2v2WhlLgR23wjU2DO bCtKfs9C35QO8V3C5L6jj235+ImFnjQ+YgkdZODN7WvCc5tYKEoqOD+IR/qH 8cM86+8s1E3f7LPXMQXvqjqPsF8s9JO3WSz0GwPZ7t0z99tY6Ez9wcwuol/e L+E7nV0sdPkNvq70mwGLfcqrlfpZKLLmdkmVvCmc5l825jnEQu1/e/hMxhl4 l7AhNWGMhXI8Ew/KE/3JLzmwqnqKhV4J7xXXfcnA////gEAjZdXpCQb+B2Kp /2E= "]]}, Annotation[#, "Charting`Private`Tag$3858825#4"]& ]}}, {}}, { DisplayFunction -> Identity, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0]}, AxesOrigin -> {0, -25.205799457979587`}, FrameTicks -> {{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "ClippingRange" -> {{{-5.999999755102041, 5.999999755102041}, {-25.205799457979644`, -7.661000555932736}}, \ {{-5.999999755102041, 5.999999755102041}, {-25.205799457979644`, -7.661000555932736}}}}, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox[ "\"\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ StyleBox[\\\" \ \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"h\\\",\ FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \ \\\"/\\\", \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], TraditionalForm], FormBox[ TagBox["\"| \[CapitalDelta]\[ScriptCapitalF] |\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0, -25.205799457979644`}, CoordinatesToolOptions -> {"DisplayFunction" -> ({ Part[#, 1], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Part[#, 1], Exp[ Part[#, 2]]}& )}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> 300, LabelStyle -> { GrayLevel[0], FontSize -> 14, FontFamily -> Times}, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange -> {{-6, 6}, {-25.205799457979644`, -7.661000555932736}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{"2", "3", "4", "5"}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["\"n\"", { GrayLevel[0], FontSize -> 14, FontFamily -> Times}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #3}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #4}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontSize -> 14, FontFamily -> Times}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", RowBox[{ TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"], ",", RowBox[{"FontSize", "\[Rule]", "14"}], ",", RowBox[{"FontFamily", "\[Rule]", "Times"}]}], "}"}]}], ",", RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{{3.8763699506493063`*^9, 3.8763699619208803`*^9}, 3.876370068782353*^9, {3.87637043091245*^9, 3.87637044257585*^9}, { 3.876370721301976*^9, 3.876370808099616*^9}, {3.876371116142165*^9, 3.8763711352371187`*^9}, {3.87637122695619*^9, 3.8763712464846573`*^9}, { 3.87637134045012*^9, 3.8763713522979193`*^9}, 3.876371879846971*^9, 3.884692135165325*^9, {3.887183224363449*^9, 3.887183269387279*^9}, 3.888652370069249*^9, 3.888652437166812*^9, 3.888652624199464*^9, 3.888652845863263*^9, 3.888660610541423*^9, 3.893237180256803*^9}, CellLabel->"Out[13]=",ExpressionUUID->"fd2b4eb1-d3d0-47e3-9856-c74924a73143"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"magnetizationData", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"ut", "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], SuperscriptBox[ RowBox[{ RowBox[{"uh", "[", RowBox[{ RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\\"", "]"}]}], "]"}], "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], RowBox[{ RowBox[{"-", "8"}], "/", "15"}]]}], ",", RowBox[{"Re", "@", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"DScriptF0D\[Eta]List", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "n", "]"}], "]"}]}], ")"}], "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"n", ",", "2", ",", "6"}], "}"}], ",", RowBox[{"Evaluate", "@", RowBox[{"N", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Gamma]", ",", SuperscriptBox["10", RowBox[{"-", "4"}]], ",", RowBox[{"1", "-", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", SuperscriptBox["10", RowBox[{"-", "4"}]]}], "}"}], ",", "30"}], "]"}]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.8763698032393303`*^9, 3.876369884026998*^9}, { 3.876369997688293*^9, 3.876370007596018*^9}, {3.876370093855591*^9, 3.876370097827559*^9}, {3.876370373799559*^9, 3.87637037853475*^9}, { 3.876370465791544*^9, 3.876370497109497*^9}, {3.8763705296866293`*^9, 3.8763705300592623`*^9}, {3.87637087516536*^9, 3.876370917886569*^9}, { 3.87637139299862*^9, 3.8763714209705677`*^9}, {3.887183678121203*^9, 3.887183686457292*^9}}, CellLabel->"In[14]:=",ExpressionUUID->"22e15b10-be95-4312-870c-ebe3402ea67c"], Cell[BoxData[ RowBox[{ RowBox[{"magnetizationDataInterpolation", "=", RowBox[{"Interpolation", "/@", "magnetizationData"}]}], ";"}]], "Input", CellChangeTimes->{{3.876369897948588*^9, 3.876369916907255*^9}, { 3.876370456614004*^9, 3.87637045960681*^9}, {3.8763707444350023`*^9, 3.876370747760907*^9}, {3.8763714277972183`*^9, 3.876371431900972*^9}, { 3.887183690448813*^9, 3.887183699080945*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"6e3ba380-2dbc-463d-8279-e42bb1e3c387"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LogPlot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"Abs", "[", RowBox[{ RowBox[{"#", "[", "x", "]"}], "-", RowBox[{ RowBox[{"Last", "[", "magnetizationDataInterpolation", "]"}], "[", "x", "]"}]}], "]"}], ")"}], "&"}], "/@", RowBox[{"Most", "[", "magnetizationDataInterpolation", "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3", ",", "4", ",", "5"}], "}"}], ",", RowBox[{"LegendLabel", "->", "\"\\""}]}], "]"}]}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "\"\<\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"h\",FontSlant->\"\ Italic\"], RowBox[{RowBox[{RowBox[{\"-\", \"1\"}], \"/\", \"\[Beta]\"}], \" \ \", \"\[Delta]\"}]]\)\>\"", ",", "\"\<| \!\(\*SubscriptBox[\(\[ScriptCapitalF]\), \ \(0\)]\)\!\(\*SuperscriptBox[\"'\", StyleBox[RowBox[{\"[\", \"n\", \ \"]\"}],FontSlant->\"Italic\"]]\) - \!\(\*SubscriptBox[\(\[ScriptCapitalF]\), \ \(0\)]\)\!\(\*SuperscriptBox[\('\), \([6]\)]\) |\>\""}], "}"}]}], ",", RowBox[{"LabelStyle", "->", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"FontSize", "->", "12"}]}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.876369918582409*^9, 3.876369955823151*^9}, { 3.8763704278400583`*^9, 3.876370441157851*^9}, {3.876370738463645*^9, 3.876370807838629*^9}, {3.876371122391995*^9, 3.876371134526176*^9}, { 3.8763711865989513`*^9, 3.8763713519982843`*^9}, {3.87637143608066*^9, 3.876371440221603*^9}, {3.887183707042214*^9, 3.88718373222613*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"965d5a6e-a5d2-4e2f-8234-02ac11e44315"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwt2Xc81f8XB3CzJNkhFZ97r33TMCvq3lBRVlFpoNKgkCRKWkKEjBANo5CV kbKScxAZZSVSRsiWvefv8308fn/dx/Px4T4+j8/nnNf7HChnrxw+z8bCwpLP ysLy36dVWuDw8rIoun/ip1hqK6DwvLiMxoIovlBfLL2wRwE/74s75Twjiq/S t9PtGQoo05pbPjgiis/rsgg3DQXs5+l83dQuipqT5+pDlBXQ4ZKqWWaxKG4/ Ps7IpSngHelfeOGhKCoW3G38xq6Az57Tgr/xiuL92/v7qcXyGNXmfeXQKhE8 a91xnV1ZHkVqTIzk167Fxo9aRpffyGGZsYlOpbQw2ijzZiesk0NdeWknGlUI V1+N8d7uKos7U0/FV28RxAgln16OPzI49+iCkJK8AGoU8p3iU5bByenYUAtZ fgwZP3vt5QNp/EwNVimw48XWy+9u3v4thRqcdzPp53gw/NGZGmeKFIYw1dX3 3ObGBLOYhg2ONLR6YdbVH8WFnOX1Xwy+ULH6jcQq1mcrMH9Fo36JEBUleNK3 QRYH7j0g9XvUhYL2f+WaA1I5sIo3/LfjdQoW5Md4nY7nQEPeAcNJRwqa2z35 zRrGgVsKop4t2VHwRZWzp851Dry+YpcE7RwF1wXtaipX5sAvq2+9zjKmoLBI 5b36dHa08rnWL0Gn4LkhbXpcAjvqbPV+Xi9Hwfel+T+uR7Pj1NUJBT8ZCpq4 pCqIBrLjuodW4yxUCgb/DKo/foUd5096BLGuoyDfczO5NkV2DJUd1j27koLc RHd1XxIbGhvrluV3Edj8gqvyzys2vCEhQ4FOAt+uo5c2PmPDjOfZUNxOoLGQ Q37JIzaUosy0fG8hMGzFXELMJTZ8vZKLn7+BQOq/Ne7HFdiwaV15x3wpgRp5 qirliayY24QrIYlAHnWzLRjDig8XvygLJhLYmumqkB3BiopN45ut3xDo/haI OB9WDD2jE7chlsCyaL01921YMaqiUjjhJYGmD827t8uzolizsYJBEIG2pp7h CQksaJNXi2OuBMYs5SkrxLBgXNoPU7hJYEPCSFVyBAvuPzb39/ENApmLJznT HrFgL+xcre5MoHC8kuMHWxZ8cLVjIPkqgZ+m2w4WbWVBHOseo9sQOBaztkdb ngW1kpXOKVgTKKt/0L2EwoJXDwaKb7pIYFB0Vk6ZIAu+7wm22XGewMpg8YOR fcsA7jGibmcI3KB2fSn76jKc2hfHGn+CQK9Hf1Q+nl2Gl5Y03t/HCRxpPXi5 wGQZfGzE0oRIf35I/flZdRniqvYUBxwj0K6pOqN2dgken9UvyzQl8KeiRm99 /xJ0vVrBs4K0lnu8xM/fS+AWgrynTAgUod/2bf20BI/OiV0UOkxggZvC+YH7 SxBlELCUZkSgXG3o8yHHJVB9qfWDIB0szVo3arUEX4RTnoYaEnihqnH3zN4l CIhIn3pkQGANVfv6vNoSXKAMRq4mvdMlNXlJdgmkJSUPBOoTyEd4inFyL8Ea /42FcQcJdHUaMeSaX4Rgj+ZwNdJ/y056rh5chDOnXH0rDxCYc1VpTKBqEfg5 3zWxkqaWvpRbC4swWPx0z2s9Av3EV1mKpS+CRdBEsy7p08VtlRLBi5BsSf8S rUvg/l0z51vuL0J0tFOxPunN2fwsL64ugkfK4erF/QSu3Sb/7MSZRVByYh/P JL2QtEdl3aFFaH7ZoHaFdKfUiapG5iKY9iq+3kK6ItLROmzrIrhcuc2c3Edg hpgv2xFiEXYI6Isi6fDg1y+E+Mn7K1LeGkj6Lk++Wt3yApR3tT85T/qCV31N 4PAC+H4QPcgkbcDy75JR2wLAsyQLgrSKKycnb/UCfAzwaOQkvX5iY9TXggUo CYgtGNlLIJu92g7f1AW4Ny2xsZ10X4/hd73IBVj4t3GhgXTNmYt2XI8XIPZX +7k60tm/7678cnsBlKoKT38nHXkkPMbTbgGeLtJnm0h7Vqdr6JgvQMPWePVu 0rZ65T/YDBage3eV9Axpk+L2K4WaC7AccOIbH3k/O3fNrbq3aQEOPRXfrkia ki0Yu3vDAuw3mb5iTJprG3334uoFeNs+fucm6eEk7Z8f5+fBcUHxSgLpBqlT jq4D8zDl13qghfSnSCeeHb/noWjXiQ1i5PONFfOPn66YBzsBwSEz0r7Bccys vHmwmn9SEUXakafgl1PSPJi6+eYPkt7DMsw75jMPvxsJngjy/cq5rkxMv0le 35N2d4Y0/4Sk9hWbeXiYH6piQdZHa4+xy6DuPARPpwdokvVUcsZGIHn7PFwL aNH/QDrl9/1kG7l5WH/B5KbKf/VZ/a6te+U8lPMGGu0j6/eMXuXNuOk5eEyz F2girVvcKXSuZw50EkocHcl6F8kW1m0vnYNrbrl7c8n+eBfpnP7bcw4MzSKD ww8RGCEWcODZ9Tlos5b5cIbst3vBb/6anZ+DPwa0tm1kPxp6/RRr0JkD68Hq ez1kv/bb7bxfwz4HUi7iPolmBNb2HF4fMD4L06DolEL2f86Zyx8MOmfBfLPf r6z/8uLIi76KolkwK5U81nGK7JddS4dK7s/CC32PqlAyX2oEdm2KcJwly80o G88SeKf71go7q1ngySVCx6wI/BUwmye8dxYM5VKsL18g8EnHBO0c1yw0Hnqw KvMymR/ZykvqszNQorRZWdSOzCNfx5+r+2dgX+jZcnd7AvVVR/wyK2fA937W LQcyHzm8BybZAmaA/cua8jcu5PM4pVDTcHcG0hiHZPTIvD29zSYpyWEG6rMb Xf7L4/xf3RaHD8+An+GGPeZ3CLyu2PElZu0MbJirvRfqSWB33c8I5otp2Gt0 3/1VKIEhb0SdhP2nYXzthhtfn5L353bUsPf2NNilt2csR5D1Ll3PFmg5Da8h 0dQ9ksBjN6ovt1GngdO0QWaePD9WGPDuyxSahpZjytyO5HnznmJAPOSYhjUJ vRzjKWT9VFbUb+6egj18Ve+F3pHny8bSXXcSp+Dpr7ZD3/MJdB7jEDv8bArO lWsxIoFAqS/aY9K+U/A6+NhupyLy/ToUxn+znYKt1gkLe8oI3F6cz7dx6xQY mW10tq4nMNE6s/1j1iQ0lusf5BgmsP5slOTB+EkojKFuaxsjkMXc1/xX6CT8 dLdRqJgi8Oghq6YZp0mIplRY1i6RebBTqFZVeRI27GF/kMJHQUWVZd4S6iR4 vpCP4xOmoNnmAX1TwUko99pC8xSjYCq1uMxxdAI63tl5JFAoeGL1NUxLm4BR J6GsXyoU9OS0XNodNQGZAY73fu2gYPryAc2qxxMg6dbxdHg3BVdMUHMG7SYg fHrNxZN6FHzXXJcmv2kCdnfYuu2zJOeDVKWo1wnj0Bdewt8RQEHVBIkWpfBx 6E3s4nUKo+DpV9zrix6Ow8VnMT5SLymYFdYR9ucCef0l96a/SRQ8ezf48Ubp cXh041nR1BcK+t+88zVFeBwoiZxrQqspmHPtErcmxzhIDyobH2+kIK+1lteJ zjFI2uJsbdZDwTzjsdtPY8ZA7bvspOkqKnYdaP0oEzQGt0Vmi/YJUpF/b8Xs h3tjQAufeGGznooXdry6Xm85Bl7RXQF6m6koSD1sJyAxBgn7tl1MOkrFXRt2 J0evGYPFIZg+eYaK1iIKfVsWR4FhpTJvZEvFAm6284bNo6CdWD7H/YCKl8Yz Tvk+GwXO09l3FN5TMUJtVOPio1EIzJjaxFtIxbKbW9dru47C6KkX1oZVVJRm SWuaOz4KHVvqD8/0UdFUeyinQW8UUnd6TtnOUNHdSzH83Y5ROO1xj266koZ/ eFKOXlo3CgY6yB0mQ0Ne4wHVfatGIXefmA6LOg13PVFYS50dAZ/KoRML+2n4 bF3i96afIzDmzfhcd5mGR2TijfXCR6B2r9WTE/k09LDp2iLtPQKZLFaBGXU0 fJcixcd6YwRMVhxYEuynIb/y6285x0bgvvlzisUGKWQ4d6SE7B8BgYw1773U pdA+l+LnoD4CWuXt+jtMpbCSEX1ATnQEWqrN9ZeDpXDOvU2eY+UI2JWcvev3 QQoP+e0SxH/DwFfwe+zFLylMFcyvcfk2DApp8UEhbNLIE7EzYMvbYTA+Lp0y oiiNNpK5Bj1+wzDAqX7mkLk0lsap80TZDsPfhr8/HgZJo9SmrIqj+sMQvTjv kVIpjfffqfjwbhoGtcWpLu01Mti6PXN/6ephKGP1pd4xk0FN2LbizsAQxNYY rU5Nl8GIvemfVSuH4KXjsuiu9bI4Vbn5wb+kIVBVSzToipFF08Nv98Q9GgKh lzGKrMflMOMnncX80hCs7NjR5XVDHnktkwqEDwzBDlYON0OdTWjbJXf7q/wQ GG/XsORrUMCKy280PFYNwa6Hc52X2eVRdkx6TqPvH3AUhfOGCMmhx43YnPGy fyA7rKO18qosdixRXZIT/kHGn+eV45MyyPSMUbXy/gczeb7be4Jl8OVqYkLc +h8E37eVW8Uk95egyHd1+//BoGJ8cM2MNJqJbbz6SPYflFCXzc/kSWNW5PMt Wiv/wRaLPoEad2kUkhYfmu0eBBZv35wiY2l0SA5PySgdhIuK9/w1adJYtU30 sk38IEif8NO6OyuF9JxQeYrXIJj3vJudrpNC793CvT/PDwIXV9mcUpoUah8U OK8rPQjvbcM7/e2lMLo2gMbCOQivctZ10g5J4dIx3o7svwPAJvDI9oyqFOac W20pGzsAXXb2axXYpFBkwGdj24MBWO2RWH6FrLdrV7maw6wG4GK7MkvNdxpu vsN5fAVtABauxdq7J9JQPK/maS/HADis1hGZD6Mh59Tzhoruftg/0RUk5UnD Zjsl04CkfvC3uSt00oqGZYmLwVf9+mHb0UduJiY0zOwqqzWx7weHUim179o0 fGRuaSSm1A9ioz2iemQ/OUcoPJ4T6ofqAOVt28RoeObH5NfmyT5I2XvvqAc3 Dbcb+B2Iye0DxlrfiCMjVOzRzN2rsKcPtNqZlyWRinU3PDx4aH1gv8E8tZHs /4L3RsVDHH0wVMLP+zORimGbupmZZb2Q1Bw0GRtCRZ0NQpqaxr3AOffCW8qO ilvNWl0llHoh4djD7bVWVFwfkpjLItwL6j+y+N6doOLYaqZ6SWMP2P9QqOLS o2L0vK2SoWUPKDSzbmmWpaKf+varW/f0QOGH0IE5SSq6XGNPF6T1wIgn37E9 YlQ0HIhQbOzuBh6/7AtMMh8Xf5XKnbbvhrhStazeQQr2igRf1DLuBse/e4qk uylYf9g8XkqpG+zV0je5t1EwpWKc1jfZBVFmO8pD68jzI4+QdLzdBW6HDAoE 8yi4b2rA3NSyCwZtdgurvqfgNqXsF2p7uqD8/O1Jh1QKciUZiM9zdEHIKrYp pddk/ke4rvXw+wtfd+TY1fhTUOhm/eqw552Q0J3XyXGRgjPLswLDrp2wafCE GvUsBVu9JMV0T3TC+oGvFabmFEwIuSQ1J9YJboVTy9MmFNydzrLLIqwDWi0U j9C1KCilLqOdfb0DdOqDTXp2UXBVwUE9/iMdIBb73PUDeb7VV4YdKRLqANlD DcNe2yho07PJXiaoHSo8zQsnyfPR0P6w012HdhgrcNDYKUFBlUkX159G7cDl 5eDyWJyCS2zFXo9420H937TCeSEKhkgcjxry/QP73udGfuak4J1k7hi7NW1w +1r14rp/BOrlHnkr+bUVtHOxaXc/uU9+ic6tfdQK/MEWKx16yHmgQ61OlasV gvvsEqfI/bl+nRX7ElsLvGyNuBPYSGCUbCpfemEzLJz7eUToB4GXVGfXn73X DKoifRoxdQQuGweolC7+huhD8rEt3whU8P54/vHMLxBZSJH48ZnAydAVjszs X8CjuCI6hZxP8PWhO2PXfwH7KiXaYyTwCPSEHR1vghNd8MGenG/uTQmVSQz9 BFZfjZZX7wlsPGerkNbZAITXyacQT+6LLcbqWfEN8MIuoVYnjsD4o6o6n2wa QGL96WO1rwl00l0yrxz+AazuOQvL0eQ8tSkwqGe+HqyHTpZkPCdwOtYpcqig HgIj+K9ceUbO5xuPJ0/er4e3f7h/K5PzWwoftYSdqx72qF7Iqwkjn9945oyk 8Hewvfe41yyYwK224ZyyjXWw3sdh4gC534t1uQluflYHSaxzetqB5LzYsHeT JlEHb72mI/Y9JtA9r9HSbFMtRNa8Nw57RKCNcr6t5XANDL4+R8/1IdA4Jfrm hXc1cL+w6m+7N4ESkTZPnLbXAIdrX6HOQ3IeZZ/2p/hUwfqvtrWGHgTqTMKb LXxV4JvToh/1gEDBHu/CXaHfQCnPb/+kO4GpFeKTx2O+whW5v/4Z9wl0y+/k tZb9CnpXfYpFSR9ITZFzflsJz7jO6z+4R95v0O5TwbkVoHdcW/HSXXIefbDS OZpRAUICFg5d5Dzsfr0mILWkHOQ/tzSfJy15/GxxRW0ZiOS/WeV8m8ChA/SW n8fKwGgDXxYn6XzNianuli/A4yh87pkbgWaElwJ7fyl8+uceWXeLQBlBIx0B h1J4eXxO1Jn0BLuYheRUCVyRpdtJkC6a/OOi6FYC2fs6QyrJ+TyoJzFIg60E Wll5vG6TPt3kmKzn/Rlu3EhUVyG9uVKj5BjvZyiQ/BU9TM73FanfZq6JF4Nl 4LCzE+nw6DBB9+giaPQPrNtF+kKw5aZAmSLgVtcsXk1axUNuX2RKIdzy9Ge2 3iCQ3XnUMkWpEIqW1bQ+kK69mHczLwfhjR4bBpKOOv7gSdluBI386gwH0r/C wk+89QGQWAjlO0LaxVXhcXloARwLPVO7i7Th0EhDWvwn6HsSqE0nLXM2WzIs Ox/Wscq3bSC99OO2tVvZR2jb2PtCkPQPPZ2Ms0158Fss8joP6ZRP3HO6/blA fat4lpu0x7ZarS3zOdD/0ffkf9dPxT31XcuTAzbr4cR/v6+8zqJ+fkM2EPv/ mP33/dz+Uhs7FLPg/pKYkQLpDpaB82W7P8DbFbFqmqTznDJSU43eQ+7yV67D pIN6XaZDTmfCwd/DBZdJW5/azbx19R1ID9w47PPf36dqOHzOuGdApu7f/CTS YjqVtfufpENI26fpatKtV2iqp3TTYGwoemGGtP+x9FK5S2+hYla9RJp83pqM XWaTvslw8azmwaOkB2Qq+grfJsIWE2fvR6Sf8R679bj6Dew7ku9cRFpvqpPn 5Ggc9JqM8y2RnmlxiJQVigXqWl7DXeT7P/r2USEejQZ+i+XoUtLcClvixUdf gB0uJ/KT9WQ9q1ueqRIBL83VmRakaeFufN0fg4Aht3WRnazPmhSJNtPDF+Dk hr3iN8n65ThzkPDWNmREckb/ayWduPmVC0+eI+NjhwZFl6z/liabtBhDb0aV +csnUmS/uKQZHBwUe87oH9Ll5yT7S/yPspzJj0hGXc1zY0/SFlz+bC26MYyL B9Z/4SL7k2XHtTZtzjjGqgULrXVk/+o8Y0QI3ElhZEmc6bYk983Qd+9W7j2V yhgrVNefJX2tS1BDc2M6o9YqB0O9CPy86Jl4ZT6DwdBPKmok8+HCZluvhuwP DCK5N/4umS9JAduZsVs/MWpL8kdPkHnE8Tkqf6VKAePGuJCqCplXljMrdlxW B8YW5ZmP/GSePUrvF1sXhQz50tw7358QuHtdrsCfuCLG949PtO6S+218/xF2 +8xShkfkrNrlKAK/e/gUSqp+YYDfvKYzma8skp/u1mZ9YaywVFTxiCHwhInU gkpeGeMrx+eOBDKP+fLHJuaxgvEgkP2jcAKBN/wDun2qqhjXoyV1HDMIjJMt jtUwrmZsM+qVSyL33brCqbP/aqsZqxQ4PvzNJFBkPvVKwqUahgtnccaZLAId togMrravZWjbw2fXjwRKh//9W+f0nXFyJiNGupTAxzb3G067NzL+dTiu0moh 0LuS9cPfgkZGzIfY+pRWMs8U3Z9Yzzcy0jtD7q37Q76/UXdjB6efjPy4EfuZ DjJfbnpU3L3QxHj8ZZvp114Ct/k8LIg88JsRtVu2qHyCPB8T/OObBdsYPS81 J1byUnDNhL5GyqFORhNzcwvbXgry/1KycnHsZKReSsqc3kdBYRTz1XrSyQie m2QZ0qWguN/fXz/rOxkn7ghMtupTUE7KzZXT7C8jLOjjdK0pBbVMk3MtLLoY 0fNWa+fOUdD5/artApd7GIa6g41MLwr+cSpVcfYYYHxqblkr9ZWCQ7kGRS5l owy97h8z7RZUjH8Yc/qczyRj54bgppAhct+bSha68XyWsfFWoIq9Pw1b30l+ 0rBeZAhlzKpkUqTwyNM/3gOBLEzpKzf378yQwsg4v0/6YWzMRYvSBy/1pJHj pN0/zpscTAkD07ft38l5/XTim8MeK5g9uQJF7Odl8MMacfNpWy5mWtafgd89 MijzjNK7Up+bmfIp7fx7K1mcc/ZYTDbhYcq2cYhQu2RxYG49b8J2Xmb8xcNr rpL7TfTFh/XrafzM2uZS1891chi456vfOmkBpsFUdNyhveS+cyVZq3itIHOY I7naIEUeC3RyPmWJCzFDHDdfGRNVwEU7S7WjvMJMbyUPqYYbCsi6si6CvijM NHjVdPBNvQKq6ToWHWARYdI+u38YUaHjXHNK79oxEeYh71K3r7501LEtCzSY EmHeexCszPCno/9853bPORHm/j+dpzIf05EQX+8zwSbKvGCUERAdRMf9x3zk vwuJMkvoIjlBT+kYUnv+UqCqKNNbU8XL4zUdN5dKDHLfFGVeyvkiyvORjjeO 7AzRuk3+/IWZluv5dCz8e0TT9b4o89bOUZf2T3Q0Zff36/MRZbLMurkWIB1v Mec3lT0TZQYLWkc9KaVjWV6jnWe+KPOkUgbjQh0dBQ+Mr/2EoswU5RsWFd/p eKqJt2DisyhTea3cqq0/6Dg8vZf33DdRZgPvWz7Wn3QUUX2fqtUqyvwVEKuK LXQ8/bn6qGuHKDM+MOSJWhsdE00GljK6RZmW/FNn0/7QUdORakQZFmVGDEfo JHTS0Yt197TZuCiz/9w1ulwXHWsCj0cFTosyhbsLfyd201GcuL6/bF6Ueb30 KZ9iLx3///86JvPVKu6IPjr+D05eNpg= "]]}, Annotation[#, "Charting`Private`Tag$4159201#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwt2Xk01N//B/AZO0X2QQvNe8YylhAqwhSKtEgl+pClKEVJpBRR2StLUqhs hRBKJcJ9FUlZkiT7vivr2Lfv/Z3z+8t5nOPc98x93/t6vZ5nNjtcNHdkI5FI WWQS6f/+nsqJGFtdpcBQ1CvFw+pKILooJauzRIGMlT2OJ1SVoGzPC+srcxSI qCMfPqWiBLLtBd/+jlPAJuqMhwdDCYbX9qQ0dVEg3EfC+wFVCdzOaVrmlVIg dy6svkxYCXzpzeAURAHy9Koaa1IR4uKJqGoBCmzM66q+9UYREjqCLx7mFQfr M6NW01RFEK89ckhBTAwaBL/Ocj5mQIXZEcNKuiicseMzElzDAGMFugdBFYFv SZaHPrgogHa2deqPLcKg+S0+pO6XPCyEOomoKwjBL68nxBt5eZieff7wpJwg DCmq0lOuy0EZNUqjxFUAdELfvb/WIAs6nDfzFE+vhVdkz+u1MrIQzdy2bZcP H+x+t8d9vRcdTj2x7BtO4AH+Myo1pHoa/EjbxEuO44IsSh7pphIN7P4B2SOK C4Lsm9sZDBpMqp9a6A/lAsMGzbI/cjQQLUkbqbrOBWNcja80CBpY1qvWPLbh AofveXqLkjToJhk8UN3MBS8eZ14q5qbBjNWZjXbpnBC52/2NXC8BQQm84r8S OcEgZnHnfBcBEn2ZAntiOeEhZYNMVQcBOm7jq4qhnEC6YLbo2UKAX+C17tnz nNDt+eJocx0BfHlhaeFbOGGfa4zk4CcCNq3NVUPvOaDOppqsnETAhV751vBs DpCMeJPEkUBASVFSoF0qB7i9dzNpf0KAjeuDFnIMB9h/Dvj06DEBT2quBBh6 csDBTyNVRAQBkpG6Td+2ckDnxlrl5zcJEBWv9KvPZYfWff88newIOD1qoPgi nR2efj77J+gkAW/Li357JrLD2ZR3DZnWBBzxymZQIthBOsC/dNGSgKjGyHqr i+ww1N07+PEwAeviLeU7lNmBQWsX/2yAv49M/4+hDDYQ8Hf35GcQ0PqEp7Iz mQ3K1XV2RcsT8EpSsfxPHBuUCdTt3iRHgJmIW9GXUDaQOXR9VYdGQAzXQnrS OTZIY13gTdhEAPUf/y0rBhvMru37wyNKAMtZ1ceMygYbfioOfhEm4Eu/+dW9 UmxQX2X2IFCIgLOdjy5o8rGBfiD5t/A6ArJ/bf5PaJgMEsmqZcf58Pso1NT4 9pIMLhJOLrFkAtZus9wCSWTYPip+9gGJgPY8b0Z+LBkukMMuRq5S4dYrJPMi hAy6p6tQ7DIVKhJN+P2dyfBtwUqndZ4KcRtdeK7ak0Ek1Onc7BwVzsfdZ79o RYb2w03d4tgC0b/mrU3IUPhj8IfDDBWOBtn0b1cgQ24bm++WKSrIcvh1bdlM Bllz+RbXSSrM+iW3ykqSwVHbvDR3Aq/vPVAnyksGs8rvFobjVHCZ5a1ZQybD 53JzkYdjVND1UPrGNk8C5TvmPsOjVOh0vYTGB0nwk7JwI+UfFd4MPygc6CSB tvhlGjf27TPv37U3kkDTmuvpxb/4+faLmVUVJGCsztMPjeD1jwY8Tk8ngZO+ eLzJEBWSVgq3MpJI8O1i653WQSo0pI/XZMaS4NXASMdlbObyf5w5oSRgvc/m zR2ggmdaZKLqbRLkKbgPHsXOOPxV5811EvhtSLRc6aeCaKq6+zsXEuwepwvY YpuYneXf5kiC7enU0+LYvgtP0z/YkECHp96lro8Kec9/GWhbkCDKo1j1Afbg Qd6OjwdJEOJz5YMl9sZ5PW/dvST4LJO5lsA2T/EQQ/okUN+9QWuylwrBBzJy mdtJMLYpUbccu3i2w/SzKglyoqlKCdiTSWIDBgp4//Re8Plgy+03vfVlMwlK /mN222Jbz/ht3CtFAvtmatFe7MjE9x8qhEkgxPkgSQO7fN/fI/vWkGDuxmi8 LPYia/NYJTt+nnTm243Ydno5ovFzq8jO6Pi0JHZllJTps6FVxMeIO7MeW2sg wD+peRWFh2qIUbETdSbyn1euoqJlEo8KNl+E9Wha0SoaOMky0cf26P1Ky3y1 ilIebuo7ht2+fet/2c9WUXVpRs8lbON7zyJfh6+iPEbnoQfYb7p4K976rSJO e6pGIfYGLc+V/Eur6PXYRFw/dmBop8ZHh1XEte3ffQm8f+PtpudLjqyiZ7dq pcywT2zNT/pkuIqCubxM7mGXBVEbyzRXEbdDC70WW6X1nkCFLH4eIfFRAr+/ x6rzhpUU7NtnRc9guzb9eP1zfgWdn2pkiuHz0KisM1g/vILKFyQUPbF330rd 1NiygnLVs7lbsMUVfcLai1fQN/+krx/w+fK7OfipK3sFHTffVaqKz+PwryNz vQkriM3/Y1c2dskNhuOI/wqSULhQUDxMBfmfD+NH3VeQQSpx9yA+z1F0ct3E qRWUbpHztg/bqeaP3pzRCmo/JrZTDt+HWqqB56LWCqK4lb37ia3tlZ25IreC rqpOF97C92mdTIAEJ98KOsV5K2EO3zdvj/GDPIvLSO8kI74Y38feiv8C1vxd RjfoYydC8H39cEl9UqhmGd3JfmCvie+3XWlH5aaoZfQl44p6F77/e3XnHNv8 l1Hb0JasqVm8f/mCpCeX8P/bc2UL4HqylLFLQ/LwMkpaOfXs5CLez6iUJyKC y+g5VSH6LK5PN9cWadWtLqHUqarsT7h+OQXW10aMLaHXmZ/ZaewEaHhzcgr8 WELTXduLObgIqLU/48pzfwkFjIgq7lhLQH7LTe6vPkuI4a9T185PwLNjj5MC XJeQM7nA7z6uly4m336zHVhCvdOPTq0VIYBHTVFvec0Sco/bcDFAioBdpDGB yZBFpJ/fJRSsSIC8N/fL3GuLaFE6L7hVmQBBlrTBRedFJFOwZZ2uKq6nA2Ze f40X0bjIrgGqJgHeP9509HMvIh2+UZ1AfQLsTSqvvZhdQFmuvsn6uwkwLu0R OT2wgBL9fzpzGREgni9q3FW+gPqa9/wp2kfAm2dXclsCFlDetGxsnQUBsRLh ++I8F9BO53nnJSvcX6PSei0dF5Ds3RhNTRsCDgY2SjQYLqDu+F/P608RMOyq 7V/LvoA0lKyjf17C/UV35fAX/3mUb/zdahX3y1ohXaVY93mU3CsjNxZNgG// dS7XU/MoQSO8bwz31+bw+UJRo3kk7BTjQMf9+UE3izjNM49WTdM3Or8hYHf+ 1pVt83NI+/Y9+tB7AsbD3BvXDM8h0d7mghsfCdivOX43r3IOce/ftqazjACO 4JFptvA59DflZHpyI/5+1ozahptzaMIryuJ7GwF2as4ZGW5zyLG4dZqnh4Ci 5v6T5uZzaCtPK3f1PwI8lbu/JonNoXmXkqibHDTor2uMZT6ZRZ+lLUKkttEg Oo3iIXpvFgWmaarO69Jg9w2Lg4M+s+j51r74eUMaPKPXs0XYzqItZQNPTh2h wfGrP853UGdRx3ur6flLNOA6ILAnT2QW/VUQV+HwpsHbzQdkgjhm0Q3dPTt3 3KKBYOX3epX+GVThbRSh8IAGFRvLdX1fzqDTNaX5h/JpcGWSQ8I8bgY9s7tU 1Qo0oH01mKSHzSAujvW+yd9p4Of2KbXaZQYtavz80NlOg+2lRes2qs4g7Skb RTc+OvQ/Whwal5lBtVIJZF5xOkS7aJeVCc2gnNfxQ+Ob6TAu9uGqy9Q0cko+ bl6sTYeXZ/O6Pr6fRmCgvKfcjQ71DgnSpqnTSPi13rMIPzqQbMJsmh9OI601 wo0DEXSwOHyqac5jGh1/8FT6VB4d/E0PUYJPT6MPKUutT77QIctI5xjl6DQS fBGhGN5IBzZtkZ+aW6eR+5QzeyNJFpQ1VgW+UKeRmd9DLzNxWbBUGdl/VHga 2fhwLX1RkoVsammF+wQLTX07Hs5jIwtNG3K42LpYyJyZzrnOSxY4KPGGkbUs FKnmMBUYJQsn1lyGnBwWunc5NNi7RhYCOG1X9BJYaK/x9VmHMVnIXd23s+Y+ Cy0MjYnGC8tBy7yWt40vC8VPPbH13i4HXCzqh7+uLCSXFODpai8HaqMCM9dt WEh7lst7+Z4cWA8ubF1zgIXkja/wtpTIQVB3/6W4nSw0mZm/MsqSgzetdTkK Siyk1aa91VNNHtoaSv59WM9CMfaXzBWuyAPPzwxF4zUsFBXCVhTzRR62VsY4 /1mYQn6L6pFvCAU4+eVWmtPwFDpBsqmnP1KAEHShb7ppCpn9yvl5S4kBbwtO EAHfppDMbRkLS5IidOTtsRctmEJXPLw37HJTAr5s9YSU9Cm0WTcpa1VFDTTT N7WpP8brdX1D87pKYJfMt/5z0BRa5Q6W2jHAgLAnM5aHvaaQ0e/0i2XrGfA+ pjum02kK5TkW1D4KVYCuiJr6ixZT6HL3Ff50SQVYG1YovGqE13vpeGBHsTxs C0g1u685hR55aLmvXJAHh5tR9zfSp1CXuYapqqI83LvmW5UlOoV85Z4vW4/J wYfL5/h2ckwhW6qtcmOBHPS4WhhXTk2i1LbckoshciBwdnfgiZ5J9Fan7+gu GznY4aBSNlQ3iVC/TF2ihhyctpZiu/Z5Ev34fc+YZ50cFJpN+jxKmkQl845x JyploW9f+0fZyEmk9Uo6/GWWLAgafZ9/54fXo3goQLgsOO1I9qy3nUTvEldq g0/IQuTW+3mnDk2i86Un7Ed3yUKRsvfEpN4k2ttiz+vHkAVhqrmr0KZJpH4y 6/enFTrobtDLTOSfRCEmLYN7hulwVpwxtGV5Aune155ObKBDCR+b48HWCZRW LJ4e85oO56ZeW4fFTSCkH8RSuUiHWK0JnTOhE4gdDX3dYUeHimuq6w28J9DZ iffqRYfpQCflNC1YTaD9UcXT/Fp06FybZXFOcgK9ndD9ZcpOBwGzEc09vBNo 6c66e56zNNB9wBCjzo+jr+H1D0dHaBAn+fJXU+M4oqzj/gq/aXBMNtXM5PE4 WpK4axCZRYM7zn1b6MHjyMZ0TL4jmQZvsmjryFfHkfpI/rBjLK5HW1OqPxwf R+JbnL6LBdGgUj9xnzxlHIltjEiuPE0D/zcaIQJKY2jjU/H1+vI0PD/l7S1f M4bmuWOlLTbTYCdS4/IdGUWqL7cS4VI471Wq3P6XMYoEdmeGneKngUufvE+V wigK1EQffFkEfD+fpnOHdxT5vAjXuz9KgNwkfUFn6B/ybDtwpWCQgO4Vqldm +j/0uuvhWTtczy0lNl4KlfuHJNc3ZnZ8JeD9s/gtu7n/obu5Mj0fPxMgQpca ne//izoELXRzigmoUaOcd079i+7etLzclEeAgamQozH9L9LRe3RtC+4/Kr6c VlzECGqLmdEIxflOqrD20SDHCOKf1Ts9dJ0Azpn4hu/9w0jQK8T7+FWcx1zV j4ZnDKNjV5XdbHH/C7WxPSShPoxUmDMOEqcJuBLLuL8gMoyEOIOSBnE+tP89 XdU6PYSUGKNi5bifbj9wd19SwRDKyLDqSjtOwMDOAiPGriEUwLq0hm0/AXVX 79xZSwyh/QP35rRMcF59e6h0lGMIpbd9KfTag/OdUj8zr2IQrXkdsXnDLgIM N4js3Gk2iBx1HW3/ahGQuOiiftB2AJ0NDL18F+fBu9u2X1LdNYCOlzLJF6gE eF1mzxUmBpCDT4GplQzu7yOxyn/6+1Ee0yR9/wYClpvL5e0u9CM2+YePUnBe HBSPOrPbrB9FKs9uqsV5sd7cJpWm3o/ePTr/gBPnxazvU8TQdB9aZzreG4rn oROFMtLuPn3odKhd1hKen/bMjNgcte1DaUs86y9wEqCmnv9Ea1cf2pPvUTaA 5y2ejANSixx9yJ1o8pzC89n7WG+xO3d70X5VfcY5PL8l/zY66nShF5Etvhms X6DCPSGhB8ZmvYh91G35F86Hp0PSBPlFe1G/bRWvNZ4PRa7Vr4mJ70EnrzxJ KcPz5NzqvNCYdw9iheROxuJ5sz1QWsL4RA968rjykReeR9Ojz9EWJHpQ6N5D 0aZ4fr2/PoJxZK4bBT9LLduF893l5HeqWX+6URVX+5I+nn/1ckm6J2O6EV+g jvZRPD/Ttska5Ht2IxgslzqH523eElMTwWPdKDBsviAIz+P1lTHHPot0I9ux naNNeN53HlC6IBvZhUia180bu6lw8IK5x023LmRn7b+Pga0x7eXdeKgLPeYv vH67iworbKWBoQJdqPpKqqlpJ56XQwbv9vzrRBK1zZUFHVT4JijwYGd1J4Kj TOMt2NGbrBJGwzrRRP/8gko7nrdf+L7Ye74TzS77iBa0UcFW6Xlm4r5OlL0U MW6CbZj37fW8QidSvWrs39VKBYb2WL45byfK2Dj84Sb2plsKN47/7EAZPcMh NOyhcI9g3ogOVD31r/9HCxXePkXRHw92oIvRpZ/9sX0z+ZJc+TtQtMNZQW1s k4Jjr6Sr2tE1U47SuWacX78mFvwMbUfbY4aqi7Hb60e+3DZpR3pENC0E+2W3 Vp0mTzsC//TCE9ge4/7tA+VtKGRp8rY6tt5K1XBsQBtqXnHyEMTmXSsxa2rY hsx3bfJjNeH9ljzFvsLWhlq+H49vx06Qy16X+6kVSbp4FdZgn9OcX+/g14qq JjjqyrA1DAzlRfVbUfy1zAbAXjUL1yhfbkE+iduLP2N/P9nMvFrUggTm472/ Y0e70A8wrregGL1+9kZsW283q9YdLainxfjgCDYj+KPj/blmJLdD7BAH/nzT D7ncmfnNyIi7aJGKDSmHfSc9m1HVhyqTvdihr5+EPtdoRk2c0yqXsI+hgRiL qSY0Lk9KSsSWqVZP4XnThOzvNDz8jT3c7JNT6NaEzs/eYBfE+/tusOKjy5Ym lHRCtPMQtt+MSMWm0UY0Kda0+SG2KYdtfW1WI0pxo6IObHHhjM5b5xuR8UGH 7C34fWYpM+f7B/8gRzcBmw5sL50wzti0P+hofDuvPj4fu00ahEyd/qANyi49 Kdh/Trswcnoa0Fxh9NwNfL5K2sy2vU9tQGwhyUZD2KkWmobFzg3Inqdrxgqf Rw/jFZvKsd/IO+G5szE+v4JKEZEDi/UoTKqp2hKf99nnHs9GS+pRanLAtQHs 9o1WmdP+9YjxwsPcuwd/vnXUL+w89WjyVdWlLJy3Taby5qRFf6HDOTde40QE qi6POeX+1KHZlCGhCWyJvhvCKnF1yMzI0+U5vo/9DUZKO2Xq0PYNJ2fFcb69 VfjH1lLpJ/qlGPCRge+7J/vsvc0hNSg83L2dm4XvwzRK27KuBq1Q4qRY2MID wZ90H1YjnQcHWD3TVMj+LjVtlVSFwhhl52pw/uyP1LOOKviOFh0YP6pxvbKU CWSwD5cjDumz45c4CJAVPmQo5FaOgp7+inqI6x+LXeKk9MwXZBQ961eE62Pk wMtIHbYvaPHxNmVRXtwPs6vnLkuVorgOiV3DuJ56eTPuf3tYgn5HyR5QlsD1 enS8ISe1GFF9XxfdkMTrO+RLx+QXIc7Ls4I/cL78bWL42qGpEFlPex6/sZGA rZIn6xc35KNY2uTIHK7/7RcJTWvjHKTOteHLFRWc17I2dRw1d0KzCXwr5/bi PGVvKhNscFA/zEMrdh3uPy9Vkr3WFrrrO5meTX6P82Nbk3NO0sFg/TnkPLHm IP58OQdM/0rE6xvwI9qvo7gfxenHCvlm6X+aucr104GAjPDtzOeqxfrrnr8p 9/DD65clFHFrlOj7Pd5aHXqLANs5rh3ntyF9O1aQdsod3E9zhyUkE0D/NBA6 LcEE6EkWCHW++Kwf3BV88UwkAanDx9gv5JXrH6O0hv9LJuDqvfD+kJoa/SSR fdOP8Txw39m/we7WH3369kCNInEa8LP262Qd7tH/lR66jfSRBp0e5RpX7ozo 95Z+sJb3pcNowYHPXhUT+tLktqWtxrKQGpRkdzpkWn+T+JSOPa8c0GcyRa7G z+u/MI/670irHLS/kS7WObusn9t48+PmRHk49qgzeCSCxDQwfmTkaKMAz17c Ld4fw8Z0FBzi8JNlAMd/rv84r3EwlQxrtP9rY0CN3cs08ztczAxX/o+NTxXh Hb+UzawLD/N7CNl/0lQJZOM2D3Lv52OmPs35s3tCCRau3FnOPLKWmdN4KyHm mTKMLKwXSN8uwHzZm/n2t7YKJJ4Jql9PCDLrpNdVH2pXgYhdVXcl6ULMgw0u R9df2wICFzN3l4oJM8U3r24zY1OFEsMPxe+lRJgqJbbpTqaqsOxqq2UhIMpU FI11tLmnCmTuuljFZVHmffOPvWxVqqBl7P55H0mcWVGW0/abXw0WWrMGxSbF mb62eYSBiRoYulREHJgRZzJqE25o7VODe4s92wMWxJnLO/Ie7jVVAxmp9SEs NgqT5Da40+WAGuw9HqLwS4TCZFENGq0Pq0H0T8dzEZoU5icX5ZQrVmqgUr7p L981ClPPXbL8tbMaXD2mHb3bh8L0ybZ2KD+nBp96j+309qcw3YcsYn6cV4Oj 7PfuDoVQmJ3SgWnlrmpwnbmoVBFHYXr8J9MGl9SgovCPa0ARXv+Vsmr5NTUQ 3jclVgwUJh+57k2ttxpYNwmUsMoozMIgakPddTUYmzUSOF1NYe5b/ltb5KMG 4ppvs3e3U5hCDc9USvzVwK7sh4V3N4X5jfk07OstNXh5ZGTldT+Fqc2/klRx Ww12ulMPbR6jMA3PDGllBqhBIFlv1nKKwuyq25wXFqgGtRFWCRGzFGbx2rXu 3kFqICXjubdikcJ8WyvNHhesBv//exXzxWjFwawQNfgfSt7a1g== "]]}, Annotation[#, "Charting`Private`Tag$4159201#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwt2XlUjP/3APBW0kbrSCpF8TzTriGKmZIlpUKUJdGC0q6FiEqRiErShvJR KqGFFi33UpJCi7RYivY97dP+e77n/P6a8zrznDPP+/2+977vPSNv43rAnouD gyObk4Pjf5+2r8KHFxdpyBHxyNJFnIHis6uUdOZoWHyi9tNXUQaW7Uo+7s2m 4dF6DoM9IgxUain4NPCPht27MgkFYQb2Cbb/1/yXhqylu9O7lzLQzZFhmVNK wzd8TYNHZ7XwiuIPPH2DhpoiPcuk2rQwLn5t5BdhGn7XFFvW81ILH7eGuO5f Jok2EQrGH3S1ULLmoCkhIYGXBKbJNV83YoXZQYMqRXGUSPb1ema1EfcQip5r FcRQZUMCcrRq4taXx1Oq1UQx2bV31MxOE2dCT4tpEiI4sXGT/LkfGjgx9fT+ ifUrcC6Gv2qdiQaWKURqlTgLo7HTz1Gdj+qow3s1h24niOfKfgRu0lDHKNbm zXp+/LioG60ev1MNbRMsO/se8+EXu6wLXiqqWP1Mdhln3BKM1E+1C+BSQVnB TA3I5cHGRx99Itl0dOnY8OvuSx4c9It+oztOx5KipOsnU3jQICImq2eYjlbO 935yRvNgbPv78Z3ddEz46h1s4MWD7R/GVkk20FEqYlvzp408mGB6+d6K13QU l6zyr8/kRmkpj8Tb7nTkX9NV3ZvOhVwBGSrJYyT+SuCr+vOEC3U5bXvHhkl8 IUUvb4zjwsZ9el47B0g0E3Mr+hDKhReM/4iMdJAYvWQmNcmRC70dswcdG0hU GBQKPEJy4b2s9PzBAhJ13jK0PqVx4umE853m10gU3GyphkmcuK5eoWmpP4kt Ob5kXiwnFvBn7yq5TGLgC1iTfJMTy7/sfsnwJrEi0VAowIET361N2W3qQKL5 DasubYITN9fdzdM0I9HJPDgmNZUD57amMjvWkJi08HYjmcSB4p8/PNaXJbEh 9d/X57EceMNiz8un0iSy5o/xvgrlQHaJQP95SRLFUzQ93jhx4P7GQU+mIInF U61G79Wp56+229xlEziaJNG9g+BAmnfjavokgeuNjQI/yHOg3+qXzZVjBEYk 5uZXiHKgZuF7d8lhAqsiVxk96l2Emv+mX7d0Erh6k9dCnvsiyP92stWuJ/B6 6B+tQptF+D2CbZJ1BP5rMTpXcnARzlQcKJmuJrDshkJTGWMRWvduS/pcRaBz c3VW7fQCWMVO5D8rJZDaI/v+gAXoH3h9RPs1gRtq78cPeSyA4BEDK+tsAiMV OetGbBegPFJi9a1MAk9/bdzO3rkANPf1Hf8yCFy+JnglL/8CCITPGU0mE3iy tLVKNnIeTFOnuYZiCNy9jW3/O2Ae+Lusb+s/IFA1bwVHgvs8yBux5B7eJ3Au XU9Lav88+D84c80uksCYyP8SxFbMQ2FABWPbbQKvChZtqlucA1EWffZ9KPX7 1+trwofngCdDb7npTQK1fHl5havn4FM4udv3OoE1p844892ZA4cs21GZAALz fl5d+tFvDj5bBhONVwl8dCgmKdh5DsLFpdnRVwh0Mvz0nWvfHNjOrQsgLxPI p0HfPi8wBwqntux74kPgcPqOpsLZWQCtOcMIbwIb1h338O2fBcN3/PQbXgQ+ XRmWMlU5C74C39/dOE+gHsew8OjNWeDRkrH67Urtp+/StMyLs7CSOzuah/KK cbkdrg6zcDtpx5KNLgS2dJv5DOyZBb+Ub1nJTgR+OOUg8lx7FuReGHL3nSMw 42fAc4cNs5DFk/GGQdm3Oru1a+ks1LZrObQ7EHjKsOpi8tQMeD6M899JeU9p u5hd9wxkbXFVfHWWQLVtcy8UGmdghlvcdg1lyTzxPX/LZyDhKP/O2DMEzqur tD3OnYGcusEGKcod6Tsvn0iZAcbqC+uenCYw+5F35s/gGbjYwKFQaU9g7Mq7 e+O8ZuA3KdDnQNk/8lmHpf0MFN5oeihC+YwgXqEdmgHH/Wj4zo5Ak+tNKxsM ZuBa/taZC5QZHCPZUVozkJ7SWahNebXvsn0H182A7zP/eA7K3OPy3SLiM7BC dDi5xpbAPuetATXcM2BZptOTSrm2+4D03bFpsPwS5XqTcv6pc2/2tU9DzOAB Qw/Kj39eMxX8Ng3b5cYCbSlfP5TQW/l+Gs6ekCOtKDtXv752M3saXvimGVtT Njf8IrPnyTSUsO6yHSjrlHbmLYmcBhuOGR0/ygrbFvZ/CJgGvg6WYizlGpFt yrEe02Ct8E2wkPKVrktLnG2nQeJ89v0OysqFb/+wzKch+j67SoJaz4+702/F d05DvE9XoQnlEDvt+z2MaSjc3OZ+l/KmLT6uRUrTcPXNpZlGyh1CuYbhtGkg 5h1sNlD7ea9tfK0d3zSkPrmT609ZP2/jwuZpNjDGJ7n/Uv53y6NJoI8Nx7J/ WBhS5/XoZFZ26w823JJOhALKxox/t3Oq2GB/4sceTep8Z5apnblRxIYd74w5 cyintjjrHXvBBgmz/kkdKj54QvonuO6yYV2jV91pKp6yj5M1DVfZ4LN813c+ Ryq/NRzS093YwGmy3DSHctGPrhMHDrCBvf95uzwVv46vFLco7WDDJwdpmS7K K4PsxGY2smGN/3v+HGcCvVTaPiZJsMHVP1j/DJUP67jkn3gtYYNFpdILEzcC 6xqsLxtOTcHu5cJCTHeqXvj/Vh9pmgJV7/v/tlL51VXXFMtKmAIFlYsaSVR+ Rj2jeYqHTcFEsata3QVqfy4fNunxm4L59sksQV9qPxTrucKtp6D5zbbIR1R+ W1yoPteqMAVHPpaNbA4kcMk+4V05YlNQK7DGIO8aga/l9625wTMFfl4OwAqm 8rWqsl61axJMVY1DPUIIrJAp33YlbRJalA/NHbxLoPcoz8oDcZPQ32gluz6C Ws/HHaOKtybBSUhsA+89Kj/c3qV8cZoEfZl1x9qiCdQuLVouoz4JhQnSOuse E5h2NudvYe4E1Ep/L2zNIrDe5rGcUcoEcPmY0VOoesxhdcvqx/0J+KN0L+NS HoGH99s2sz0nwLlP64l5MYFcW8VqGRsnIHvHeG3pJwJVtBaFPyhMgLpEFZPv C4GWqv3G5qIT4OhfYGVVQ+BLhdIKj5Fx+HJ07f2tjQQeFTiPr16Nw9YIs/cf qfslmNd6YfvjcTgucsI7ppfAzMW9ul/vjENX34k/lwap/RpXyB9wHof2PQWL lyao+PhV94pQHoc3l9nijktI5H+p+fi/1DE4UmA8b6RMIiNV9rdmzBh48t8J cNMg8eQTfun3N8agZWRl5otNJOZGt0X/OT0GbM3t/J56JNpcjbwjozgGhMsY Mi1JDLt45XOG+BiccBEO0T5BYv55R35dnjHoZt0KMLEjUfis/vWj7aPgpOb3 od6NxLdmo34PkkZhfkeIhfUtEjv3thQqRYxC27o4o8ORJK7YWTn9xn8Uine5 FbvFknh6yxOveutR0MtZMS2WSqKowgFnEdlReDZolqTxkcRtq7c/TxQahR5h h+U21SSelSR71eZH4N7uezRoJLGEn8ve5NcIhGQ8zePpJdFxLOv4rbgREAo7 qNkvRMfYTSM6Z0JHoKcIZq/Q6FhxUV16h+8I2J/9IWskT0dFjlfNM0dG4IZ7 5rL7DDr+Ecw47Cg1Aty/LuVsPEVHYbN+xq5lI9Dk41DzxYmO2+6REgrT/0Dd gi/lzQU6xkmlfWtu+gfWXeEr/CLoeEgpxcww5h+YViiXnPpIxyCHTjXFkH9w OLNcqvU7HbMz1i3nvPAPUuwyN9V00HHFxv++5Fv8g883/ZwJHmVkerdlRO3+ B56X2kWSxJXRpUD+ttvmf7B1c8bb54rKWMVM3LuB9g/izeyznhgq40xgK8Gz 9B883XZMNuW4Mu6/vU0UB4ehs0Vg/Tk3ZRSM3XpX7cUwfOg70X4hThkd5Ar2 dd8ehpxgGcWuTGUsT94s+NhpGIzZ5S0nKpQxIFvrprDyMHDUhEX+nFHGFu2c 3eUCw9Be6GEpK6mCuqCx5Er/EDBrvfgGNFUwdmdmGaNqCNRyJZef36+Ck1Wq 1wbTh8A32vVZn7sKmh94oZccOgQuUZa696NUMKuJzmHlOAQMuerk0gIVFLZO LxHfOwRbojLTm/+qoFPnBr/PxBCMsPnOmQupYuW5ZzpBy4agMl+x9JuuKq4f VZzR6R2EQaeQixvcVTHowtP8sYpB4De56Of4XBXbFhR8nqcOQuFsrqvMoCqy gpMYtiGDoPts/Wo3bTV8KLBmfNXZQWCnSf3LDlfDmYhH2XW7B2H/+mef986q oeVKGffQ9YNwzz+peoyljrmP4tX0lw6CedhrPbsEdRRTXDU03TUAGolmM2/p Guj2PCYjq3wAjlsb6dHuaOJXDdo5h5QBkBONObKnRQPp+fcJ+esDIGiX2ZM4 po4h28V7muwHwLZMeNjjkjp2lUWmhO8cgGFu77UypDruMBKx36M4AO4+QT3K zWqYWHt3LQfvAEwuellqe6vhgoVwW15HP/ywLH94ea0aHmu5neha1g9JVhpC zr9UMd9OwHr90364djDtAf2RKkr235RpvdYP3+JbHladVsXz7ny/om37wePC IfdRLVWsmboeZ7KjH+LDXnx7slQVVa/wHlmyth9YLL61si0quOptzYMenn5I kS/4bvRWBXkn4xsqu/rgl86Da90xKvjLWdP8bnof7G7WM9E/roIVafOR7rf7 4OCxG0vCWCqY01lRe9ClD7JKygsslFQw1MradKVmH4T9Vi37MaGM3rHknRmx PnhlKnHpcKsynvo+8fnXRC+E796l0vhJGbX33d6bVNAL3pq2F6OSlLFbt2An qdcLj2348rSOKmPdhaAgwbXU9ydeJ7KpfCh5bVo6xNMLlx+ePGC8VRmjlbtY ORU98N2jvs5/tTIarBbT1TXrAQXB/1iHu+iobtniK6vZA3Mquj8/NdNROiqt gEO8B+aH/3LHfqHjqABr84fGbuB6bpOtnUvHxFknTRPrbkjNN60Qv0XH25u1 3dX1uuFbZ07AtD8dfc5zZ4qu7QbvQWtBWR86mvTHqjR2dcFDHEhebUfH+R/l G066dMHK4/5m2Sw69khGntE36wLBgQ2lh7XpWH/AKmWdZhc4bIoIJdXpmFE5 trZ3ohP+Dn3+dWQNHY++XSPn4dcJCTytOzK56Lhrst/K3LoTCrQdnZ7Nkqih mZewSa8T7Lqem5aOk8iXvm/VLE8nPOKRX23fTdX7WF+JoNsdEGo7orrpK4li F+sFouPbQSGwd8AyiUT24rTIsG87uFwRFyiPp+a563Ir9xxth0IXu7em0SSm Rjmum1nZDrmOlrRcqr5vz+TYdiK6DTKMIwyKfUhct1lpR55XG6TTDTTmPUhc VmJkuOJQGxxcXNFp7kJifVX0ofdibSD6dvGJoT2JDt3KLkoRfyFxWN5Dx5xE E5cDnlfd/oJ+1HpXZWoe1Jrw8W0y/QtuPqaJGsYkLnCVXg8V/gsX9oWv8jEg MUr2yOOhW3+AVyrDp4NB4pXn/EnOQq0gk/Egm3M1iYYFh17IfW6B8S2egsJS 1Hz4MbGgNrQFrrrI5xDUvJjWtqmOwdcCYRlXJsJWUO8nZcu9wPUbXjTyCfJQ 9+nj9S+XZ777BQdipv2CuKn7hTEtbeP/C5pyev1FOUlcNLurVT7/E+ydi70O zxFIhhTa32H/gDweP46L1Dw5cX+JByvvB1iw0xpOjhCI/+2/Mur1A8pC+b+Z U/PlIeiOPjzWDDbatxJO9lP9yqRYhexQE1w5+nIzdweBRjzW9TUZTeBnUzy/ u42aH0TT/wSeawKftUVFD/5Q84kKa7qrpxE+tw8+tPhNYKOdE/mqvQF0FsWs D1H9Rclvs825KQ1QfCnjB28DgSmHGQbFDg0Q0e4mANT86rlnwapq+DvYHkhR NaLm12Pv2hzrsr9D0futYzK1VD+39aNPs9d3kN2wXeR/8+wK5fCI7tl6UC43 4aqg+pupp56PhkrqoYvMTC/8TM1TMkeeTwTUA6+NvEUeNe9mLFf4wM1XD5am rY7lVH9kOJbDlhP/BlY+Fy30yglUd4rhXd9YB2z0n/L4QPWrnZdFVePq4JLJ Tc6MMqrfbNiprLumDmZ9nAW1qHn5iym5ZUd7LZSnnOsLfE/1ixXCu/am1ILQ yoyBpncEBr5ttLZUrgUNeVI6Dgl02FjkZD1cA9ZXXijxUjbLSLx4OrsGHiVP ivsAgbKPHO55ateAxheZY64lBPKrJrCmJquBS0Q9aoLq75rk7I/y+lUDxwEP j0DKXtxTYfI3v8KIhWP7qyICDSbgmdryr3BJX+aIGWXR7pB32+5/gWebJrZM FRL4p2n/TyPpL5DbNe7zlPLLylUTR5I+w82i/byWlC8XtQufXf8ZXue61YtQ 3vsyY4P3iypY0djTWPuW2o9EL/2gjVWwxyuQK4ZyV8T245EFleB5W3O3HeXX 15Z6JzIrwWerdOwmyoFeNXdffvgEld23+oUpm52JTSsy+gTJyhyagwUEyh2x Ka2srYCJvXInaykP7aX/brKogC71fIdCykW645Ndvz/CsFmZ/nPKoarFKyZs P8LBFXatiZQt11wnufvKQdLv78YEykqipgYibuUwZJ+u9ZDyOPfKE3KTH6Bq /6GG/yi/n/jjo3L5AwwPJghlUo7oTovQ4foAWf3W1e8on2z2eG4YUgZbOxJX NFNWrdL5YCFcBkafgsonKM8V8bTaR5XC1n3mXTRqPZUvv7DPryoFqbwL9kzK MYnRooGJ76FS4PIWJ8qnI62Vw5XeQ7LuMstHlLWCNux6lPEOjrf15X6nzO09 Yp2h+Q7u1wsYi1L7XXvm7cW3+Qg/JT2FzCk/PnLtXsV2hDub9o7EUfbxJe98 ul8CWnrnpjdT52sy9K/hVUoxfO54sO82ZSWbPLnovCJ4m+3r1En5u6FBlk3z W5hmnutOpuIlo5h/Zk9fAbzL3q4pRMVXkEatvtpsPvyYMVO8SHmj1In62dV5 0PmpuO0EFY/8Yetk2lRywXB9fEIT5TaOfvuK7W/gjE7e78NU/Eb0+ExFncwB xYvPvp+k4r3FdS3j+J5XkB/TgGlUfoRZZJZvcHwBIV+CmnZR+aPL3GY5ces5 xJ8P2NJDOU7Y4tKd6meglNhTsJnKv8MvQt/h4UQwJKX7+Kj8rMmQbTU/cBo8 r10edqbyneeU0ZqQHSZMha0xxsbU/JKm+sRH8K0HM24lb7AqVR9+Nzu8SjIJ YbZsD3NZoOqHz6t9RgMr45lVCn7eVVS9MYhjxopcyWB2/VGQkmgl8H529tKd x18yw/TH96tS9et8p6iOrkwm86Se1lKjvwSWzQenuc5mMavFl9XeaafOU9Xp ekPeG2bEbPFeZg+B6Xe1WU/Vi5kSb5JZzFHq/coeFy3VKmGGooZxOlVvrdlL tpzbDMyAap4VUtR8FJrZt1LqMTJ9pRqecbIJ3C5VIPIn+T1T2eehy8I8VQ/7 DnG75JQzT3L3aiXxk3gh7G7Xza9fmfvGF//aKZGYvL70qY5ZNdN5VqhPZwOJ de8mbQZrKZ89MytBkig5+9I11bGGuVGgTOmbColuapIDAi61TGGOYGl36j5S jOnoqPP8xkxYV3p+804S7zgENJwMbGQK2G7QqD5NYkgV55uOkkZmqJjEluaz JAaqBN47O9vILJ+2ce50JNFnJNDMzbOJmS5/zYTHlZrfLgZVXj3dzDx9qiz+ GHXfaty8UfJo70/mhV1n8p1DqPsrNSzll2grs6yDL1wgg0ShcWOdjP3tTJaV kdkDNol/PMu1vIP6mTzH1wrwZdNxqGDfe5+KEabHjZuSL32VMeVG0km7mxNM zSC7ADeqf1OcfC52IX6aaVNqUJQso4ot2XLFOmfnmZaf5W5sGFbFQw/+hPSH c7CS4z8sChar4aPk28XG0VyswLQ6ofB96shzzHmQ9yIPCyIGC/7mqOPXk2nP DgQtYY3/Nt3UtkYD3witsppy4mNZr/VWuhmkgUpx8j1LjflZdoWcS/k6NHDG O2j++UFB1r+nZnu5DTWxf0ZaOFVbmFUXZTUITzUx8cyNeum1K1i0e25H7Hg3 Yrje59tSiiIswwyH+CunNqKw63P9UglR1umlJQ9HX2/EEoP84txVYiw+rtst g4JaOO9svemwsDjrJNeGe8HHtZBzaV0sfV6cFfzfhpP6qVq4aY/H+70ckqy4 zoFD/GwtnPmV0SMxKskqe1f5QZbFQAOnivB9k5Ks3+HD02f1GBg2264dPCPJ ynnHIZu6g4ENoYt/ihYkWdev/Ln9y4CBa1ZJ3xznorHWq75sWbeTgbstbhLf xGgsNwurnAt7GRhVa+8YzqCxJNy9Ljw0Z6BquewA/0Ua68nZooG6swy8cGhr lL4fjRV7fbWeL+V3HYd0fQNorPDvhw/7OzCQ39O9IyuYxvrkKCR96RwDzbnD bvfepLFskoqeVDoz8FFkqpb8HRrrUHWqopkLA3vky35ZRtJY6lstjP5S1sxq DQqPprGW5Iusa3Bl4CXWrHJFHI01zH2mb5M7AyveNjoHF9FY1sK8uf6+DBTd OyZRjDRWSFq+Us4lBh5vFi4ZL6OxOt49YV7yY2DKWfK08ica65z2zf5nVxk4 PLVT2O4Ltf7zZ+9KBzBQ+8ap3PhaGitireuJA5QDJf1OfPtOY1UGTb1qp/w5 OWaJwA8aq3nHtZz+QAZKMl6/1G+hsfiD0wYNghl4sqz6sG8bjRVwrDVnbQgD 0w72L2R10VgewgNaUTcYONq25FlvH411J/Cg1iHKuh4KpvLDNJZK76vAX9Tz 1zm3T1mO0VjnX51uv3SLgTXhRx6HT1Hvnzulf/oOA1et8dpdMUtjOZi/aNQI Y+D//x/Gerq6f/lHyv8HHOr1Jw== "]]}, Annotation[#, "Charting`Private`Tag$4159201#3"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmXk0Vd//xpHMyXxQyRznXvN0hRyhDJGU0qikMitR8YkQKioSomSoyJRC RcJ+l4qigYQo86xkni+//V3r95f1WsvZd9+9n/dznmddGWcf+xNsLCws1aws LP/7e/xp7L+VFQL+9Oyr0nuvDSKLkooGSwQM6z9SfFmlDe+2ZR46N0dAyON0 U9m32qDY/urjnzEC5uXfsfIhbRjm63n4s4sA3yjZqdpSbTjtruNYXEVArvhG e/t8bQhWaIWTVwhI7D5SRN7Whrv35OI+8xPQtmj8V/eoNqR1XPXZxS0G5zZy /ykY1QKxb7t3KouKghkqUkYhWlBjt9usVkEEWE5RUdKCWmChrOAnJysMuyLk 96fd1oTNBYeyvqoJAd+sAN1SUhMWok4KayoLgk9HrP7WOA2Ynn2UcGSTAPxV IWKcuDTgnWycdqUXPzh1dOkcDlcHg9WXimkufPBoKF+a2asG8ZSenkkQD/js sA+50qAKx1Mc+4bTuGBok5bpWLUKfH0sxc16lwOeyCRLcxfSQYrvmQZ6yQ6P xWsSe4AG3r1Kv2IK2GETt2SmQAUNKsszIo9mscOn08xN1CsaHPa63caaiNl9 Ni2rkAYpX85FmPmzg/OP8pFbD2ggccvo50ctdrC1dEzrD6eBiFhtSOOzVVCe 77T3qTUNXEZNaZnZq+CVV+AVHQsaPP9Q/sM/fRUIni7rrDSjwe7zBSQRuwou qxHybUY0iGu51bjfBz+f+uvuZnUarL3nqNShsgrkb22puStKAx7p/q9DuWxg 1cf+bU0PCb9SuGo7H7BBxqriFOFOEp5I0D4032UDnuVE4w2/SbATPl3+PooN IlVk5AybSUjkWMjOcGcD04Fh6ZxaEmT/rgnbT7LBt+oNIttekDDlph5kJ8sG VVXR4deLSHjfb39huyQbNLvXGzQ/JcG18463Dg8baK+xTwnIJaHgu8xBwWFW GPrkMj2RRoJBmY72xxxWqPYuzauMJoFPz1ENMlgh9kG7oM01EtqLA8mSZFZo 2b9LvzOShLAnSDrzGisEuPL/EQkjoSbdck2oGyugwF3vSi+QsOfK4X6GMiuU jcuHjJ8kQZE9pEtNhhUispp+fHUhYTbkwS9FCVY4qZ/qW+xMwt3AgQYRbla4 Y571KOoICZ1eZ9DYIAtwcyn3BuwlwXNPRFJ2Ngu8aSA+H99OQsZymRaZwQI+ Jvt9XpmT0JQ99iUvmQWKuM4piZiRQDEPrn4axQJyQn+WWygSRLI0fV94ssAx M50NGZtJsLRzXaN3ggXO+vntldYnIXjhfnbpYRZQitUfeKRHwqAtd8drWxb4 2YDUK7VJqJjtsH6rzgI6BTF2mmokTGSIDpgqs4A8x23N3yokbNphHfZehgXs H7k9u0En4Vb6y9IaIRZofzfyYEWZhNo4SevUoRUUSDc4oqRAgu5ARGhG6wpq cAiQYJUnId1gvORR7Qqa2DpX2iFLgl9vtXzekxVUX2X+qUCahPW6/sslZ1YQ y5i1ScJ6EiKjOrVfO6+gf9f1lVPXkTDWbu1RuRuv9z166xNJEt5dkW15p7OC 5s9c1GgXJ0H11w3+GsUVNCDsso4Fc5L6vFktsYKQj4mTEkGC18+vhfXzyygs xUPquigJLSoGg43Dy+hHUkVBtQgJW8OypFralpHyBr4qbsxitKDo9opl5GJV +SBDiISQS4NvugqWkfjL8cuzgiQMf98915u2jNZmvxXZg7nyInliJHQZHdNg 85URIEGpPuHeqO8yKuBc7xC3loQ4BdaG8ePLqPABKcqDeSnAk2t6zzJS2lhX cZWfhJNfmrfMmS+j339fH+DH/E3W1H9RdxlFMVpn764hYfP5grzlTcvId0Im QxXzWukI8dU8y8jSqczCg4+EQL8xW65FJgrIzHMSwdxbczCC9w8TcUatFL/j JcF2Q/Vr/t9MdMjXyf4i5tIzmhOCX5jI8/Dt7QaYZT/cVxJFTJRteSWdFfN1 SW4n8WdMZDe4y/0rDwkz3n4J6zKYSJOpXvQI89GqjlqpOCZayxsaEYp5u9Hc id+hTNTUpj1zHLNqiQBLyhkm2rvBx3UnZlEN5bsHjjHR+muDf00xL+WaaEvs YqLRuYQkE8w98ge+NFNMNN2fE2iB+VOqr2uiOhOdMLuT5Yi5UDyazUGaiWwd +NV8MSfFPUwRFmAiL8bqTQmYL/GV6zasLKF6r+cZbzCfjGz8FvtvCUmX3y2a xWzD8td9Z8cSGrsR7KWHv5924OrV/F+X0Pdjvv0hmNdNbUirq1xCu7K/aTRi ZvPW1Y8uWELFVaYuGvg8hwZsv1umLqFQm6q4JMzfjp3y4rq5hEKyUhq48X2U tF3irA5aQuN/fPQjMKc6JGVEeC0hX36t3zz4PiO+PjMwO7yEHq3RbryL2dPy 4w82myVkKLZBRwfrYXdVl88bwyV0o3pWrBXzZqMF7hD6EjrIoN+6hvXEpUHb wuRdQtnW+gVcWI//ck1bXi8uotDKztAWzE3yh3wDRxYR4XR5Z7EwCY/Eb2TN flpEudJ8xlFY79FxmdTLskXE6a6fEClGgi9fZatf7iJy6FmwuYnnw4TlH//E tUV0Y1TEASSwfgM5c54FLCJ547S2YTxvAlMbTX3cFlERQdORwfPZPmB3/o/F IloTnNJcKIX9+JibYB5jETnu2HCYD89zfltonpvSItr1pkP1rAzW59eijn7O RfS6QVzvJPaDY5a1AZmzC6j6uNLTCewXFlU9wi4DC0hR8MVM9CY8fyUiFl0f FlBcgMSlPpKEotRzz9oiFtAaByEPhiYJyeIxVnf9F1Aj2mOnhv0rJO5xr+OJ BeR0RFZNWxfrPbJFvMlsAQ09LA12xX447LU59NuqBfRCJUk2xJSE+gH7dTGT 84g+/y1qBPtr6TGPFzY98yhcc439SQvsPw4pQ5/eziOT9e3vo2zwfBgt73of Oo9egBtHgiO+f0EjerLvPJr5faDK9iD21/7/OLyOz6Nz5qsPE9jfW2Pmy0TM 59H838+jP46TcLt7Ss6Fax4t7nDdxX8a+02J1rLe/Byqvry20Ows9rdo3xbe 4Tl0JjT6QfQ5EnbojF0vrp1DHbJKWjuCSGC/OjLNFjOHZpytN6fh91fRIfJb 06U5dPkE7DgWg+dRwy039/QcojWQwrq3SShv7T9ibz+HrmomT4vfI8Ffpbs6 Q3QOZWhs0/qcR0J/Q0sylTKL3u0t27a1noT4x4SfyI1ZlLkgaHqgCe/v4l7b waBZxJZhZhjdhvWs0MgW6zSLxPyvU5v7Sdh34atHh+wsSvgaGfRriQQOG/5t xcKzaIs2v2odG84TMjbSV9hn0f2TOo9/ctFAoPZTo2r/DApzsmq2w3mhZsMH o+CcGWTnoWDwQY0G5ybYxe3vzqDogf41Zbo0kK82nVCInkFTiUzHBpw/Qk6/ yfrsOYO4D/md99tBA0ZV+doN6jNIJHR3ZqoHDfrvLA6NSc8gZDmIfpylQbzn 5nfvBGfQtnhzfoOLNBgTLb3gOTmNZs8N+CbeoEGOa3HX65fTSM/qdQkU0aDR OW2jddY0Cr0d+Nwb5y2Ww9GHWxOmkVNZMXKpocHeXcd/zvlNo/vN3rk6HTQI td5JXHWZRpu+X/UlRmiQb27gQOyZRpwHNRV3ztKAbbNwvY7WNHqT5KxbL0AH Fe0V/vey06is2KBLXooOjqojO/YITaPaew2bumh0KJCtqvEdn0L3Ptyqy7Wg wwHes/D06RSq7G20Mr9Kh4jVTstb0qbQ0Q5129RkOjxbsTL8cnMKpfv8+5KW RweOKdnSP15TyN+0ftuXejpojPLP/Hd4CtH5E5lEPx0ODS5o8dpMId0eDw2z RToU/Wp4qkyfQkpn5aTjlVTgd1Pl39J1U8h5KIlngFIBrvpcmgXvFGoTcJv9 74AKaNUmujUvTCLzyIVLfv4qcOR92OOTw5OIs1K5d/aWClxD3n3TPyeRj+D4 Me1nKvD81QG5iI+T6M2xkvmj31SAp0Az7WH2JPr2TMA6g1AFnWyp35pJk+jx r/FKV2NVOPqAZ93bK5PIQ28pIc5dFaJTZhx3nZ9EMawnSyqSVeFlYndi58lJ xEvaRL/6rApdsV8affZOohy9gIV7nGrAF10mtGI+iaJ/Hw/vs1ADvYgsu5s6 kyjrs3oruq0Gzpfibm5QmET23voXfUfU4EZAcF2+yCTSsc+7nU2qQ+lZdx5D 9knUGqwlfNZLHXq89lrUTk4g2RIll9U16sDvujXyQM8E2niE5eF+Bw3Qd1Z9 N9QwgZ7w5bhm5mqCyyFJtoC3E+hyvuBVf1FNiNnLQXEVTaAKyejXUgoaUGY3 EXQnYwKNbikMDshThz6r9teKtyZQUCQHj/d+dRAw/zT/ImQCHc++8vXcOtwn jF/qmZ+eQBKbCp33f1fDOfKBf6PTBAp99eOgbIga3NK6WXx85wRq3ZHNVsBQ g3KVwPGJLfj/mwe/iy2owsCmk2phqhMoppf1u8dbVRCStfcSlJpAAytFd3bG qoLR+i156WsmUO/9EokqZ1VwFSOH1JjjiOPJQBCHvircFhDbhP6Mo68VNp8j hFShkofthO2vcRQron+5blQFhthHH/yuHUd1Dzk3B31WAZGVn52er8eRdMuL v9YFKuA+WXgo+u44SnL42m2P9ZKsO25wKmociZbyn844qAI1AerrTAPHUbHb /BkjUxVQYHn6c2H/OFrqmwkdEFWBPaajpU2W46j0+cvhKhYVCItUSSrSH0fW vdFG1/7QoZMvf6+7xDjyGzjCfe0DHfjtRnS2cY8j7vZ7FzOf08HoNikqOz+G gm7GmXk/pMNdiZzvP1vG0LaA3PMtYXRwUMyys0waQxIu4TQBPG/hbn1qClfH UGx7cGXkZjwf+fJrWS+MoX9BOc6nVOggoPXwc+m+MbS2mjVzlwgdao3TrZSI McSIud5o1U+DhbAOZXbOMZT80NEqpo0Gu64bCcHff6iiot5kfT0N+JI3x6g9 +YeCo6UmVmF/CS3SvsZP/4c8zjzve3OHBu2M4u0feP+hfVkD3iwxNDBEGhzB I6Nof/esvF8kDWZqVS//zR1FQp5BfZP+NPDsUwqqUx5FDLPq65v20eCTx2OD cO5RVPAf7VrXThpsmlBYMBj6i3h3PLv2Dve77mXZ83nZf9GI+4HfLAY0cBTf cCZq01/kHnWgVFuGBi9T76lt5fyLptYJ24qvo4GwguTofP8fxNnDCuuxX3/R IDzcsv4g4XPKE+HcNDC1FjxhofAHtb7gD6yYxHkvePV+DrkRdL9p4Z7RZxIk y77dGWQfQXaZRvcUP5KweuZe06f+YcTj+zBG7j3uh16ae2Jyh5GlEdW/r4KE qMNOO8U1h1HavPzn9AISziWTNxeEh5FmLnRtxO+rYz+m635NDyHJZk7bZ49J YNhct8p4NYR4ZU7wsWeQMGCIW5LJEBpUSMz2iSeh4UJ4OJ/cELp8VXLyzC2c z5/vrBplH0JxbFPhl2/ivknvp4prBpFYu/ed71dJMFsvbGhoN4g86hbPywST oO7YHiilOYgi49dP3PkP58P4nFcsIoNo6T3Bsz4A9yNeSu998wBqlrbZt8MP 95tFT01bpwGkwKpwycID52c9xhl1kwGUn9E4q+hGwvmzq54JyQ0g4/TUQsFT OJ+MJKs09/ejRL/SHbw4HzBbPygd9e5HXNTgmmicJwbF4k5ttetHxRk9/tX7 SWi0P5wlr9mPTM4+WeLH+SP/06Tc0HQfcj3c0VO5h4QDZdIbfYP60LP05ZxU WxK2zYwc3uPUh66slMSr4/yioVmSomvShyRVTHLqrHGezLWRXGTvQ0Gjfp2y lrhf94nv/93fizhZvtX9wv2zQ6b3DqrpRWMT+86lbyPhZXKgaPj1XiRyrD7Z DPfPBz/M95z07kXv73t0yeM8dUNQ8LaFXS8yee0fyr+VBJdrjwXWiPSi6GpF D6YxCcIBjbyJ93pQsKvOke2GJMytzAv+C+xBYfdtNx4xwHkycqO4xYEeZNK6 iuMSzmvZ8e7yC+I9iD3odGs7g4Sb62LJ3XPdaNsz7/gNmM8+eKGe39yNHE/d 5DuJ++yWZyxGRxK7UY5XaaMwzn/yeoqmJf7d6HFz7NQFHRK4K60tBRy60V4V Jd8BnBdHzc7sdNPuRn/entJ1wtxYm+jwVrgbrTmSQXZqkfDKvvzguskutDYw guGOOfVn1zG/hi40f0vKionzZ/hRTtfPhV3IV/SnZTJmtwG6t+KtLpTH9Jfd gtnW297v0ukuVHdXGI1o4L4xfT6wZWcX2q24nvcBZomL90M01LrQXPieiaOY l9mqIqP4u5Bc99ejSph7rw1e7/nbifLbxrbOqZPwUYD/tuHnTlS/83jEN8wF d7SSE/I70XfXTaKFmOOl9qeNRneiVUMBHcmYAzODM7d7dKLnMX/qozA70R/l pVvh9ZJsWi9jNiv+WDiv3ImSiKL+cMzk5n8l9tydiN3Yv+8GZqkw5Yv76jtQ nJbq+1TMQzF+V7ljO5DIo1d+JZif30fxr207kPxJlZ5mzMF5PBleazqQ9tLv lRXMlq8cnmysa0duSUfK1PD3EalOf1Uf1Y5Ytp5jO4W5vXHk/WXLdrRhF60m E3NOt26DDlc7MskvXfzfefmNhbYPfPiN4pxibujj89yyXDecHPEbmSjv9b6J uVHi+Kpltt9o9MTBTht8P2mbCtY+e/MLvQnp3V2K2V1nfp1zyC80E7zYqozv d8UuRvsDsw2NNV0elsF6+HSklbpQ3oYSTrzbm4053lPBhvyvDXlPK6fqYP2Q V1+fuDnXiuz/m7nigvU1ncDhS5W0oonUqLUcWH/wcFfwhH8rsv3w0LAAswMa SNw7+RNVPIjcLYT1GzIjXCM12oL8ZRIElYxIsGZ3avyW34JY0guPMTGLCeV2 hnm0oIsKFydbtuB5VqHm+webkcTRvvwHFAnNLp7k054m5Ov5TusSnrfK33Z6 L7OaUIKN+euzuK9k7dUxq3BrQgV/tFy98Hz6WSwfrv33AynkKK09jfuLAD32 1sBiI/q9+X5a4Q58H5PFcxtFviOf0SOhUnuxv3kmrd7U3IDOGjHdj+0jQbzv opDq3QbEXnBjJhv7S3+TOd1QugE5yZn9MMd+FFbW7ORIr0eSzJXOF0dxn1g1 e0Pm2hd0fyc54OqJ9TSNHqut/YJeWiZGTniRIDRw9Y1Rwme00dFmb4gP1usn yen9GXVI7oqRZ7YvXv/WlkNxrz4hRl9puTL2U0fpSHLV8AdU2CzoMxKJ/TKQ vPkxoRK9Vyy6bpKJ52l0rOlpVgWKFC/VMcD+r+hcsjGxpBx9+iSpwcgh4Yel WaHzzzJ0QCKM1/AJCVoSRxoX15cg1dPONe4vsN585HQOWTxFDv/FWx79gPtb vlTHHvuTqPRotO71YRJyYxjUI/UKYxupWVd2/H5kf5dWzqldaRyTtiAzgvuH 0xyHvoceMi74KpnQSNEg6tmwuEQaGIfrTSQ93UaDLRKvBDsz3xpfnOJ/GGFP g6xhh1XexR+MDeK9dQvcaXDhRkz/tS9fjIvaTA2aUmhw0y206WhYs/FILjpS xkmHNVM7DPJ39RiDXHfx+m6cb/w+aJ8LHzGmMzo/PO9WgdFXNm/P14wbK9lG vjkzogpZVzKOulybNpbcNRw0N6gGCjN5whfuzRtvSfwWlXBJHdqLNlYYuDKN nSNSLtxl1QCHO51XR2JZqAvHq5bNQzQgNfN6xY5ENsrgnCvPWi5NYD/o9Xd1 ADvlHPov5XG4Jnw5mvPYPpyD+pb9oI2dWwterJE8POvJRQ07EqfqQ7VA8a7M IOcOHur5XFn8hWktWDgXzszbzUdV86ZPvvDRhpGFdfzZDH7KbJmjpKJdG9JP XWlcJydACeVattfs1oFYk7rrEgqClHp9g7RvlQ7w++RtrRIVomgX2Za8lXSh 0qy04qWkMNXzvPPl7du6wPRy0t3LL0Idzuy7lDKlC6ycDck0pgi1mFl3iMte D3QtfN9asYhR3vZhX4+90IOFX/mDohNiVGFdVJAhLwPMPGtibWbEqOp8ssaZ YMCNxR5GxIIYNbfI6fRMlAFNUSud5ctilPvNmoqz3AyQllx3bYqNoDRaHr1u EWKAe46uBp2ToJ6Gm99+Ks2A5wz7n8d5CUq1YNzlpgQDlqu9Qu+tJahPOqJS 3gIM2L7vmvJ3YYLKq17NU7GOAbH9j+p5xAlqxx+u1TOyDGj1h4Ct6wmq6L6x oexGBsiv/iUTKE1QFo+GfM7g9bzjZz8WyhPUhb5ea0qOAaVywr5DSgRlJeWl a6LIANZiVUkZFYJatXjmvC9mq61Wbx01CCre8VagnTwD4utPuMfqENRJp55/ f/Hz7UdDhWr0CerXf9WhT0gGbBpLKVsxIijvT6cfHlNjwOlLpc56Wwlq1rLj +ifMZfyNPD7b8H6WPW4IKjCAPfVfUZYVQZ09sTpfQZ0Btiq8B9ttCSqSeaLi sT4DksoVV4ntJqhsaduHitoM6LLemmezj6DuPDF6lY/3R7Yd3h1xkKD4ffm+ ntJlgJ97wGK5E0EdmqZ9+WnGgMr5+IdTxwlqYJIz/wZej+vaM2u6Kz4fX1bX w3i/9uJ1k8c9CWq72GikuBED7j0euHfvNEGx3doX4WvJgF7dVWbf/QjKc+dU JivFANUPUn94AghqqnxZIwfv54LD5vitQQTVxBM58caUAW96HQwDQwlq2D8A 3lozgMfvTG9hBEHVys+5O2xnwJ5VN64PXSOoE/WWsefwev9Ri/Sau/i84lwK /rNhwLuvYj9WUgmK2bz5kus2BvA7aQbpPSSoy2cMd+bvZIDjqI2Cz2OCGoUN Dwz3MeBBkNvnrDyCal/wOm95kAF/+CL8258SVMKlxatJeP86KekbxJ4T1PlO r4t5dgwIppW/tyklqPdFDcY1RxhQU9bsFVFOUPkzJ/ZYujFAyGpStAIIapu/ 1NzN3Qw49JO/cuodQTnJsRxKxM9nuZIn6R8JSu+laKrGCQb8mzXnd/lMUC9v 6xgKnGYA48qxl/fqCapySlFXAq8fJhZ05PsPgjJhdvPQ8f7rMpM4eFsJSrko vK8Of56YzvOCre0EFaWro7XdjwFH333dG9hNUK5X91kluDIgZ/fIcmE/QRU+ 3eHTdoABE90cj4eGsX6LmF6rPBlg6Cu7U+YfQfnk8H387xwDIlm3zDpOEhSL 1br1Kr4M+Ba7Py12lqD8rxxKD3FngKS0//aaRXy/qZWlwR4M+P/fF6k1sEVS AD//f6I0RVc= "]]}, Annotation[#, "Charting`Private`Tag$4159201#4"]& ]}}, {}}, { DisplayFunction -> Identity, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0]}, AxesOrigin -> {0, -24.4628263145363}, FrameTicks -> {{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "ClippingRange" -> {{{-5.999999755102041, 5.999999755102041}, {-24.462826314536354`, -8.136370804376675}}, \ {{-5.999999755102041, 5.999999755102041}, {-24.462826314536354`, -8.136370804376675}}}}, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox[ "\"\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ StyleBox[\\\" \ \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"h\\\",\ FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \ \\\"/\\\", \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], TraditionalForm], FormBox[ TagBox[ "\"| \\!\\(\\*SubscriptBox[\\(\[ScriptCapitalF]\\), \\(0\\)]\\)\\!\\(\ \\*SuperscriptBox[\\\"'\\\", StyleBox[RowBox[{\\\"[\\\", \\\"n\\\", \ \\\"]\\\"}],FontSlant->\\\"Italic\\\"]]\\) - \\!\\(\\*SubscriptBox[\\(\ \[ScriptCapitalF]\\), \\(0\\)]\\)\\!\\(\\*SuperscriptBox[\\('\\), \ \\([6]\\)]\\) |\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0, -24.462826314536354`}, CoordinatesToolOptions -> {"DisplayFunction" -> ({ Part[#, 1], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Part[#, 1], Exp[ Part[#, 2]]}& )}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> { GrayLevel[0], FontSize -> 12}, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange -> {{-6, 6}, {-24.462826314536354`, -8.136370804376675}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{"2", "3", "4", "5"}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["\"n\"", { GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.038000000000000006`] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.038000000000000006`] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.038000000000000006`] -> Baseline)], #3}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.038000000000000006`] -> Baseline)], #4}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", RowBox[{ TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"], ",", RowBox[{"FontSize", "\[Rule]", "12"}]}], "}"}]}], ",", RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{{3.8763699506493063`*^9, 3.8763699619208803`*^9}, 3.876370068782353*^9, {3.87637043091245*^9, 3.87637044257585*^9}, { 3.876370721301976*^9, 3.876370808099616*^9}, {3.876371116142165*^9, 3.8763711352371187`*^9}, {3.87637122695619*^9, 3.8763712464846573`*^9}, { 3.87637134045012*^9, 3.8763713522979193`*^9}, 3.8763718090898647`*^9, 3.887183948573832*^9, 3.893237432392331*^9}, CellLabel->"Out[16]=",ExpressionUUID->"e027c86a-5f73-49af-9682-15a84fa4ac67"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Plotting as functions of scaling invariants", "Section", CellChangeTimes->{{3.887175601990197*^9, 3.887175605174004*^9}, { 3.887175638310907*^9, 3.887175648462943*^9}},ExpressionUUID->"af69f70f-b3b9-4794-8398-\ 01134650a149"], Cell[BoxData[{ RowBox[{ RowBox[{"\[Eta]2", "=", RowBox[{"\[Eta]", "[", RowBox[{ RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\\"", "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Xi]2", "=", RowBox[{"\[Xi]", "[", RowBox[{ RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\\"", "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"DScriptF0D\[Eta]2", "=", RowBox[{"DScriptF0D\[Eta]", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "2", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"DufDuh2", "=", RowBox[{"DufDuh", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "2", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Eta]6", "=", RowBox[{"\[Eta]", "[", RowBox[{ RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\\"", "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Xi]6", "=", RowBox[{"\[Xi]", "[", RowBox[{ RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\\"", "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"DScriptF0D\[Eta]6", "=", RowBox[{"DScriptF0D\[Eta]", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"DufDuh6", "=", RowBox[{"DufDuh", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.887184974652775*^9, 3.8871849902010813`*^9}, { 3.8871853260317287`*^9, 3.887185348663872*^9}, {3.887185471338563*^9, 3.887185487738577*^9}, {3.8932376555040216`*^9, 3.893237683200816*^9}}, CellLabel->"In[37]:=",ExpressionUUID->"fbadbe6e-e274-4fc8-b8ff-31d7d09129f7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"Evaluate", "@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Eta]2", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{"DScriptF0D\[Eta]2", "[", RowBox[{"0", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"\[Eta]6", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{"DScriptF0D\[Eta]6", "[", RowBox[{"0", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", RowBox[{"{", RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"AspectRatio", "->", "1"}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{"\[Eta]", ",", RowBox[{ SubscriptBox["\[ScriptCapitalF]", "0"], "[", "\[Eta]", "]"}]}], "}"}]}], ",", RowBox[{"LabelStyle", "->", "Black"}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "6"}], "}"}], ",", RowBox[{"LegendLabel", "->", "\"\\""}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.876369742606814*^9, 3.876369749518669*^9}, { 3.88717511572079*^9, 3.887175133863171*^9}, {3.88718492600924*^9, 3.887184941792713*^9}, {3.8871849972905684`*^9, 3.88718515068447*^9}, { 3.8871852002698402`*^9, 3.887185200333082*^9}, {3.8871852346862307`*^9, 3.887185259919454*^9}, {3.8871853538970222`*^9, 3.887185366488626*^9}}, CellLabel->"In[23]:=",ExpressionUUID->"3f75c1e0-258b-4769-8308-40547e5bc66d"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], LineBox[CompressedData[" 1:eJwVlnc81d8fx+2tjOwtZctexTkhKyJCviolQiKjkhClhZKVPRpSMoqshs4n UYokREb2uNbljs+1+d3fX+fxPH+9x+v1fr/lvC46+TAxMDAIMjIw/P/l7Uoi iyjcxPoSxerV/7AcdOq6byV+6iT2myvPpz2kGg7PtKlW2B7D7E77cfQwPoUW 3xYvxBx3xNLUzI+YG2ZAif7r1AwuO0zo/ECbYMxD6CbEuUNh0hobPNbAdVrk HrT/V1eTnWGJOZxLCuFwi4OvyWbHddstsEFg6F/HGwtJKVZRgqfNsXaLFm9B x0jYBwX0BLXNsINXxhbzy8KhaLiqQoLOQUw2JbSitOsSnDoo7bGpD7C3Bxip lWXBsMMzTZttxgT72VtREmASBFv/e3raEjuAsbKYRLbkB8A730f57b8aY702 0VyyIb7QM7I6VW/eCBsVDUmkfvaBya2xrSQFI+y1k0S/p5U3PNMhr6PRbIDp Rt2VfdR+Bsp6ttubpehhpfdYFCUDTsCqd3O8LuJ62JP+EonnzB5Q9bNsUuQr XSxiLMWx6r07PPUxICPgnw42K1sWHHrFDbrXtU82xWhjQvurzFMGnaGx3n3t Em1t7KdBy2qupDNs6iHX8M5oYSYdoetK/k6wXkMy9binFubWyDThtvsoXAiK IJhc0MR0E//e6WU7Ai8GhoivtaljMnyVzzgHrKBk+5ZfdIQ6ZuSQIFxuYgXf CbMOpCqpY67zf02cX1jCguA8ZsoDNayhK859/sEh+M3+bnlYqCp2KYfTh7nA HFZ+ZSxlfqiMmW7ckYlLhFAw8NSTrGPKWNVqLO2qFoQl/DYexRLKmJHHkxNX agAs12pQXyxXwhhtlcKXLpjCtEczuu9GFTHhZ2+N/KUOwNKoh5z+UXsxqZ4k FRNHQzh52nl3gJUCFumcouc1pw3D2u9JaigrYEZ4f0x/sTY8C4+XBXMrYO8H Tv1ZO6sNC4OCps793o155eyaWR3TgrOUdAbktRtrLHnIH0vWhNPW0slvsuSx i12+hOJcDRjw13841EwOc1Bzvj9+WRnWVjI9faQphx14Lx7bpKsMl7Mel85L y2ELb1rff6IqQemGzBKdDVls5U277ES4EtQfDbXjfieLjakN9x5MUIRtm3/+ 7d4vi9WO/dfr3r8HrrtdesdXL41pfNHNl+HYDb9aiNUKEySwKzH8R8f6pOAv sM0+1i2B/XjSZJH9XAp2Njv5dn6WwMZ18i5PhUjBHKdnl2TzJLDf1lVLRjxS 8HREvZWPkwTWdIrw/paVJNzubJzXaRbHuBRfKrb2iEOZfu0Zu89iGLpf265z WBSePep/fo5JFFM/d9+VdmAXPH/qAOd+XAQrvi7rUye9C4oGGRk9nhbBCNO+ C4hhF0xMV/J/1SaCyQ07PH3WLAhHlHZu1mWKYKBcni3PSRCaU3GBBC0RLF9r IC35qgB08ZBJ/xQqjJlIScUZLfLBrg6d2iF5IYyNfYilrJUHapM8GNWVBbEX 54SzW0iskPCo1DHjOj9msU8y6ugwA1w1ddqVpc6HcUjx2jjkrAEJ4ZtMKvY7 MHuxk7dexOMgOxaPnfbmwbQ9+j64GJDAFNt6RHMvF1a27VZ+eHYO+EcGNTlE c2ITtm5Z0hlTwFGoqeaRKgfmenviHl45CsKPPdIO4GXH8g3eiwcmDoDPjXrt U0usmI77jyNtMt1AJ3THOJnIgs0WWsoP+7WC5ik5qsYOFqx7VCgVL8VAhp96 8jclZuzvBrPU0/CXoCIwLXzzJBMmG7fxemZvJlK0JZen3GfErEucOg/9qkN3 54wuvfrGgHVMzNryyDShhomrOQHCDFht26tzOUdbUXiAWQVH/Raqjvyjaen+ G1UQu5XqvTeRWmwun9/jbrQulFV9W3oD2VS1Pqmq6UWFyyq5OxrX0CeVN3CN 2I++RO/45Ba7ioaHIucO9P1DMqcmiqr3rKB9w9FJ6VdGUMLK5nL9bxoq6PS9 JkkaRXURc/wuaThyiXv7t8ZuHCnbSTON6FNRTn2jY/7nCRRdMJA6ME9GQXVF DekSU0i65vCm+DMSuilr0WIaNI06G/eH8uouoTQORZv+IQLqRzFHlosW0M/A ZRZfo1lUM+iZ8/ruLLLY36/3vWYObbL9rReJnEZ21kY1qjILKM+9h/+K8wTi X0/34o4novFMsYCu0hHEmC0sIrRjCfkWc0RyLfch80IhzLhjCVUUGw6ma/xG dyw5t31fkdDX4qHKvysN6D+VaZ60eDI66ZEzpDlaDFwi6qu1vCiI6HzwbqL3 S8BFIPgQfSjIaEiNDyeUgJCC7oJSfwr6e/92zTq1DHgfLC5SDKEgrlzuAJYH lWB3cSBhTywFnc467zDUVgfm/W5fNy6goLubiirOno0gq46D+KGfgkoC5oaz VTqAyMuIc1+OUZHZ0WnukjMdYNBc76fLcSr6PtjpMZXVAewUvc0IHlR0tLyh YZ79N/CWy7DjPUtFFy3mRbQJv8EOJ7f7biFUdEqM5yWxsguQtbknZx5Qkfq3 2vGRC73AS8yqcO4rFZ14KzR+4VUvuBpcvnb1BxXBVNNSHUIvePg0b5K1nYpC urSvhXn/BYTxo8ek/1ARyede4XfPPrCT+wbNepyKMmv2Hz7oNQCKDiviMdtU xD9USDbJGQapHaeIZgY4KvSEkT+GhoGzSNTCM2McuUc33+rgHwHJjgbZzKY4 MoosDBBxGwHzz51+fbLA0cXP9ziCx0cAZ5p21m4nHDUf/1mUyzwGwsb9qXkX cOTw1P+nh9IYsLQ8XzV+EUeMQyufLO3HACn74DmlMBwR497kFGSOgfv4/NXS CBxltml2n9EYB2HhrB8z7tDZhNc4y3sCqFYbmlALceRduxxjeH8CjGycdBB8 hiP9vaCWq3oCcN/85ravGEcHH3uuWLJMggLe8q2TZTi6IOp6Qv3FJIjySwpL q8fR92PUeLXlKRDnfYBwuANHKYE1V9Xkp0F3LClQswtHR+wfuvraTwPKvvEY vh4c7RWMCEoumgbNRuT+xgG6T8p07jW6EEC42ZjtwhSOKvfzGJo3zQDWO1i5 yQaOqmx3ThxangEvSuJ4WLZxNDLLnZSrMgtIDMZNjYw0xEq7I2yROgv0GIND ldhpdJ23lr30mQPkCT1CEj8N8bvbDJzJnQMipAQ9gV00dFlAhTn89xxIKIqQ vi9MQ2UMgXvem84D2RPzX70kaKjmvarLN6kF4FvfpJyuQENntTJb4lwXAG90 mXDzXhpyY9woKn64AJJbxcJnlWjI4k63wx5mIpAYSjjOr05D42lKPLdMiEBb dENfYB8N7b2WxetwlQhq/7wwZ9OiIfkVOz7NRSKw43G991WXhq5mypraqC6C x2ePcKXq09CIfj7XH99FYNECjzgY0tCxvT/1D48tAqdoodT8/TTkYOB+S5Jv CRwKqmxWN6Ghonz+fY77lkA0+135ClMa0ojyDw4JWgLXHwjkRx+kod8vZ6ZO Jy2Bluecf1rN6Pm4GQ0nVyyBOJXY8xwWNLRYFOfK9GsJ1Lx9O6p9iIZmqXEO tYtLAPaLfrC1pKHNtxWd5XwkwG5vGOZgRUNXEj2IM1okoBOYcBNa09CRXaTa AGcSiPA8elLKhob0xQWsdC+TQGpMSNgknRdj2pBFJgnkyVprZtnSkELPd+uC dyTw8Xbsmu5hevz1N/jMBklAdWNK5wOddVmC7LS2ScBqy8hIxY6GNNehUaA8 GaRbrp65Qee6QCmJ5UNkMF2nzYDROWWjw6TDnwwObNmdnqQz10M+fPUBGTz9 8atlic68QnV5l6vI4Fe88rVROme+Zsu26CUDpUuhFbV0Fjwx7+q3QQbRXWrZ F+ksBC3txuQoYK87ky83nf2q1VbeWlFAocd1k3h6fGKapuNDgRQQ29lkTKDn o6dPLPROp4Dc0UOXFekcfr73h+UHCnj6NXD9ED3/Mgof990xCkikOHaZ0esV 73xXQJGLCgrkjq1J0uu5b+R4gZI2FQju7vDuote/kks//MF/VCBlULnpTe8P S1FziFscFWAF/MUd9P6RjvJevFdGBZXqv3SF6P395Wulr8iAg8vzbKoKdD08 tGOjfFLEAcOghLcgXS9cAdGwzgEHE285jAfpevJ6F5bU8RgHl6oIOjQdGjq3 J1wN/44Dzm27NQu6PoWiWDJvUHAwNpv6xE+DhlT7fR71WdGAYRfxlDJd78y+ 9moloTSQamnR8IXuD0/FrgxCPg2QQiiJ6nJ0PVR4xyOcBuZNdKP8xWjIbHkN 4y1dBoTsibsudH/COfbg3L5lIP7q8mNTJhr6cE13uJRjBZAWzApn6H7XEpT/ 7um3ApyYe8yiSTja53NtkCN7BQRlDFScmcNRvHvVGPixAspINQ+2J3CUOPRk 9qzGKqhfSQOneul8RNHI7cwqaFhr3C1On0eaxjzCk+mrwOIkyrndQp9n4vUa Q5urwP2ftulp+vyaSOxkLOtdA2+03Z530Pf2o/iL+/t2rgP/T0elauNxdDZr /BKyXgdVF7r+acXgSKpAKK/l4zpQDkrqGfTDEW3Q56xTxQZoSXrImqiPo7E9 O51b5zdAj7iXcoUSjjRYyhcV1DZB9w3bCXNxHM01zCeklG8CcluEeOU6FV0/ 5GnL8HELqOxJWSPU0vfbI70j6kzboELx8eDKMyr69EB18KLNNnj+u7bAKpmK dGyt97oMbINP4ozON85R0TtR8eVvdxhgp69gkT8HFd0y4PUtrWCAHTmDSuFE CnKJb/ts0ssAay1vm13poiAddrLybRVGmCVf+Fkkh4IcHG6XWfYzwuux5zS8 RSko3cta7g0vEzQTkZ4xXCKj3HYzY10zJlj/bF+EwlcyMhUabaivYIJKRhH+ vwPISE+p0XtHJjMsTbKSYssloWuXiB1F3cyw6g53icxpErKhXDP+LMgC26q1 pvTkSWipqNOuM4MF8pXadqfmLaEAy+ATt6pYYe2T7NLz34iItdj2ZtgWK4wS m3Ab3kVEgbeDSzLt2OB/Xq0ThscXUNg1QXvaIhv8hJfq5DbMob8lipKhh9hh S/R+A9q/WWQc+4S1OJ8dfhWRM+hZmkHJk6qLPa4c8ErgjYXWmWmk2NZXoVbP AWWJF3dc+DmFXP3nv8xLcsIM0Y/uBQWTyPDSYnUCiRPyqYpl6zCPI82hlLH4 dm5omGqQ8c+gD3FgDjK+TjzwquPdOU/fP+jMTNwPgUEeyFH6Y1vyMP2+pOjo VjHtgB31wyuvJTDUTQllr3u8A2JDuTxJLcXIz8YTvbHcCWM7o+peRRYDwWiG 6/WufDBZMlT6xIVfYEByAaPV8cHYexCvEekFKc6EjRlpfiirMnOoXncYuKyM 1p5jEIAKjpOEafYZcCnla9D5KAEY62SPrsQTQepTsrk8oyAUz0+/l+VGBiX/ 0guMlXdBC9WtHs6KVdDh6CIT9GsXrH5sJFclsgVeB/acFrslBN/46N6cSWaE L0hzLtdthKEhW/wiTzgLPLEZFe0jLwJDI5ZX1rrYYVhV8Iq1gChUwc21lJu4 oc7WmcYUKTFY/Pz4ixZ9Pmh74ErIRIEElK3tvPLBVxh2jbfcuLNXCn7yExge zxWH2dGs0b1EafjHdOvR8TkZ+Cy5Jxi/LQs7+CW2rp3bDXfKfW8Y/SkH7zz/ eYbIoAS/9SS49ND/GTKCB7QuaMBIc868xqt74JaTWaw3SQfWt+xNaLdXgk07 SY8lru+HVttf3OEtNUhw4VcKu28B/wctisaw "]]}, Annotation[#, "Charting`Private`Tag$4160507#1"]& ], TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], LineBox[CompressedData[" 1:eJwV13c4lt8bAHB7Zovs1yZ7l9Q59kwh3xQlI1pWKSqySyQaopBKRpGokJHz kJCkrOw9sl/eZWT8nt9fz/W5nnE99zn3fe5zpD0DHM8y0NHRnaOno/v/tbSh 6U3Z+VuY+Ffhta5rmzDknbsSNcsFY9l8dKf0bSHMv+R++QyDA1boWuEvbZMO +3o03+n62mLdoQXN2jNJsCDRJ9gtyhK7nJc7qaEcB/f7JxXrDJthZYunbBqU I2F3vGOnBtEEaxEZ1POcvw6HRwk9WYHG2Mizt/3E8KsQZLw9VH4QYjQLv28d ppdh8VTfAamoQ1jOxwq7168CoPCKhfTZP0bY+9NcLz+0XYSWccaT9nsNsfO5 R/SWDH2gW9OGjRv/fkyTWFj3S84bcswodGSI7MPMSOKYi6cnfH559WFokD52 Sr+eV1XVHVoKlmznVelho+oS4PGcG6wTLgnKEtDDtP4Jk3OIJ2ECi9/DLws6 mNkxkdamF8ehs0+ZD6OgNrakGHw1qN0R3o9OMXQo0cJy+p88dRtzgKVA4WOS oxamjcRfVzE7QBfPxdbcPE3shcC/djLTERhRVqXCxaiBnSj96hdkYAONu1Vm vkapYxdPhwk/M7CGN+El3hMs6liK+au1cCsryKqDQq5IqWF7rW7vRD2xgPRM Gt867qhgDQbKDyPqTeFd4gV10w0l7FuKfmnpUQAZcxl/mHxSwiY6eQbfRRyC tgdS2S4EKmFaXUIExs8H4b/kQPmvS4pYg1yh+zkTI0gXS/3GQa+IBRbPsrqU 7IddEiT3VxflsWD7I9Wvs/RgQdqTo68N5bGHqYUvXBX0YM60Gss4hzwWdPNi 0dWPuvCnT+D7oWI5jMfykeRinw4k5wUmPGGUw75/eyR+3lEbUn5znx3qkcGu eH2UycrSgLmU+MnOMhnsOENIBDe/BhQTjx4PeSyD7VNxt3mcoA5ZKFPbpU4y mEJmP7f2HTVIb340z71PGvt0yd8h+q0KLLuVN/J7i4AV6nKrvw1XgtFKTOGB kwRsK42+01BWCWpLhjPe/EHAyFNxGlstitBg/rTLt2cEjHOs2rWFoAgHh45X Tx4kYAb36QMzJuShxZOAs4lKUtivSKv7TJWysCbMpqB6Vhy7NVZVKeFMgE5X U659/iGOLR1kGQR7CfCDlHn/rmJxjC89pVSMjgAzHnS0l10Rx3KVum2HXKXg 0ciiqUEGcWzhmaisiKwkzGJStzXREMOO+QmKNs+JwbHJRFPCZxHMdG0n/Y/u Hnir+yWr6UlhbJpnaU9PGz8UjI3yF7IRxiSrqiyuF/FDeC2tl81QGGv2jlG7 lcAPB0oilK1FhbHMEs62N5b8UGe1xURtUAi7zMj37VQjH7wYzJyne1YIY4t0 5Njq5IU9tKw4gYTdWHBnwqj6EW54MoH5kBGfILZY3dbKt84GtwRX/7xlFsSw vpoPh9rZYLBsZojKhgB2I59X6/sbNti425XPc0IAc9PS21pxZYMnKn6lZpcL YEGvC9SDGlihqSQlUO+MAHazhHpROZcFsrLONpfX8mP8Ke+d7zxngjr0Xsdn XvJh6dH5ChVm9JB0IdxiZpoHM//ht3sjaB0c0s9n1d7Fha15l75hKSCBQp+E yaJGDmxbW53j3et5ILny7o3iFhvWfP103cfSSTD03PZq7lFWzND3sO+myxBI Ya0Ie77MjDXPlUS5i3cBf0hqOVLFhJm4yh8c6WkG/S4R553iGbGjjM/zYic/ gY3MF+ztUQxYpMC89mpsHDr8p1Tc+To9NhqbFz4bVolKPfOi2W/TYUe5C/cc /9OIoh7tVe06tYMcfzj5MF//hfYnRH8fyt5CkWTnz+aCXeiMbxRQ49lExMju h0UjPehsSfoV0wsbyMWZR76rbgDV9TlVafWsoReCTUE0jxEkUZzzuvTsKqoY fCaWdnQMJe+uZM/voyL6tnP664wTyJ3jImH7PAWxBCbWMCRPoilTjc2H9GRE eBjY1sI+jUS83hgGh64gxgFf4eNZf9Ef5sKTT5iX0Zq9g3QV7yySTaCz7etb QB23zvQZZM+hwJqkh/2vZ5FJReNinewCSv3NXvXmwTQqzr7o2XhvEZWb8Hxu kpxAj2lmlDQBIprZcyppX8IIeqVmmyEBl5F0m28fKupFmrlhDD9Jy+hpFNoX 3PkbVfE9TvP/tIJs/cTDpkXr0QeBgV1Hz5GQR6abfYkBQKxup+Vslcno6PDe wij5ejDsVl5Y2UdGQS8M9zs3dQBJv++GVpEUhBkv2p4ld4Dmc7qbLDEUxMOy anZHqhNYV78jN8RRUBk/UZU+tBOcOJ8XfiiRgrzuiL5rU+4CbycGWhSfUJB1 QOz1kZRuoJ4hmd9eSEHCyZZKzn69IKs6KTT4DwXtn2JnbsjoBbfPaB8Q6qOg vTdPsVu29IKLj5nJ5QMUxD8u0nNXsQ+kspL2UUcpyHGXfinTRB8QD/s74D1P QcGhC2xjpwaAow12ipuOitaWorSbvIbB+qSqTqgSFWWl+rVlPBgGYMfJ6/te KuIUU7WMRcNgc7HCQ0SNinaVB4g+EBsBy9ueqEyLinpTE9wyu0bAHxffzyOG VJRqd1rGPHcUZFi7edDsqIhlNfmYkuw4YL21cEUskIrcSt9neR0YB7y7r5kb X6aiu95GYm+dxsHTosP3zgZTEe8bllGX2HFwnsvQ700oFRU8TWs5ND0Ovuwe kJaMoqL69yFK+kUT4E/RTf/PD6gIDK1FKxhPAZUs1cG0Uvx/V6KjWU5NAea8 ypnij1TUnx8URA2dAjxWcs+/llGRmWb3GbrSKaB6/9HSVCUV3SRPe7ZKT4OI Va0Urnoq0rXu1Ldj+QtUsZCdiXYqytjqtpKV/QtKvKfYOzupqFH2nxcHxF12 zgt14/E+padjv/EXWOCjm4znvUH136HvS39BfjX1Jc8YFZ2WH+a6ODADhqws uWOJVCSf8Dzfdn0GSF07xW++QkUzkotRB4VnAXNZ5BYDGY//bLSNs9MsyO2v vnSVRkUOknpXjrfOAhrLyJTOFhVVvpDr+lw3B8yRBuLloKFw4Y/eFaNzYFE3 pS6Tk4aME5WSm3fmgDHi1ZbnoqGSPwZcsofmAWNippEKLw35C2ToV1fPg1zm e1ycQjS0M/6IPalqAez2u8rCL01D/93j7VXuXwC5idLdJ2VoqObXRZb+9QXg 80ipMFuWhp7TaU0E718EYesbVhIKNESZP22dVrkIyK1ZVn/30tCh93vq2/sW gRZjwREeVRriohLdCRuLQKpXTEBHjYYY+3oCNwyXAMGVscBPA/+ed0HV6y9L oNqndOWdDg0lvtVRjxleAlPtKQ0fdGno5SWbtGs7S0DzQhvDRz0aOuPaXpZp TAQGpKUnuQY01JG0SZhtJAK9lNQlhwM09FDI3ujyDBGU2hIXNY1oqF7u92M2 5mXQJrlAx3mQht4PyVxrVlgGQKhDp+QQDd0/fi/r54VloJ/XGfvFmIau2Vmw zt9cBl0iqX1XTGhokqOsTSBpGQjEz4zLmdLQ0yH+j3feL4Pced+xa2Y0FJt3 fakDWwY1Vk5fhM1piEEtrkG5Yxl8y7MX+4g7bbb81gZlGYwfj1Hus6Ch4i6j 6GCWFeBT64e8LGmoO1TRfUN4BYiGfn81g9v6p86U8oEVsMLzSWzMioacbPOK O+1WgIhHb+oxaxryLZd6ePf0CsjlSFeox11yXmpWJHoFXFW45ZRoQ0NN0ivh lEcr4OVJ3s5p3PUWHgEDuSuAFiaoaWRLQ8fcfdraKlbAdNmIayJu0Ctc1PZ9 BXi+zLbswj1zvFhkYAB/v/3EpJAdDbXyxypRFlfAuaPzMk64dwi750ToSIAs wUaJx13etRNgx08CfsWGVp9xb/IxtybKkUD22QmeMdze+Wy8vfokIM277wDj YTz+fD57LWsS2D5pWiWJe77BJj3NlQS8rSfDdHAfL2Kg5/QnAaWCn5eNced4 FT1LjCQBvoi4RCvcxvkjISKPSMA+0rv8//5rfaLwUy4J9F9NHf//87t5l9nE K0ggym9IQQ/318AA6eRmEvDxVN0ng3tJw4eJu58E3IrOs7HjnrWIrEufJ4EW GZe7s/j/MqveOaexRQJJ71KLvuJWFfNk7+AmA7muZ15puHXchT5FEsiA07Yq 2xu3RmZT6AFtMmiOIDiq4LYV/ezLYEYGzrKdF+fx8dzDb/2g25kMPn0oGXqN 23l9g7nMlwyWtwLSj+Nu+u3358V1MnB8l32PETf9FQ+Bp4lkYPAt920BPn8M k2U/s7LIIF4RjVvgdljN2W6tI4P+XHsPf3z+5e1epq12kgG7w6U7q3i+yN1s IqlPk8Eb1/nb13FbszfpNXBQgEhaxC9fPL9m/uM3lpGggNbXw7ROPB+lOS46 J2lQwK8PWp/24e7ILBhLOEYBkfGOhfN4fh9M3nNLwpcClhc26vbjdmgouvTl OgU0e9gqReL1wD7wN0E+mwIMPRIzqHj99BS5DqfPUQDjAUvhKLy+KP45Eulb FPDzhVF+Ml5/J5c0rXJ5qSAmkWclFa/POPnk4ll9KmBtuO911xBfn0wdqOKx VOBn+TWFXZ+Gtva/q09KowI1k6kvnfh6ALjdJLkKqSB0+it9Kr5e/NA90W3Q QQUhdRMhm5o0NOFBlwmkaaBUK7/CTYWGVqXXdBX1aOCHONAfUqYhU+puDklr GsiuLBY5pkRDhU8Evu4PooEhwvlSOXk8P7/UkFTqaWBHYCrOXpKGXNjC6Xh9 V4FQ3PfZYm4aYsuNlqsKXwXVE1Qf1114flPaV0MerwJn6kzFBjsNlTUza2rU rwLmWmYLPma8/kN4HiZLrgG/n1y8zzao6EtiRl+/3ho4yOKr0reK75NWGUYN D6+BsCj3ZXYqFRENjlbsD1sDn5LY+gDeLxLPeMXqD6yB4Ij6srVxKtqkbH9S IeP3Y+g/YCNUVPTA/Ls+5zoYGpTlvj5IRcPN9PrJB9bBSfN1/Sq8P/nFhp89 nLUO+KyFPK43UVHkS8NkmbMboOo8e1tdPhWNSRhVx9/aAETKXdYbOVQUsOh1 ijV9A+ib/c6Sysb750pyhf2PDRBjXcqm/YSKPnLyfePQ+QfAq4RGvxgq+rXr 77QH6ybgER3+wXWSikworqFnZTZBv9L2XOQxKkoK34yLPbgJmmOrC4fsqUhk 5u7s7uBNIDFkwOxkSkUbnudrEsc3wWvzzHh5FTx+T+ogpWELCBaV0e2lURDt hRFhZGQLfGLw67pPpKDcLaXgyY0tkIZ6xAdnKMhCdFjUWGsblNw6sK6O73/M a0vFrbK3Qan3T6XiWgryn3mfVhO5A7Tl7Y634/uzCNl0gaCsHdAozbI/I5SC ZDXDhcyqdkDRdEWbVSAFEQfDXltQdoDu3+Law+4UFNYgcHxclw6KTfuwUg9Q UFVn6zP/d3QwSu95qi+RjKqnTHa11tDBx249DcZTZPTt9/V2w1Y6WG47V7ze T0YFrIMzdvN0kDs7n56+kYz4VnzdLffSQ5mNeB+PZ2S0tb18u6KQHt4xNUmg NyKjlgudDe+/MMAgn4+VIu4kpLwqYqz2iwGekLY9xXiUhIIb0DtslAE6CmLe 1ZCEvB29ZfcyMcL7n96sP5ImIUWHWh0uO0b42st9d9foCuJV7fptOsoIwx7Y kReOraCbS8UP9pMZIQtnzyFfkxVU9Lu7zoqFCWoPuJBzNFbQ1RPDFz6pMsFa j9sED/YV1CTjv9B0gwnGn+kMaK9cRoJHxPaIiTNDVn0h1Y9cyyi+a1ywSZMZ im7dZW5aJCIf3se9KebMsLY/duEeIqLDzRlLtwKY4dlmLU3gQUTc1BaVtgZm qPb2XcZG5hK6xjRbHHOVBX6ts2a5T17A+yN73NwKK/R/Nmh9jG0WDUeuU2W5 2GB/yxuOmeoZFHzqgW6yEht8CCHN3n8GWTKJlGy5s8Hnt7kVIn/9RXE1OV6H 8XPfpOWlkJ/R02gjl7nDpZYdhj4mn76TP4H+IwoHMA6xQ7YcZqcL5hNInauj av4fO3y2z622fGwc2Tm8Hg415IB/wuTvXNw9jv7FyA8+r+KAx5zBqvO5UfSq wRzSmjih0tEW4Rn8KJGfsoeeOMcJWzdPczuc60XVuov1ety7YI3zZwVH7x7k dmVY9YPzLgjFd1lW2Xcjd3P+0wkzu+BRrie/red+I24HbI4oyQ1H/2wRje/V IMeXd75K+vHCSBh2WcarHey7+oDOM4YXlpRrjhrydQKaUbXI6FNeSLjy2+NW Uxe4shyj+6CJF8Zr1HCeONwLSuvNaNPyfBCLGqqMaBgBciKyvDeJfNAsxHpI 2G4G3L3h+HSbnR8+3qcu3nF5FmgHjCp0yPHDAvEFrtrsOaBwrHInwBW31U2W kV2LgLG72/lzKz9sDiTIN4uvgO3yD0H76wSgxdXcf7Usq0BpXK0qZ0wATj4l 1Wr0roJQUuOHCAZBGF8pLplevAZiU36WpZkLQp+e0UTqhQ0QzFkS8axdEDbq 6Fe0K2wDhyctT4YYhSA1V9m/5RIjrP3ovTqtKgRj2aOUpdjxvCTS52T8JwSN bfr9at8wwW/+hvGiRUKw3MHsRNwaM9xXgyYYzwhDUd49+/4/7/rzPAd2lvdA EieQ8nzJA1lGH7NS1ESgWww29cCNF6YJz1pZXhKBXoUfG58u8sLx27nFcFEE ugg7R+oS+OHWiWdpWgxicJFnKsTmtyAMenRYp9lWDPZE5cVtJ+2Gx8yNMk3T xOD55iexaU5CMOJa2TDUFYeUr+HPT68Jw4mqvgy+uxJw8bCDyY8KMdgYoOsT MykBX73jH9j5Kg6Nvaa9y0wkodhORy7/kAR0udpYQWSVgpbScXSfxQmQwTiy HJwiQFqztdmHQRmoElIs6JROgN1tgSdgriz8UHahMb6bAO1Pu0XrXZeDtf/J K/79TxraW5M/q1sqQMayqhiWGzKw3kZHaylzL0zZUvb/1CIDg3/4eXSPqUBV +iNFzFKy0LqFphN1UA2Ol9+3r+2UhSx8/yZ8pDXhtxhQ2K4rB4WmhTl51jWh eoYU08QzOVhvN8PdN6YFL/1Sd+4NkYc2q5RRRaIOfO497P6bKA9vhToEfdij B21lyCYUfwV4R47eNfmUPtzDlT87EKcIjf50D/dY7YdF4oeDunT2wm3XfAOF VxDKSf4Ie8SgAm3+PfJWIxvD61UMA0kTKrCPUFkTGGQKS9Xqv1jOqMHzMU90 bCQsodFp6allAQ24fDE7wdTHGv5q9HYR0tKEjg9fuFfstoP79hxSrKjXgkXH 3s97P3CAl45IKrh+1oaX5MOUPIlOsFWSb2L4jw40q63oa5j+D0ZqNIuu7tWD JjemWNLLT0JvP12LnCZ9yM3KhWoa3KEfX8Ht7pZ9MNzPj2h2xgtyGzrZyPoe gFrtpstjoefgfxujhMiNQ/BGlUJOlXEgpG+ckkYKJjDmRuIt0fMh8H+wBV26 "]]}, Annotation[#, "Charting`Private`Tag$4160507#2"]& ]}}, {}}, { DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.05], Scaled[0.05]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox["\[Eta]", HoldForm], TraditionalForm], FormBox[ TagBox[ RowBox[{ SubscriptBox["\[ScriptCapitalF]", "0"], "(", "\[Eta]", ")"}], HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], Method -> { "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange -> {{-9.122028587832348, 5.702485161797756}, {-1.3938681721411004`, 4.730885255577823}}, PlotRangeClipping -> True, PlotRangePadding -> { Scaled[0.02], Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["\"n\"", { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"]}], ",", RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{ 3.887174570806945*^9, {3.8871751231427803`*^9, 3.8871751344236307`*^9}, { 3.887184932693384*^9, 3.887184942173463*^9}, 3.887185280438054*^9, 3.887185367237939*^9, 3.8932376045625467`*^9}, CellLabel->"Out[23]=",ExpressionUUID->"9917cd53-ba22-4159-9239-28c8a5b2c68a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"Evaluate", "@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Eta]2", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{"DScriptF0D\[Eta]2", "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"\[Eta]6", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{"DScriptF0D\[Eta]6", "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", RowBox[{"{", RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"AspectRatio", "->", "1"}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{"\[Eta]", ",", RowBox[{ RowBox[{ SubscriptBox["\[ScriptCapitalF]", "0"], "'"}], "[", "\[Eta]", "]"}]}], "}"}]}], ",", RowBox[{"LabelStyle", "->", "Black"}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "6"}], "}"}], ",", RowBox[{"LegendLabel", "->", "\"\\""}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.87595272795855*^9, 3.8759527743037024`*^9}, { 3.875953429388359*^9, 3.875953486484068*^9}, {3.875953717122241*^9, 3.875953824002554*^9}, {3.887174580406206*^9, 3.887174580749688*^9}, { 3.887174986510387*^9, 3.88717510283072*^9}, {3.887184947721171*^9, 3.887184948225855*^9}, {3.887185289392242*^9, 3.8871852985195312`*^9}, { 3.887185371553924*^9, 3.887185377032762*^9}}, CellLabel->"In[24]:=",ExpressionUUID->"3f8b6e53-ff20-489f-b395-47d925d34ae6"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], LineBox[CompressedData[" 1:eJwV0Hk8FOgfwPExRY6MhhyVlFhGIhlXbJ6n6WAtEVFWGNHB0OmVWgZJKis3 uaJTiaaLaKPnm0Q6NNK60jDuo8YRQ4P2t78/Pq/3/x/tfUdc91MpFErof/1f xabECXXdGMid8dZzazwLrk0Jdst9vOEKt9TY6soe6Bx6Z8hz2AVTw2Eo7Koz bK0bDY7a4wI3atf7TXraw4r2yMlMeUdwjfPKHGduhd2qcjTdPnv4lCsuE53c DE5fysuyM7dDoqeRyO2nLYyn2EWosLdAfqGeT8yNjdCGlc1VTFkwOSrvT55Y gkaYoW48czOw8csplqYF9G/W8pq3QPCXJXVEM50JcfVCulOtNUzfVBrn65iA b3hpqvnXjXASuypw5owh+W3023HdjUBf75Pz5oMR+PHXMI1fWYLrEFVb9MIQ Vvs2OLFSzMFRdJSXG8sAz/KGvpooUwi9MLo5abUuWJsnmBaZmsIdkbOsV6kO 1DRPlCkObYBbSQVNx5x0oMJYM3WP7wbwT4xdNnppDXw7fHpwU7AJrAuwcjND 2nAk5NhyyTsjuLhHOL+GrQUPa6WKFyQZgMWDa55PGzRAJcTnWtYuA1DN+1CV d1YDiui/eRWuMIDpdb5hidYacG9DldHoPQbc5XR1beGpQ1rGkNlToT7EmdXn vr2rBsURSXKBEXoQ4a79fO3wUuhju+lw7HRBur+wAZjKwGkN7DzO0gbX2sdf PG0VoXbrsidqgytAfLv/+KdGafDfGRg0QtWA9aToiEapFDTxmU8Ea1Qht2WX RHRznpiOe0kZGajAwjPGtbldP8hgRrFLZiQdtjmFMnzaxOSHrevSLKMlcCxm bHVJ6iRZoRZDXetEA57IyoAjnCDZ0VPRAwGLIag1MO7TvnHSLzN7+lWLPGis FJ4MthkjgeGHa5y5clDuuJm55ZKIuKjWlGUYyoLf0dCvUfVfSdiuDFOO4iLI eqQ3IM0eIS+qzRv6x6TB77dikz2Kw4R5nNYzIVoI19MD3ejfBsmrfu1JY9pC yF4bdHWGMkgyDxkl1zEWgFncteS3WgOEF5IWNu9NBVvrgku+/v1E32HiXkqC FNyf/GOlLK+PnB/ZGHq3jgIhngZBSbQ+UtV7KoejRoGSu7S82vO9JIzD4slW /CTDfMqGMGov4Yk+MSoC5olg0+8fVZN7yKxqVuk5rTlSuTHlRp1+DymYXptL q5aQlVzmC6jqJi+5tOe7o3+QBPy3rQa7m6zy6b1Z+ssM4R0SmXf+FJL4mfnp ikYxCTP1b/W4LiTlp0fo7mlTRFImWH7ASUgMHLWoXRaT5HRrmnfIeBfh5n9O /fx1gjzLrZsJzukiWmW/zy+/MU6ENPvvb1hd5GO1zXFFszGi/q7pxGLSSdpJ 1I7pm9/I8Jt0yUOJgJR1+ObcPz9M2NPcqmBVAZmXaa1QDx8gqWJpFYbhF5Ln 2Uw/6dZLRlvzbRYZdZCey8s4TcVdxOGwbaSsuJ0cLJQNl59uI5vs1U/dudNG eIVWHenGjST12PvnrymtpLZQ8LB1popkJsxnKMo3E2+vHIGJsBBJFPrGbtc1 kSLOSGf2Wj5SuPzAZdd1PqELCiY25XSiik1DbKZzPXlos9hqS80Q0kh7m3RW rZJ8OGhnoU+ZQs46mF8iLEJJjjLfn+tPIQsLh7xD8cVInsPF5c5TqLvvQjTd 6h7a9/REIv/qFBqNLUzdvvMBMmzfn9FmJ0YbmkssYj4/RqxpCSgWT6Puvf/E FoQ/Q71/fZQqaZEgObnHT2+V1qKMi0ds2pRmUYpzSBbbow75Z/WEEvtZpNyo NJQhqUMr81XzXlfOIpOJGeZDh3ok7tjv78qbQ80tj5IyFN6hyG2+DpTKn8g7 iMEWLGlEzs7nSra3S2Ha7Vfb2++3ovR99toPFKl49cBFkcfONpTbwLI2Y1Fx Al/IEojbkK2qsKqCR8WnZtM8nu34jMwZ1QG0ywuwb2Xhv/KWAsTZfnRv7CNp 3FRzqE43uRtJFzrEnPgpjT9ULZ8Q0npQyLmjRZcdZfAfbF+fjpQedOJPFSfx qAy2co0OjrzVi5L7DEebPWTxxPuP910UBpCJIKX7YoMCPqiTfZzJ+IZkwXnV QdfF2Gf3E4tFaiLkN3T2jXLHYtwyFRVAlEYR7zvT7BGVhtu2tWueyhhDKlxK ZIXHEhzBWHSGpfwdfdb8BuLyJdjVb1/4lTffUYrb4NyQFh0rvagON0yaRO4z wicHKMq4yG4uIpolRkVf0vOtDZbiHS6lyf4XJIjv4r7q8Iel+EAKgl9bZ9H9 kGb2slhVLPxqv+O9/TzaOx/B3b9GHRvxE6MSd1Kww68nj/Xmr8BL/cxttHX+ +9Lz+kyc3ko8F6+iY/OPDM7mSnNbRFr4VrZpwVizLFbSrq8SvtfGs3I39CsR Ddc1x7s3H9DBhkus/S0X0XH4Frm86lO/YN+BHePrE1VwxWu9+AYnBnZn6VtO a6pju39feuLYdThIFHB78LIm/h+D2LN3 "]]}, Annotation[#, "Charting`Private`Tag$4160616#1"]& ], TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], LineBox[CompressedData[" 1:eJwVxXk81OkfAPAxjsG2mYlyD3IkFjlWSL4PU1RabLJF2XJHjiaKIhpCtCps pCTlLBJpqEk9H/exiAhTznEksSYUEe3v98f79VZxDzrgRSaRSMz/+f9ldY0P 2L6RsK9604Kj3kUIfXRM88udw5AkOpPB5ztCgf+x08fJv0NO3glr/at7gdu7 7ZGRjy1cJ3lWxuUyoPCKd8hRlg1MiVmsHrRGYBqYVGI4uAtsS763HZE3h7eX D3TpzVqB6JH0O7enTIC4/dCiYieCP/wz+hh/G0HJOHeHEssCQhOCtYOEDUH6 s7WKV485XFc5Nuj0XB9sYi3H7LTMwIoTeDbKRQ+yTi+mhDGNITj+bPfO1q1g I1W6ls/5FRy8/9QfAU2oli5l3pH8FZR2qQXtbt8CiSIBKS+nDUFhJaV+nYYG OHmzvQWlDGDjSo7S2QRViGJztH8W1AMXoccMW5IyWL7Vnqxl6cJ+77ZzoQeU IBz5U51FdGEpRLlptJgOFEMcGqykA02ttOS3YYogIKRX/yZeG+qoGj/l/SkP CbN+uoxlTchfl9feKiED3Ypzx+6fVIfwI+6NsTcloTA9zSHXTB22c3ldh45K Qs6EjghPXB2iTfknOlUkoc371OOBEjUY1cM+wWUbYD7/VGKaoBqM3TweVj5C g4WO9V4DvZuhTWSbLj5PBXZk/lDHqjKkLUIZ3F0HVRH7Cl98VIBu5Z7Lr6ZE IPLtPQrDRRpExlKUMUUAXBKFLcxpUpC8YBecemMFGwp4HJq8R4NMeVqTnMwi nvO7YD05IQGOiYq9lvoL2MK4gGKw7mcIt2HmNo1+xkXeiWPFDeLwUCSve48e H9M/P3qwZVUUVsUjb3kOzeCBLNszeQ4U8Cqnli6Vf8LXKZURWXxhUJV40iC3 fgoHorkWe44QTCe4n+lkT+J3h6N8HS8LgkPXtZKqiA94OTNbrJNFBgdGqIF/ 7AT+radMwemcAITVj19buzuOy9zzo8XiSKBn7/tobGAMs1K1ful2/YHfzMTH U4gxbJoY3TxwdxWPzOJvC3mj+LgPi9CR+I5dg93bPdVHsVfpzWCG3zL2bHJa 1czn4WquI0e/dwkXb3JvCTLgYcWSnNwyr0XcVrJX0bl1BF/b+FysgPsFi9tB ULvbCD4mflJ5zXcBv9p7tOkgaQSPM/S+pwjM45avsz2r2cNY1uOBWUjYZ6xg Hl8objKMe4SLXNKE+bhfvyV2Y/4QVk0k2XK50ziVK6oAMIhPVSWlvMv9iNPL m/tVOgfwjQ4xzoPkCczbxrw5M9yPK6wknjXSRzHzU8F4bv17PCnjmmSSOIR3 tL3ZL5TzDqu0+3BxcR++71N4z+0EF2ewsElIVwe27TueVTfVi20DFCIm5Gqw b22NpoZzD3bLPGpXup3ANX+Zq9B9u7HDoFYRS72G8PswsCh78A1mZpuZOjW+ IVjJz7aM81/jpX9ZBo0eg4QPu2hFdrYZEwNL0RqW44SE5kBGrmUt/sFLFUvi TBPSAc4y9fNP8Ye9zkVP8+aIrbX3hzTr3YjDohdIVJ9FYuZFqUYthUPMun/p X6hbJWJZj9Y1Wb0mWvy66h6/JCOacfaV55HviZJusdipzxR06fzkw3zXCeLA vfhaegAVVRWcT842nydMziST3GOoqPSf8jvN3vPEV/MXssMZVFSWQE4JTp4n gvkxRsmNVJT9l+eeg5PzRFnNrq8T6jT0Q8nqVGrmAqEmq0oNn6UhYvvhjiyV r8RaxROmabUkSl3hd3ZXfiM0eTqcnBFJ9O8lz8DypW9E2FzDkyiyFIoOk3a4 YbZMXLrexk7fLYVm9CdjL1QvEyE/lUbd6pRCQu1NkwX9K8TvaS1pA4Kb0PH5 vlM37NcI408SO37wZVDO4/CeNTMyEhn+m7KgI4u+3SEPWkaQUbr0xz02/rLI dXOcsRYmI15cXgmakUWZHhsi9fcJolXnW+n6ZHlUZUhm7w4VQqMc7m1agiLa FLly5SyDghqCjLxjxhRR2+CGebmHFGTpMeHJtqIjM+d+Nz0pUXT4TEPlLEUJ SapLkAPnRRHZ8mIF4aqMLguVC6SOiSNBNidG5PxmVJphfe9IrwS6vro18GnL ZqTJpIcP2VLRLwL2xcJKqkjHrurku1Iq4lVctXvVpYpOP1BJaE2kIf/Xuk59 oeqom3rUbn2SJCpW+I3ZbaiFUg0tUOxVWaRG/ycilayN2NU2SDhTDp3jkN8n jWojwbg8fKFWHpXp1Ly0mdRBPGmjwpDTdGQiY7GlskYfRfV1XPOkqiJ/e7rG kWcGyNE1b7+QrxpqpdNGB3sM0TSTd4hE0kCeAUbWOY3GaGfmlNfiLi0UQCuM e9tigprv778iyNBB680c96n67EC6JRtctDO3oT+Wh5UvLlugW2EFRa7uhkig YVwFa1ghfm1xTOj97eg/eLmEcg== "]]}, Annotation[#, "Charting`Private`Tag$4160616#2"]& ]}}, {}}, { DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.05], Scaled[0.05]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox["\[Eta]", HoldForm], TraditionalForm], FormBox[ TagBox[ RowBox[{ SuperscriptBox[ SubscriptBox["\[ScriptCapitalF]", "0"], "\[Prime]", MultilineFunction -> None], "(", "\[Eta]", ")"}], HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], Method -> { "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange -> {{-8.985689911395795, 5.4752540344034974`}, {-2.2687538849550464`, 0.8696374890668941}}, PlotRangeClipping -> True, PlotRangePadding -> { Scaled[0.02], Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["\"n\"", { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"]}], ",", RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{{3.875952731520175*^9, 3.87595277495057*^9}, { 3.875953449526909*^9, 3.87595348700035*^9}, {3.875953781918692*^9, 3.8759538242573233`*^9}, 3.875956884814212*^9, 3.884691471720155*^9, { 3.887174577531348*^9, 3.887174584665642*^9}, {3.887175035431831*^9, 3.8871750787266607`*^9}, 3.887184948578662*^9, {3.887185295337936*^9, 3.887185299115622*^9}, 3.887185377502866*^9, 3.893237607053919*^9}, CellLabel->"Out[24]=",ExpressionUUID->"9950232b-1eb6-4bf2-a1cb-424ab941d88b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"Evaluate", "@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Eta]2", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{"-", RowBox[{"DScriptF0D\[Eta]2", "[", RowBox[{"2", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"\[Eta]6", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{"-", RowBox[{"DScriptF0D\[Eta]6", "[", RowBox[{"2", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"AspectRatio", "->", "1"}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{"\[Eta]", ",", RowBox[{"-", RowBox[{ RowBox[{ SubscriptBox["\[ScriptCapitalF]", "0"], "''"}], "[", "\[Eta]", "]"}]}]}], "}"}]}], ",", RowBox[{"LabelStyle", "->", "Black"}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "6"}], "}"}], ",", RowBox[{"LegendLabel", "->", "\"\\""}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.875953835258749*^9, 3.8759538464750853`*^9}, { 3.887174587589929*^9, 3.887174689823798*^9}, {3.887174745816722*^9, 3.887174892235113*^9}, {3.887174930671193*^9, 3.8871749732205553`*^9}, { 3.887175095902635*^9, 3.887175104950508*^9}, {3.8871849509534283`*^9, 3.8871849518418016`*^9}, {3.887185308184392*^9, 3.8871853124795923`*^9}, { 3.8871853818416777`*^9, 3.887185394801072*^9}}, CellLabel->"In[25]:=",ExpressionUUID->"f1b88156-90fa-4eff-991c-fedc7873189b"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], LineBox[CompressedData[" 1:eJwV1nc8Vf8fB3AjipCZvUo2lUgo9xrhV0RGlMyMpIQUZSSphKzISCpKMu+9 mYX3ITPrmtmjjGzusvmd71/n8Xycx7nnfD73/X6/PpLOd81dGejo6G7T09H9 d2XvjiHxS4UhFF+3qQDmSTDvjjYUsrdDHHHHmnpnx2BstlWh8IIl4jjL5ti/ fxT0G5dvP7YxQ9bt5XmnFodBeDCE8obVGGmdsxv+fWwYrPlYOKSmjJBPhv/i cyOHwGSkrCT1jQGiwvDMeezgEBSRdG1U2/UR7JMpndwPg7AabxjE46iH2DDf nPulNwgDWG41HhVdZNCvzWB0dQAE/BWkIk/pIK28ZiaJOQMwrSNmu3Mag6iG MVZUyQ0A0eG1CvPsOWRJ8mUUG6kfWq5lOhogZ5GQP1jJwOp+eN48wWXSoIn4 sjzARjv1g0NgcYLaggZSp09Hs1Hvh7iW0JZVKQ0kp/M+fcyhfnAiHjmlXK+O BIzFXDvR8BskHNpNdOPVEMs2RE3R8DcQKubZrYTUkFqr4cfl8r9BoUYiJjBX FYk5fuOY06HfYF/p+cZz5BTCLf2u4dtQH1wta5+qe6yCbNdENj0P6QNNtWiV ryoqSGmudSarRx/U9ZFK2GdPInHsr61OWvZBubJIgo3DSXQFgTK6in2w6PXw 37nbJxCi7r6hpD+9cPeOj9BmqxJSXOmSPeTcCyLtuzeDHyohfibvKm5Y9kLF YaahBFklJFq/Rl/NoBcyvNMZya8UEUdmzuNf5Xuh0eRFwT1fBUQR56IYTesB fAN9HmOsHLJ0j6zuntIDPHfsP6ZYyiEhabNjEdE98JXrf7bZwnLIlcfPxIdC e6DgZJXScoEs0r9zm/3grR54nTSrWjEhg2h+KDb01u6BvKBYFo8gaYT1fokX ZqkbphwtjnoaSiFdI/XK2Te64V57hIiynBRy+klS5E/bbriBtcn3PiiFiHRm ilEtuuG9l9e0W+dRxNFUS+a1fjfMkRPpwPkoYnZ8dV+RdDfMGInF4VKOICLq yvbcS13g2e8x5qsriYT/WUu59aILSvEMmUknJJHW+BGR1iddsJbyIW9BTBIZ Ny9lVQ/qArGq5K+ntiUQ5S/uUbI+XXB6wtf4YIUEEjlvKfnAtgtad3pHjmpJ IJZ+teIZJ7tgy9qvgrNcDFlYD9u+8rcTpCrlQm5kiCF+TWrLOaOd0FS9XUEK F0O82ZTq6AY7wZGva6HWXAyR6lioqyF2QsS29heuVVHktn0W04vqTnC3DjYi qIsiXRwFZRxvO6FBX7D08D9hhNXnxdMs607owOzt/9MjjPjOrGp9tuiErnpz 964aYSRdGanKNe2ENPMsP4l0YWRh2WUVMUTf97Dc0NVcGJH6Tl4QONMJe121 C6fqhRDNzPIrXoKdID6oMmtcI4hon5iQvTtKhBuXPW7NMwggrS6yedLeRLhl f5ZFi8qPNKV0ZMXdJoKAl4bGhxl+ZFOmZHL7JhGiEmU9clv5kZxxWZlhJyKM yx7aKUvmR/xCb7KWWBBBj0LljjzJjwTpcrq0qBPBylY8sdr3MOLtH5ruRk+E buKp0tEjfEg14zBnm0oHzOwZm4wI8iG3a78yTCt2gHJpudE0Jx/ibaV6mF6m A/Lfswjz7/EiUunjseeEO+BGuPDe6hAvQrzWatLB2AHPKyN3ApN5EVZoFTLv bYdI9YanLny8yG6/wLXyh+2gsmpLryTHg7Qe98jDNrZBpTxtPV+SB2FmyZO8 VNMGok63vqkK8SAiVjtcdj/aYLHFV8P2IA8iy7Jp8bioDVjCPdkZl7iRCG05 pt7kNiCGydgSirmRcdtav9qbbSDldpWsYciNHNBhbI8/2Ab/kvLM3oRwIQfs bGYeWrbCrjPL08YALmR9fdlz/lIr5N1Qy97x5UJGbVSa7f7XCj1Oth8D3LmQ a9kG+89rt4Jr1UxGjhkXIvb5oauobCu0XHd9MXeUCwkK0bGibLWAj7GvS2Mb JxLwvFvs5KcW2NA2501R4kRumliczqT9AuHDYQzyJhyIy5EYkdDyZkgNpYbO uLAhhcMXWfjdmmCaeeth/W9WRMXf70fY8UbwCPSqMw1mQdis9h4K7WsAM766 kiSFA4hU+7Gnr+vrwN8yScWTfT8i/cFd2CjrJ9TUqrVPrzAhfTjQCvWphVO+ HH9JS/sQScV5qVbTGqiflqQoc+xD7vq0S1w1RuDNTaW4RllGxPJqhg42tBoK 77z237FjQHx97lqPZ1eCzAVSQXw0PXLlZC+3V8N3eDGv4ZfbSIfoVmr+4uau gKrJgDTPw3TIcbrYxrD0MvD31C08UL4LVh11piNKpVC41CNb7rIDPaed+Le3 i2GLL6X4mdg2LLk+vqxP+wa83Z4rLILb0O6i90aC9A18JcOfx/Bsw7amzqu9 xW9QoJ4CKQe2QQrfllA/9Q2WORat8aQtmHa7zODb+w3SB9NLSQ1bYDNhl2Vc 8g1CtPWGCXe3IKzQ2JnV/xu8X5N/y1G7CWeRgHcEhm+weGdWjaFqEz4QOwQC 9ghwnsuQiVa2CbvvO9Yw2wQ4J+KCHS3YhAv5xhN9VAIIFdaL4lM3YTG2yVVy lgDuvZePOPpsQoprrJkckQDLdOrV4xKbwPVFIYzpAwGOWderDQpvwsusykL+ dwS4Yynf1314ExYw5bqKaQQoa6aPa2TbBJsu24/XEwmA580bwa1vAFlC9+xg BAHmYqViI4kb0CDpuWfkS4CfwRzV1qEb4Mp504NqQIAwJqL03KMNSGL97SWi T4CD3zvxQfc3wPfJrwsGOgSoXa5UzLy1AQbMhc8ztQigW2DwdclyA/4ddeUK PkEAB7t+q1dyG1Aa3fryuxABzQdNvdGudfDWUS6xXsUDF+nKIb+2dXhjvlE5 sISH/kPUJZamdbiBu5Zhv4CHspWRabWqdfj+W3XJewYPhJXg/Jgv65ATElVX NoIHvEiHjF7QOjDr6Nu1/8KDuP3kp+Jj62AssYmIf8FDXkSznqvEOpx6SOXd /xkPgYbnZ/iE18F+xUJ+NRMPCvFYTX/OdfD7ei+1LQMPdmeZ9mlurUGWbmPk lzd48An/XAfENWhoCK0fe44H9Tt3ZpoC16BGX3zVyQMP05CAefhgDUYdrkR+ dMdDZLp2jJzPGlzl8Z7+64oH/6Ou7JFua1B0zmfG2xkPVf0Rzy9cXgPLj/ns +bZ4SDUcoGuWXgNMWRYp+xL6/PrOWnknDeoE7loWncbD8GXNP7WtNEhZfhvo oIaHbI7fZa2NNChajWXlVsXD8s8fR8eraOj+jDqEnMTD+BUqmSmXBg/6ov/d U8TD6AdOKZMwGtxOfXa/6wgeDn93SrEKpsHM7p7QV0k8sD1WJdkF0ODwdpBs mAQeTktPWXp50aAzOzJQSwz9vX7B1lfXaMD3Vo+hRRAPmbttyo0qNGgpcUy0 48KDmk1re5sSDX7NY35c48TDw4Lrl3pkaVCpZ3Th2iE8RBOL58bF0O+/MvTB kR3d/4vNr9ZZafBpWf1EJAsemHnuyUn+pUKlwVq/GQP6fSxJScdGqVA8z/vU jx4P0HV+SG6ACj/i7ial0eEhRpm4erKDCqVBo6TFXRwk6M5isT+oYIHg4/Bb OCh7OM9l9ZoKO5U+NvlUHEylFlDnXlHh9I9+wxkKDt6Z7fscGkGF27Stg8dQ Xwp86JIXTIWjmfe5v5JwgOwgNrvuVLgkLCPQvYyDU+tuUQnOVODodyqQQu21 gH8mbUcF3IwF/8MlHKxePNthYk6FWJVrHvKLOMhO1clJPUuFMOFOpqI5HDhy HWdVVKfCg7gcLD9qo46m49UnqaCwX9ksbBYHrmT6uglpKvQLn1t0/IeDRfkI BmkuKnzyx4hjp3GQr9R3r/QgFcr3ru1VT+Gg+Uj7JwNmKgwY8BdjUZshZXpu WxSg2d16azyJA+vGi+6ZUxRo79dxev4HB9UP6hpPjFPg/R/5aWHUhOTBv9WD FLiylIUpnsCBTXOv8WAHBSKqz3ovjuNA/kdJivsvCvwEa8MY1NrjshmUOgo4 nN0gnfzPWZXd7N8p0PW5vvHJGA5u1/QxpBVToP7B/IoS6hZu/9ljRRTgiX61 NDyK7reD1tDZTxTQHdJy10Mt4mM91ZhBAWKO7p/NERyYTsx+Mk+lAPbP95Ml qCfYHHXdYyhge41iooL6/S1N8dUICgz+LRKiDuPguGdA0aOnFDC72/njO2qr WNZ/0QEU8G7UDLyEmq7fIpbvHvr+jKBUEdQH2edn3t2hgEaUQPTiEA4WvOZz C5zR9dwxX0pG3a5hxKtmR4GEU3N2PqhjFQcVK60pcOxbx0cT1AmpQhRdcwqs 1e1VKKKu/xDm0WxMAaWz/tkcqO2PR0WbGlKAbVrFnTyIg5i9/Ou9OhQoijy+ PYhaNMVx4NpZCiguerjWo5YzFmMYP00BXMtoJgH1dfdkpdqTFJjStijIQj1c Tn/okyIF/E8MKCejNri59PmZDAVGlu/IvELNf39p1e0I+v82cyQ/Q21VmkAy FKXA8QMVwaGobw96fpEVoMBTksdQMOpZN1ZOFh4KjLeJ4f4zpnxXYZYdrZfh nq3HqGPpBzabDlCA3ulldThqD2O5oBxGCiykaKxHoU4KeFz0YpcM1rV/cpJQ d2t5JrptkMFcMIz4EXWGZJD8eQoZKP28d3GoSZE6PkeXyTCgmRJeg5qn8MJN +jkyKAewcPWiNnkjfWhskgwCza6886jxR11cK8fIUOKaG8OI7uc/1oRbqYNk cHjW81gM9XiPttiDXjLkO0zMaKHOGl1/bE4kg4Zie4Mtararl2KVW8hQeyRF JAR1hFHbRdYGMvQFnp3NRM1REfIL+UGGWQ2WGTLqSufWqLelZFjiURSQQOvD rOvh+n08Gdw1xZD/6kfdUbZL7gsZpl1c/b6hFtDU02bMJIP4bHHoLOpws1WL 4XQyMP5oYjyC1uff3DOPXiWQ4aODilca6utqcy9dX5HBrS7MahD1aISDzrkI MiS+jf4mgtZ/PXvd5/lgMuhM1XTnoH6dWqSu70GGjic3P42i/ZNc+yNA0IUM /AyaOipov9m3/7VbsidD71CRZQRqLLWIO9mSDPH2IWNaaP/yWBoJTmLIIHvI MRxB+1uwRt+rVJMMx3LZ+2T+4qCqMudGhBoZ9AsuZsSjbnBvVlJQIEOd092E 2+i8uHrJTOX2YTJMnuBl+W/eBGcMJQwtkCDw37iSHTqvEo2yV2tmSOC4NcI1 i9o512zxyx8SvHhBsPCfR/s3+n6Fbz8JNiiDK2kL6Dxhv5jCWEcC+viNuF10 PpZsdbBwvyVBRhmXuzo6b3N3JvdWk0jgs1EvM4v6jemzqM44EgT80zB4h85r U/0op9jnJFB1vJ7OtobW/5fkLSZfEpT63C3Yv4mDy06XQkaNSJB1hN/5LpoH tJiGxDI9ElD1ru8aoHmRdvGcRpw2CcydrNYl0DwJEtOSx6qi60l3ZhpmxEP6 7a2MNHESLP2deuq1Hw9emUNuGrRV8IjJ52ZC80qs5OKOUNYq3H/dHrgujgfp /+ma33u3Cq/Kj5aqonkZSLvA0ZK8ChN5DRX30DwVcKGUB0SvQhsPveimFJr3 CtoNrfdXQSk+3UJWHg+yuXyK1karcKk5NJwVze9u27RbKwsrcEhpjHfaGA8H nF9bqc6swBX2gdBANP9dlKbi/SdW4JFSVSmPGR5+kaq3tnpXIIHfOdTYAg/t MS6h29UroJC/ETV2FQ/yTRX5Q3Er8CCgPSoKPX901Wr5squuQLzvzXtb4XjY DBg+mKG8Anc/faQ0oecX3+zddSW5FXh1wm8yJQIPivWGLRfFVuACPzcnNhoP Fmk22o8PrEA1nV9K3ms8sDBPfnhZsQxnzgQGrKHnpdLlbK1olmVoH0/rcf6J h0F4fGnt0yIoOxtlRB0kgKB6NFKfsghuUa/15DgIIGxTcTohehEi3uY0N3MS wIA2InPMbxGqCUUBPIcJML2vZ0ZFbxGYRWpcmyUIsGVrq7QwvgA5Z76kwmkC eLQyrzQKLUD22M9bfS4EKBl2SCt6MQcu1sfky5oJsMPcX84fOANmea8Fwz6j 5/OrfVwPLCbBbMgwIO5zMfxNFvTszhsH5iNWfS/nSsA9+0Ag69oAtH7kX+k1 KoPC7DPDicqdwPlskmq6XQ4N2aP4/vUq+ECru4TMfAc727TRExPZmAmLY4Sv 1Er46jk/lipPxGgbeu6aRgNwjb4nnUsbwwhdvBS0q1YDeC22M3p1s5hh72ph zEotEC4cmjy/NovBWIVX4ddrYXzuYMxb+TnM9fIUQWX6n8BEe35YP2EOc2TD wk2f+yfQp7bk57jOY2ZYR0/Mqf6Eku8KVo2iixhOge9UlaCfoBzk4e3jtYL5 rNThmcxTB505s9OOMSsYXc0PuYGidXDDWmMsrnAFo28GLXdk6mCO8tS0dBm9 Xz3lGqRVB6eFuA1V769iJsQN6Y1c6oA1lpO68YqEefsjU7quvA463A1Py9BR MVc/n74y5VUPscbM5GoZKqZBJNpf4lE9sHoGY8tMqRjkSt81r2f14FxxL4b4 gYoheAk/0UuvB4VB16QBQxqmWtTcduhXPeiubSLseWuYN09X4vYrNsBkVBd9 /u9NzKfKdRcaXSMkvbyrNXBoC1P08jjXmUONcCPlrx8YbWGe8T15miraCKIZ fOlNlVuY7x5xytWajWhuud4wL9zGNLH1dn940Agh5x0u0FXuYqoFx/K9qI1g avos32CQHkvAbz/6ztcMic5Gkjh2Buw+bFnlqkIzvG3X1VTVZcAy2t/CPdJt Bm2+iaryQgbsk5k5cpR3M6jJ1rpwJDNi501oTFvEZvA08L4eTmDCUn4bb7Jk /wKm7Ath93aZsBdfenybqP0Fd555f002ZsaKj57ZMBz/Bfce8ZjQlpmxFwp+ i/eLtEDclMJy35UDWIGl7Ov171rgxGj8n5ftB7EPGFUeJDa0wgHEVNzdnA0b yuP+/sxKKzjNPv3FPcyG3T7z9C+XcBsUkk+pEhg4sF0maqt4vzbgCaYLKb/C iU0/4+OF1WyHIZFFhFbGic1PPZct6t0O8Rb/tmfFuLBB57uL2HLawWp9otSN jhvbnsme1i3WAV9HEjM05Xix0wmRWSf5iUA0sxL36uDFStZ/14s5R4SiO32O guF82Isil+f53IhwfSco2PUIP/aja7F9bTUR7hG81424BbD7Iz4OpC4T4dSu U228qCBW6P24F6tUJ1w4+8BnMkMYuzT4/suJtE7o/tv05Lm0KDYzU/9I4kgn pAYzBf9eEsPeLr+Zzi3bBVlxfd7UZxLYYf/WdrvALjgk2Vw10SaJPdF3puX3 QBc09kVa9bkdxV4ykm2lN+yGQD2W9NqAY9ji6Tvx5k3dUN4kHdluIost/MhX zOjeA4Z7P69iwxWxjvhPSKJqL/wfXweqsg== "]]}, Annotation[#, "Charting`Private`Tag$4160705#1"]& ], TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], LineBox[CompressedData[" 1:eJwV1nc8Vf8fB3B7z+xCZvYIRRHHiNCQBopkloyIQl+7CFFIJCqSFdU9F2XV +5DsuPbWkFLJ5Q7jon7n99d5PB/ncc7j/Vmvz1ve87KjDwsTE1MUMxPT/59o a3tFrV8MVud62Cbk3iyEv3BXpT9yxiLslI3bWD9BWYD7lfMsxzGl+3yf2+Wn YXxU94XBBXusgEPj3wDnFJTf9g1zjbfBVj54ZLw3m4R9Qekv9WessG0e1IB7 zyZgONlxUIdsgYm/fdTSqjwBM5/lRh8Fm2NVsmKJtxvGwSz/uenrAwiWod4Y VOY2Di/nxo13xptiTVUnL9XyjoPEsrW8z4gJdvKsXJBPyxjYJJp/O6q+H3NW q1+MsxwD13aGneu2fdhY5vexdt4x4JnfNZAvZYTpsV75pjU2Co+vrGZFhOzF Dv1e5Nb8bxRsRAl/Sxv2YNmjm8cWHUahWYIQ8khkD9Zram4nqTYKqRyBWW8X 9LGea3/zn34agVO+tb6sonpYVTRx2Pf8CNxJyNh/nLAbs7JvL561HAHUbFd1 uuNurIrrl0aU6gg4e/7pKSnVxVoMI19W0YYhtrZBg59VBzPQ3DGnnzsM5sMa 8+/jtTHHnqR9xfHD8B8SIOTCoY0dVo1qqwkYBk59CA/dqYWNvAn2y7MaBmY2 nQ8DtzSwozcjDNMZQ5BCvqRtyVDFjsb6aNAjh4C1hLXbokYVmzDaX3POfwjs je9zXQpWxTw/+4kJuw3Bxt1g5feLKhipIPGjlfkQMN2kf+BhVsEwG6OlJ3xD MCRDcX/qr4yVxlQmHXkxCOW5OQ7P9itjkkZTtpZFg1D8XYvjK48ytqB1+vfF +4Pw0Tf41fRLJUzBJDPkQMwgUEuDU3NYlbBz6qA/e3wQaCQBn+lRBcyucmxJ iGkQamNKP5G25LBnO1DvqpABSFBliw7+JoeJLv0SuuU3AHqy0az/dcthFy81 Wlz1GADD3+ecPzyUwyiL85dTjw/A1LRT47cDcljPvIVFmt4AWOdc9rmtuhNr CCQFPVzth6You/LGn9KYw/FDGx9u98OJqxnX6rqlMYVioR9Dif1A3Hlwgu+l NCZQoFGxENsP+ZkD/bWh0ljw1H3JvWH94BBXNTfFIo1xyEZWabr1wyM2bXsL nR2Y3J21C7d1++HLt9uWcnVS2EkL+qD1FAnY9k0dTn4qhfE4VdgajJJA5ND6 qkK6FBbESJNQGSDBE44z8n88pbABbE+gdAcJst1NlTAhKYz0x+yPZQ0JJMJ1 LDvCJDGWHa5wLZ0EMcNFnJZnJLAHAm3Nfy1IIHozPkjcTgJ71zOJppuSALmW O8a1XwJLDQxY3rmfBJOEWDXb7RIYh4ONwdHdJNBf7bLQmhLHrikLl5F2ksA/ jL3UwEccm3r95UInow9GVx4liqSKYXdS0sMlr/bB+eI92xWjxTDZu5+cvwf0 geaDoTWbYDGsjppVW+fdByyWkeWk02LYQDZP1aWTfXD1nmvGqJIYxhBkUmIx 6IMoRyONtFZRrKE4OplG7YUzqeymJsKiWEzJAiHvWi9sia6OPGcXxQZehDCM gnohTLEgXIMhgrFpiy5P+vRCm9hZYc9ZEcyxlFaveaoXXN703X/yWgRb6kjP WNPvBUtZWvCe8yLYTOCnGF3KR+Dk/Nnx+t02rOqBb+uX4I+gz+zlNF8kjLE9 87d+frUHKCyEjxYPhbErgZ6514J6YHlq+1JJljBmkhyQaHWhB6R62OiJN4Qx IRs59TnnHljqPKZR6SOMPdsK0ttn0gPqoRbGURrCWE/bho0aaw8YZT1vJTUJ YWOl+lyiWd1AuRRtPf9dEAu6Gd+dVN0FVgpfP0lNCGInI3/fEarqAt1NHV/n j4JYW4BqTP6zLii7UjG1US2IBXTnjtXc74IUz8vU8XhBLIE9xo4e3gW/qbZ3 Pu0UxJ5+nympNOmCpkxVgXhvAUzaV2Jitq0TTPeWcerx8WPJri/9rGY6YHhV //UeFn5sJDvUT3e0AzQXyh+Yr/Fh1xpSD8mQOkBZ5GV7yDc+7MFLw+L15g7o DfOJ0HvLhyVn7mxuKukAGbJiu3owH7apOOoeENgB2goHf5VP8mIJ/2pmL2+1 Q6Vv6reqNh7M1DpqmFOuHWSXX1SobHFhuh+cUhPTPsD0Y/urJQ6cGCH+RELj 9/eQwfkm6vESO/aXNYjFOagFghBK17EGNqw75HGXvVAzTDjH+p1IZsW8y/e+ kHUBYBQUcvfHs2BMZj8u7aY2wZERVPpUJDPm6nXxc0Z2A6CepQncSUxYFv/N mIXYOoi/p6455PYPGHHiZac7X8O+1ITO6Sdb8MOStdBKuxb+KhuOxuZtQYHo 5/EPqrVwpDR8QOHeFpxLutdsp1gLcz62d/yTtiBf6PhDd8lakCNwsnEFbsHI ZuvlWpZaUOE/rhuwfwtkvrk8Eh6rgQ/Oz+YnhzdBDFLCbyfWwPkL8WZagpsw q09ujPldDWF7HhDjuDaBw5n+Jfl7Nfg5ObMMM2/CcFyNQ+6XavAYVTeIo21A VZorZ/NoNVzkymr/PL4BDrY7B2xaq4E2/f1r57MNSLY9VqTwuBrOj3IQ9xhv ADX+kCzvqWpwfFi79dRgA/69eUB65FANRu213MLaG9C2oNFicLgayiPM3Mly G3A3pMnjsmU1XNcrma/h2ADMoD1ZQq8a3CZz3ngOMIDh57hLX6gafAgPQi0v MeB9dTsju48ISUGaXnNeDLjjHcbc3E2Eizz3KbfcGPCk2F10uZ0IOcTJP70O +Pedp93cMCL8rdpm7m3IAJtPl4J9UdyGi2glGwNuPw4w3Z9NhKNx0enlT9bB N1YvfM6VCJshHexueevw46iKQZYL7uaDHNvurYOqbzjZ4jQRLGbWCqKT8Pcz tu6EY0QwqTXmPxu4DqL6seKNFkQYsmc7o228DnxqHeF31YjQPH6iYffoGjjm 5WbqMlAoSBn7db5/Ddqp9OK0VRTkDINjMrrXoJhuq7BAQ8FvX1HPEqyB+C4Z j1oyCpTITHpt+RowzvtMBs+h4MWV/Pf49TV4aCDhcbsfhRfSvjIfZdag4Ijj ffsqFLZFcxdxSq6BScrJw6LPUai77n7NYtsaLFWweXwuQyFjmUW0nmMNwrIy ixKKUYi8cJTvOXkV0qgWV8gPUXAvJF5/2LwKdmvm836pKMi8LH6G+qzCucSI rhl/FIrIj+si3VdhL+Pe899+KAgvkiUtXFbh15tLgZsXUOCZoDcOHl4Frm3w QM0bBcXJo5EM/VUYnFQMI7qioGNcb3aKZRVmtAZeRB9F4cItlm75zRUQYaoK 6DiMj8fL/MEifQXYUTKrhD0KCSP8K8k/V2DeQ6webFAI1fpThZFWIFwmSMPM HAXlSxURxk9WYODQv3y6AQrGv5JGePNWYKNQJytaH4XK90oBU1kr4FSnfppb D4VbeVImMUkr4H+9z0pTB4VPBUZurYH4/9LmK56o4fNfYytxxmQFeJyVN4x3 oiBufrtEa+8KKKkXRzHJovD2R7QHs+4KqBRwNHdIoyARuOpeobgCmqZNd723 o3BiqsNng2cFgsWSdneKoXBXrJ67bJwOfwt//zrIjwL5++zA3CAdbokd3unE h4/nplWjUi8dgjO9Mv15UchSK/nxtIUOgiKBmo+5USj7MVFYWEmHcy6jWuoc KKwffn7qcwkd9h+ZMTvFjsKeyhfKcoV02MfOevsGG75efxzECrPpkKZ0uusn CwqGPNuUi6LpwHTyz9TUPwJoa6WUfAmnwzrxRZk87uqrhgcUrtDBizhf6veX AEahJoRiXzpYGVxHWLcIcIPClFt2jA63G2r6XBkE+Jdp+37elg6/c2lajesE 8JPuZ1G3okPvK5YmadxfdzytrzLC63+n6/NzlQA/40LXiPJ0UNJxnyynE+BY 0wSBtoMOcy8LyuRw906kRewVp0OUK/VxPo0ATt/H9Bt46MBhf5cvn0qAa9cP Hm6h0gDpJQ/AMgGelhiFsC3S4M66zw8H3PTIpCLreRrMGxkpzC0RIJTPWKF7 igaNihlcErjzrWxzhj7QIDHL41bhIgHa3jtySWA0WJDif2eHe3NHV7xLAw1k lB3E1/7g45nmS5l5SYP6C0Zqrrjly6bF5Cto8EWj8us23Ck8KuVexTR4lO7Q 2LNAgIBp7cn5XBo47fzYbot7Gxf1ukYWDZa4Qhh8uL0tjGWD0miwzPrFdvA3 Ad7fTG0lJNEgXutGbQHuxX6vQGocDb6mvDXxwz2x105y7380uMy2MmOEO6IL a424io8/OCufF7c7j7/cXz8ajJHTPRp+EYDJb0+FmzcNHhB+iufiPv3j6e63 52jQ+vfqh2u4U/8dqJd2wevfVRTggntNP9Ms6gRe//lxXjPc6wIqrZNHaFDd m/ZUBTemkGptfIgGUbFquiK41bkPtj20oAFboEwNM+4Mr68WDBMa+EePaFF/ EuDxxEKjiyEN/iW0FPzArS5L1q3fTYMUk2NMn3CzzIUWSWrS4PmpX07juN8t sPNH7MLn35e5eAR30bpO6KgcDQRWmL/83+dGogb37qDB7WsuwhO4106Ea+WI 0eCA7VX9z7gzbZ/H0QVpYPS2xfon7v3ZhT0neWjQI/jKjo57QHxOqIaNBqUB ZaZseL0D9SxHRP5RQXdRUkEct4L/zbgr61ToexRMU8e9JEN/3k+lgnrYjloL 3Eldn7p1F6lg4JLk5YZbMqjv6915KjQqyf67jvsxzzHy4lcqBDw+disfd0Xp z6Uj01TYGXNr4x1u3SPqP6pGqcAWoHd2Dncgf0E/7wAVOJnflgjg61fF6Hx1 qYcKTO33JvbjVtE0i+9sw+sxUlz///p/bEo6qNpMhfKWUab/74/tkfXP5mqp EJns0cmF76eh3w2mVgQqDJ8STLHEnWLf2Pn0ORXWzt3Tice9HjdHcH9ChSBi rzY7vl8Xa5T53uVRoUrhXJI97p+Zmaels6mgsyOsJRv3rLTUm7FkKpz2nZ3T wc9D3377nr03qDB1XbQnHrfRl+He7Ggq2BX8lz2CO7Ze/qHDFSr84MrvTCYT wCqi16T9LBUO7Z6rEcTPY+/Lf6+UTlPhbll6QQTuVv9ZvgQHfH4lOj2+4fZM IMebHKRCTk5pQiuFAHVnTx0maFPBb6Oevww//ymbp5j41ajw4EJd/y48HzK1 vB76KVJh0+5ZUAVupr2kGAVJKghKLOu+WSHAnKXOZhYzFY5Hi7XT1ghgE299 KGyDAvv6HVUf4HnUMP1fyCk6BeRf/5g2xfPL4uSCs8RPCpD+yFrmbBBAnJHl n0eiwGr00ucAPP8Eue0yIrsoMPlPgqSO5yNX8tV0l1YKrLUX8y/gfvNkSECq jgLK3IvBEcwoVF1wk8l5QgE9i6vv6/D8PXrEkx6WR4HzIj+EMvF8LsnULTpx jwKESx2lAXh+R6sOhgjdooA+06dyLS4ULC4Ofb8VRIEzKXHLI3j+X/zYURB4 gAJp87V/Pojg9/eqsb+tIQVErJsuDoii4KItzaa8mwKqU9ZyX/H7xcqsO2tS iQJt83/MeSVREHh7VcSajwKFyeX7b+L3U8Gyu6zQ5DJ0aLCeFdqFgpRXxf6w iGXoebMpn2aMwp/m0Bb0yjLUPTr+Zc4EheooHV5ywDKIxEa5WZiiYJ2aNn3R YxnchH+nsOL3rZTZyQgXu2V4dv3I01JrFG5yPZHSll4GfT0nu8uOKMh6QXER LMFFYyNLjgAU9j2lO4/UL4GbhkLo60AUupKTgadmCTLLXhz2u4zCdGXP4yvl SxAkZc0YuYLCbi22B6aZS9DO36U9EInCq9M5HO2eSyD5rjHcJhmFEfbKMzns S/C3hOihhvczC8FZgkl/ybCg3cnsUoFCYG727ZllMiz+2lN1uxLvn651zKaN kSH8qogM4xXeb71bXpopIUNmBtllow6FIOvzbk4IGRSmRfPudKPg6ObgmxG2 CE7jswwKBe9fUpnsx8cXQPmnhnaqHREKD12X1vq4APe3XGYvHiGCNjdrWyy2 AEdlM1zsHIjg0M1TIF+2AAmxnklieL/Y8eKsjlPYAuTMdvX2eBChXXKwJ1lg AW4VZtx8F0mEAkZu3qb5b3AwRaYqKokQ3JSeNfHsJ4wHHsr7T6Ia7pO4Gyoy v8POv2dcd2xWw2sLwbp22VkwUPnFyNteC/OSbulGqZ/gi+H9bJdDr0G+98I4 VI3hORhf0HnnDeTFg1HYIAmojXUFFOF6sA+Ujvq+vQV4bn3M0M5rAI8C16ME QzMQnecWjPdoAocZ9cp45RYz36Yroctq7yCkcP++U+0DZqZkjwPHWDFYW4zX a/eaMetesb4oLNEMZtNrCbvM58zs+EMMBdRb4N/Xe9zpDQtm7D++aY35vYcf ti6VNSUUM6Kn0zXa21Zw5opmErqwauap0YsdkmwDsid9ita6ZXap1t+loL4d ui4Ntr56y4Jc3spPvnCtE9RWpcy1+lgQ7Zb0+eboTghrhRfYZxbkTKm+tHxi J3g7eiuqs7Ei3wyDFBbvdYLK8Xf6/IdZEau1bZXv0U4Q0hwiWX5mRei54Tw+ i50gemyH5A5pduTgQqpkl38XvBziTvy1zIlU6Tg4forshpm4dboiPxdS/jbm aNqNbghzyzS4q8qF6L/XIlukd4MNmxRhy50LMZHRTfxY2A2JTcVeR/q5kBs+ PH/OdHQDo4R9wPkdN/LJvz/gslQPPG09iKy08yKvdgjJnG/tgbIMSWbyL15k Js3wbVRfDzQa/GnZI8CHjLuW7y2b6AHX0BlN4ik+pKdU8eKu5R5wP7jtXOo8 H+J6xWl8QPYjCBzHfpFlBZAhWmKVYPRHcCy69V42UAh5lmmfh1r3gtHVTCbP G0LI9svbWIVO9MKKSaPU5zwhZGkx3iDevRdCl24YZLYLIRZhm9yPInoBbbFa +a4sjGze1M5vqewFJSlFof/IwghP7Agvn3gf/H1NDNnXLIJUuZopIVt9oPpV q6H4iwjSff6Y1wkOEkRQ2oixLKKIyvDMU3EBEtzM+Fibe1AU0YsIUe2VIUEY LyH2Yb8osonYhfCYkuB4TlfONKs4cqtwgcydQIK9vwWN/y1JIi7sUlZBO/qB 43M2J01LClGM5erWUemHXImfh2wCpJCqPjXb7fr98DWp5CXyRwrB2NmPX7bv hy2Xh7m7WXYghJWa3eYx/TDbMJ4vnCKDvDUNM2db7Ie2ywa+N77JIFtbb2wk t/rB3Ou7d62FLPJ0xggL5RsA56ttb8icO5HrMqkc/JoDwGIe99rMTQ5JelRw SPXyALDWNtzguK6AEOuSZWe5BiFjSy2opksBwWS5S8/LDoIm87Eq9p2KCIV9 mBFhMAhfX985+m5QEVHi/aVZ5DkIAX3ap8bClRFCGzendMcgPPaecSeRlZHe aCeLutlBsFegWtCCdiEPFzhr3JiGQJK/7OdkogqymGFIlTkwBFXSR0KG9NWR gfd05+L2IVCS7Y66x6KBeLJJmhIWhyCygWUyfVYDwRLPpsxLDAOq1fLWZl4L YVo5cGk1ZBhMzsnPLYnoIBej1Wviioehr83bWXy3LvL8eVx88dgwGEmaqrxp 2Y20zHGE6DiMQMAx2V1n6/SQiBLzYOvsEeiRFZ6dGdFHDhO/zEZ8GoE4nY7t q+p7kODSqVsR+qPgHWhgXdy+F2HzPhJSljUKgcLlScNdRkjSMdmZJKYxENh/ wk7xgjFiN41mpieMwWnGZ7k4hinybdRkG11+HJjb5uRhlwXyTDL2RfvyOPwP XQ72hQ== "]]}, Annotation[#, "Charting`Private`Tag$4160705#2"]& ]}}, {}}, { DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.05], Scaled[0.05]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox["\[Eta]", HoldForm], TraditionalForm], FormBox[ TagBox[ RowBox[{"-", RowBox[{ SuperscriptBox[ SubscriptBox["\[ScriptCapitalF]", "0"], "\[Prime]\[Prime]", MultilineFunction -> None], "(", "\[Eta]", ")"}]}], HoldForm], TraditionalForm]}, AxesOrigin -> {0, -0.4306807289133189}, DisplayFunction :> Identity, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], Method -> { "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange -> {{-8.955815089046379, 5.4573291409938625`}, {-0.4306807289133189, -0.06583390760243146}}, PlotRangeClipping -> True, PlotRangePadding -> { Scaled[0.02], Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["\"n\"", { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"]}], ",", RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{ 3.887174806703617*^9, 3.887174840687421*^9, {3.887174885053684*^9, 3.887174892708169*^9}, {3.8871749475866947`*^9, 3.887174977753584*^9}, 3.887184952567544*^9, {3.8871853867115717`*^9, 3.8871853957260027`*^9}, 3.893237607785204*^9}, CellLabel->"Out[25]=",ExpressionUUID->"4fd8761c-1544-4b9d-b5b4-9faa986a6608"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"Evaluate", "@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Xi]2", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"DufDuh2", "[", "1", "]"}], "[", RowBox[{"3", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}], SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"ut", "[", RowBox[{"3", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"\[Xi]6", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"DufDuh6", "[", "1", "]"}], "[", RowBox[{"3", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}], SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"ut", "[", RowBox[{"3", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Xi]", "[", RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[", RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}], "]"}], ",", RowBox[{ RowBox[{"DScriptMCasD\[Xi]List", "[", RowBox[{"0", ",", RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}]}], "]"}], "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", RowBox[{"{", RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "3.3"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1.6"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"AspectRatio", "->", "1"}], ",", RowBox[{"PlotPoints", "->", "50"}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "\"\<\!\(\*StyleBox[\"h\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"|\",FontSlant->\"Italic\"]\)\!\(\*\ StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*\ SuperscriptBox[StyleBox[\"|\",FontSlant->\"Italic\"], RowBox[{RowBox[{\"-\", \ \"\[Beta]\"}], \" \", \"\[Delta]\"}]]\)\>\"", ",", "\"\<\!\(\*StyleBox[\"M\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ \",FontSlant->\"Italic\"]\)|\!\(\*StyleBox[\" \",FontSlant->\"Italic\"]\)\!\(\ \*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"|\",\ FontSlant->\"Italic\"], RowBox[{\"-\", \"\[Beta]\"}]]\)\>\""}], "}"}]}], ",", RowBox[{"LabelStyle", "->", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ "2", ",", "6", ",", "\"\\"Italic\"]\)\!\(\*StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\ \*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",", RowBox[{"LegendLabel", "->", "\"\\""}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.875952981547227*^9, 3.875953205695381*^9}, { 3.875953297097693*^9, 3.875953297193099*^9}, {3.875957011270492*^9, 3.875957047134419*^9}, {3.875957125424335*^9, 3.875957151767858*^9}, { 3.8759571836897497`*^9, 3.87595718748908*^9}, {3.875957237810454*^9, 3.8759572647954397`*^9}, {3.8759573310521803`*^9, 3.875957359900523*^9}, { 3.876209125582448*^9, 3.876209130718493*^9}, {3.876209246657913*^9, 3.876209255553268*^9}, {3.884690546688959*^9, 3.884690577225401*^9}, { 3.8846907201244907`*^9, 3.884690753852927*^9}, {3.884690875959548*^9, 3.884690937551785*^9}, {3.88717520576867*^9, 3.8871752589375753`*^9}, { 3.887175361564186*^9, 3.8871753678913107`*^9}, {3.88717542408533*^9, 3.887175425325357*^9}, {3.887185406738522*^9, 3.887185422722349*^9}, { 3.8871854939327173`*^9, 3.8871854996999493`*^9}, {3.887186514007268*^9, 3.887186516174284*^9}, 3.893237649954227*^9, {3.8932376911772757`*^9, 3.8932377173060226`*^9}}, CellLabel->"In[46]:=",ExpressionUUID->"7af4aaca-fcbd-4164-a23f-452af7281199"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], LineBox[CompressedData[" 1:eJxdlnk0FVzXwK8pZB5SkjEkMkTIQ/aJVHhKxmRIZCjKEJIImWeSylAhlSYZ HuWaQsbkypWpaFBEiju6E5f3fv9+Z62zzvrttfc6e5199qDsE+Lgx43BYIic /X/n/18CgUqibFNlCBCYqlHEAWhGTMSzTfdCvNT5VEWcHfye+u/whulBiDtZ 8V0B5wVGwbt9NpnZw9vPSdY7cCEgvGQ+rGLmDZN71JYkcPFgEZCeXWgWBhId CtcWBvMgy4PQ6m5+HZqsjo5aDJZBo+ceG1tMAXClbFh/yKuF6WeSAwx8CfR6 yAg/uoOFrR5TQfjeCihSEZovM+mA80jxNRQ+BlN1i/+Gorvh1qySf9fO51AT 5/lZIrgfdCs9J0S21QKXx83xyfpBYFHuli4/qIchCZma8yHDYDejYRQr9QoO DRoclfMagb3DGB3iUCOEdYWJ9kaOgs+Tw1ZCEc3gYz/kJO0/DqNeh85OqrWB 5R5P20nrSUiQt2mekO0A+bM2PumOn+FuwfsPGUWd0OXoP2RpPA0nktRcR451 wa7tG8626CtsWrXFG27pAbZ9ejUofAdfkZTyhsle2FCdCR8SnAGXmK47W2f7 4XOlZ/AY/w+IzhBckyYNQAHwvKum/IDtP9/1arvioFtvBPGTf8L5SIl7bYsf IGN9f3jr4iwolIypm1nhQU632WTLyBx4EETSPcZHwM77ZOXVwV+AvWVLVLg8 Ch/SNnr2vp6Hf91EklZNx0HGVr+5vHQBfEq30in+k3BZXyfN69ZvaL1zb9ft hs9gfFX49Lv4RXjeKH2DVfgFtpU9+iWd8AfOb6KTtS99B7xNf9tc3F8ovmks 9vLQD7CnG4hHhi4B/6uHyzEPZ8HiZdWQeOwyFDx7FW77chY+9pqf4UtYBmHn kBoV7Cykn230ZCUtQ2K2fcjCew67St2fy1qGt4dlpEYos/Cmm4U6S5dBh867 R91qDh4r6kTmtHD0m316ZZbnIC7P+kvs6jI0KzkoR7vPc94jKv1jLAE8GO8l bQPmoXzhrf1IAgGU45Jld4XPQ7RPfwU+mQD7PRaK2Znz0GOuN4nPJsDlbWV4 tZZ5sAjGV0/eJQBm/4m2YPkFmLh2KBrTRoCLpbymhxYXILBet7iVTQC36Ijy 008WYbM6uzkZEWHyMKX6AnYR9i1VXe22IIKICBzN6l8EFuNgBa8VEeReraWx FhaBR1teLdWaCMJ6ZpiHmn+gfy1ROteBCP96e301qfsDYxbP1up8idA6J/F9 3+BfsDu++/yxDCLsVbxZbYcIkPxNAEv8SIQIkas/ME4EOCg581JtnAjuH6SK +wIIMErrl3ef5NzfOiV9O48AWIU5v75pIsj8ebfN9DsBQgIPvXw0RwRnheTA Hxw/ZbOxxdF0IjjQel6EkYjgcfzXaKIcCfCaTxN614iQZGD0o0+eBN6fTqRq CJAguJAZLaJEAofhpARpRRJEWHvZlqiSYHLk3MvcYySI2xWd1qzNkW8aTFOq JkGKSi5tCyJB5YGrGoFRZDjszh12wI8EGcPxN2pTyDCsyk7pCyBBMtcHy82F ZJA8d++kQyAJ6myxcoxaMkglPt8XGEIC35fz+M4/ZM7/8SU9iCYBzbUqSM+P AnI0hrNJLgl+sXwtnp6jgujWOG0uLAmqO7cvP42mglBj/fjDZhK4KhIvdmVS 4X7n8GnrNhJcefil5WA1FbIcborfeksC/+mii2EUKvQv6u8wxpGA4hbPxiWv QM3Anj+Pf5Cg9aexgGobDeI74u+bi5JhC/8ptXUOi4bfn3PnsHl+aklgJw1u siuz8BwWtHRWdhymwecAq0m8OBm22xc9vP+TBsz3VUw/KTLsKN07nbWZDs1r Woz8bWQg72eN95yiQ/+/YvxkFTJUKH2PJLLpgLnemDljTAa1+BAfIS8m2Oed vRfvQ4aE9DNTNpeZsEXvpqu+Hxmu4MQ7anKYMChwYtevADJEnWpR/9PKhAPD D/nsL5Lh9KOIbfryLNBGOJLBFTI82jGUbD/HArsWDEU3lwyzE43epbfX4FG3 V7lwCxnKe2TeNNSvQTSXZOd4Gxk+XHp1Z31oDTBcgUoPOjhxqMdWqAmw4WZp /gOzXjKwc+XjhmLZQOX5ZzEBT4babzsJqyHrUGB7AR1dIENqxuqHEYRBvZLS Td9lKLCYJy0S5IBBXU6bK8dlKWDBDq1W9cUg/2pV8aEdFFDWjbrOTsMgw1Nl 1zpVKKBU9+m+HR6Dvl+Z/tOsQ4HK64Fm7wO50M5OHTfWYQqEgjhhWys3En/Q RnhzhaPfHLOnYJQbGXVaW+vGUkA85La95RI3irXMG6uIp4D62bu7TyjyoJuZ BndyUimgkn60SCOVB1UnzRsnFFLgVS9OM8mLF70x2vZtrJYCruElt8ZjeNGJ zOUrQQ0U8DV43RJcxIueFnbl8mApkK9+Zil0hBdppWRZmLZT4ER9bOOENR/i rqh3e4ejgKxUPpf0kU1oNKIH4/eHAp/0TpponduEWlyIY6oEClzFveErytiE mnmfxc2TKcBVO2kZhduEPJNWfSJZFIg0e0MMOcWP9vpnqjYIUsH3r1NOTJIA OhqUYdylQQXDAi48n5YQyun9GnXqPBW2K7e35rkIobOff1BNLlLhwvwF/4JE IXTxS2aDfBjH/kLRScFpIfRqSl+WcIUKKfMusZRCYWSxW9W2OZ0KT8MF0tKV RFHfvVRgPqHC81tHWvOdRJF2Sk+OBCdvOk4HEA0yRFH+a+ly7ToqlGS4JTpT RZHwfmXDsCYq+IdcvWk3Iobive6p7Rqgwk78uWL8hDja7fi8weUvFfa/Vnvu TBdHP6Xc+2uIVMiv2iwNWyWQQWEZElmhgqWK+1ZrVwkUZWGcPcamQsLAi3PB 3yTQjlzz8btiK1DWqW/bzyOFrAW4uCT2rcDZmlDHmVdbUOU1sSZiwgrc6Z/C 3lrcgs5qJFu6p67ArZhQc1UlGeT0e+9WXNYKdEloXP+ZI4PqvN8we2+vwKX2 JwJxEVtRYm+Ht0z1CgiK3TA/Ei6LPs4cEDGdWoHuOlLoYawsiq8kearPrEC6 aO/3xHVZdGrcsXb7/ArsNtCL/5i7HaWfip5WoKyA/7JG49t2ObSl3lCwWIgG jdZJuGNBCmjAGTMXYU4D+rO/47H9Cqj0YaAClxUNNhU7Hc7ZpYgOhO9rLbKl Qaqeznz6H0XkncD9ZdGVBpvfX+u36FVC5sVRTMUIGmCpW7O12EooGDtTKBxD gwLaeqqFoTKS6D6psimRBlWRG/cVnyqjn4wnJKV8GlB2JPE/K1dBQs/tu1df 0IBmaLdZ5ocKGph5be3SQINH5bL6PGo7EUv+QWV7Cw2eZvs/L6jZiQTLK2bb Bzh1rIuHG/NJFX3MNgqJ+83xv1xVYjlzFxpcbRcw0aRD06nr2Mbfu5C8Qq/7 NX06WGXPf1qz0UDDhs/WRv+hQ4uGF9Nly25ExKVi223p4Hz0vvu2QU1kF/wA mxtMB3qFNzP5oBbSu9HGHx1Fh4MPLhYcadZC0v91yF5NoEOViBTL5fUeFD+e l/K2gA5BQecL2qZ10PPbWn4xWDpEBdXilkN1UcFGdInmWzrYVk1lTfPqIcWa Cb6V93SY3u4pRnmoh8xKKrZ9/UaHPVZErnA+feTa/AUrLciAxTufqwT99NHv wv9466QY8KUfpzvbp49SmjA+wQoM6ChtL+ArMkD5o/sH7PYxwGQ79QDB3xCp YN4V9Xlz+EJ1Y/acIWoedktKvciAZqMiPuY5I/TXMjwwOJoBjkZmN6zijdFj pciVthsMsFozefqXZIIYx/sjE7oZoBoYn69e9g+6K11x4TmeAZJKDZ96HU3R LyNq8OZvDFhwMcfzjJkhsoN5QBCLAYnlp6PXVRBqvWbRtmTAhM5SsQnf+wh1 hqlrLVkwYcUv8eiw4kFU+Y9Gk54DE6oKJB6dMbJAGfZHfHPDmNDAKHK7NGiB jimoU6uvM6GJX3PAN9AS1Y5q5u0oYIKEeF2YVcch1NE+fpfyHxO0hZrSkqOt UOFq4pxPDxOQkUCs9YHDaN9dnyWdCSZcSshmDM4fQVmXF04vrXL60sXoUNKc LXKbbPFLtmFBzmDO/ezVf5El/3rpsicLlLzPhb1QOY4uZXDG/zAWYHEKBr+c T6CVORs9RgkLPJ4RX78SsEdNekYPHGpZIKxbbbzUZ4+Ci6cI+3tZoBjl/D0l 1BGZkIifeyksqD5p2Nbj4YSGMuLH4oRW4eVb7w1jd2dk5BWV9nPnKlC1dEUH b59EgQX/zE65rAL9SXt1w6QrUtE8aZEatgpqLdMSV4zcUNFIN31zzipMRMjp FDp6Iied0fgvvatQxYOzPy3nhRYxl4X/nVsFSXF1mnj6GRRjNj84zrsGkdOe 8iJ3vZEIjdxXoLYGEZJaXfY4H2Tw8+vZO0fWQPSAk4+5ki+aKXPrXg9cg/PV /S9FSvxQhLKe6a+8NUhLYxpM7TiPxvOfzLd9XQOtTu/Mj0ZByNaoXGid02fx GLGm6JKL6AN31YKXIRvkEqm6Ulqh6GOaeaqcLxvO/Uq4SmkLQyUDa/iwW2wQ vaDNdLsRjkJGmLdfvmPDi1kDPdmGSBRR78KvxbUOWsdtuLNMrqAfEcUi9mbr YH+l71GAaQyqNhdvKItZB6b2mN+l6TikTY6SqWtfh+qrCrXHH19Hmg9Gcy0E N2CFyNB7F5CMZsWU9dGpDdBy5K2r+ZmGan/j3cZqN+DZgdV0m7PZ6P1fSuFb AQwn7z6clt9zA13nF+N/Yo5Bu8oKx+wP3EIrbuZ9UTEYlJwkfKibuxSV5LLl 5DsxSN6dxIgcqkD5PIt+gZJcqM2Y8iL18RMk2TN3+W04F9LYjb5et6lHFy4v csf95UKZ2Z+d6ozfoHH07cWxTG7UQZf9prZjCL2uiJR2COJBLSIH37u0/0KX Q8e/Zf3mRQanv6rr5xLQ4ZndMXxn+ND/AI4HVkY= "]], LineBox[CompressedData[" 1:eJwVj3k0lYsaxrddZMhWpkKReRNRZg7va0chVA5CXYkkkp2ciogGYylkFx2R kg5xVBIdhYrM0iAU0VEuShK+79uD4bp/POtZv7V+61nrUfVnuwXSaTRa+mL+ 343qNhkfDv7EhO3aai7+wjhW6V0zq9OAydIVojcn6ajO3LgwmlSJmZHyVJkF HY1Swlv7v5SiWpvMD+GHQigfrHQhm3kbN7KNI5iOQkiTTfDZ3JaLM1Gimzyn aGg6cXW//fRV/Hrx2gFaMQ0z+D71sjaXMcCmIv9BMA1XufbnyP5zEdk5jGzl TTQ8fYQnUVGejHl3+o+X0Wg45iJR8bMvHvNfndGPKFqAo32jHx/0ncGVab8E jbsWoPI4U3FwIhbNbFpWLGMswI6H1fiMEY2fUwL+Xd86D1khDKv9gycw6KjY 04AL86DVF8scNz+G9mWNmsI756FzgCiweHsUlSr/yJSXX/RPDqxufXUEWScT 96kPzgE98qVGuHEYBtgKyz0smYPmxgJrdDqEgyF9wvui5+BgBjER1HQQQ9te bO11mYMBxZPrM64dQM0HPZdfq83B6Vcze9VEAvDSmE2R+7tZ2OPzknp3YR+m vqzaHFM2Cz13/2ANW/mh9bXeSe8Ls9CrLGobss4Xz5JXXrcEL7JwdWTIsj1o 12GxvtRxFooivMz2a/jgd5mKd191Z6FbtE15xxEv9LTKveMjOQsNsy63rGI9 sP6o/3zhewGkOiWXzJi64yMTowX3JwIY1xJRbJb4HUn/ldnTNwXwstqdkzu3 A92NfHobwgXgu9c5I01uB6qW2nl+8hFAieWM5uNYVxRrnOm8byeAgf6RL1rn tqHiKr+svYoCeG495Sa7wQmTQku9mSICKD42Hd086YCbOOY9iVN8kFtXwVN8 tAXvnU7RGmnnw41tN375iW/GcSxjnU7iQ73kfE0ki4UhHd+yrU/wwSFHzNs1 0RYLH003+wXxIb/OVuxvfUTZmAhOkwMfoso2RLmqACZvcLZbYsmHKg2T/qgZ azRRDBjnrOfDmo50dlGHFcpl5j0pleKDj84j+aROS1zJVr2jR+cDL5Ht4Dpg gccLCkXJGR4Y3J22slAxR6cThxJ8+niw86zl6RRFE0wvC5LSLuHBbc/29eps Y1R6znQuu8GD2vKuseA2I2Q8zegP5fAg5qA9aXFtE9b5hHxOjuWBv3pRsGGc Iaqo6JtLefBAcqzQ+jcRQ0zLMjVU38aDV4SPOkvDABfeBpr52/Jgxn+I+Bam j0r7Y87t2cCD4ZKlTXb7dXE8595WNXEefC+sixqp1cH08Fp/IToPujumIrVV dFAL7iXM87iwM7fF8dxPbRzdOszd/o0LbceNv59q0UQyQy/9t3YuRCdq7q93 0sT3xNGH3AYuXDc3ujrXqYHlvUN3Omq40C55ubN0WB1PPJ1vqrvHhYAJob0/ LNSwNrmZXcnhgoiYtX1dtyoSHWphupe4oOydyGAfV8WobC2bh0lc6F/DquDX rMPlTj05QtFciLuolynVrYy3p6XmEvy5UG/glrfcQxGXMAOl+425cMpBIt/s vQKe25H/mG3AhRTHXU05XgrY9ljoirQuF9yL1Zi3D67GEC/hD/EqXNBtnQmi lchjuXSyq6wEFypcFMpN78jgVoYH8+5XCmLOv83cuV0GCyPNPsp8piA2ZlOb L18a4x4+UUzpo8BlyYFqeU9pPFvZeuHKWwrYn36XT1RbiYHTvfYbn1NwbNKz 1EqcgWnp32e351Nw/jS9LylDEpf1pvgevU7B/K7UTjMlSdwutSUiN5uCv4tv tcabLEfru3EWkhkUBErkyVnGi+ODI+bT289SsO7XGo97scvwWciKFscDFHCS Owe6NJfhezFpYsyfgi/hpwqvvBLB0YvZahl7KVhxzPLNCw0RXNs7oDXjRcFl Gmekc2gpKueOHRJ3pkBH/1e04NBSDNsT5j2/hYLVJj8i8vPoyPJv+BJoREGp 361LCbvpaBjqbBtqSEHx9Q/9yQp0dBE97xupT0HZh4vVb7KFsGrQOfOmNgVd LNE3rQU0pE72ypiuWWRTj7+TO+ZgPIdf4y1CwY+wQe37S7mgYcR21h0goZDd VH2ulIK2z4w72X0ksKbYcv94UFBztfu5xAcSnMzzVuiXkvBxbaY4rYsE45/R K+IOElCeK3lCpZUEleGrdyMUpuGaiiLDoIqEkdQPf3qHT8C7Y+55dhwSbn2k 4/UlE9AesuG18WUSwvp19/pn/QBGutphZjoJauE8lm/9OFg/aW1USCXBp+U1 10/vOxgl75bViCfh9oic7T7rURC79Nrx9R8k2Jybrc0x+wLerqYZHl4kiCt7 nQyYGQLPP9NuPPckoahY2GHqwRBYl2T918CDhIq4zfe9DYZgWXDAchk3EhSS azLoRv/CM/Mwi+ltJGg9O3x/pnIAHMyOu6/Cxf/CJRI6rF7I9c66+VaHhCg3 8SMyX3uAoxpWc4pJQtquR+VziT1Q1ePI0dUmgbM2I76hsxvMol8FpmiQUP2p eN3z0PfQVUH+tluFhAL7usKON28h5dZ5gbMcCQGnrFdEhbQD96Ojsjt9cd/q VHP0uzYocdg1yhAiITlH2oxp0wbik3igbYEAkeHca0GrW+GLUBHbcY6AcDsl w5HBJigL2uflzSVAr6Sr8kBlPdi5Jl55OUFAIxk9nvbiMejZOvz1Tz8BY1JP p1THqyBfZOjm7T4CcmVc9UZXVcFhpZ3j6R8JcExMrCWOPQLLhajAw70EmEZf v+6zrRwgC3NMuggopSq2pJQUgYpQwX1aOwFJa/QKmPAXMD7d9V1oJeAFe7dL SHchGBTOGy60EOAySdCKpQrAK+GnGb2ZgEPp/9ncsysHWHGT8XINBDQ9SJQb rcwGW7utEmvrCRiPr1bKWnMVQn825mu+IMBtwUFwRpAOHEb5hMUzAhwaVM0N xlLBPrjrpn0dAc1JNMHcSBJwqFRvt9pFPyfUfdv0WUgMMJbxqyFgyUBa5bBc DGx+qtoe9pSA/wG+jFnf "]]}, Annotation[#, "Charting`Private`Tag$4175432#1"]& ], TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], LineBox[CompressedData[" 1:eJxdVXc4Fvz7NXrMbLJHMovMyHrvT2ZpWqFsopfMl4ykVHorpYxesiIricgK GVFWiwhJVmY8PHsYz/Pz/fd3X9e57r/OH+e+r3POXp9Q+wtsLCws1B38b/// qQoIHlNlqMK4h9m5EUVrKFIzHFNjGIJNKYb8XfEsEDk8RzUYNiBmquo1rOgP 2mq7h00ZzhAtWr/7i+JleKmV0xPPCADxJL/2OsXb4Kh7vSieGQ0/Kp+lnlb8 DwYKB7Hx7Hdg99UE+xaFUnA5KveiWuIJcJhelq3kbARN3MjcjeZnYFPC8txA 5B20HbRtI80+B+GS4tyzV7vB3yw1v6DxFVBSLyhGnP4E26Pn/cT31UJMCLdb 2OgA+O1/EuA10AD2onP9Oo1DsKDbdqw9vRnkSqpNfiWMQLkolvs/1Aao9fiB K7t/wOpJjM200TuI+nC5L/XDT5BRky87dqoLqglLp+WtJiGoKWSZM+4DOAXX veg6Ow3Jgb8b6lh7IepAOMHh6Qy4sK69yXvYD3Gp7JD5aRZ+nt4v+SvjM1hR r9wo5puDyuMvnmCCByD2NcakxGIebnzujjov+w2yHVTT07wW4PstlqZe9WG4 ahIcmZ+6CBf+fKn7bD8CuCkBKeOKJZg3G82YZY5BHEcq3+cfy3DnuIzeTb4J KA59YfoX6wrc322/cs9nCtZn7s6EiK7CA/Wf7/UjpuC6NpVXUnIVGqM3J5YT p2AOT7bokl2FDD/PjajCKcjW0p0UV10FD3MhG/GZKVAcTuh+Z7QKnOn5pZY6 04C7dbBNwnMVTtytZ7FsnIa5BBuJkfJVyFz4sL57dAbcPIW2SwALKc8/Zk5N zYDrorAcpyUW8mtPdL5ZmoGkYxk+F49iISc6vyVhYwY6BvOdD9hhYZtrkPec 3CwoRuRtvfbBgjI+qMwxYBaaH2bd7UvCQpVcje4jxizcK6HH7fmEBciv59+0 mINT4fJ6Nq5rUKO8HBZzag7OvTc9kO++BmJ2l9QZLnPwlHzPk+y9Bo5xZe8V Q+bAizsxoThwDfrNpJsHs+bgsdr5Z5j4NdBTNr71dX0OfPHHFofy1+ACvy8x o3geJAx9y4rm1kB04Na1oQOLcIbRvvPideCJnTw+arQIJptOcuSodZDJU7i0 ZLMIiwRjvfa4dfgznE/Q9VsE5u+PxY631mFM9KFKUN4iRJ/Z33Ircx1iny8I xwovQe95L5eN1nXokZZ+8YRzGU68czhZgMHBul1T/KLiCjgifYVaBxzc0WUv q9dbgepI4+sMJxwUqP64lWG5Aq/UVFVsXXCQe+NEyy3/FchpNLGadcPBaCKm TadiBQJW5H6K+ePAtayeY9hwFQIwZa33YnDgE/SCQPDAwt+CJ/Sr8nCQ1KmR wx2Bhc9fTMXZC3DwlOs/R/2du6/yHDzp8gwH7b5v/umuwIJ75fda9jIcODEi uqbpWChvq47xqMZBsw4ugjt7Dbo4BK2VunBwmm+oYs/KOlxYvnaYtIQDwcLF iz6sOOBcprv/u4KDq5fr+234cBCoNEyRWsOBFwMzaaaMgyYhmyQLIg6uZdzi GN/RqeZYrpq9jYPWtxl6y004SImLlvQQxsOVPfKHVVLw4L+anGtliofnvwWf bubgoUrY6tbSX3h4WoH/PVuOh3NuipTkI3hIa/s7efEDHhQnA64MW+PhX7P2 7U8MPIzF6ytessOD4HGNKZVIAvQoeD1u8MdD8u5OinQIEaJkfKmtqXh4KeJf oZJAhMJP4UIBGXjoULHSsUkhgp0yqV8wEw8p7nmu/VVEELadk/fPxcMfQdlv v3BE8DtaGyhRhoe1At9Ir1gShCa32ee+xYNFSM9h5TwydLROaast4cGSK+Gk ZTUZdJY4BBb/4EEzyev8tS4yTJ5kfVmKxUObaLut7R8y3P7Rp6JGxEOqhT/B yIgCkdG3/9Lf0fHBwux4wwQFTIKaieGiBIhYOKJDMaHB44WGD8lHCGBdZKN1 w44GFvnMCj1LAqgTduE0A2hQ2PnRdcKaAGkYpc75NBqstpwS1D5BgF9jaryT KzTww3JzzZwlQEdSxtODxXTAKywpBF7a4XNUnfHT3gRZt/yze7MIYKBvybhs uwnmGTLhc9kEqNmL1ar124T3LrTY53kEwIZ+Si9/sgmvKg676RUR4NvHn91Z mC0wy42561hFAMt22bej81swqwfvP7wnQPFcT+PnfgZoBerphxAIMBNjGJ2G ZcCV1jeRj8gEcJJ+GZklyITNCVbOOhoBRG6n/Ah0ZkKu1HN1JoMA5m+Csk2X mODyp6+khJcIqpPa+3OSWdDYfPnVQ8pEiC8JKBAcY0UiUyK/w12JkKMQcN1q jRXxttRvd7oRIUIy7djzXWxI7WFos5gXEdR5rSroOmxI/2y3coc/EQxca4rG U9hQa3fHHvVIIggmDE2L2LMjjouRAqceEiHdbX7yKxsGiWzVeG52E0ErM5a5 IYtBK4034m37idCkIu7nZYRByiQT35zPRPA0ia2dCMMgGR7THPNhIij0xIm+ mt3ha9EFy2aI8C+XtYP3Nw7E8zKd5+MWEWbJ5XNDi1wIDPBdWfqknZwfmh7k 5UaJs1SK6mESjJ5eXlPW5kYzrclBTSYkUFiXejscy43EuVgP/DYnweNn/P8G C/GgSCG7RHu7Hf45IbkCe15U9SuptDiEtNPrKHhShR8JP6LcMK4ggVnr4MBh Z370hMV+nPMVCcJ0ViVE7vCjk1U126OvSVAu5VB9aoUf+W2adFxvJgETuTqL vxFAaet5k6Q+EshIpwu4NQii1fuFAsHLJPjzpFObZUgQfWox2BOIJYHT8Ft5 8rogwu8LPxOIJ8E7Jue5kf1CKJf5OD6SToJSvLdFdrEQunmEnFjNTYavW5K6 HuXCqPwZy64v+8ngbCwXVPNRGAW/TfzOqkUGT92B85fWhFHvuVkXIz0y5AaU aSscEkFMWlJWrQkZ6sw3zGt6RFAldpz2/QQZroV3v1JhF0OPZl6nj4eSgZzS JWv4WxxFYt1PaTbt+NDchHuXtASSXzx5zb6NDNwammqlDhLoiCdX+dUdnwqc 0Ki40iOBFj2YmgufyfCUYLVnrUkSKfGssrD9JoOyJb00/Is0MmuikKL4KfDQ yZ1vSUwGRTzjrWUXpYAYVX77rocM+ubFXpklSYGRs5o1QUQZ1JaR/HpMiQKM SwmGYRpyyNXAqKrWhAJXIh3LLMMV0OTdONvVQArws/ypP1iggOy/Wbyjh+3k wFHnQMJXBRTfLqgkGE2Brdb45zK6e1HseWNNl5sU6GkJa3vKqoiuzCSuu+RS IOTBYSfloX1IUkes0HSAAiWTLBFFwkoo0OvVkeURCozbbu8NclBCoS4iioW/ KGAcJe64NaaEkthMnfRWKBAjd/eDKVkZpbhHFy9wUAEXNCljEK+GpHF3yuoR FfZcHrf0/6qGqGpS/JU2VAixaGjyUFJHReoyijWnqDCnOdwzOaSOyM6FKtNu VHDaGK+ssz2AArC0xqlYKoh847dtrTyALIblsswTqeCpb63GLaKBDvJZ42vv UEGhcY9C3ZwGOuoTIdiVSYXS9lfEm6UHkbwwLji7gQrNkd18X2W1kFnfoeiY NioQ/pS4Y7K0UIDoxv6AbipEmD5O/2SrjW4GRn+NHqHCw83Ofh03HdR577lh KJUKjTNRqo8m9JD+4v59XGY0+POFQ+WngT7qnqDISlvT4Mzw1+o36fqoI9R9 wfI0DRwEv35OdzqEsG0xY5PeNGA7LxOB3zJAF/W/kY3v0MD9pbI3LsQQrYmr 0IR3cjfcYXQuZs4Q/ZDL2c+RSwOJr5mGXeOHUeOB4CpUTQPmLvM6Nroxun5s 0EtynAa8i5DEed8EDewTwf2ao0GX99RxfiVTNIHVCelap8HN3kV/MT8zhO8s ziVh6MCpzSR+EENookv2Erc+HTz/CRzniEboZabz8hrQIZOoa0P8iZBhdSf/ 9nE6RGpeZGbUHEHyYVLUTD86tEhYl2ukWSD7gKr8lUw6rDwLmzqjaImeBEvz nSulA3aiaECsyRL5jK+yYerp8PBk/bfDW1aI/bYYSWKIDmKsgyJ3y63Rb6k7 wbdn6WAeo3/My9MGxQvdCzEi0AGF5SqxLh5FI0cF/OOEN4DawG0i3XwM2d34 vMS3bwOK5Al7vLJskcRrNSGC3gb0USUZHbEnEM8hVoumsxugMXAtjevyGWTW KH+ovGADrH2bS9Wl7BDrusykSt0GzEQ+K0zstUPbhapY0d4N8Jxci4y0cUDD 5ItXnfEbcKRA1l1ByhFZ0ARTGzk2Yd6X2aix6YjG+LzMn8psQqjpaibb2lnk GvWteO9Oz+WUt/7hYXdBD7DY/o/em/CiccCFqeGKJiNb/5OJ24T69JG+d73n kejNZ7FjL//Xk2f8FsAd+Sl5f3fp2YRc4v1XHSMeyIjGkf5idhP2SWXJPjDy Rh0+0xY06S24OCj+goB8UAKHZqqw8RZUctEx+d6+KJv067SJ6xYUlecVEvP9 UPY/HuNJsVsw5dXBidu6gFSjrMs4c7bgo5e71rHrAaguifhkrHULOP1SKrMO /o1EvYt8RGa34HpYF91KLRg90rdiN9fahgrMnYOJSaHI316096rLNpSdXvOR lwxHYhFcDXU3t+HZf1t2xfkRSDF2112Jmm0IMBbYddstEmUhxs3Z6W3wfd9q 6OFxGdmZf8c4iTCgfzjDm/g6Bhn8uPug9SgDZg01GhyDryCpsXuO0YkMUHbV ehNemoCMFC82rLUy4OeR5rhGSESXGZENJQwGRF0YXEhNu4m4LqlLG1sygYGN m28JvI2+H+79HvyQCQOj/mnrxLtIYB4/pDvDBHMpGb784BR07m+RXR6yLGh/ 4wEBD+k05JPPdPp4igURC2L9vfCPkdaxqKtLSSxI7Qzt5T3tHPRLsIQh/Z4F bcZ4p/A5FKKCAvcET15WdGJx4H7ifCm6mdv0MseDFSU5D2ar9b9CPD6bl106 WVFR8T2bvspG1N6ZcF73Lza03+XCI8mKLlSv9Ho1YJoNsR/VquzrG0IsPHKe yb3s6EyqguaXvDVUeP+0j+NZDPLq9RSEp1T0pMVgk5OKQf8Hv++MCg== "]], LineBox[CompressedData[" 1:eJwV1nk41AsXB/AxtqIkRiZL1lwqSciSnINsuTLShkJCKWvpVVFETZcspVDS kOVeZc8WkVDhcgtRoXSzpBKhd36zGu+8f5znPJ/n+zznnD+Phl/YngAyiUTK Fdb/+6zhpau5N1jYeK1v71mOOC784sf3qfyDh60cIw2CRDHkB8fDaP8zDNSM wq5yMrqd/lb7nVyLtwf4f/mtJ6P3tB810L8MnXPn5ewbRDBfMKjT0F6El3z5 ZWm+Iuj68L5VQXceijXXPrujIIJ3ZcwaHj7NRlUpUe9PAyQ0iv99MLw/AwN8 FXylckgo304/NaebjsETTJnzQSTc0dOZIqhPxQf0vM8kSxI6MRpnKfuTsDhY bLRZjoTJewwcDN/R0TKu4PHy4SUoVby1JkXkMm5mON9m3FqCiMNSdY2ll9C/ ZkbHf+8SHHuxkHM2KhYvhiiZl1GXwDdJueDB1hjkDS1OTP8rgEeqmgXuJ89h kAU/6mGpAMTkKWGBy6Pwsf3DXfRoAUQkzlE8uJH4Mm1obKOLAA5siemvNjiN e9c9Et2rIQCOYi1vm2U4Rht2S0HvInRoBN9oFw/Fb7FtDxgPFyHPLmRY4f1J fFX+tLWevgiHzGcPp04GYXC01b1A/0VwLDogK6VzHO0S3uRcs12ErVezmlrT A5HR3syQ0l6EF+fEvSV0ArB4zcZLf4svwo8eikZbmR8empUR1PTwoXb07bKK 7COYlXeA+7iKDxbpMzDE8EWHtRLylVl8eB2gqcZ9cRjTmr+mWgbywab3iXzB jkMY7Lf5Xv1uPgjKlN2W+j2xd92dwTlTPryyKnY55nwQUxejd0Wu4MNbB9KV DL0D2J6081UJiweM2VxegfJ+DF2I+hw9zoMKZUe7EOO92LTBJr6jiQdXavb8 /WS1G6pLj+XsO8ODMa8tQ7RAGkZXRitk+vOAU1VUlJXoig6S1xlWe3mg7Hxd V9LcBa3TlS7UGfMgqkztwKSzExL1l+4Mcrjwx4pPj0zDHbGkpjr/6zQXZCdN fGJzHTCgz3jcfpQLnhUeb5RV7FFCRVF3uJ0L9gbWSS0xtvjE0MtAMZ0L1trp ifu/26BFwdH15+hcOCqwq7f0tsGLA2tKVkdzoddNOinlgDU63L9+/ZM/Fyi7 BbmHVwG6xRFK7RZcyORPU37tsEIlbr1T2RYu/HCJkbkXuQNvx9Tpt+lw4WYr LSKNvR0j5Nx2HZPnwontNzfM0szRcrnLt9hZDoTQVsf/qjVD+cuukXmTHNht 8nXVUXUzfKYzv3P8Awdys+IDL4uZIudVmkVPNwc2vj/BKhY1wfnnbT2UEg78 PrDjh2etIZpWsco+h3Igh25yMNHDEIe7VFp6jnFgcsJT5iTJEM/u+bz5tS8H RpofqY3u24Lx2xz0qO7C/Tcbn7eYb0Z1moxXmRkHvOV06fryG5CfNBtMl+SA XWEUO+GeHvrWRGY+EuHAztKhqXcb9LC7YmXuTx4bbIOkz8jt1sWEANmVd+fY kBxxmmdTo4PO0z0yFcNskLc6mMSc0cKMarWAtCo25BiW/udklhbmU9SNrUrZ UJN0MZtro4WdHoU/eX+yQdJgdYh6niamfyxSLchhwwq/MdH+cA0sPMl3ufMH GybbOsU7WtZh2uqDLfN+bGi7yVaiOa7DsTixj6e82XCkY6TuxBtVzP8c7Lnk wQa9pZ4MqXkVrOgMaDZ3Y4OzVkmTnKMythw74mWAbMjuMRgmH6Ti8CazRq4a G0olpXv1yFRcM5S+b50KG3psQy5wyhQRE1eN7qKyQSauWeG4lCIqVv5m8lSW DYYOT12PDyqggci3TCkyG7alUK2VS+XRwStlQf0LC9JrP3q+05PFEsFdzq1q FuxccSVairMKnRkfNg5UskA+ws2vPXcVbna9EkMtZ8GaVm1Nw3kZPFykD5XF LKCvJ1LsClbim07bViUGC6ifi53WgjQm913W7k0U5rTkbMetkqjtw0wN8mfB u+RI/l22BI7MVuw09mNB+OifyypbJLA27GMR2ZcFvs5UiZU0CWR3xdg/9GJB 6YftVTbnxNGtRFxa250Fa0P0Y+SmRVGr3cC90YYFTt31m7osRNAuv/+dpTYL Qm1/bG+UFcFMMe0Ze00W6Iu0fzKcImFd2AvzveosOLRxWK80g4Tjz7I9z6qw oCMqWVd7fgmUwyKmJynC3Ku3YbR4Eb4H266jSbCgPnuZhWMVB7I3PO42miZg 2/SztOdRHLC6Pdac9Y2A+mbm+wkrDvTsPq8qmCKA8s+WQcnXbCh8GynbP0HA udKEmiyCBQ+DwswzRwkYlnhZLnKEAJPNY/7X+gmYGY8/8injF0gbi5tKNREQ H69vXRfyC9oOVuk2NBLg28R5tGD3C/QKL0wHNRBw+0isZhZrAZYor9/21hHQ m2Ome9JnAb6cL/lSXUWAO3Ug1BTn4Whm5tqevwhYb8AoIl+cBZx78NYgg4CQ hm7/EtGvwLkf/GNrJAE3KV60j0NT8IfRJgPaaQLKc2PK/Sqn4IZuX1ToKQIi bj2O8PeeAo/ZMkp5OAEVSkFh+k+/wPizG3vMQ4TzVh4y1U2ehLyYxqyLgQR8 by0ffHVoHPxOi+Q1ehCgLqIkpuTzCTrIhqnVNsL7cc/ZCJ1PsIqeHMuxJmB5 fHG/8ewoGBUqO6HQP+P/NeBdHIXYEJ5PLxBQbeQ8c6LoIyRM0qK5lgQEBY+1 ksU/QNR6Nf8zpgQod6//LFg2BPobZnYJNhGQOKMh6OC+gQjmCFdbiQDpvJU7 js53wcS2ba06i0zw43WN/K76EjLbdxVb/pcJcz2J/kN+z2BO5wblyxcmVNEo IpUqj2CfqC6TPMCEtzWTzcMpeTB5lckyfsmE3xIUjCRs82DXmatHBS+YMLDU sFZ/PhekEjcv6xS61mT32o4uBvz06eN5CR28oMWwvJwDfAUZOv05E5ab9v2t r3obBsWC/zvZxoSxd28rtCvSgAUjdT0tTLD43prIrEoFz8qw9zlCk5O2hSvU pcC0585NIUJnUms6LdquwUjwRJCM0PeSvm+c+nYVVP6lm7o/ZYK5x6Fo/TNx 0LfWdX6yiQm3tkjd16LGwnl+rVqD0MYZUnE0xwuQf9/1QrLQPAWN7V0V54R/ gs8LI6F9XyrS32efApNlHxIuP2HCfafIZP+RcNCobdXxELr6qrFZpGUovHY6 ztIXWnzKZaHk5QlQPZ/PJAvdVB4zHLTvGIzo22q8b2TCejlS2l9fj8JYnOr5 MqHvBbEfe8f5QnqbGClBaLX0fKqcuSeEqi2vPCh04d0DaXjeHfJ/Y/O9hf4f PjPanQ== "]]}, Annotation[#, "Charting`Private`Tag$4175432#2"]& ], TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.560181, 0.691569, 0.194885]], LineBox[CompressedData[" 1:eJxdVWk0FfzXRVxDRcicZKqoVIRS7B8NlDJ7CpVHCEWkMiQJCRUyJdIkFSrx CClJEjIkFBqIhEzXnV1TXv+v71nrrLP2l70/7L32UT7ia+POx8PD0ze//7v/ f0a3pZRdKpKBVOFloZkuXTzLFFKJLlqFa84PZGa6dmLLnm/vYor0oa64xG6m yx5lg6rmCUWmWG3xaudslzsq2oI8c4v2Y/3r44t4u8/gzFRRj/hzDxhpeq5a 0h2FoJuKtKLiQNA3C6Tt7U6F6uxd/ZTyGGSo2ud11j/ECZdbQpJeSTjHSR58 MV4A+k/IFTvfQFHDy8pc5xKsdUk8umzwNgzvpC6uNS3Hz/Dih1kxWQifdWj5 MFCJZwVHSgRHH0AmYeu6GwPvcPVzYr+fRS5WXEnICfhWA63acoGNl55A+avP zSe3PmC726VviQsL0Hlr1HnznUbk12oM2VYWws2fuTDYrxkqFnZRXwKLoK2Z +NREoQX5yw27l7kWY/jhIXPb261YdJwt17qtFNrM434+wp/B6+FVtdm6DHHF EUyn1C+wtc9+l3TyFZZa/Yh5vKwDSuEKGmsiX4MTfNR6w9VOBBQ7xBf8eAOT txT7AcVv2OHVvylU6i3y1XP4F974jmsf5Bw3e1TBZ/p75l3dLnzRKU6JrX0H naMCJzjN3djV654YqP4efyJXzIRq9KD3QEF70qsaHNcX+9A+2wOvsJ57L2zr 8Obrbvfyml4M3t844LGgHtTylcHe8b9wTkd2TIC3ESQrm3X6WB/cw6J+G4l8 RCPliZDD1t8obdytssfwE4K4QvfkVPpxLkBVRyClBbNWhlqZwgPgcXHu15xu Rfq5XP+UgQHYVB572l78GdbPCr3O/RjEGe+cq76J7WhKC7/cVPcHzpJqA61P O7HiyOCCT6VDSMheolbs+h1hqnIijdXDSJPTcb3v141lyqHGIfUjeM04ELY5 rBsCG13LFzSPYCLE7/i3uG4Maa5XjmsbQXFSz+SOx924+CDkcdaPEcRKveor GejGtIJWZyd1BHP0jROK//7Ed2lL+EuOolTXxqpSqwcBCmO/Dh8ahf5+P+m8 7b3wfhzCsWSNgiT4LNm+txcXjNfsqeOOwjnCWvS3XS8e/OZmGM+OwmRH/3aj o704K2Olr08ZQ2/Wky672F4UWnb4a8mO4ceMibVUSy8O1G56sW/bGNaf9TTf 5vELEf56n+yjxmDtV+C/vbAPfsk7uVXyVBw/UJm8pLwPCbcyVh9TouJJdjj7 T00fDkWmxUqoUaGeFlX16kcfSp//7T26jooh/YrzI0K/IeAruWg5oeL3Dqme SNffUE1WNa11p0LAXbhM9X8+2Ve8WfwfFU+/5Z87r9WP1ffN9nWVUKGlOCgy aNCPinXO2vmvqLAxtPnda9sPj/fRQnbvqQiwM1ENv9SPvnPXRQo65/WN0reH UPsxZf0zI2+OCkXrez5S9QOIZtRTnluMQ1z4qmDi1wEcZf2IVLQbx+U8/6YV QwNQ7HNpjHEYRwIjISRUaBBG2ZQ6N7dxUAxnG9abDUKXYputfXYcQo6GzMyG QQTTPrSsejiOaFOJova+P0hJe9gWPTeOrH2KZWs5f9BwKiAyjY+GViP5l5lC Q0g/kbzKW4AGt5MesQ3rhsCv65oiu5AGzAVeOhY8nyv3abXz0jQ0r2mx7ZUa hvxXY8vQdTR8Wb2K4+c+gvGc1HL7gzSUVnQt5T87Ar4KVpa8Mw1brkmynseP IH9NfnqPCw3yW6RYfi9GoJcc+drXgwZ3nxoVh8WjKJ+I47/pT4PZHGVE/fUo LPWtalfG0mAneHf2hd68r3a8xxRLaQhgR/+Mt6Si+p/PKoIvabggELroqicV 7bt7FRjlNJzUuFM6m0GFnuipLw1VNPgW6N+r4x3HT9k31+M/0jBTvpvftmMc An5iPTYDNKTP1F9Ma6WhfIVdXZ80HUUh9wXV+mjIv9Kss1WeDjsLsdZmJg2/ U9jOKYp0GJnNpV+SosOr9qLAXjU68iXvVZ11pEMzVKD900Y6eLV3rvs0TIeO /82VOvvo+M5Xe0FiNRMue6NH/KLo4NkhqmduyER89nkfSiwd7GDFwQIbJqRC GLK3r9IhMGt2XOA8E3715dNtyXTUn4l/86udCbN7y50ds+hQNKgMZSWykCbf q/3lDR2uHqrJG7Q5+FfRf13WDB1WkR/r3u3jgH+LmOApHgaqeCWUbnhx4PZ+ OGIXPwNhielPBbM4kKRJB7AXMhB9qLFQQXoCXKfS7lMKDLy5G7eFtpALy7+9 iRMGDHT166oJruXiucc/y9lGDMgb/lX13ctFU8TBR2wTBtycTgvrx3PhsVCl bm4PA5yYIp06qUm4cwW4m50Y2NyYKSGhN4VkByf6jnMMUD0rlrc6TSE4adW/ Zy4w8NHfMYsbPgWlSM0tuRcZ0NBmOIU1T0Hj2VEzhTgGbnf9PHXPdxpaNi6l GrcZkHktz3r3fgZOIvGiE5UMPAsPEfnbMYeCjT8fJAszoXM3ydZGgIdwSyLz 6IuZ2JPu8pi2nIc8CVn8zFaCCWXN40GStjzkqk1It6oCE6yIQhnpNzyEnbty jL2WiaApR9beR7yEUmnC9bJmIm5FUAjnPS8ZrplsXvQPE79ib6fx9fMSiysX bZ87MnFlpvvJbjU+cj+mI17cjQmfmOqg2kd8ZB326VECmWiLE+veXb2AtE4p 0vpuMfH6xpVtIsMLiI/Xx+yOLCa6Q16oWi7hJ2IdlJ5Pj5gIX+bL9TvMT4Qa Xqz+XMjEBLUuwIVXgISvCalTqmHCqUBiQ4YbhcjpJjl8G5/X+2PixZdCIWEx 4y5abCY+3EOJcjWF3Cr/sCh2iokCU0WH1JWCRCzXPNNGgIVmL27Oe5YgeX5S jrtZgQVjuU1dji+FSfAvz0dHzVjwT9VPOj8jTBr/iF58YsHC12VhvO0QIYOD AaPTdizkDGwSIvUiZNFsJrXUhYUKg5K+cepCsqS6pCYnhAWXv28CcUGU3O3e I5ZYyIKJDTV17qsomf0QIhrxgoVrKW2MG7piZPap9uawNyxQU8sEExhixLfV oON2Ewumn1OVr1ctITNl/ygFD7Nwc/3Z/WvjJYjCV4ODTSvZMHbWOPyySYJo WzxouKnFxpmrj1AvKknSHfONzuqxkeToX3I/VZLs2CPt6rmLDfET/hsaSpcS VXXNWAkPNvp9fh9m8EsRHdGGES9fNqZjrPsk7aTI25wJVlsgG/d2OnxN4EqR Xk/mud4YNko1bAzuH5Qhy0Uo6WOP2XCO4slvfiVDihbDtv/5PPaYsbqvKEse utwRZr5mQyUod+zxkCwRdzU4YPOJDZMlyn8vPpQnZWmn+rQ4bJiHF9xc07ac +AXtzfm1iwNzCAdePaJEqk22O9ZZcRC97X2rD0eJaK91//bBkQPfWeEuXF9B +lA8p+LLwSWKnL70qDLxvPzsmEk6B7KZT60HzFRIJBllyGdz4O608ed4jgpp dis5LfWMgy3Mt542p1TJ+i0ikqffc6BwV+D7ET11gsHOh0wmB22dch2zhepE den6/Ik5znyfFtHctVeSvzituHLRBD6ZROx7arKKxFVcsxVUnwDvwJmv2bka xCTn1kE+hwnknZKVUbDTJNSqkMsXjk6Akue9R5yyhuTdsBbTPT0BYZFf3s4R a4nYgPhls2sTuFzy7x3GyHoS5x34waZhArLxYRfb/DaQPYn6ueXfJsDeqqwy SN9AZq2rL50YnkBrQFpkjJA2UTbLii0W4SLtqpOB7B1tEkBZ89ZKgQs94czy QUMd0rqwWpnM95SuELnVdX0TuTK29ZGGJRet9pI1wTa6pDKaP3KNCxeOkkpR O+X0yIlNLXPXTnFhY5QRYtyoT8TmhE3S07k4axpmJD+0ldDrnV9oj3ChYVq/ X0zJkBSaH6nq45nEfwmzP72PG5EouTKVVTKTWNn4wuJIDiGHMrY/ido5iSaL 3Ta3A41J5wpTzn+HJjHVdGllxn4TYm8cypsWMInOpf16xdY7yBm7c6sK8+b5 lPZ/i/bbSWrES/p4aiaRHF334HbuLjI1Njhq8GsSFBth9UM8ZuTI8eFQ37lJ OLSoGZUF7SbLVHRiChSnAJ4SKUcZc1K9Q5UpbjgFZsXSnoreveT6kPxg7qEp fFI7LHDnshXZIvonpC9rCjvNX3ZseGtNHqdlP+WrnYKs6ZGeJEVbcqB8aGfF 6BRi6M2hlg/tiOH9W6u2LZ0GmzHT4uv6D7ELn0l8ZDgNnh7ptOHDB4jpIeN1 2l7TqF9aF2rwwJHofx93kkqbhkh4ovK6XYdIy2TTQHLtNJTOLtLmW/MveRhn rTIzNY3RKP5FsRMuJCF1RVnexhkEMk/GUeTdyJ/L9xxFvWdwOIKt+i73KCkY 9M57kjeDJLXDy1NqvAj/xpiZ1dQZREjf2M/K9CEpMVUl+/RnYfFXLt1C7yS5 z0x5Jhc9i66D+o/f7z5N0j7ibVv3LNQf+5TesAoid1c7Oq6eT7Uc9QeltTyU FLr/atn/9C+eS5VtjXwYQUR3ZJtFaMwhPSy9XUQzhthM7urSLJuDf+W53vT9 18h/5oXGqRt5SJ1G+w/xoDQiInf4wr70+T/iqb6vwDuLbAjxW3FTkZc0/bda 3LKqgMQz3a0zWnnJNYm/q3Vdq0nr7uCpJaN85JKpfZaYdwe5IG2fIcnHT/4P ohvibg== "]], LineBox[CompressedData[" 1:eJwVkHk41Psex8foaoo2e7bIUkN6JjWZiM+3HKayjlu2Ials6Roq4yhqKluy RIe599JF6rR4GBdDIbJk63BslRnFsUQkW+Y3G+O6f7yf91+v5/163gbnGe6B eBwOx1jP/3umSs3zrOUndHdg0/D5v21AD4qiCPRDlSiEsYFzeScefVgLrNZp fILqbhPda93lUIua1+V9fv9CFcuWJvhWHNoySRv1M8lE+Zx65WlvHDpopeWZ 1J6Mekvc9j/G41BDWMBFn5Y7KCRxlX3z6hrUEH5h5YTHoUjqYYsGTAZby+rU B7nRqK5Z0XHtngyGFGbr9eKvIpJ3I6+bKAO55FCOkncEyrlce6mmfxUsbTm3 9nSGIc1Pxld+JqzCJefEp1eng1GZad0dbVgFewcKfaHzImKv0OQMZSsQf0SB NWJ7HqX0u7kebFoBFtvqg7/hOTQ/cBRXkLICmgojuMoGX9SnbZ762WMF9MOe 91u0eKNr462CayYr0MwPlnVRPFEJqz6cIJbC+dz+R8mEM4ha/NzPvlsKoV98 pqpv0BCribTIuSWFjVfGqiwJbuhRYWxNOF0K5edeMkdZzohVc04Fo0ghfume U6q1I+qY/7mgpymFY88uxRWQTyJGyICsVSSBV+zmD+QgKjqTrDP5J18CAh6p YeqdPQox8qjSq5fA0Bv1K5OS40j1YMkNUrIEKCd05fNaj6FJnIjdGS4BIt/l 5GwJQvrWbGcvDwlcM3D13Jpog9rvaPO275XABzM2KeSTNTI/PuOmryyBYofp UWtHK7RcQjg9uyIGlZ+ZH6NTLZGXxiOnjAExHDp6ZH+q1WFUuI/7vrpBDDHZ ZBsleTIqzWra/KBYDObW1SVLgxYIfzUAR0wQw/Rd3bTF0QNIPWyb9eAVMVww ra1grpCQxCpUXTVADH89+bijqGE/mmNy7quBGPLaNlhPOZqj10sfz3TvF4NG uLvUfcEMyfsEbZLoieHem6FgbgwROYr1jLJxYsigkvLYAcbrvoX23u0iOLl5 ZsKFZYRCkncUGNeK4Guv9OTDYkM06d2ZfbxUBOq1C4eOGO1GT0uJ1QHZIjhA zH4RrbwL0XDOSpNBIgh9UgbzP3TRw7gCpSm6CESaAV//+0kHERiutw1pIiDd CvNM79NCu7/dfe5wdJ3f8M44wk0DRR4LuoZXEwE3hzoam6yOnO6u9b5UFIG/ BUeAOtRQ9puxVyy8CFZd/k7HX1BFgSZNeZwFIZx+a1db+n0HiljY5IV1CyFq oNSG6bcDKfXcMphqFcLy7XHx4MB2hHPqGJDWC0ElPqSi6Pdt6Lq3ztY0jhDI fyxOuG1XQmXcrmhylhBoLT9mroMiIpE15s3uC2EoMvGFGXMzOtBDD4R4IRgx d1c2iQgoUbiHUcMUgm3UdxrllAJKV5DAnK8Q+nJV1b0m5dBaiAelw1wI+WnP LI9EySFV/RStor1CYLN6xs5ulENvjQcvpBuu79X1XJQdwiHZg0vd7J1CUFiW 42wOXAVl88DVywpCKD6XI2/wiwgK7Nofj4xh8CxLSugqF8KJ1F35xcMYnJZu eW5hLASKSd+deD4G36TyA2WqGLQFv9L17cOg76Vf2UXtZRiT/VaX14SBTMF9 kVa+AFOZ2imUpxhoOGyqjHZbgAScq0ptIQaSjEpc8+g8oPDbSdT/YHAjr6op LmIOzPS358SxMcDhj5n+Vf8d/kmYtfVJwcBn0mMtbeMU/Mh05ldHYiCyJcvm bk5CU1lUWns4BjX7QmiHxV/BR7FeYzQMA7XqNnkzbAKSzjDtiEEYGI0xj1Zs G4dRCUFZhY7B6KmtameDRuC0QfLaYQcMMoi/mWbeH4bqpYh4hh0GTJ0gbib3 C5gN181yEAb+lv3UGI3PkOGuKaRaY5Di8l4nfRsPOpm6a70kDGIDqbD7dT/Y hfBmLHUxyP1R9XpUtx8Y7pA+poUBnrpL2pXQB4Oa/LSHmhgsUN1Nhs/2wmyj gyth/UfGv19MFAd3w81CXqmVIgYUh4BII24rGHSU55dLBJDW6sZf6n8HvJgY jRqRAIg3S7iawhawfq/X0YoJwCYl22njqWZozJrOnV8SQFkSj/V511twqFKk x30XQNOirU3sYiXI5++ZiP0igH+0xI7ZPK0AFTPywd4hAfB+5YVq+ZfDjKHi CJEvAOetho/tOjig37ZX99tHAWjQxm23BP8O+/oU5nJ6BOApDG0IIz4BFzL/ s9KfAuCLxqV6WCEU1Tl0JXYJgC2jZvnSc0H2a1JyYqcAGIUFjfYkNqhDuq1S hwBMb1D8rTQfQtCbzD+y2wRgydfdWW6cDjHk1L2GrQLg0q/HJEAirPo+OlHZ IoD/AZPoZSQ= "]]}, Annotation[#, "Charting`Private`Tag$4175432#3"]& ], {}}}, {}}, { DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox[ "\"\\!\\(\\*StyleBox[\\\"h\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ StyleBox[\\\" \ \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"|\\\",FontSlant->\\\"\ Italic\\\"]\\)\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\ \\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[\ StyleBox[\\\"|\\\",FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{\\\"-\\\", \ \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], TraditionalForm], FormBox[ TagBox[ "\"\\!\\(\\*StyleBox[\\\"M\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)|\\!\\(\\*StyleBox[\\\" \ \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"\ Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"|\\\",FontSlant->\\\"\ Italic\\\"], RowBox[{\\\"-\\\", \\\"\[Beta]\\\"}]]\\)\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> { GrayLevel[0], FontSize -> 14}, Method -> { "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange -> {{0, 3.3}, {0, 1.6}}, PlotRangeClipping -> True, PlotRangePadding -> {Automatic, Automatic}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ "2", "6", "\"Caselle \ \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\ \" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\ \\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\ "}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["\"n\"", { GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #}, { GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.560181, 0.691569, 0.194885]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.560181, 0.691569, 0.194885]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", RowBox[{ TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"], ",", RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",", RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{{3.893237708747595*^9, 3.893237717793868*^9}}, CellLabel->"Out[46]=",ExpressionUUID->"f0d6a512-a16b-45e4-a62c-27480dbdbe2d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"Evaluate", "@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Xi]2", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"DufDuh2", "[", "2", "]"}], "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}], SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"ut", "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], "]"}], RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"\[Xi]6", "[", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], "]"}], ",", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"DufDuh6", "[", "2", "]"}], "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}]}], SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"ut", "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}]}], "]"}], "]"}], RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Xi]", "[", RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[", RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}], "]"}], ",", RowBox[{ RowBox[{"DScriptMCasD\[Xi]List", "[", RowBox[{"1", ",", RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}]}], "]"}], "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", RowBox[{"{", RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "3.3"}], "}"}], ",", "Automatic"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"AspectRatio", "->", "1"}], ",", RowBox[{"WorkingPrecision", "->", "20"}], ",", RowBox[{"PlotPoints", "->", "50"}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "\"\<\!\(\*StyleBox[\"h\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"|\",FontSlant->\"Italic\"]\)\!\(\*\ StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*\ SuperscriptBox[StyleBox[\"|\",FontSlant->\"Italic\"], RowBox[{RowBox[{\"-\", \ \"\[Beta]\"}], \" \", \"\[Delta]\"}]]\)\>\"", ",", "\"\<\[Chi] | \ \!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[\(|\), \(\ \[Gamma]\)]\)\>\""}], "}"}]}], ",", RowBox[{"LabelStyle", "->", RowBox[{"{", RowBox[{"Black", ",", RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ "2", ",", "6", ",", "\"\\"Italic\"]\)\!\(\*StyleBox[\" \ \",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\ \*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",", RowBox[{"LegendLabel", "->", "\"\\""}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.875952981547227*^9, 3.875953315769273*^9}, { 3.875957061887289*^9, 3.875957104302837*^9}, {3.875957134472674*^9, 3.8759571357521*^9}, {3.8759571703214827`*^9, 3.875957176129848*^9}, { 3.875957284251436*^9, 3.875957289963092*^9}, {3.875957366732642*^9, 3.875957382812718*^9}, {3.8762091878796577`*^9, 3.876209192631675*^9}, { 3.8871754989267273`*^9, 3.887175499101399*^9}, 3.8871842906781693`*^9, { 3.887186114918988*^9, 3.887186135551132*^9}, {3.887186188946741*^9, 3.8871862078981543`*^9}, {3.887186291595374*^9, 3.887186300211134*^9}, { 3.887186502030856*^9, 3.887186541775611*^9}, {3.887186589650141*^9, 3.887186636184795*^9}, {3.893237725683463*^9, 3.8932377363942547`*^9}}, CellLabel->"In[48]:=",ExpressionUUID->"efe0717e-1a4b-4a72-a5da-a2e9186bd1ec"], Cell[BoxData[ TemplateBox[{ "ParametricPlot", "precw", "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \ RowBox[{FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \ RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \ \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\ \"0.2950910232179487`\\\", \\\" \\\", \\\"\[Gamma]\\\"}], \\\"-\\\", RowBox[{\ \\\"0.07674909089922159`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \ \\\"3\\\"]}], \\\"-\\\", RowBox[{\\\"0.017576083976367313`\\\", \\\" \\\", \ SuperscriptBox[\\\"\[Gamma]\\\", \\\"5\\\"]}], \\\"-\\\", \ RowBox[{\\\"0.0069902635549525935`\\\", \\\" \\\", \ SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \ RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\ \\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \ \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\ \", \\\"2\\\"]}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \ \\\"8\\\"}]]], \\\",\\\", RowBox[{RowBox[{\\\"0.`\\\", \\\"\[VeryThinSpace]\\\ \"}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"0.29442726651162515`\\\", \\\" \\\", \ SuperscriptBox[\\\"\[Gamma]\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \ \\\"[\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"]\\\"}], \ RowBox[{\\\"17\\\", \\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", \ FractionBox[\\\"1.007010684856479`\\\", \ SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\"]\\\"}], RowBox[{\\\"1\\\", \\\"/\\\", \ \\\"8\\\"}]]]}], RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"4.055395711271589`\\\", \\\" \\\", \\\"\[Gamma]\\\", \ \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\ \\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\ \"(\\\", RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \ \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \ RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\ \"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}], \ SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}], RowBox[{\\\"31\\\", \\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", \ FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\ \\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}], \\\")\\\"}]}], \ SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]], \\\"-\\\", \ FractionBox[RowBox[{\\\"1.849387959639662`\\\", \\\" \\\", \\\"\[Gamma]\\\", \ \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}], \\\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\ \\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\ \", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]]}]]}]}], \\\"}\\\"}]\ \\)) is less than WorkingPrecision (\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\)).\"", 2, 48, 12, 31977068536072594118, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{{3.88718611635929*^9, 3.887186135777404*^9}, { 3.887186197166917*^9, 3.887186208279335*^9}, {3.887186530190947*^9, 3.887186542059218*^9}, {3.8871866239697943`*^9, 3.887186644812742*^9}, 3.8932376097362757`*^9, {3.893237730015683*^9, 3.893237736870389*^9}}, CellLabel-> "During evaluation of \ In[48]:=",ExpressionUUID->"50c6b3be-692b-4bb3-b631-dd6ed0112f44"], Cell[BoxData[ TemplateBox[{ "ParametricPlot", "precw", "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \ RowBox[{RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"4.055395711271589`\\\", \\\" \\\", \\\"\[Gamma]\\\", \ \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"1.`\\\ \", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \ \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\ \", RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\ \[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{RowBox[{\\\"0.2950910232179487`\\\", \\\" \\\", \\\"\[Gamma]\\\"}], \ \\\"-\\\", RowBox[{\\\"0.07674909089922159`\\\", \\\" \\\", SuperscriptBox[\\\ \"\[Gamma]\\\", \\\"3\\\"]}], \\\"-\\\", \ RowBox[{\\\"0.017576083976367313`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\ \\\", \\\"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.0069902635549525935`\\\", \\\" \ \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \ RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\ \\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \ \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"31\\\", \ \\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"(\\\", \ RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\ \\\"\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{RowBox[{\\\"0.27286889266851116`\\\", \\\"\[VeryThinSpace]\\\"}], \ \\\"-\\\", RowBox[{\\\"0.21290826693346554`\\\", \\\" \\\", SuperscriptBox[\\\ \"\[Gamma]\\\", \\\"2\\\"]}], \\\"-\\\", \ RowBox[{\\\"0.08126249520877327`\\\", \\\" \\\", \ SuperscriptBox[\\\"\[Gamma]\\\", \\\"4\\\"]}], \\\"-\\\", \ RowBox[{\\\"0.04524698238633043`\\\", \\\" \\\", \ SuperscriptBox[\\\"\[Gamma]\\\", \\\"6\\\"]}], \\\"-\\\", \ RowBox[{\\\"0.03293140750785288`\\\", \\\" \\\", \ SuperscriptBox[\\\"\[Gamma]\\\", \\\"8\\\"]}]}], \\\")\\\"}]}], \ SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\ \"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]], \\\"-\\\", \ FractionBox[RowBox[{\\\"1.849387959639662`\\\", \\\" \\\", \\\"\[Gamma]\\\", \ \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.2950910232179487`\\\", \\\ \" \\\", \\\"\[Gamma]\\\"}], \\\"-\\\", RowBox[{\\\"0.07674909089922159`\\\", \ \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"3\\\"]}], \\\"-\\\", RowBox[{\ \\\"0.017576083976367313`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\ \"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.0069902635549525935`\\\", \\\" \\\", \ SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \ RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\ \\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \ \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \ \\\"/\\\", \\\"8\\\"}]]]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}], \\\",\\\", \ RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\ \", \\\"2\\\"]}]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}], \\\",\\\", \ RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \ RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\ \", \\\"2\\\"]}]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}]}], \\\"}\\\"}]\\)) is \ less than WorkingPrecision (\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\)).\"", 2, 48, 13, 31977068536072594118, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{{3.88718611635929*^9, 3.887186135777404*^9}, { 3.887186197166917*^9, 3.887186208279335*^9}, {3.887186530190947*^9, 3.887186542059218*^9}, {3.8871866239697943`*^9, 3.887186644812742*^9}, 3.8932376097362757`*^9, {3.893237730015683*^9, 3.89323773779261*^9}}, CellLabel-> "During evaluation of \ In[48]:=",ExpressionUUID->"1390bb82-7e0c-4a82-8be7-3aa0578e2c3d"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], LineBox[CompressedData[" 1:eJw113c8l9/7B3CbeL8zM5JNyV4ZGdcxC8nehMieoYQkJCshK2RFklHIB1lJ RlkZ2ZvsGVmh3/v7x+/+5zyef5z73I/rfj3OuQ7HbQ+9OwR4eHgN+Hh4/xv/ /zGrS5vGhmMRmTP72RNZDqC+o7+PwZnfZ+jRiawoPIh6KEuOc8E4xuJkRAZM SplKiHFeHqtQ+yerCEdveW/8e4JFF9p6vuBFq4JQYRHjPs6GrJLmhKPqoC6R R7OOczFR83XSyzeB7SLd1RmcJd0v3yaR0wVM2UlsP87dvDaEUbb6sGxpS/0V Z3Wx+3lnow2BBnO9qRxn6aujNonlxmC3XZqZhfMY96Ex86gpyKSlF0bhfJtK +fVrfAtwWqae9f7f+80uWQtevgXXGemvm+OMXVf4wSlnA9/fjWZw46zA7Ci0 on0bfEXzo0lwFshTCCq3tYWxCeq3C2FY1Nb6k18t+g5s5S075eA8M0L6hjrL HpSTbSgDcZ6C7xqT5Q6QbJY0a4BzrOqvGwGjTsD3WYsGH2d9prJWzQ1nsFud cR8IxSKnkp3XLASuEH2ic5iP8yxqbWq57A7N2bMpyjgrO0TEJMp5gb/W6LFj CBZ91w1mDW31gpN69W+COAdHs6ff1bkLLu6zzVuPscjcsd/TwM4bpLjqlb1w ple2MuSO8YWVVicPi2AsYvi7S8hMfw+EWu6W0uB8t5dvkCb7Hhitk11oe4RF FLF7+CQf70PEuXOhfDjL56Qq/B17ANw0GiFjD7FI7kp17987/sClaywVivOQ 7MOmk01/QAIuzJdxfjgT1E9MFAiX+5Y9PQKxSBHLGXlJIAgqHPj1F/yxKMpi s85c4THcrmMhfngfi4KGSMOkIh+Dsn1548k9LPLhfWRON/AYnu1cMQ3EGWPW rNXrFAIi3/0ve/ti0dlOhUaTpFBoqhZQuuaNmx9S15+z9gRGacAj0h2LCMX3 muOkwkEP7V1ccsMi6tA47OOQcKgkTG5UwXmTWbTxDuNT8O1iSdx3waLoUZkL SCUCqNK1upWdsKi8SLhRLiMK5N4UvL1ni0Ues23OyotRcL/lWXDFbSxaPMbW aIpFA92TDtkNGyxiJCfUsWmPhoH0QwtLaywalYel7N0YGI1bvclpiUV/+yra fbWeA/OTU8ZrRlhUZSmgoYmXAPK1uhknarj85+R0uHMlQMGn7FIynEdyppRf qCUAFcvRBrUqrn5KauxTMQlAGBp+xKqMRW4+tfUhTC9gikBMiQtw9U7vE/8r lgimrDoNA5JY1MdQbN5gnwytMxw949xYlCv8y5YoKhkIHBwIS7mwSMqhM0uz JBkSEoRcH3Li8m+r82liJxm+EV0ap2fHIq3V5fdUj1Pgbj+9nAQzLk9Y0hsV 6anQy1IjzESNRRPvaL4f9KZBybFR0rO/GMSuT0hetZsGk1cJZgWOMOh9GFXJ PYZ0EBYNCfx+gEGROiNcRxbp8FDiXzreHgbhNWeT0iylA2PUXrTJFgYZ/2xT eXqaAXafGZyq5jHItWUmMlEgC0xua22LdWIQvcWYS29rDmBtyXZEkjHoVDUj fWYkB8ZzQsYVEjGIY2R69vdaDjAqhY1rJGBQ+bWhOkbaXDhIauSwjMUgLEPV Zy+rXBA8Se10Dsegu0v4zGYHuTCjyInPfw+DJKQF6zH8efACT2JO0QCDnBDb f5D4BsjvKb+ZJcegpHl2+2auIrhIO5c34U6BhF9bDmEZP8DeYaKofxE5+ruT kb6RWw7Ma6dYq/4zSGeGVzKQthIigzqdbPbIkOgPPKGt7iqoMKUsldolRTZv 1VQpfD4Bh7dflPEuCeq3UrEd5qmHZ8l2MsfrxOgRi8anIabPYETe58HTRoQy Ejp6IlObIPzmI+fTYkKkE8pj0qfVDAZ6HXYy9wgQ6V/N3ivnWqAECNV7lfCR HfZJ9sfhVtC/1VeqxY2HjAOaUxjm24G0nrqLfPoE/CLPHNNtf4eLVmwcVIV/ gWHuW6ugSRc4l+m/XdI+BBdf6lf1Kz0Q1b2klEazDxfSfl6UU+0FI16q9izs H7DYxEZYDPZB8HSMId/Ob6hO0txivTcAtn0i6uy027BM86poMHAAZoUvVe9Q bMO6pIJKfOgA8BAJxrcTbYOGwstzlPEDoBZdGnJvbwvU0uGuYPEAKFS4us6N bMEY7+9fe7MDEK5wkI2fswX3DULLO/R+gtGlwfe6Iltwwwwb+ld2EG4xr/3J frMB4zQq+Gwqg1CIX9owkrIBQ35G0Wo3BmHhwkMS+sgNUFKX/5FjMQika+3n XrpsQIAWq3/kw0GI4UtS+SayAQ71F5TYPw8CdY69a1/tOiiUt+GHXR8CDb6P pDEDa3A7nWF/x34Y5OwHiGupVkEk9p9YqscwWIgvuLUQrkLMXlEr8hsGg3Db f317K7BHZEaYFTkM2zPU2fvjK/CDnOpKXPEwuM1KztoXrsCYzs3M6zu4+Vr5 VRNKK9CAlnz5w0bgy5fZIyG/ZahNeXUp+eMohN/ZbPZcW4SiWos1xcZRSPVs uq48tQhyV98e7HwbhRjKjDSmvkVw3Vb75zw1CsFzSW96qxbhSumsUz75GHTL 5jh4hC5CGJ3Cns7tMVD7h9dpw7wIWhLbj0vpx4EiNnqZ6+YCPDOhZRDmHAd1 kxsvPBUXICz5fP1/guPAMMxO0ySxAM13mYzHVMYBmzHy3I15AdRfPgr19x6H MlLJ+N2lX0BY0D5F3zcOpvKDg5/CfkFxFV38UeIEOD9qzr/cOA+p+5bLIjkT 4F0obs1XMQ8Clk077iUT4HPBq1eoYB5YtCjlCVonQH66Z1jp+Txw6dy9H74/ Ad+brYNSrOaBaZTUFGMxCZVilPI7ePOw7KFnrMY/BXk5mwK+anMQsZ5oECI9 BR62Vr/Xrs7BuC2caVOdgoVKRy9H4Tm4Va9f52w9BZ2+gRnOjHPgQ/dV5ULy FKRuHBSkr8yCv7LOVgr+NCgIkrz68HwWnEj2fwvenYZt+5jLb8ZnQNVdx3Te bxp+mAYW6/fN4M4ZYqqsR9Pg2B/vRtQ+A8Ic0Y84nk3DvhfHO4+KGThQjp4y ezsNHfecMW5RM6Cc+PXB66lpyHBl9iKUmQGTtxeOi3RnwODar5DM1GlI+KDE /MdkBkimEusrYqfBzkiCVdl6Bq7b6V3pDJsGKY/IuXV3nINqx0i8cOu6jx0G xczAv+LnBK/VpyHAJmv0Be47zvxo0lvfm4KXL6QoS1VmIZFXNu9c8yTE7vjU qWvNwg/8BIxP6SS81+PeXzWcBXuHZczoy0lgmOIXV3GYhdPh2IE6z0nYc3yd oRI1C4NI3G+CdRJWuwepY3pnIbCytzcqcAJcz6ZvuN+Zg4JUjjcv5Mfhj4vg xKr7HDT1LgbMXx4Hhy5eW0+/OXAIT5uSw+XsjDqNWVz0HMSHXdMm2hwD086Z fYHyOaAvZ21Zzx6DJpkG1Rncf7VuWy/nIxkD0sq8jYC8eXARDyxWHxyBhHeV 3pql89BlymHz/esInDX0eM9ZPQ9r5FezdCtG4HGMrsdSxzxYDMr85x03Ak1q 9LR9O7gccQWqkGiOgOA+kcBF1V/QjrGNsGsahpBPt1vpN37B6/LVJoKKIUh+ +Xtq8+AX1AoRjurnDoF2a8xWL+EC3HSnci+KH4IaEzGuMqYF+FMgSebuOQT3 u1zIJlQXYPl53T4SGoI4apLp3SycmeTNWIoGoYZdj+OB+SLwPK5pKS78CRYH HTSaDovARkvjjNtLgS0ojOmS9yLwGry4mhD1EyQtll6eRC3Cx1b6W3EuP+Ee Y1YvT+0iRPJK5wwK/gQ8aZ16d5YlaHrEXhBVMQAu6USyKitLIFouT/esuR8O zEXUvfeX4FgoFTV97Iex0gXRUqJleEEfEPE3vx9yqTn7rrEtw0BmoWNIRD+E 77CexRgug/05MB/R6gfRUfr+hS/L4DmbH1M00gdmD3yyb71dAZbQlIsTf3ph SG2nxLV6BZ5+yOXJXegFDBauR7evQNybc8h9qBeYKo+fHi2tgN6rS1+Za3qB QkQOL49vFRza4nY6AntB08ZqUqZsFYJdw5WCiXuh+hf1tETnGqyaJ7CLX/gB L2MplCIn18DhMSn5KPYHqNqzNW5vrcETAtVVyn89cIFPMebfuXXQuk+avd3S AxHaZFgam3UYj57ctTDoAZ+aWDuRv+sgoDU33OvdDYJsL0q00SZgP/1r563v BF+s/yyewSb0FYfX4ud1gnkP7cs2h034cXOhfCGqE87UjdElP98EAbnYdwMm nUC5+o1RdnoT1A8Pk9CfDtBnDXOeVdoCjJ4Nm7FIB2jvtRR7bW8BpR7xrs/7 b9DDVxjcerwF0ifMDR0p38B6RCecl2wbHj6mtRIK/gbaP0KD6di24T+pdjYG 3W8w0udYGqu1DSIjl7zv7bSDD0nnU/aSbRjV9GVwudoOufL+vM73f8Nu+7ct jt5WiPzxKP7Dk9+goz7xkbamFULwe5TJE38DtUYpH21OK5RrVjMffPgNWV7D XLJerWBXutjbtPobuNPv0AvTtMIfkwIXkTs7QEa8r5lv1AIbfC179T47EJ51 T8ULWsD7cMHIJmwHbuB/69HgbYHarv1rK693wJyNPeXi0Vfwc781d2Z+B0il WcuDM7/C/JGdUqHjLkglVNjVLzdDcdP5jcIHu6B/Pjvbpr8ZDNm23JqjdiFx +rIObX0z+OVN1CqW7ELXWUSQFdcMd8ZT3bx2dmHp3ssAY+lm+G326KQr7A+E dr+g0Iz6AtVzUmTc9XsQMuY7JSTdBLSkpjynOL+esBTUl2oCmbjwNOemPTi9 t2AxLd4ExMqGHPo/9sC9jI53nLsJmHRT8zLn9mDPPnU3kRrndNHxaPJ9wLgt 0Fxe/Qzr0keDLab7oIZtkxrL/AxZ7NO+Wyf7sB98oe4O2WdQNysnI6I9AIeK FeKk1UZYF4pnl+Y9ACp1CUff1kbYmJfCI9Q/AHeqb6/8AxthMI8pgf/dATRd feWdvNwAPI88blNYHeL6PQwedXs9PIywHtO4dwgZ/7JM1PLqwbOL6vP7Z4dg OTiolxCMs2ntxdW6Q6BeeMjmLlMPJvk+jGIsR8DccPhZorgOMi90h+n+OgLD r1HWf5NqYW6oyiY9+RjUNh9SmvjXQFoLfcPH8mMQuUwygGdWA+13K1NOu4+B 07r/oEGmBgbKq3N4yE7AITjZOOCwGg5jWYK6A09Ajeo24+6Daiib4tr863EK xPx4bHNBVZCn3hRo8vwUUq14YqatquBX8su69dJT8By14N9BVRBU0Z7xdeMU Gp6k7BoTVkEJj5a2hNc/kEGRt9ki/4MnkX97+hAe+u7oLvY6tRK3T9JhXfTw EKGKp+tv/0pQPPEs4bbDQ6++mxYZWVYCi/D9xydP8ZCzebPALc5KYC0bydTu xUOOA0ZbjiUfIeexs1yHMz76fipK49JWAa/IKGreBOGjcdIP2meKKkD2pHG4 MAEfSStK2NfFVkCnA9tX3lp8pPQuitbGqAKyRb4fnDtLgNKInLjzFsrBE6g2 GesIEMZKrPMsRTmwfgoQSBggQP1pTJj362VA5pGsq7xOgD4XmOc4/CgDHtuM yzpshCiqtqmBI7kM2COup/KGE6LjBnunGs4yqGzt4gu1IkKRHF8LvdEHMPFO SxoMIEJDm1k1KdwfwEr8v1r3VCL0ntR2tZ/sAzy7aL3u2UeEEn2MdC6/fg9a 5YFVQ+rEyOr1K2v39lKgpo3Dp7tGghTwc/P+MpfAoIixDL8jCYoLO+BSXSyG u10NxKmRJOjwWWJ4Q3kxHL8fVr7fRYKYcvwmkUYxuMs1bHmYkqKQwQLp0IAi sF4zeBYQSoY0ps++P1wohEtL1KfR78iQQx1vvUJlIax92g8n6yNDMoolhhWh hUBXSP3oBucZVHG4RcXPUQgmeYWiIu1n0Hv3m2wGt96CWAJ+LzE/BRo3nhSL mHkDNByNdc+NKFBQbWHUdOUbcF90tU8IoUBrZQkkt6PegLFrqvGZcQr032ql +bT4GwhYNArcwd3bfoRu0n6PyIeuhNe//L5iEJ8EM4/LrXyY7Yv9Eb6LQTFy 0vJXJPIhUkStVwV3b6bvNvNRmc6DbG+ypxHsZ1FJ3FTmzat5kJl0rS7O4Cwq pNh9KkWdB9W3HLbEI88iXfPzlupLryEt0izEcPcs0uBYbFhMfg23PPxfaPdR InmnjjOUe7nA0ev4sneICuUfkvER1+WA5H88RYb7VOgJ/7hrQFIOxBSQ0wED NZob/OZ23iMHFDnNGdRNqFGmL0l2H2cOBHwvdnSfokbicldC+WOyoSzX10eX gAZd1KjxXrTPBgm8AM1CHhrUu/+ZslMxG0bmBncb3WjQt2jyMNatLEhpEtNs J6RFial4H446M4FrfuduHB8t4h9pHzkOy4SfHyiOp3Rp0b4LRk5HPhN4faKS 2HJp0dreWMZK6SvwaUoGN3U6RLhG5L+elAHm7z31ZyrPoYneFfPL3mkQ3T5W nbRyDnX/qGF5y5cGzwM8FbjZ6RHPjae04bMv4RM17+O5Z/QoIm040Ur/Jdg3 viUL8mFAEpkRXREyqaBwpqAg6QMD0j7lx+LvpuDqbUZXsc6AmE2DHwyXpoAV dbMdowsjOhl6PpzHkwLHZ+MVrnkzIXM68sYKhmRoLNv2VKtmQoYdfl48P5Mg +GzrdMgpEyqY4DTeS0gCVnGRR/2x59GrnqXmSsokMNzgrfrSyIx0MJEORdhE sNgSk3hJeQGxCHrv0Xe/gOQjWtFd6wtI/lt990zsC/hYV3TJhowFuRinuiRR v4A36qFdWi6s6JWt3pAPcwJsv1sbDGxnRWc7NUTGJuNhK9VA7dklNmRt6XeU nRsPXiJCixGrbOgjDeexBn884HU8bFdqZUdJ3uX+TIpxULzLEMN/wo6I5YU4 Aknj4OneabjSFQ50VNmwHJjxHN76/stkK+RAdx4cx32tiYU/F0JJ32Vzoma7 CRftkxjYu6JNTj/LiUwZqsqo42IgP5tJjJCHC31p0D14wRUDr2PsixLec6GV NNmV4RvR0B3dzam9z4UONJfb02ejwFhWgbEJcSMnLxZKtgdR0N1MSIA3wo04 1/OVHN5GQv4j+LZ6iQeJ5yc4CyhGAobhTMt3Px6UfR55lI9GgLbk54wC9ovI fKQoFp8qAjazuak3oi6hFE2vifeh4bhz6nF11fIl9IW0zEiZOxxkYxZHjjV4 UdMZiZb4lidQz2t1aHTuMoozfMxsTf4ErL4kuL0KuowEX3XpTZeEgViNheOX lcvIKdKN9YJeGMD1THPGTj5EIWvB2pYRCr9ybA7DFPnRzf2IIknlUBDOdUu4 9okftev1B91eCYEkLO2R0X8CqJTAomrzaggYuzgl1I8LoZgrEQe/5oPBx+VD 14anMJLQkZGUjw+GmwVj0eNEIihxlsZSTyEYRs5bUu7kiaD2q64F7lceAcPB sv7YgQhyLvKXo0wMAtGsA5YgbVEkVXIUK7j7EJhVt/C9icUQ5XmrwF/VgTCU Mlpw5o4Y4hEX5g1mCYT+9i7h+TYxFH33QUVaaABUpTcmEKeKo2cbzyt0Dfzh nJDM71xiCbQ20WW82fAA16/+Sxe9L4G6N3KvUvI/AIHzu/Kb9lfQhC6p+jCp H9C5llTF/LqCyHj5WkP87kOhZCrxoaMkcqXS5ilfuQcSknLxqo+k0AZNpHVu vy8oiXL3f6SRRpeUkj7aafjCROtUBXWxNJrxnx0t/eIDiscyhWvbMkiavbJ9 osobsM6P4i5mXUUXZd+If5XwBjz2jyOt+rLIrJ+q+krFXRg2Uugl/CmHeul6 kus/ekHhfrtCeq48Uuc93/pTyguoq/Fl4x4ooNkQ5ZrAOk9wyL714JQTIZ40 ueY/iR5QkU45ZJeJ0E1yH/W3Be6wcSfk+g82RTRgJR4XXO8GhDOqjIUFimjo pkNX8KArvEygzreWVEIf1tmuF/12gfiDVLO7nUpI7DkyJaBxgURSvu92zsrI bV/GNULCGY4py7xUP6sg3qLlN/yhjiBIUfM07IEqItS+e+bmeweglCQLVJdX QzT3lH8VTtrDjlDAvCPmGkpj46RUorYHx+CYg87Fa+gzXoc307U78JYUXff7 cR0Z8lAziQfbQZOH91hEmzri06BiS6izBVq3B57bvzTRs7lRE0G4DYadzzJj /t5AuckuDj3xNnBs7ehVzHkTpRQmtxkuWsP8YrP5qIU2kjafDGgGa4jrYhVf MNRBY9cPlaQkrUD43dZ/lWS66JVlzNyX35awJFQitd6mi2QOdJ6KVFrAYOZy ZGOiHlKmiTn/9KE5rm81nH7iqY+aeBw6ujTNoNT4Sn2LhQEiv/ARi2E3hWdf bP5JmRsiy08EWepHxuASQqze62aEQjqoomNHjaCPX/hsZ7Ixqn+ZJTL32RCa 3zaWfBw2QRbDn9R0Sgzg+NM4tZ+kGerbDZqdzNIHK8vV+74V5kjmr/vD1FQ9 yPFhFkrUt0QJP12Pw1N0QYewS/cWsxWS/u5U9TFDB5YpL+5RRVgj76+9hKY6 2qA0bsmCzbBB44uzjjveWuBOw9+s23UbOcjyu+vkacK2nMFtBXY7RJ3mfj5y Rh1IStpLsWl3UMWnhy1V/NeBm9MyikLRAQlW40sehKiB8tND8bELTsjNSLbZ YVEFyj7bRPVLuqC2NtcAHlNl+IRHWfMgzQ0xa/Vo6w0rwtHjXWFafk/kSCh4 jfoOAtGFYP+dei9UVXfiSflPHqZcBA/N4nGdV38aa622LLjNi4swffRFDkuc 0gF10jCmpUEQLeOHav8dLRSpSgK/X1u+g2wAUh4lb/qwKg5Tgj/v3B0PQkQh 0eN/SkUB/Fk/3HzzGOm+YFaeZROG+q0DkW8OYWjFQn7kGis/uOgRlb2fe4qa 8C/JXTW7BKdyfyM0bGOQ9n+igfsDXPD2Zc8tFoF4dBptPjf/nB3aMxN/6son oWWB3fsiTMzwKhSj8pUgHV2ljVT99vIchJltH/h256BblMI9I/lUoCW5Uxz+ 5i1qmjB6fhxGBthLaPKxRjnaDGn6SbCGB3ciRw3KpBoQeyOWsJ/jjwLdLtMU z4VuNPl6c6zn4oJCJIlih1HjAsJkHK0fBPYomBtMXhSL3USy7TzmciJtCv8H wEf1Nw== "]], LineBox[CompressedData[" 1:eJwVlmc8FXwfh41DmYm4rcKRzCIjIn7/Dkpk3giVlU10IllH5qFkl5mdTeVk RRGqg0LcOmVESEf2lv30vPh+rjfXq+vVV8Tey8SRjoaG5uvf/Z/d0hqJAy4L 6CX71Js2abJGbb3lmx3JdyjJnp+n+vOCBp/46f2pqFr0j5JqNd5kWyPwPr5z eKICCbhxOCTkY8DUTSAmTeIpYrDeK6HrYoXRI5FWmh+z0BE6VdI8Kxc8mk9x 0F5JQV05qwrFGrxQumXVdkQjCT0QYdhuXj8KGgbDmUdexSLv1vGGcF4ssOM3 WapJ0UjRMd941kcMKvRZqheGItC2Tb/6Hrsk5A9NDVYNhaIAxMSlOykDPXcl +Efng9FsyA81XKAc7L9sQG/ZA5Gb0zDz21x5EHFnV3MYvYum7nLfeTSuCLFD wRKzKneQrBtWFyFlUB5dKzjbdxvNikkETC2cBdrAEd7O7lvoRUNJ5Jnmc0Dv 9/44XtETUR9K15ZUAkx+KFBHuu6oiD1gxf76echJXJt3Jrsg/yIsjn0FBziB AOnEdCeUlso3mJuqBeT8o5/0SQ5Ik2hoNKV7AYK7V22wjDcQU9HOXDWrDuCt 3m/8F2OHfrDO3RwYvgR7ZT64STVb9PtFZ6tUox6Qjh087yZsjYynRn7eK9aH YYYGP7cD11D0FFdRVZ4h9HhbKDsct0KOj7K0u/qNQJbp4zGjWxYoy/CXacyo MZRf3vPRnDRHTl2N72iXTGBkRz9fLdgMDacQMMJMptCqG12+esYUqbb+xlLE zWDkBCN/O8u/KIT3VNsRfXMITU90S9o0RlbXWbi6/K7AWoPpo6xdI/Qnbapl scwCbGwuJ8ZzGyEO81d/8BOWMK+6KlYfbIDW2bJNNLFX4dTjEAJ++TIieEtS rjhfg/1h6sSJcD3UpaaykE+6DgwayyZHTumim9F6rrwYGyDdWQlsX9RB7mwy SpSTtqB47ZwHX8dFhET3a0uHbeGmcPUmf80FVMCSIBwaZwe7KLiY56U20pf7 tWeuaQ/ms5ytES1a6KluI/2JbXso0MtZsmXWRFopw6sZ3g4wzrb3xg+HQ+68 1Nkzio4QlslkaUA8j2i9doXqNxzBcT62b6sfISRgNMrX5ASVzeeZKk8iFO80 mnolyhlan53yNxACBI9Mej3+dYHx40rD/qvqSDN+TMYM6wpGXQleJV1qSDd7 TSeu3Q08JGt4onpUUeOhoVZKjjvIR3npGIycRffZh3vG/D3g/kkqwm6qoC3M cFi5+U04V7aidlZIBXW8oqeXO+MJGF9y7YChMnJkYY5x5/WC/tfGExYPzqCY NKKL1a4XGIaphtznV0JcOm6DedRb8M78k7SolyLaO90TI2CNhy5S/2/Xjwro F/XKEPULHvxctNfPpssjQnZKPr7jNviGxnKsMckjMUPDfmltbzBJCfRvDjmN krob/5Fv9QZH0RJXuXtyqOrwoVTBtz7A/rtQ/RyjHDr2Pe/9LroDtOtWorjj ssgld3T6eNsd+OfG+Nq0599gL7214aMvXLBTMh7JlUHYCJZcWeO74C5j3ls2 KI1iw0PUbL/dhZlyDFnLQQoxbgg0B037wVxhsz+1SRL5Zlt9wnr4w0bXsp+4 kCTqIig5DM37g3FWx6XwBXE0+IHIELIRAAssmGxJG3E0MWxP60YIBBua/b7Q /06gYzYED3tMECz4Ks4QOsTQjaarWQHcBIgkijm06YohtTiz22k5BEhTUUjZ 7TmOBM5T+t9KBcMXtqSeiklRNEMeijypdQ+C5mlt5s5i0WJ7auKzlhBgZ1LX bqaIoBKRvZlB5lAQsiSye/mKILtzppvRpqEwJ4ir3nojjHCDF+65/A6F1wkt C/mOwgiblXc8XTEMTKQ6SloOCaPLmOuUSyFhkBUrk3yIcgwFS7uSJfnCYe6Q ZPFBlWOoZVxDw8IpHLjJ8gc1s4+idYY7cgzV4aApvK/601cQqTEKYQaMIqBb 1iSb1YwfBclJ8FknREKmDkuu8hc+VKz1gdN3LBIiLl0hZ1rwoQy58DwmBSLg S7EST114EfkXXiT/KxGgc9WZppwHtUzPWMefiIbmdmZ3ZRwP4iegyoDAaCig qyJND3Ej6WXLlZHP0RDS8EfDj4cbHSq0kjlMuA+d+nykM0VcCLc8tcg19ACi H/QlGxtyIatM18dNCjGQECT/0XqLE2XdaKeMPowBM3qnBh5zTqRy9wJ3JHoI Yd//5SFiDyPnZvEtk8pYELRMP/1qgANtKL/aKGOKg1usmxi/JA4kb/re565T HHg/6E6/eZADDdphFj1E4sFn0bxCjZkdmT3ZSrUzSIDYELqhqEQ2xEAmyboR EoDZ4mGPsgAbspX7MFhakQCVpfmdEUqsyImxj6abJRGCWLK5VSOYkaavXmPR p0S4IR7YfuAoM8KiMT7H3USYLi+vbK9jQoS1whbLU0kwWZ9ctLJ8EE0Z0cZP JiSB+pKg2fPgA6iZU6sowiIZkqJ7RvrFDiCfmYnPyw+SYR1PKHzczYiUfokk p7xJBpY7qr2txxlROOPow2DRR5BG84jaM45BTHqnZbuXHoHkyaXAbXcMqrfP eWap8xi2Gzl3X5vRo02LS4n7nCnApTTnnZtNh4okxFWupaXAc9v8uMirdIjo qMIl0J0CZU8GhqP56JCt1KIbOyYVagdiG3rTaNH1zefmSbdSoQ93sLezgAbl KXDlsV1Og7MaPOV7LjToM+O1H57habAz931VVJYG3SJR5DGNaTBmVapoHbQP ZymjE51S6UA9Y1YZ3bULMxc19MmsGWCxeK5/z3EXpqdctsjaGbDolHbwEM0u 1B/95LoTnAEG1Xym31V2IE9M0pNmOQNeWLaaWL3eAnPbNTWfwUxY8RwVf4H5 AxLO9dUMNVlQ7UVuCK/YgMfy2Ac261mgs+zF/cpsA3Z3VqhrytlgqpLNcbJi HRKEchW/NWaD0kIgxz2XNWh2HNm6/SEHaKmSD5/yr0FlB2fQN0wuqFNOTm10 rcJv8bqmxydyoWN8XfKwyiqEzY1xu7vlgtRkSpk33wr0tUhcDF3JBW4uiR2P /mXoptDncPLkwZ5Pz1XXhGXg6Txj2KqSB4RioqgFyzIsC2h1BAXnwWWjwrFY 1iVgfKZeYc2SD0sPBzIs8fMwKqNVOCRVAOmDdOgJ/TywmB9QNjMsAP9hKRv7 1DnYTX4bN+ddACfxmzjrtlkw+2T/KuBNAVzt+PzHVmYG8E3digdNnsJiHecr 5s5p8JpulfG/+xSK0aVpBtdpoAw16TBlPQWjoRDMYNlvYMqIOR419RQqqdzn 7dSnoDRxhnU7pBDYVu0ouz+p4PnTqM2puBAUti0ftMRSwemyIP9yVyFMULKF ysd/gbrdr0VngSKwlji9G5k+CSetla366ooAwneaMpUnoLPH83X1ejGwHrMI uLE6Dvp5TwY8BUugsJRBZ7lqHOp7tGq0cSXQeE/zhaXsOKi4R9HpxpWAcPSb RDqFMZiN1ox9Ll4Ksm9vvlitHQH/2DwOBtsyoCIt15kLI9Bd+HUsJaoMxOWs EoW+fYfZAk7hi8/LYM5F7cepvWEoP7HvSL9fBnzSt/R8LIYAMnp653PKAcdQ ziKJ+wYIFxxbRa2AABPmW1w/v4JiqOVhtcOVkHWlhrRL/ArPTpxxmVSthOSj iRHveigwqeB3MSuuEt5+LxVu8fgCId3POHKUn8ET7ebCrt4+YLsQFcmb8Bys Bb6Lnw/rA35szmFy43M4mO69FKHQB/vViv+lU59DXk/G/u20XiCuEgkUoReQ a/CblO/+GW7/2Sps93sBNwjqHP5un0CljE7z0qkq8FcjtAf+9xHWr/vq0elU QXImp7KExkdwCHaa7Lergr2fWenOvJ1QnbDVQ37819cSkKOOkoGQrzQ3s1cF Hli7iiwzMtgZiP/04yMB+ZXxfN+nD2BUT5stokgCjmnR8cLm98B0qzyF7EqC 0+X9tU61bWD7ubDOk0KC6A7/7RjlNsjMutw/vkSC/uUkNeaGVqBfVXa8w/YS HmQbi9O0tcDYfoPrhtZLaNvxwte0N8PpL9waATUv4d164Gx8az0QPoRvjjyp hpVDr5dFZuvgyO3DWM+GasjlMpCZ+qcOTqgvnhP9Vg2GRGLT2p0akLrBUk57 pAZkA588sdIjgWOoHF9ebA1ELxk29UVWAf5LszO+ogb2NejLdFtf/P1t89Me H2tgZyl7Ahf2DJytM1OnmGqhdaP6wv3yEhAV2ZFiul8LGYIyBRJQDKEbl9Mu ldZCpddVfTdKIQjWEDcbO2rh38U1mtJDBbDjJ0hUZamDpwnXNb9eyQTTPjHN 1wl1UFxF5J6qTQOhq+cel5LqQDiyQSBVMAWKc+496+2vA8F9ne3Q7QS4J13l 8ZWvHlTeiajI/n4IVllRn+rO1UN+FM32LjUKxP2r3L7Z1ENspoep3koYTOYm kFXD6yF4JL52kjsI4nFjt38U1cP/APE0WKs= "]]}, Annotation[#, "Charting`Private`Tag$4175642#1"]& ], TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], LineBox[CompressedData[" 1:eJw113c4F973AHAjK96S7J2VpBChwrnZO1tGoowiPvbOLpRkVfaMjBRl75Gs 7L333kRWbz/fP373n/u8nnue+8e9557z3MuP/9M0x8PBwWnDxcH53/z/I6Qy bgrzCoO+WtoMXcFeAc/GERayM6fziA7xYEWhLyF+mPDMNIXz08nYe8DmNkmB fYlBu4SPBvmw8rBFkPNz+8wz8ja/K/6pwpANzt70mX+aeqZkYjXAUn05tePM 9yXtR+yw2nCl6XlbyZkFeMj6xLF68M4s2j7xzJ5vUft5rAHgCVtH+/xvfxt8 wtF/D6Gy7J+Q8ZmTRbgmB7xNoGtHX/32md/tEMTXYU2BWufdMsWZezyTB/K8 nwBD59fTuUAMKu1aL4jHmgF9c2tk0Zlz+eObvLCW0H1DUUDlzPk5f+7ZeT+D r42DdyjP7Dv/d9QcawVZ1yvq+wIwqH12f0MPawN/N5aU7p95bWP7s7b3f1Ai ZK1MdOYveUo4vD52IML2vaXCH4N2Nm2Cr5/aw9AGBjGcmZxZKlCwxgFCPS3E fvphEMmvzQuiPo4weY70m9WZ8yOnaeRPnYDkZSdtni8G6dz0Tfc6dYWoiMpR Ih8MSjHyngircYP7VNOt770xaJXO9Wq6jzt8jMm8zXbm6nuO/D2nHnBtb+QD 7wsMEqVxqVTG8Ybg3Uwdak8MuvqeU8yu1hvy7gTJB3lgUKU+lcxHXx9wp64o 33M/i2dwynTx9YVRX0ruZjcMKujetB/H8YdQj0BaaRcMyp4J7j4y8Yd912OG WGcMeqb1ooy+zh8UmvpTV50waCktUcrILwCk2gbvvHLEIPvEEYY93Jeg5mGQ FmGHQd2p3ete+MHAY/MoDNcKg8YxnFUd1sGQlnO1lewZBvEVN2+z9wVDbc+5 3UtPMWi/mqew51MIqGUPYmgsMGhFT7NKXe4N2KnUOy+bnt1vS/JcZ0gYuBkW BbQ/wCDe8JQxlZ0wyMAQdnzUw6AQppGJ3wbvwCh2B2Osi0GvNbKpV6nDgUuN 0H5CC4PIjogDiBbDYeyibv9XNQwSd6a0igiJhPrx4cwwaQxqqVHLWKmKBEfa 4w90Uhi0+TGxVHYnEoIXhIKSEAb9uSjrhWsYBSSXO6ySJDAoLieRJJwvGhjI xbVsRTFo7qSgHdP1HvBx57Tu82LQAwWWnHy6WKC/9V87IwaDpkcnVHsUY+G5 kVSUAikGnXTIs+57xAI7bfCuPQkGbedrGsmMx0LLu4BX5QQYRHdJoPQ4NQ7e hAqQcWDJ0KiAQe3wtQTov+OjpLlBhuZyB/3s7yVDHEmBO/9vMvRg+p3UtEMy nPswz73dQob4fspWan1KBr+YoZBvTWSI/4TDJQU/BQrCy53YG8gQ7h+Kh0kW KVC8e3AwVUaGCvXm9yb4UmFTrCuqLpMMXd8amPMvT4N6YkpaOm8y9NKaL3S9 Jw06BZtLfDzJ0KLo9i/91TSY8SRVm3MjQ+FZyqciTOngXKj96JMjGVLZ2C4+ 550OKaxrgjjPyJCG9z+2zXufAOvj6n9FiwxNCchvk7dlwEmDn6k4Fxmqu6FU /WcmCzr210eqa0lR8LsD4e1/WZDD7G7BWUWKtFhCr23RZYMaXWLhqzJSRADb 6Xtq2eBTxJ187zspurPeQslacbZu0TASnk6K/CK0nDaicmCAYtfww0tSJKs9 3Rsl/wXS0p9IKsqTInOJiKSUkm8gWz+R9q3uPMIOGprRcvwAIxWb3cMcEmTO G2tp0lUMGe/l1QkfEKO5m9WKNVHl8GdR+U3HOiHKoVon+YCqgWb9CWdZMAFa UyWQn7pdB/TBBrpkB/iIkYf1s6JaA/g/T6/s8cRDz8tsl4k8GiGuHV+sixAX hVjNFhfiNoMfjU2l7wYW9HA3ShPftYJLulGNOu0JjN7npR+PbocoHyqCZ6yH kKecE0tg0wVXRV8sfHuwD1vnDEkcHLsgynyiJFFtH8qn5PCn3btA7DVj2VuZ fWjfYkn89aoLpJjj1JwE9oEtRDMhP6ULvP57MW5IvA8dhletcPu74EHOiuz7 0j1Qe4qfmQ7dMOdXPVXMsAf+7b+cDZl7IDqFvmJifhd08LwkqLh6QDzbaCd8 dBd6bdfiu/h6gJJOaFe2exeq2HJ4tMV7QP9FpnZp5S780FvtfWXYA0uPC3Kr o3Yh0HwMkxjXA/IcImqaUrugzqAYlcbYCxfWWyXiUnegPxCnrPlqH5yfTFTs fLoNrbNPdVYF+8Awe8dr7NE2ONnmt1680wcJJwGwprsNB02XVayU+sCCssPx kuw2eHEz4CpZ94Hfr5U038vboCx7sP0rrw/MCQstB0a2QPTkTmj7rX4g/0pT Z39/C8xXOgrbNQeAkH3pxrrvBqALHC2NRgMQro+7vGW7AfjZ+ZYNFgMQy+D4 +8hoA9QupOl1egzAp+FNisu3N+Buh1wEb/oA0MGvuJLtdbDyu72z82cAcon6 sWRm69C2Kjq1lTAIG9e7zhmqrgHtvq39p8+DwDSbE8gpvgZaDztuG38fBNJa F5E/vGtAMaUTNNc0CD2+dgKZxGvAuiJWLr47CCY6ln7aP1fhihW2gk15CBJ5 SPNGxFdhTmIweuZ0CBYalV3f3lwBDfJzNEKkw6C/d2/xGfsKHB+d6rymGQb1 i33qKpQrsC9IyKd6fRhqG1woOHaWYbTabJ7TcBg0vImA7vsytLuQq7OXDgNJ Zr7kZaFlONf8vCnQdQTub7xL/XJ7Cfoq9TjLA0aAmooNK8+7BJEX85j+vjvz hy9qywxL0H5s9y8oawTuPk1rlThZhMWgR5qEIyOQvEDIfaNmERbIWHG9JEeh iUiUm09uEUKUmYQCMGNAyKgzGfdgAaTq0NAg/Riwk0dEbSotwCrn32Mh7jEo Obj7XFFiAV4Ju43iwRhs99uEkLEvAB7tvYZjuzFwF9572rU6D4bXZD6YDIzB I28iSzXfeVCKFee59nkc0lX8/djy5oCgIpHAu3Ac8vCxWLqUOeD3aNQZrhsH FZMPUTRRc/B3zOm/7LFx6McVwbnsPgdk4Sv2+ZQTUEX1bdhBdg4GW/3YTX0n 4EFCNsv5yVkIJdNcff14EnbJm1XxaWbhzdXRn8IOk1BD+vlbJPEslLgejy37 TULhhYDDK8czEGX26Mg5dRIed0pKmU3NgKHURXna6Ulg5J6J5MidAaKopEwZ wSmYnr//qvLeDKiEFOHIlEwBufHuNU3HabjpTOE6XDMFDVOkZIkW0/CZtfOJ c/MUvN+LKl/Xn4YN0r2q2uEpWO3w8UlB0+D5X55s5skURBvYhCuTT8P2kZHq D+lp+ME6RlySMwUxC42bZIPTwMuws1HWOQlvs9o+Tk5OQ58JQYZu2SQk/lCp L12ahtC/+fL/0iYhwTWpwvtoGi44+qo8dZmEE+JuUgOWGVgMDr5SxDwJnNvW n7UtZ+D97egKHtsJyGMpuBmOnYHc9Ohpa5pxwLZHbN3737ngehBI446DekQV 3/HFWTBQk5jmWBuDOOpXUoFcsyCe5FWGVz8GzV8+DG2rzIK7jVelsO0YZKiH +0glzgJmjP7V0+ZRkEoqIj+WngPl7NRavMAR+M61bOemNgc6mpLF9nZneanx /Cr2wRyMzij/XjYaAR2Pzz/ZbecgULdVc+/WCPyWYCzvjpmDccP4GPelYRDi uhPYuTkHL+24fW7dHwYz8ie70Z/moVOAR8WWYwhE5w+VBfPn4VCfZf4fxRA4 JZhrDVbMA9ujCPMP2EFoYlFNQr3zIFiZRD0zPAgLxI7OIXgL4EZIeDobPgiZ Dkdb2McLMJiiaRCOMwjUXYE+vdcWAb8j45r3Qj+QuE8oD95eBO6Ck+Gvvf3A lMj2fEl+EfrkEiuXa/thvS9p56bZIjQV4VB7x/fDENU7buvERcA9Ielg0+gH 96wFSnfKJeAXfyGuUt0HvxgZc2KJlsHg9fXaqym9UDfPHmhLuwzxiY5CCWG9 UN40paB1ZRku73e+oXvRCynfCjdV5JdhE7ds+oZBL8Sc71XAD16Gp4w5o91U vcDlj7WJIFuBnWKK7o03PbClUea1yL4Kff6R6w5+3RByE/9zkdAq0Eb48gg7 dEPyleHAaJlVcM50Kv/3uBuS/FUqAi1WwTWFZDRbphsG/QiqBXNXIdriQp85 cTcYfC4i7BM9q3ty9e1WEV1gZp2zs2O8DlFFCRzCWp3wqp4vnsRhHfBeClz/ KdIJCcQftIVfrsOnXd2HZgydUP+k1PFX7jowzyuw9U93gB7WoWHqcB0K2TnL XO07oFpwy4EkbgPyxZ+4VUW1w31Mby7N6iYImwVxXZ9rA4rUxaePcbdAjyV3 wr+pDV64FLXKY7ZA1qRqYyWnDUywBBMSXFsgr1b0b9u+DXyjAwlHdLZAUp9a YhSnDaoqo4WWy7agYCzCnpq9FQKNYpULfm2Bh0IfQRhhK6gKFOmH9G5Brzk2 hm61BTLWTVufrW+ByyVsxpPCFsi/jK5tnvUtKRbV2i75FvCiYRXjDtuGmdVw djyHZsiapUg+jt+Gv4SBF2L0miEld3t2Jnsb1rLp00GiGaKrn71ZbNwGtQ3q rAbiZgiRqPn3G7sN1n1fw5JSmoBSmW+S22kHWkVIDuN6f53Vr/p9RttduJ9l /iFIrhHyLlnkcnvvQs9qXnfpjUao55YVlA/bBf7IUfMjmkYIf5io3/p1FxRz 8AK/Lv6ENQrmnvGtXfAQUyQYCfkJ6ylPnEzc/4DW56DXt7sbAMgdl8Ze/wEZ nqJpm/IG8BXRwXdI+APRyYqS39Mb4CIf0e5CzR/Q6O/YsXJpgNdeQuK4xHvw 36B1STxTA8jYNolxJe5BYtMo2751PcgSe6vK5O9B2UrKQx7derj+0sTQp2EP +P+EqFih+rM6XaOktLIHtJm4fMzU9RAhbbFz+/Y+qL8TMJGsqYN6aQnl4rF9 uNdISmVFUwd2C/cE9+8eAFbYdiEwpQbk0+X5/TUOILTGo9zGswZ4d85tXbc8 gNWpT9V2ujUQScBZPx95ALoX/95qJKuB6SEe0onVA4g4L/c306Ma6l9GJ9/4 dAhJhkdecoZVoM70WGqw4hDe4eA+7xCtglQ+cZZPvYcQk85CaEdVBes9q2W5 +EdgofyCAaejEiQHUiU9zY9gLPnSmKZUJVwl/KpuJnAMy8fKwRX8FSAmLIN1 UToGfpNZhRFMxVm+rPP/MDuGpiBfAcq1clj773dUduxZfM+aVntWOfS2jf6K ITiBpI58AjuOclCoYa4cnD+B6OGfy4+YyyBjrqmkvRULKcxX4vI5SmDCTdQ1 ch0LKueGs5TxSuAB4xenGIpTmGEpoMOfLgbqV2HDVnqnUBJSuPMrqRikSq3j xJdOISw61i6VsRi4JwR449/gICOjnaQYhiKoVaSWvJmMgxS+O+38OSoEEK4d 3/yOg/4dBuHbjBbCcOXBs6kRHHTy++et/IRCsB7IyU3jw0VCZi3VfmyF4JFh mUIxhIusm4feKFz/AbFslr6yG7go1CXjyPDCD7Cnj1TMOoeH2JqiXr7e/g5X SWVzDwXxkKpFa5NY8Xe4o1+QPhKGh3K9RuaH0Hcg8+6duqSJjx6mOPawGBaA vtbE0DNrfFSiekVvUrIAYpxeHu0H4iMv6q0H5ewF0FBVY1BWio/Yn+t9qVnJ B7/SWZ9t9nPIk1LAh9ArHyKN5ic68QiQlRF70IHcNxD46H56xEyA9lBikgL1 N6jipjUzuU2Ajn5ndDXOfgXTu+4/xuwI0JClqay831fgbPKg+jZDgAJog8vM qvMgiFhOy7SHEF0OLWQ8QV8g83G4cPA2IeLmTAqgofwCZbU9IXsURMjd5QbZ w9lc0M3XJfmsToSIumzv2b7KBS+jEnvvXiLEcfl7aHJHDkzuZc/1LhIjy4hO MQHLbFif7p3qJiVBT33CXQjuZsPY/eUNLgESlKG/PklwIRvYNxkq+9xJUHP9 +kFQSRZEpZEH2Vw8j14VGCW+O58F2wYXWVI0SRHN/U+hyaWZ0OiqzB3udfbP yjhwYXuXCaXnxF6vZJKi2WaRxDbzM5PySs+dkKIdYZXHKZcyITo8FpfmKxmq FOO7KWWfAdKZyGaCmxy5zMvSGgh/gjtV3V1ieuRoUAvP/y75J7ASXKO7FEyO DMM+pskspUMeg1a+2io5+v2RrLM9IR1Okb4ebekFJM1VZlBOlA7H9WW4mWsX 0CRrzuHgTBo0Z0rSzFBQoJ8F0TNM1WngTt1dPypHgX48mjBick4DZsaoC0bF FEiX3cx7ay4VlmLrBXB6KZBCG/WBXF0qaPdVsu5tUqDsHXeNn4mp0HBKZDDA exEVqhTaCumlQua2qXTcp4tobmR5drotBdpO6G8aZ1Oi96ns+UtuyaB7h8W6 oI0S0bJOPDIXSQaTm12Gzzcoke2SoMCNP0mQYPlZgO3WJdRNv/k73S4JiqSO pAqaLqEBEL3JZJMIIbXVMY7rl9Axb8Plv3yJUHCt7taXS1SouJXqKfN6Aji1 6KgFm1Kh0seq75VtE8DT/tc3bnxqtK4UXHHNKR7MlDq+9PNRIxx+uRxjkXiI mrEQJNOjRm7jOLxjB3GQOjlkTJ9HjWqXWjyKveMgzQNH5OgRDWrvxZTPv42F vbAGZtFZWuQllZRHX/4RJqXukpxjpEO5LE82L3h9BGK+6zyZWnTofd64mJHk R8Co8OV6NtEhbJjo8/2GD5C0I0uzUUaPKp19GG/0vofgD9o3Fg7o0byksGn3 x/cQkJ6KPyLGgJzNz/9sMXoPKZ2hpa0VDMif659N2WI0sMscZtp3MKKj8Emh CNxoCNN5iFmiZkJCIj+kRpqjgPYv678QYyYUpRr1xjU8CkZ0rxdY7zKh4ThV o69sUXD63FvUjo8Fuap37ZPIRkJt92tHUm8WRPJXqWebPBIymX4xknezIMaC DbLrwxGAb6+A99yTFUn/GxZOtI0ANyftzzL2bOitlI21aWI4UOCsFN1IYUNB XuaG08/CQUJBz2qnkw2tT3wa+iESDrjVXllMNy+jnujOqylp76Ctwq46GZcd mRssZzRShcG3PX2uQ1F2NOhH1b/0/S1U1FWPGP3HjpD9ftg3jbfQsK7q+Wia HTnb6k5zR4SCw1sxHa5eDhQ+WN1SQvsGMiZwHNIpOZF6lzP1TvlrmFD6d9la ixPtp0k4dBi/BnFnWu2TIU70fVo7+3lWCHixhDSK73EhXyIzvjvSwTBS587P hLjRl+ESJt/VIPibwPojJpQb7QSZVllEB4HLPrjG8V5Bnq62ltRLr2DDeoJJ xIsHjTmuje9+eAkXXUZkLDp50DnjBP1axZfwVLq4zJjzKlJePkmi/RcIo9f7 miZ6r6InBxrnLcwDz/rb3Wb/G7xIcBxn14ghECRj5zavvOFFv9yHeCc6A0Dn aCSvUOkacuSYu+gjHgAXesiVqvKuoS+bl4KSdv3hkbAcD8klPlSXbjkon+sP rCU0bIVzfOhXI3+cKJM/JNV82w3IvIHC/F8UB5/zgyqnX5hOZn5kmXSe4k+N L+yvZDwkiOFHS57sDkuevmAj/j7qt5IAqhEonBxc8YHb7VMXP4QKIIX39mV7 5j7QP9ddeb5LAGUnKC1zznjD6+P6VkEjQXT5K0tC8fgLuKq2t4+fIXjWn1Rb 6R6+gD/ctHu1m4KIpvh8xptxL5Cg2Lkt/eYmCqa3bEib9oTv085XwseEEK3X YVLkvjssdxByj4oIo2TpWU4Xb3fQ7evML40SRmn8byWfEbmDBkVne5TOLURf zlT+gskNnHtnxprLbyFZGqaFpCxXoLvnGn/KLoISr7Ld6bzlCviGTA7bJyIo co/o1EjLBdS/cJlu2YoiUnklufJZZ3DSGpxzmxNFphyPH3M7OwNF50fRhhEx NPWVaog33gkICKQK8Q7voKCgAZ3ZXQc4vwgviULvIu3BjL6iUAcYNp1UJucU Rxxpbf0fuB3ArXnRgtpMAokVURoGPrQHIsfLHTFkkmfvI3wm/MgOdu6Vj3FW SCLK8ru7uTF2QCZwuttIjVDs17Rkxvz/wMjRaoTQFSGuDaEn2Tu2EL57U353 FKHxvtlwbVFb8Ln+9DS64B5ao+Ivx296DlUlDG1F7FJIbpyZlJjyOXiLVuTo x0gh420ee95H1lBMJ5fNFymNMP7RFq2nz2A3zW5SnV0GnWe3pJuWeQajY+ld 1GUyaJyAntol9CmUELOTLOrKotiGnl8hA5YQoVrUI3Yii1DZg1QmDku4hNt9 KSRbDqk9fcrO72ABim7CiiaP5NE8IWNPXYM5qNglcOIuKiAHpwtUVrZmQF5C cpexXBEp36TZ8G16AsGsOzQmMUqI+9/tIAaOJyA+nhKS4q+MbPQOUkX9HkPL X3psrbsKOrU6xQxPm4Kap3NlhbcqwlDWZ53KmEKJMNuL9Eg1JPmY2vhLjgkI dvlEEruooz+T96+IHRuD3pPyzKsMGqhzScyxvv8hTDqlpfo1ayDm2wJhpkVG UKmp8HvbTxPF20vt0cYZgvXEhpOTvBZi34tTXgowgJspzA/ZGLRR7V8vo34H fRh6clrCd6yNeBYfM89YPIDHL2b79lZ1UDyeQv5FEz1QEF/7iLehi2T82Cws jXUhJrtq5Tz+A5Qo8rJuwVQH3pR0PTjl00cFUjHuUVba8IjXn5bS1gCx8l59 Ye+mBeVRAy11zYbI6z3rfuAbTRAwUjdbgIdo6lBYtSddA7J2Q7/VDhijvXzC G8Z16kB2TfPlKwUTpPeHhtaw+T6QMMQwv71tighZdxTf0KnBu27anB30GLWz atA8cFSBF8SHBEmmT9DmJrVq+5AStGcnpu4mmaHQjADPvwqK0GFSS7R1Yo56 xxcPZxvkIcvkIb+iryUijvxznKIoB7NPwvJibjxDi06YdIkRGUipDI6JILdG hA+HKVudpcHGruFQlscGNY27BesxScECQfANv5f/Ia/TQaeDdgSv7m88ZqW3 R4X4erf8qAHiP5xofEpyQAkFH01fZ4gD3Z0L514ZOaEo2Y+X7qjcAYGfVaLG xi5oP702oI5EDKr7ok13v7shqpV/SzoTt4BDjK9Y28YTrWks7gu0CoGIPn+p faY3ctp46RjRLgiEUuUeJeCHHBsD+l27+WHVvHshIjIA7ekrXfgrygfqGx7z FVav0JNbXBJynTwwN2gRubkbgtzYOjaZYriAhYEJk2QThjbuY6flo9ihufja BWPGSGQSXKxmEMAKn1LcLUy236MMe3aNdAUGINc4+PJaIB5pNYydq3Ojho9u pmEYrVRU1cfqYkVzESYXu0L95jORETHKz1Y8D1V63XE8rd8Q74u/GjX38YEr 47V8S14JmvlHw2UTcSTpoWceTp/bgA6YKsrI/bckCRT481paelGvq7TumyvT kuqRbNc7EjdQluLNp5WjTZIbvx9RQPJflCKtmcbVVSP5f5rnpPU= "]], LineBox[CompressedData[" 1:eJwVkGc4FX4Dhm1SUqGMVCKhhDKSeH5ISMMIGclBMhJCUnYph1BGJDkiMju2 kz0qCSVSomgpMgop2/t/P93Xc93X8+UWs3M3Ps3CxMS0lpmJ6f/8IBVynXbr H1k1zeHHWl+nEfl3IfT1xnay1FRw1u3edw3b8VmLPWb15GxB+7YciymNLO/h sp8sZcSk+5ZYg9Sihs2InaCjQwF5890iSMGQDfpL3ZKPmzLJA3OXXfe7ueGS d18jozWN+H506+RcvRYWvHsf59YmkzaFvk9iqwUQF3q426MzgfS8d9RidxJC ZNO187+lYoklC7/AguAmdLY+j1qqiCar6Dd1jsWIISa1cpzfLIKIPBJtpqhJ gNlETlfh3TWiKlBXXsm7HU83xK+PYr5KGPtYsrxXyiD0JHd5ZX4ICX97HdWy suh8Mply0TeIdCamvfm+Tx6+ESIZObv9SepihpLfhAJaRbdmmLj6EU/GuY+o 3ANhPn53xxW+RC5vD/VnvBJkqL/5Lea8CeXQ01DZEBWkyvt3lsh5keWEc1sb AlVR3fmonCvVk6yO7LenRKnhoGDZvPJ+D8ITHR7Rnq+OOrGzt5rYz5Gr4vmd zR+AQR23XoEeV2J/0ul2xGpNLO8dPxk96Eyu2MwH1yprwSLTfA23pBNRm4oM +uaoDdPridUNsY6Es8rF60vqAfT5sdtwSJ4mp8UUFWn9Ouh9qWO7qs+e5J0J D2CR1MVUG79YY4EdMT9f0v/HWw+V/W+56MkUshTOnH+qVR/HY8fwPtWWvGKi TuyUNoDk07urKO6nyI8E1TO60Yex2XHr5rmnJ4mu8wrH5LkjEOuo4stQtyZn QkX71547hu2PRIyWOy1JrdGQ5BFvQ2wyjbUTvWJBnB/WWa9RMoIoso+cMThB BjKYjfVnjbBajyksQdqcNH8eZP1Vb4y4cdp8hogZuTJFsmciTXA31m76+WZT MpiWkHvS8jgyRPR03BSPk5x+mxyBnaZIUfz8eNsJE8I3d8NLkNkMcRSLqwVU Y1IlqsBh894MiaXGL6rWGpGr7KPGsXEn8MlK/r2hoyEpE+Ls8/SxwERRZmYi 9RjJeLHY5GNpCW3+Fq+eE0fJZqs3Xbe1rEAMbkpxqh4hvyroU+2y1jBZiO39 LnWYbGV22MW/8SRcqjkVzLcbEKk4Ibodjw2oBZvNBw30SXHX/pbFmVO4uGqg WMVDj9hINj1M9bPFn29Kp4JouqSUPc9PacYWFLpFl8jGg0Qw+VVb1SwFK96N 7NrhpEPCqepymf526N937FB69QFioPubMstkj21ymhF1/tpkvOmB/1seBxyS iKWa/dQijavV5XPiHOC7pFOx30aLCHfo3mkXPo3nRisjosw1idhadxFmWUfY 9T/QMflAiHFw77qVDEe8jA4wFXUkRHnDy8vWB85A+OgS7SQviI7ymupWWyd4 LozwT6lrkN36u0u//XbCzBH/1fe81cn6ibWn1EKdEdVg6Bkzo0boYk8oSdku 8Oy56CGoo0aO+b0USFZ3RZG43Q7lpH1kr0KWYkeXK1zU4mTGDVWJ/67msg5W NwQarg2dKttLymdzc27fcwNFaYjXfsteMpSHHeF7z6EoMdTxKpsKqVovqDHo 6Q6a4ubB+gBlspqeqifJ5YESr+UI/3klsvvU80sj5h4Q6HH5l82qRDZwUSwk Zz3AtuaPWXWUIvlyv2ThziFP0BvSyuNEFMnr4wfX303xxAqrq+1jmnuI99hQ mabWeRx/oz5qWaZA6OEVnuzxXqBdUzpBtVAgPUeag1qGvdD7zXK1K5MCCX8W fJyPeONLTfHmflN5cohf74HiuDdeT3lR1dnkyYWanCPcB30gqi7h2uMsR1xD 9YTtUn1Aiat8Uqe6i2zMqo2JN7yAI8L+Fv8eyhL2N/cuuOVewN1oJ4qUsCwp 6KhYeMLmi6WfdbWDK3aSjbJTF0YrfWG6TuqaLJ8McQs8dZFd1g8HHvjOXLkn TQYT59OqIvyglv/+xzsZabJx0ah8eMgPR51X+qw7KkXYpxXdcrMuIc7Ta16r VJJEDC23PtzujzUvzPvGTCTJwOgJXk6qP/JWLDV9nd5G5hvzJ9/99IcFi3nk GbKNuC9YRLfSA8CmcSJiekyc/M7QFBrUCEKsQv4F10Rxcr7epN0gPwjFEYHJ c1ri5DX9QowgTzCY5da6bUnbSnSpp/49vhyMdXZfWDs9xIjm8C6fT1YhuCpa QY5LixH9u0zxIfEhOO82FOv7dQvRNBx2sWkPgY6Fc5O79RYSp5t2tQWheNf4 nL25bhMpmUp0sdh+BYy4GWFDvU3ktUaBbhvlCtyb+8pdukTJ2VXCvr4pV6C0 3JbAPbGR0PYEbvdZdxV7xfOq1+mJkAq+M24szGGwOvfjE/kqTAzOm/nuVP9v h3kY+QcLk0yhmjuRfmF4vkJC/mu9ECnewp/4YzIMyW1yvSwnBAkNFbSVQ9eQ x7myQ5pFkDSkvYzv2nYdHdpuAbMFG8iAg/jNdvvr2BBcI+DEvYE4aFNEzD5d h4pu7TGnboH/+q6Qp/eF47RRfhgjUoBs9xhdWhCmYu/Skbf22gJkD/vQoJ8l FUbhAo655fwkYNOWmOX3VKhGCWqK5PORAnqiu3xfBH5JXHdxPMtHLM3SNo6J RMLysgxbhywfqSHZ/G+tI2Gja4RvJevIo8924TsGIiFOVdxi37aWZDkbr+wb vIH4so+W76TXEGz9bssyH42Dq8Iuc8/ykh93NB9+UI0Bt6eRXRONlwhahU31 XIzBlgaJrQoTqwn1qW2S8r8YJG37G6WTwUP4OWyC6i7dBIdSlEanMQ8pR92u ouSbYJF/Y0xl5SG1XKkDxZU3UXXUgN/WaRXhfjbUPDh3EyKfs/WFsJL80dfV 5/C/haxeF2fKP24S1rc12TvlFnazWa/NLeQmSY2mfyaqb8Hl5JCOjCQ3WTtq bCC0dAt1Xp47nTeuIJ2l8qobQmJxxfBGst5uTrJEOypXTo1D9w3vhbszHKT0 3cctnHlx8OrP4iqs4yCHRTR1TrfFwdRAkIPHkIOcZhwt0+ONR+4HtSItP3bC trJzS05CPMTdZP3XjbCSgl1jcxUPEuDK8yt0RTUr2ZNykv/VswT0Z5kxxUex ktNU95yJoQTE9ITNWuxmJdYRDz6ckL2NtE+GdJdQFrIqPj08v/w2DrZW7GzZ x0zClZitjFsT4aY9qla5hpm0dBlNL/5OxE7mpgGFH0yESSdfsmx9Eix39Ern JzCRp3NnOnTsktDoe0NKYmIZ0YJLb0Znk2Bn1fG4P3sR2wd5qpR3JENgMOJj sf0iKibDDkYZJSMyuCfYfPMi1t0TCx7zTcabyC9R7HcWkL+4OvzFk2QUm1zm piXMQyCw6fGUzV00JHPt0yuaRYTWiivD8SlQGamPeeI7i2OHPR3bq1JQWzPd 801jFgO3teQef0kBf7t8N+erGYjw8rNmy99DSP6V0sS//yC69WLFQNs99HA8 e8RM+QvtPwGvaRw0dDi+WyiX/4s5qRuUaVkaZo43/x5n+guN+cYdRqY0LBmn 5g6kT2P98ENOkQc0jHjl7Y4f/YP7zrzUuS1pGP4aShlImMImjVgVs7o0BITK apa7TeHVeOORjs402FbPFk/qTKFe/kHG4e9puEsJ2pr4bxLch19+MuC5j9cp e6VcT03CTz/D3t7qPowE35xTIROQNhtsHv13HzuWzj98KzoBm47x22Er0+F3 iG/6+fxv7BiW+bN5czqOyCg9T2f8xnYKZZfFwXSoFpFJXuXfEFXdffFDfDqk 5FIzWQLHUZbXqCK6OwMBEol7G7TGkZWbMdeik4H0zII5Lq5xPD0nkelrkYHe 92eKZOPHEGLQHt4dnIFXmTaFacWjoMid9Up+lYE+uUNCgxwjCBhQ3k/cHsD5 catDHusQXIZmXzGyM5HIb2X48f0PpLVytW+sykQ+zf+RXeEP3Llx9kZweyYu xjM8HWz+8ww3Jd3JTJQKO7vL1n6HarKnU4daFjx4rFWkbgyiNspLuu1lFgYb HnW/tP6K+eFKadU/D0G7dOwK0/6v6DJiYgrnyMae+W3n3UW+wvYWT123YDZ8 G/g6WPq+oIh57qObejbYbi6s+W39BZovWsdirmVDnk971M31M+p3dfcnCOZA lFmYTfjUAAxNlW4EquUihRhf9JQcQHxtR8a2Y7ngCs3uVBzvxzTLr5gXdrkY Df0kNx/YDzI7/pwnIhdFewzGXDI/4tKI3t+LPblwPvulgYX9AxzL+4Q+eOdB qHXb5yWu99C8PD6cmZePk3mbU9d+6MGb1Q4Kc7X5WKXlNuFN78HPjlAfg858 yGrpUmXMe3At52Hvt5l89EsUyGrkvoPlfarLpE4Beg/L9Jy3eYu8pKO6XgMF iBwTW2qe68LZ6yMxX3jp0HhsLyzwvgv6JyMDqGJ03FY6SE+s6ELVtYfbZffQ IUlqUtV8urD0J5PmYkZH11blo1OTnTB3YX1Qk0IHxn16X/x7DaIns9GWvxAX L5dRb0p0oCs9cicPrRC8j8bCOrk6oLIweSz7YSFuFjALBvS+QsZ3+xjNwkLU hfyalXR7hfXF5ZbnGgrBz2mywej2S4hcGBkr/FoI1q+3S/3/tQFBKg4924vA mcajbj/Rgm5n798Zj4rAv8fWYt+TFqiomiy/KS+C3qUnrUaJLejfJMHBVlcE yfdLf6DRgp3GjtNWr4rg6nbImifmOUwDbeSmfhVhW+O3EN79zTAYHK6tkS+G T3PrdXHfZ9ie/Mvr7IlipIUYe1+seQpLZtfUtwHFEMobI9P1T6D7jkP0cWEx Ko/VhPLefYLlplyDLEYxck9xNJ/0eQLGXfEDt+r/+5c6L8fLPEF61aEo245i aDlO/XJIbELlYIfVt1/FMPM0m9W61IiasIQXQbtKMNZGdXhvV4+25WHDxZwS HEu8dk+c1ONbg4m5bnEJ3tz9+JwmWo/Z1iMJ0ZUl0I4U17QorsN6tsPF/K0l sBFw1NyUWQuFzxT95ZESyIzxLpxKqYZi94/Kw7KluJPunRDdzsCS6MqkuoJS FBryMxduLMY5uhejKbMMu/fzGrD81+XrxOXMjvwybOuUJtENRdjdrf+9t6QM Ttfaeo3OFGE53sz2R0MZCnY1VQWWFeKCyZmtnz6WIVD5RaEh4xEiAjsOGAqU Y8ufNYaa93PQmL8YIhlajq7SwZreqDQ8W+z1ijSpgNgVgT0c2mkQrE3uybSs wNvlx0KyEzRcDdlQU02pQJbSUaHmllSMyiiyfnKvgPukeOr+qynoN/rosxBZ AW6V1y9kRZMQoH8h4kZTBT69e0uXoMdAv1Q8lEOeAa2fDdTpomgY88QwFyoz ME9V9hAoj8JO/qdTpuoMJAmWPt/XGImv5z3kEg8xEBvxc8eP4evgWjqwMO7A wEEL68uyPsFoO9xRNpXEQLo8931xwSAY8bRpO9AYWJPAHWyoFwCNTwPkdSYD iwJiai10P/hy3b+eVsxA2LMN13qSz8OlRlybv42BcH3vGw59HnCWPqfj1MnA 3+uKe733n8MG3bQyRg8DXo/8e51Nz2Av34GBo4MMrF/HFPNwyB7RmoFJ8SMM BDvPMGyCbTG7SaHu7QQDnrHpgutULbFZSsdEYIaBybvmMeSSCXyoD44bLjHw P7qJ+yc= "]]}, Annotation[#, "Charting`Private`Tag$4175642#2"]& ], TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.560181, 0.691569, 0.194885]], LineBox[CompressedData[" 1:eJw11mc4F+7XAHB7f1NkZa+sZFSUdW6rkpFVRCEjVPYmOyuZUfYWIT/Ze+9S RvYmW3bI6vn+XzznzX19rvPqPudc5zrsxjaaZng4ODjRuDg4/3v/P1RqE2Yw gRi0JhVTFVhCB5XHs/b/c1ESCUdQCQ8QNFTwUWB9uEc3kd0uAoo0TIRkWEvc G2sJLhGHRDpKQmKs7QsCXr1Mk4ZbK5F8+Fh7qPAn57bLgl5Fuv1ZAAYtjjbG MdYpwL0q2ZlDrKuXOJUjSu6AsbCd/Q7Wake23/Hz7gGJhTDfGtZ/S9uk3NJU 4UuZN8E81jsbrCMuyuow7WpIMIb1UZFXekm7BnAw9vL2Yq15JZx4S1YLaM73 27Vhvev/hE6wThvMBs2mq7CuH3C1+FSiA2RHCrxpWNt+mG9ZvvoI/gZG4Udj bdCvfMqbpweuYI/vj3VwupZMQdoT2D7ZsTXGOoOE2miT0RC2vWOm1LFW7iTu jlc2gkj+HlsZrBU/+5RMtz8FlafE+HRYG42RR/q/NoaJGjJ8PKwpiocoeeVM YHcsl2f9NQb9eKVK7VBnClftq6bqsHY6Kpm5UGoOksH3CHSwHtQSDq+xs4Aj eTk+SayvaV+jfiZkCfEzk/YsWNf+26mry3sO6aREjnP+2P+aWai6plsB+XPZ q0ZY8/nxWvMZWkPMDW9XaazHoD5hnMkGSn1fLjFgTe3YHceuYgux/I+v9fph 0DxeJFFkhx3Ujzb4i2L9J3GK3eqyPYR4fdolwbrQXWHyXoA9HLWrB0/5YhDl rpUsibwD6FDPsAZhfT/l16XQekdw8pEg+e6DQa6JzFslZS7wdLy9QdQbg25S mGrFMblCFn3Et30vDCKLbCry9HeF0uc/hquwVq52e66s4QYWnm0rUljfGdtU 2113h5SKxWMxTwwSuMgQ4MrlBa4z3BNH7hh0XajB2zrUC1a/0fUXYn23xq7C bMcLmEdr259izRfbuKHT6A1P/goXtLph583k5l/uQh9IOrtp4eWKredHplOJ e36w1Fec2+SEQXNO0VONnn7AfXMp1AzrrDkunztf/MAzj86aBOvCQFIKHXp/ UPvpI6TsiEEfuBp8vRf94YkAQU6rPXY+G6tqD/wCIHrRwyrIBoM4TtPEY2qD Qf2vjY+KBQZFcHdLdq8Hw7nuvsgRcwwaDUQcuMwhsM7V3GSCtXnCWZKdZwig V6YBLs8wiF1RwP2JzBugpFWJiTHFoIY9Wh3jxlCIKCkYzDLCoH+kLk1X2sKB eZzsAosuBllFC77w+xMOoUmFMuE6GFT3sP3qKHcEPGTIDjt9iEGdfYlkbwIj QDgsO2L0AbbfdosZJ5yRwJtdxhWkhUFlXrc/BS1EAhhBfKUaBtk8TSahtowG csXgaUcFbD8Fo2yGfaJBb9gg+5s8Brnl4bolxUXDx0jq95xYG+P/58zbGQ1X OMQOv8tiEGti0vW7PO/gQdDNRkbAoGJWNuechXeg50j/LOwWBl3l39xcNY6F OySOcn2CGLQ9DQxlhnFgJ7V/eZIag3y/T3oXucXBxLEt028q7D6Kj1woeBcH 74JrGU4uYJB3cmJxbkccRCX+FaA7j0GXbrHbFwjFA0WMS5EsBQaJuGt4LfyL h38K5xQtCDBI54lUJHd6Ijx82XJ8vEuBBJ5GPWNaSoGHN2VaUS8FoqRq/pD6 LwWsZi4q8vygQAn/VSxw0qfCc+/VLYrvFOj29n/jQkqpwGTb0TX4lQIJXqW6 9yA/FZIPanyfdFCgSYJI3zXxNCDsvU+rWE+BKMhx5aZO0kDD+ZaoUz4FmvEt +5gRnAGFcpd0HvtToKIi43Li9Wzgy+LEl2enQGE/oxZs1T4Bd1dBuVYxObra UUsoElgAIqvCSswy5EjeNHAsirwIDNMWBZKLyVBhB9+KVuMXICRYPcfJRYY4 1LQDBl1KYMOJe8YyjBQVskhPMZmUwbrCOivxFAmiePGHoV+qAhp8q1GXEAnC M7dsvqlRBdnHp2x4FsRI80FWS7RdDWTFeF4KjSdC7L6MfAL+dbAk8THyRS8h cil7FF400QBnLfWzRb8JkILlwnVPmia49eWbRz0VAYrqYtC7ad4M+e8Pic1Y 8NHQtbKYkI4WyKn0lZHixUMKs2ZRLtxtQGiuxzMljYtmdIuGomva4Xq2+as4 SRz0wnsmvVKrE/6l3nt7EH4GS5kii+b43cB56U1SbMEJvLpG/5sQ9xsENxhm CacegYl3wC8Zsu/w8lXO7HHpIZR/U+K4J90LwWlSkbxZ++DhzHmNMKYP9Lb6 pHfS9wDnqeEC/3E/RL0rEsPv2gGNxuefh8p+wj0tD4udvi3ILJDvba39CYXW 1/4r7t6CvTyvqvKWn8BsfSfPoWULyIPb1rP7foIlZ3fDQekWYDA84sW/f4LW i6uuJHFbwFlpaxVweRCsrSRTVAy2oN9Ka1AocRC4bjv4dAxtgvPL3Lc2UUOQ 8ZyVZpxyA+QDH+YrxA+BZD3vASHeBnw38DVkScfm22LcRfd+Q1/WUPx00RAY 6O1bRo78hk191/743iGwVAwnNUr/DbekjxW3zw9Dr2+P7P1rv8FLKOhMJXYY visN3XXSXQdDaq7F/s8jQLnBHsKcuwoMtqFz1RUjcNg//DU2fhXw1Tq6PjWN wNQVc9Xzoaswd3PYJWlwBO5ttFFRWK9C6FTi1aHTEVAMd/jOcn0VCpy7KDPu jwLNoaVSceMK2L/kcho6HIWXwQqaiePLkDpR1ZyPPwZMJDI3DHqWIY4snTzk 3Bg0886/5mxYBlr9g1J9rjGQK9m2KctYhqitYxtj9TFwemeTvG+5DDxPrcnO Po0BNWVL3ObhEoRnnecqMxkH0/nBK+30S+DKsFvTaz0OpSzUXJ3kS5BPWWK2 5zYOhd5dht/OFqFHcJ9aO3IcTE50P43/WgTP1Z45p7pxUGUi+0jzZRFKL4aW KDNMgFe3oNqh0iKIm5aEBQ5PgL0GT7qP5wLcvHHRo2J+Apgyq+x6bBcgWCq1 cXtzArg/ZhYwmS7AOxUVXz+SSXjmDM+a7y2A21kyPa3EJERIT5MK0C/Av9OY EcrUSXguLM9sX/ILPjBcM8m0nQIVZptv02vzUL+j633TewpGNZ/X2k3Nw4GH 7YuxsClYwyMsIuqbh5Lomb8K+VPwRlM091b5PLymqZkvX5yCVjsu4lafecDZ ETlgNpoGkssOgy9o56HihqZ649UZ6D53YEGlMAdjmGdXVsVmwNXppJlYfA5I cDXzGWEGTl4kaODwz4GX7oX62PszsCPTRnVMOQeJRvb2S7YzILI7fZ9uYhYC x85ukpfNwJXwBsy64yyI69jS5snPAtVV26cXPs2AbITVeXmVWaCVZlO9nTwD hn4a535pz8LnNmkhr6gZkFNYkJd5Ngs/Bb+O77vNwHRGwaR2yCwcGLj+JVee gYkTOQ2avllwnbze8nZ8GoTdLZSlzOdgBfedK+mLKYjv0en5bTsHN911f9zQ noI5a8ftXPc5IN0dNLGQnoKOkEU9qfA52CZkVp+hnAIRhyOt0bI5GE6YfsVY Ngk1I+Kqf4nmgftxg2ETziRo2BbZy3+Zh5zLHTSTSePwXLfx3fnaeRjc/S9E IWgc8rJ8/yy3zwPVWwflYrtx4P0Q0FwzMQ/FhbzNabfHYU283muN5Bc0SaY1 dG2NwYICzYy/yS8g/9ZPo3Z7DPDMSKs4ORaA/NwKRmR/BArHCl95XV0AjrGy pWezIyDEvES2JLEAciH+jzO/jYCGtOavWa0FoNT/ziacOQIu2nKcvoELYHR9 TidefQS4ZeLlPTYWIGbEKqWgYBg4NNKtaLoXwZeNNGjJcggukr4ljhpdhKx7 akqK2kMQmmffw7ayCCWSTVfyZYYgfCfCw5NkCcbtU0wiqIeARPr0q9DdJQjp lVuuqhsEMj3p3aSvS7ASf4sogXoQAu5QlQzNLwN88DFPahuAdFXmqiv7y+Bq 7aZL8GUAemUuVSeRrIADrd13x6QBMLUzD/kquAICfAsPbBwGAP65BD53W4Fg wxz+r+wD0C/QpzVLswr8rFF5bD79MMrLs29rtgbDNV9JHsn3QWn95EUC9zVo lbey5hLpg5uR1Hul4WvgPWb24YClDxhu0ezZVq6B+9Uc6bKjXjC1aud4hFkH ojV/zvDiXlD4R7TGXbcOD95df1/J2QurtB1xpQPrIBD35hkuVS9sOpEamK2u w2yBF6cmTi+M+O8ZXaX/DUmlYuO01T9g0Xxq6JnTbxAy0KetEfwB2sRpp5Vi G2CzkfKUgP47OP8Jmg6/vwHO3VoE7//0gB+hJ8Vbiw2YEns4ID7QA/Z8qRWn CRuQSsVEXhDeAy+LxNM7cTdBULzSQYeoB05qlQi0hjehyuRjTf3hV4g76X79 oX8L9DG3J3dXuqDEI5OYa34LxBVfZc60d4G2GmX/j90tWDqfKTib2QWyd//F B9Jsw/K9+lxmgy7Ip05vdtfbBroV9YPXA52AK6oo2Lu6DeUYlnmq5g7IGESF r063wUfV8iKkdcDFlyz+aud3QKGFy9nbqwN8rdamTMR2oDhNYlFKsgMKUx5X Pn29A0KkOjfzy9phFK/Dh4p3F6h8FrP0C9sAX+GcmLL0Lsy+d6b+HtYGe27M S0Wau/C32ZDtgVUbEJzefUHotQuyylvC6VfaoNspvGFuaBdakzU2RQpagUOi 0XMvag/E+h7/lfyvBX6YiCD5vD1YtpaOPI5ogSc80r2dzXsg6n/pRq9tCySW swh47O3B0JfD1krRFngIU9ej9P7AYQZhS1BFMxibc74TFt0Hid0JK862JlD3 /97ZoroPrNf8M5pzmqAFl4o1znIfCFP/RTi/aQKfqPjPxBn7cLW2vIhJvQkC nnz7wkh7AOmbKp3GE43QkhZ2a4v8EP7RPsyq3G6AXws3uIivHMIta77YmKoG YJI+47RROYQiid8DCb4NYKHvSCoefgiGPiwOl6ka4E9wybVOmr9w5GzTKHmj HsS/JVFRiR1BfazjxnP/WlixqGfp1z+CY1JSnR3VWuix18s49D0Co+a1zSz6 WuAW3dH3/nEEuTRX1kMLayBzctoh3eYYdm7JZBpPVIPVnUdzzXHHoOxczqGY Ww322WO3dJuPoS7uxW0tx2rg4U4jWqQ9gbrPbGU7FNVAVXdpr6XtBO5qfv4K qAq85drvVO+cYO+ILhJfTBV84RzSvM52CkcsokYbY5WQsZurWPvqFDwS0+NV nSvh8HaOnL7UGRglXh5n/a8Cin09yM6G/8HuIPUEG185CKdFa2kS4qDiHG1q 45MyUIl/mr/FgoPC/KW8un+UASP/C1dqLRxk97qA/YJLGWz7faGjbcBBuydf 8V06SiHgVOLi4hgOarnTKrWbWApvyq+PkB/gIH6FEsoPtqXQmLyfayCMi3q8 9CoeXCoF9yO9PZUcXCTlZexRZFMCYWyuHvttuKiS2mD7uWIJLISkfMBbwEVW pqLPVRmx+ZOpAiUuPOTwIy/+TUcx2Aa3unbk4CGnQn3zJfZiGAijnFJqxUeP fxVliE0VQVNcqBTZKj7K51tNdikvgnGPSs775wnQnGen82x4EXgz2RzaGhAg oTjCIyFUBAcbnc5PcQmRoGVMvoPSfxB7RGIZLUCIcCVZEwJPCuFrpWmYwUNC tDShx7f+XyE8uxgiOviZEJ0uH6X8R1cIukVUwgmmREgz8ISdca0ArJflLPFi iNB2zh319rQC6EuHcvZWIkRle0rR9rAAvtxhfhR7mRhRpUnm17XkQ6/lYW7b HjGq9IgYSknPgy+CpCV6/CTIXKiqf+VRHgSfX3HsMiJBM6me2iFUecDIHj9z p5cExRsEmLe//gTKDNcn9apJUbE7nYqUVS7Yx4pHe52QIt5l+SwjjlzoZ/LG HQIyRCYZFr4ynAMFi9dJUDcZqigNb+ZTyIEmifL5zQ1y5BjuqWPB/hEWkitX UyQpkPzn37/LRrNBr83+UlcIBZJyJrO1jM6GkOzbHZX8GCT7pn4FjzAbTM4a XMDnHNrzNvxIsJkJspobsf9Gz6FzW8ahgXmZkBgzsBN3gxIl5sV12TzLhM3Y KuKIHUqULoZH6TadAehnLPv75vPofPgKzsuhdPBfjTHIPziPJMWYtwRj0+Hc v5Q764IX0G08+zpd7XRIKLT9SptyAfkTfq1dGUiDDCF3nSvhVGhOGHf69L9U UDLkM6juoUK0rtwTl66ngvPbHOztRI2Y3GuHKKpSIFzPvjwzlhoV/3FxsWtL BoEgjs7gcWpEdWvy7y+VZHh1OF57mfMiOtOQFxUaTAIia3vhrxUXkclsa4jS ciL8svplsENAg3yU2MMvOSTC32CNeWptGtQRdo669SwB0hUfjUYc0iD9Wz7O GfQJUMGnKZH5mA6ZCb0fiH8YBw8CcAp/1NAhsYpVfKnlD/DY/EQ9k5keGbve Dap2/wACrp9+56/Qo6Ilx1C1jPewxsEkdUmbAamqaFGZib8HfhzriIwmBpQP NoePemLh7nn2s9cfL6EU42Cc2eMYELZY1+NmYUSdXes3HGNiQOShovvLeEaE C07bS4Ix8Joq3SoqkQm5ivTecDB5Bzq+RYkCAyxo3Cb0lHc0Cu4DqctbY1bk 9r2ZUcg7Ctyk2vqt9lnRR5Wt3RPuKLA9JZ2E92yojvDS6LZTJHA0BMhELLEh LS2ODQbWSPhVVqoSJsmO0lxyEuiiI8CNiEGcdp0drY9Js6bIhANT0meNxbsc KHmWm0b+Qxg46ItMb+ZyoMwfxP+8t9/C9d0mC00HTrTNdkGmPS8UVLZsLPGn OFG/jetiH2kobKgWqKaocKENz0w+9+dv4EIa4bixGDe6Mrn0OFs4BLpHGIZP v3CjAjzbTv73wWBFWLJlJnoZXQrabtM4DYKvcn6qn+V4UNVDyA/pDYQbPJkR bAM8SExbUCpZKhCsBK3aQix5EV1m0xedvABYWXAazfrEh4z9nObb37yGGgd6 OkZtfoQbROLpdeoPfz69vHeBSAB1teaWz9n5AzXZ3EtDvytoV+yUpsLQD4QJ GdMaVQXR2U+vB/yjvtB0LgeVc1xFPFGKluravuBRbpS6syaEmpn1U2vu+wBD uPfrAVthJP5RX54kzRsOJNk5lraFEVcMuz1FlhdEkdmey3YTQZ94px4H5XtC nfMH/2ASUZTjPZX3qvwVZL3Vl6BPFUWhfwYZtlo9gIk0qXZJ+hqa0JnwWhhy BzkSlDz5/jp6Mtl/ZEboBv0PqNvdNG8g3aNmib/sriBPzRqgyCCGGi2l2ljk XMCKsm5AaF0M3byV8GfMzBk0ZBI8ZL+Jo35LhtuiYU5QXW0eklZ9E4XEPdfg q3QEbtd/KjGVt1A479OfrYsOYHPHW+bSiiQy6pJYPVGzB/o73TqUrNKI7r5j cWawHbyKOJ1++UIGGQUbPcVvtwVHXddA115Ao5EFr9iJbYHnW6WacS5C55ZH 7YnjrGFGTUkzxUUWLT0gPTPks4LlnsDLCTpyyJ81+adu8wtYjTNok7onj4Jf c2ScGT+HbxcXxMo0FFCiblioAbklpLPqjAXZKqLdd/7igTXm8CmoMzvl0230 iNtr2N/hGWxpkHI/wbmLTEfGRZ5dMwOFPi6ZKlclpMtJ8lnq2ARMccpp9OiU UW7FpD7dV2MYrL84Uz+rgvgJHcmJM5+CzEUectspNaSyGaHJ7G8EA1wGhKlv 1BGF1L7i6JABsClXDws3aSBJ/hLRd82P4fod45loZi30RNFp61m9HoRv//C8 /1EbiRumHrzq1gWO3ZM+G5OHiGP1AB9n6SH0TdN+WDXQRS/2vNWZLz6AjYud nhLZeujNk9gJAk0tWPaJYhe8/QTpvtCvXUnTADp3ClE8ASPU7rftjIerDoKB BBQhB0+Rx6D7GtWCCrzdtQsjumSKeB5xUXmsKUGE3x/Olk/PkErIN8o2mjtQ wWXAEtNuicyO47lemyqAOm2czl6SFdKjScZ7NCILKmcM8WpidmgsiE9leV4G Fh6L57cpOaKYn28zREwlYDTPqiJO3RXdSLw5LHtNDEg3Joj6az3R0RVaZQIt UWijqZL0/+iH2uXctrVCBUHRO36IjD8Yla2T+rkz8kBQ46vZeJ1I9OAojtHr MTsc8Q1NXHD9gF4j5tvq+fSALLhVi15moIT8d9KybOdBtYT3wv3mIuRDUuhI a4QHq9RnvDdMWhFOT5lRwvqmzCFRbpKR/0+07vZ+QPj9jMz/AVUvtp4= "]], LineBox[CompressedData[" 1:eJwVxXc8FXoDB2CblF3kRKE0qHtFCPH9GSHK7IasrChl1ItIRoODIisJOXFC lHUcrpDqFN1KGZVxE8dKREYIpfd9/3g+j7y7v40XFwcHR+7//P9Pa6S1e171 kMncrKZVd7r1hO4GCTjuqSJerF3L3ftW9Fp/e9XIPKETYxavv5/gGrhJ2Z/a 6ZxJni6b6brJSKJzyJrtvDWZlOiv5X5cuwkl2hS72BdU4iktX0rzVMT0STfP o88uktjZCf+YHGVU8BtF3fC7QHw+C+hTyW5Qy+slu5ghRLIpYbifRx0OfF8f bbx8loRpt970l9ZCbuyJsjUOAUR6WP6FfLguCvXKIre99CW+ejx7rq/Th5hF zN2zX7zJ6NC4k3uKIZ7s3+s49dKTTMRHzTSrGeO2Fl9Un547qWEdNhRfNEVt hvZ7183HSLCE7Dsa2xy+fH0cVY1ORJcV4dL31QKcvkUdqs8cSL3ITmkFIWuM 9HivtOy1I8suEoGFVTYIyOrIoQr8RVxufEhjnToMFltqN2WzLXkhqsGpp34E Dr1HP9ectyanGq382EL2+Bo4UK0pYEUeLHwMOz/vgIVjxcHsqEPkvO0xj4+T jtg5E3fwqo45kcvez/ow74y4wpMXaOoHSIGuWNkm/mMoyWC9Vz9uQmQGx0KC KW7g6VFp/Px8P7myWp3TSd0dnjnP86kWRqRlu59ng50HhB5JnhlZMiCZu/kj qdGeEDWV5c5u0ieTroWDJZVemOm2OPD1ASHPfZZfS44fR0OeFKeZI4hi9r9i tUo+CJa3tBOO0SXv67MplwJPgKmcoeLTqUMuqh3v9Go8iVfGX9g65trEpvd0 jc3aUzjva6g337uXjNqv0HQCTkNkNvlDyFVNwohXGRPv8IP5Pq0/rmprkLme UsnxXQHISFfXXcOtTqKVMwSs5wPgwjFSYT6oRmaL048wngZil07Ng5kuVfJs gu+AYOoZsC7JXptm7yZywUfdLLzPwlKpjhH8U4WcLP5w5Bz+A0e36F/DW1VI lMttiegNQailfxDLb/yDLFhOV7gtB4HVzKPz2XwXaX98J1SiLxiCfjbLNlPK pFvoYW9SUwgSU+YWeouVSEndobDWinPIbvjXmxm6g9TNBYq/pYXici3thrrj dmI64ZB4JTUMnUWvDw0d2kbcJ1MXJ+LOg2Gikp3hpkimWnTONkRfQJDg2JBF 1BZy8KGxjvSlCDxpWz6QWrKZ1IZLeIhSI3HD0FbuwoAC2c257YWFaRR+P5za o7VFgQR6ND9xfhOFvj0TxXwB8sT8a06C6pFo7D3SRFF/Lkdc9XRzX/ZF4+iO 9Hsh4pvIT/FVz7V/XIQzvRzfJmQJ8+9+buHYS+CUdhuu6JQhsnJLQ7ekLkMz 0tcusZ1C6iWZDl26V3Be7JCq8IA0CXht7Hu54wrUTJPk8n6uJ2wZUwr7ZAxE eZ4rBlhJkX1BK6X5t2ORfMOEHU6VJF8eVNnz6lDhpFo2R/5ZR2ZWm28T6aZi o6WtI5fHWnLUtVBUghIPBc4C5Y11EuTJgv3OVQ3xmLL1XN5JkSDdbgf8ct0S YPLYsK50XIy4q2ZU0MuuIvBdqW6wsxgZddD+IuJwDVPRg4td70TJOyFDhgRP ItQu+zDyC0SIV/fP+70uSTDRXKQ1M4RJyY4VOSv+6yiNkl0l+lKIXEx8J73k eh2ar6eHrETXENsy/ky6RDLwbGIsDKuJ59zw8Xy/ZPwbGHNPOViQdL5dDPR+ mYw/gxWqnv4QICqyL0Z1Lqeg7Obbb7xGAiQx8lap2UAKAs3iZOPS+UmHHcNr g34q5IPGrfea8ZHBuD/P/uZIQ8Tph38M3OclPbpWe8Tc07DheqNK81peMuck Vc9mpUEx7NdZ91luEv/m96r6uHS0Za2VtB/hJJWCV33JxgwUXSvU1AriJOvD FqbNIjJwOap1wIWfkwTH2PjMf8qAR32r58oeDtIVONqyK+8mOJfMXlyg/caw WXja3zyZYHQJqeV9XIET791Ftncm+L5zlgl6/UKCvsFRYZVbWP2bMjRZ/hPm 49fVRdNvISJePa2a8yeGL8j6ly7dQtlYko1xxRIMWBebG5qzUHzsBre80Q+o pLx5tf5EDu6lLAu0VC4g1OKU1WR7Dg4uCxWpKi5gcWJLv6Pubcwuc78rXzsP akMd/y+JXNgbDvsmJc9hnsGb/mdULlLXKGUwxOYwt6S1/sfXXPQXO5d7bvgO akJP6BZPGrYp81Me02eh/q1xs08WDbbWbQu/VGZxikV5NtdOQ6Pzt5lm6xnc rKN9njC4gwU+m2nryinQi368MNuaB1HjVVUhVlPoXxRX63TNg8j1Kg4W+xsc ohWySjLzEJ1d/fRCwCQWVPv8lIXzIcSlr9T/aBwHUuxDo5bysTahbQ2XzDhy uCIVjTXosFRRqn4UPoYfGlfGrM/Qcbj+w2q66Rek9rW3aY/TcXTkyO9r/J9B 3SpQYN5/F9/01FcmI0bw6vBwoc7GAjB3+lhrLA5DXNdu0t+pAL+qm7mV54dg 8sXag95dgJ0DwfsYIoMQGnKr1OgsROA2nhHT7AGMiPBlG0gVIel2zyst5QFs mb3Kk2xXhLBrbbHTlmyMBf119ntXETrMhNe5HO9Doy/l4dtP9xC/I00pOeET nBUuvc7ZXoxzMseZycxeGG21TKw/Uww7zQ6TUKmPWF/vMDPGX4Ioi1cyiSLd MNnYIcitcR92Am/LW+26sCzC42Vx8T5yyT7T+fxOVHG1So++uY/UY7u4Ykw+ wN8v5DTviQcI8TKBQm0H4vtOPemjlSJuorqWLduBBVu12fRvpZgz3rTccqUd I0PdWjf1yvDLxGbrJ5c2CAvOjkT2lsHm1r2hEu83aK1tWTyRVI46U0/9ftcW NB6nRE7XlEPu0lO6pfNrTLdTZ3L6yyGdysPh4f0SbgbeUl6qFdhh7Ba4hdmE xC9msUWdFbjZZNUz0/Eco0abS2w5K7E14gFz/cIz0GSvFigoV0IjPv0gvxkL svU2t5QjK1Ec2x31cdNj/BPwljm8nQGnWpEfWQ2PUJX/9/sSWwakF6VGHxs0 oG2xuC4tgoG+GVUnFfeHsBA3snnzjoH2aT3d8Okq1DO1lj5erELEs/AB3bsM VE31ZTJLq9BwrvsExbUS96LPzZT1VMFCeHOe4T9loBvuOLBKjYlD1oN6Qt4F aE0KHTMbZkJz4USj7w46nBPUynaJV0NgcXB54/wdvPzO3Lwb1TBaMUlxcswC t9L1m5mZ1Th2h/Zkv0oGvNaZ2q00VYP7/F5X7fWpeGhKNbj0vRq3e2SlKxUT cZg3T2u7Qg1EnMJCryAGyuGzGyYsa/BfpZar9Q== "]]}, Annotation[#, "Charting`Private`Tag$4175642#3"]& ], {}}}, {}}, { DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox[ "\"\\!\\(\\*StyleBox[\\\"h\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ StyleBox[\\\" \ \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"|\\\",FontSlant->\\\"\ Italic\\\"]\\)\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\ \\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[\ StyleBox[\\\"|\\\",FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{\\\"-\\\", \ \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], TraditionalForm], FormBox[ TagBox[ "\"\[Chi] | \\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\ \\!\\(\\*SuperscriptBox[\\(|\\), \\(\[Gamma]\\)]\\)\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> { GrayLevel[0], FontSize -> 14}, Method -> { "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange -> {{0, 3.3}, {0., 3.690456156465704}}, PlotRangeClipping -> True, PlotRangePadding -> {Automatic, Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ "2", "6", "\"Caselle \ \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\ \" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\ \\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\ "}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["\"n\"", { GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.368417, 0.506779, 0.709798]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #}, { GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.880722, 0.611041, 0.142051]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.560181, 0.691569, 0.194885]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ PointSize[0.5], EdgeForm[None], Opacity[1.], AbsoluteThickness[1.6], FaceForm[ Opacity[0.3]], RGBColor[0.560181, 0.691569, 0.194885]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[-0.023999999999999994`] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"FaceForm", "[", RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", RowBox[{ TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"], ",", RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",", RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{ 3.875957140679967*^9, {3.875957171901413*^9, 3.875957177389202*^9}, { 3.875957286074856*^9, 3.8759572915772743`*^9}, {3.875957370668831*^9, 3.875957390170678*^9}, 3.8762092922172947`*^9, {3.8871754958604937`*^9, 3.887175500271595*^9}, {3.8871861172995453`*^9, 3.8871861368256903`*^9}, { 3.8871861982272577`*^9, 3.887186209328771*^9}, {3.887186531197132*^9, 3.887186543092368*^9}, {3.887186624995718*^9, 3.887186645867601*^9}, 3.893237610747847*^9, {3.8932377310303297`*^9, 3.893237737874032*^9}}, CellLabel->"Out[48]=",ExpressionUUID->"5632f44e-d2ee-4570-afa0-630f5721d24c"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Plotting as functions of control variables", "Section", CellChangeTimes->{{3.887175666126995*^9, 3.887175672719225*^9}, 3.8871757098402243`*^9},ExpressionUUID->"7bcdac80-37e1-4f66-bc64-\ b0d2db5bf4c3"], Cell[BoxData[{ RowBox[{ RowBox[{"invCoords6", "=", RowBox[{"InverseCoordinates", "[", RowBox[{ RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", RowBox[{ RowBox[{"Data", "[", "6", "]"}], "[", "\"\\"", "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"DufDut6", "=", RowBox[{"DufDut", "@@", RowBox[{"PrepareArgument", "[", RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.8932377899231243`*^9, 3.893237808714438*^9}}, CellLabel->"In[49]:=",ExpressionUUID->"18ba5487-e161-432a-b28e-40a5d59488df"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDut6", "[", "1", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDut6", "[", "1", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDut6", "[", "1", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDut6", "[", "1", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", RowBox[{"PlotRange", "->", "All"}], ",", RowBox[{"Exclusions", "->", "None"}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "t", ",", "\"\<\!\(\*StyleBox[\"S\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", RowBox[{"LabelStyle", "->", "Black"}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.88718849775531*^9, 3.8871885088435698`*^9}, { 3.893237820068544*^9, 3.893237866436099*^9}}, CellLabel->"In[52]:=",ExpressionUUID->"973946cb-df1c-4924-a2f2-30f2ee7fc843"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwt2Hk01P/3B3ClQpZkSRuhQpKQD1Fca6lsaUOyVCiiKEpJokWUSpQkKSqE Ybb3WOradyk0iLLMWEKWREjm9/6e8/trzuO85px5zes+732/ZhSOn7VzX8jH xxe8gI/vf6/qsGKQx+PhAaWNVbaJrXB2Zn3EzCwP9Zj5yr5xrZBD01SamOSh bZrkmrvRraClYnW8b4iH1Ogn76tDW0F3+Y2vdS083Ob0anKfeysYccZrnlJ4 OFzVYnNGvRXsbte/2+bCQx0t7ZeyxS1wseGGj+eHeXxVO52wd4ANzc3Cg8Vu /1C3yOJL9uovIFt0Vkp37Ry60+8W1Ac2AcO7bPGyb7OoLnjr9Mm+z+B6V3Os LWwGy/vbJNONP8F0zJUIhGmUnH2pM3ivHlLEvq+K757Cvg3bidzLNZC4V9O/ 6c4kAm/jbPmzSgg743Zp057f2LTxj8tlqXK4wp9x0f/nL+RtLzDdcqsE3EIb NrDTxnHJtxKVusNFEPe+Nz7Rawxv62ccL20uBOdLCSG67mM415Slta68EFS2 2ZxsdBnDRmmNKzcYhZCfxtoqeGgM8+10o70fF8L3R1EV52EM7WqqTmXaF4Ky l+bvvVJjOOOxy2X+ewH4b5lN+nVlFKVXh1xdNpEP+Z0qIpmKI0iTiSzbr58H wTsXZCWsHMFOiagsWfU8MHjaZnVHbAS3nT8IEwp5UGQXed9j9ic63rA+XyCU B5XlQxIKjT+xaqU/UdTGguZ32aseX/+JWUIHbqdcYcHIRW3l0K5hXDm8fPl4 BQE5zSJVvuxhZP+TqpsrIMBPs/fUsbphVHaQ6JbIJeD3YFyGPmsYi3au2Or8 jIC/x/5smbw/jFMOVZN+5wgQNMvX9oJhjNSyn49ZS8B6cSOTg0lDKLHOS707 mAnRGt2XvR4N4fgVyfAL/kyYtg2jhUYMocmc9kepU0yoe1i2Ict/CPefLD4e fIAJFyT3CCzZPYQO69YZDagyoWKFXR0xOohhmvyx2zsY4CV78vAa40H8LRuW MmDBgGaDxfc1dQbxTPxXN2UjBhg6v6ncvXkQNwlo9pzXZYDki4HtF6QHcdE5 cyMdJQYUyvusqf/xA1WShiXdFjFAbENgV0jMD9xqErTkYCkdqKoRXj2cATSf dFRt3keHdZ9d8za3DeBXUwPbKTM63L2oJxjwcQArraTtlQzp4F42+FogbwBH O37I5mjQYaWzVbda9ABaX/8w5rWCDlcfSthf3D6AlAUwGcqlwaDu0JuiLQPY 9Sp/Yfh3Ghz+XjoptH4A2W5qao9aaaCxOeBRougA3u5Q6/xWR4OespaPxT39 GOxmJSPLpIHFdKK5yL1+tLprIW8eRQNGUkDsobB+NMot/0/1Fg0Uza05SRf7 cVVwyn3Z6zT4+5AXqnm8Hw+1cWW2XqRB9ubjhYd1+zHk2KP0fydoIOWivO1l dx/WTrss3GtEg+uL+cIG2X2YduahmNROGoy8a/20ra4PHVyY/sO6NKicvuNb wezDqfY4s6qtNLgcM5w+FNWH1pPe0mryNOgsz5XX0enDiwvHrFP5aRB8YMZs u1of9k1NxN7lo8HKbqPT+op9WGr50fb6PyrYzjXkGor14ZHV+koP/lChSGvE ZHdfL1qbV6uYDlPBqeg/zz0dvRifMTgf/YMK01ZXo/Y19qJfvbJxfx8VNE6L NNt86EXWj+v877upkPxC1d3+cS9KXCi1+tdChZ1b/O843u3FlX6eBzK/UKE1 Py/LKawXTx/mZ3o2UUGcbTHl6tuL3F/9EfwNVLgu4nn79K5eTJyrXNdQQQW5 hOx33jt70fWkWlVXGRXylacafLR6UW39e9Z8CRV+mdxc6S/Xi7/sTD1ckArH g1LSL09x8SrrYzyNRYX5JUP1wcNcNF2jtEmZoEJCrNavkB4u7myd63vDoEIj pVg//CMXuT4CHTVUKvgaCLncLOOiUJKP8NlcKiyttQ2/nc9F3TTCfl0OFUz7 Omuj3nDRrM5yZ2oWFbrOK4/dS+TizZhFNZcyqRC84KzUgxguCrsGnXR4RwX6 2nmn2BAuavm7Zhmmk+edYX798QUuzvIC7UzTqDCse+91vBcXE3kx4wfeUmHD gbUjiYe52HRRdOnT12Q9uk5IvLDk4oCjeVB9KlkP33c6L024qOD230dR0tN/ fzmmbOfiyj2R/I4pVIi9o3/ttToX9WRbJKmvyPrIhKW83cDF4vVxM9Kk61Kr K9NXc9G8YT3l5ksqnNJaPvxOnFynVKkvIL2oyF48ewkXjU5S/COSyXpaJWvn zHFw6b0fF9aQ3tneb0/9xUHPD75b81+Q9Ty19Sp9gIMT59cmniR9YSrwJfM7 B+8tYtJXkxa/8aGc1czBxsdc/44kKmQuXzKYX8PB7St0P6WTtnhhJfa+iIMF KooVYaR71eK0kMlB9Y181p6kVUNejwy842CKc9j9w6R9GxgZEi856FiY4XSA NE2+wmPnYw5mdcRmHiM97cdW9IjiYGmFbmAA6Z2lfd/vh3Kws8s9J4H0dak/ CXkBHKT31+2vJ13hLnCE48XBmr5JW1Fyv0sJGUlRVw4Oa5qnOpK2EVRp0DnE wRyXWWMG6ViH7VGuezkoaK4hL0ueR2uGxe5I4OCv8Q7tGNKyc/b8dG3y+1E+ B0iR53nc6jR+28TBA//yW1NIv0kKuiKwjoPOsfIHjP5XH+OECUchDiY/qzyR TNYvICaDcmO+BwteunJPkPXN5+R7Z0/0oPuGjfu1yTyY3mrnLPjeg0Wl+0r+ vqFCRMvQi81NPXizqJPyi8xPncrc0UNVPSgizO80RebrcO3a5jRqD76Nrypa T+YxYe2WB41ve/DriktuVmReO30MLOcSezD4/OcH4WSeT4k7l9nc7kExqrCX NJn3K4de0KeO9uCKhYGp9WS/FL2hnJPf34M5QfscHMl+WjSNant39eBogpbO BNlv0Qldqc81erBJFLT2FJL56VSIM1vcgz3etbk3Ssn6amjt953txvm5FCW/ crK+YSai8aPdyN0tePB0JVnPDSduDrV1YxGxIim4lqzP6dSAmOxupEpp2mxp poJwAV2zMKUbS/ea/Ahgk/0kUv6zN74bDbvella3UqEtu9ddL7wb+3Z9mo35 RvbXhNLhriPdGHzwNz29nwrLQ9J11Bd0Y1b2S76v5Py7xVSpEv/ThbNOXmaJ 5HycHXnrMDHchWzp62c9yfnZ4/ImmNXahdX2xiYrhWhANU4pMcnpQu2sAtMe KRrYLX5ufcSlC6PaRQqXqtNAeZVCPd+VTmwIjDxr7EED8ch1Y+UenRjD+GPG 70WD6VlZySi7TnS9cHNZnQ8NqjpWO0irdqKO7aiRfwANTiVL9W5q+44lnit2 LrtJgwxlwX92ut/ReTIxMfg1DdR0RtVeT3RgMu/I24xBGnioX7uW960DFyeX CEaO0uCF0rLG+soO3CHwnO/sbxpIkE+dqWcdGF3Ff2TPPA3+/PEt3m3WgefL HaUMJOhQkjdyaDC2HXfN5HuI7KCDvcFIyFadr+jksUL2zX06hJv9/JR3qQUD jKWtXwMDSiyGbbRPtOBi70i/leYM4LMa+pht1YLXRFXdovYyIPjQj7oUxRZk r1m3/9whBgR69Fbdq2MjVaZETdubAacivhW5ybPxSkF7w8PHDLCsq88RqmpG yecU15XDDIj8VLf1BrUZC9Je5x0bZ0BVc232fGIzjrm/PZ48xQDzb9WZE37N uKwn1VF2ARMMR8rTvq1pxtUhPl0T0kzQEP+QnHu2CcfEva7xAxOkD2Y/cJBp RFal8/C2aCZQlaLyzfkb8cTPD7XZMUywnfHkao5+Rm6/ftDGJ0yITFLYvrTy M5775C6yJJkJ8wOxnfmBn/FjlHBeTC4T+q5eUV/L/oT7ejUSGpqY4GvzMP79 pgZ8kvBc/rYUAWm/9w7HLWjAcwuYf0+uJKDn6SIj37aPGMH3Qd+AvJ8d5l7s l7vzEZvf0gs71hMAQc46oQP1KGjh9J6tRYB4yuZmk7d1uEr65LFsGwKoU+XL qjbU4JDpx6dZNwiIznhVYjhTjV3ZK6MEIwjwdr4WwKivxpvC3k+PRhGwoWJ7 +6vAaow/I9L/4yEBj+PevblaVYUJ+buN3yQRcFn7ocG2M5WYLWCz7jGT3M+A z1i6USVmxPIl++YRsC1xb4q8dCVaKkrlGhYSMMy/SEjsQwWm+FJPlhcT4NwU 2DywrAIzJM/onakjwMTfyTuJVoYXhPM2ruoiQE5JT046ogwVf6SoePaQ99U2 6c9RTmWYwta2yOQSQDdu0AlaXIb5q+JK1/wgQGm5ycKDR0pRw9NtLnqcgIXl coyazaV4iDKsHTdBQOelv57GfKVo5sbvEDNJQHwXvV49vQR5ET8t/WYIWJqj /FTobzEy2ZoWxXws6DuxyDK0oRitdGeNQhayoFSme34qpRgX6TNmNBexIPha wkmuZTEKcGoeXxUg7+PWohqYVIT2zuenUkVZULNwsOe/80XY8GiHu8wyFrxl VsRl7i7CdkqiT6g4C4p28v3Z1o2YWByspyPJgtftvfd+3PiAhat379JYyYKv wStePN/2AY8yKZWmq1ggJrc7Z3/Pe/RsvDZrvZoFga5pjXnwHpPFOJ6Wa1mQ saCN4zNSiHNjLomGsiz4/kpoUuF5Id57KxOoIseCXb1eMpGzBZgHr0U561hw +dYzFcP0Anx6q7mcJs+CbOU6vV9HCrBmx7hMsAILZLy2ODky8tGvYMe1CUUW WAo7+4idzEe921vvv1rPgtDM6JASiXwsfJSovmcDCwZGRpNVz+WhyT4+iasb WbD2gTz1u1wesu8r7V+qxAJbzf2lMfUstFq5ccV90jcarzfvCmbh3zGas7Ay C1jnqb2zqiw80f1E5RrpYSnOVHYbgW4HX/kNkpZnSgqeiCBtlKtrpcKCg0fM VsnoEvhiGeXSW9J3pi+o1vYyMSgiRmuG9Ienr3dci2ViJcP5hMkmFvzSZ1tu M2WiRYOiUDhppY4lzv3jDFytOKtQQNrxqu7ZZ8kMNJoRzhwkHS13KtTGhoE7 bkW9Xq7KghKMf8g/T8esakJEg/SUa/UrIpOOy4LbO81Jqy6cpXkfpWPQlKXs AdLOKarl65bS8coa39IjpGPMjrKbWDTkQean/61X9Eb13/akoYVUqOlu0rO3 Cqd3rCDX7/qs1iKtrvJTaKyMipZ1/AelSB+vll2Tep6KS4W/jfwk9/fYy1rN XpGKImFJPz6QrhW+ZiDyORf9Dkyb3CbNl0WxLrqWi5IXXs/sIq1t3eVyQT0X F8R5i8yT53NqVNxP5VsOSouuuZxJOvGBcVhHVA4+L4k2tiP9SdP/0QN9cl06 022UPH/BN+Z77jRScKbieFs46VZVwWiHe9kY/j66Noasp5HP6ZziwSwkKCvM REmnUWoaN1lkYY7GMfFrZB6CtO/JzC7MxPJjeckWZF56Akf0jru+Q4ETmieS yTztzbNxqnmfgXtC1AJHybytNpR4mXApHTfLtEeeJ/MYFnq+dCE7DYkBg6g0 Mq9DJc29XtvSsN4qrK2ZzHPh7ieqO0beIL9pwDFJMu/H9q+lt59IRQPF05PK ZL8MT0zqBZSl4K7q3xVryX4KftyAYhtTkF/gvp4Q2W+J7WG1xn0vUUqpm69a mgX02sZym89JuDvGVoJL9muz+K3PYTHPUXqDT18c2c8Th/S+MQ4kIoVn7ghi LNDqevF7Dfsp8vwlFYKEWUD5fWb9wNdYjGhfrBaxmAUf9eS3rkl8hHJNrPkp fnJehDTpWx+LQY/zuX7HyPliL3Eh9RTex1FxQ73lPAIO7BBbuKD6Js5oVh2S miYgtFmleU2pFYb6GEncGSBAbdk3r8VbtCH8KU3Mv48A9njYC/Fpe+gyjcy1 I+fjlUe7ary1z4GJWMnwbCcBpfJ3bj8XD4OZR4b7+tkEeHqqejDnYwAorXs0 SgmwULzoGG4QC9I0b96jIgJUvpVa2wbHwSpZD8/R9wQM2h3THZx5AoXf9tjd YxFwxvCBoNxkIvQaDmW7ZxGQt/TKl5KAFNBsnPW+E0dA8hbpJopiKrx/Z3pu QwwBt2wpnxIbUqG0YFkpI5qAg485tYGb3sCrHZ6OBbcJGFOwLFH9lgYFkxXB dkHkPNeTpcSYZYND13MBqiMBIk5E5rXxbOhIoOZRDxMwEbI/40wSBcjr/Jd0 OwJce0rs1gfngJqWot2VvQTZP3+s/n3JhSOLtsS+0yOgmuZilnuHDrPSO6dM VhCws1ytVLmLDlb0BVvfLScghz1jnKTDgKu2t8eFRMnn3cwjiOIwQEX62Np3 /ASchCp9dwPyuWFdZR48xgRejYbmqvE8uHXsbcvRKib817NA7ro9wuFMC1l5 Pyao5x8Z10hH+HuaSyvyZoJSTFZZ1wzClpNUKwcPJgi/zPwv2aoIbF7xP/I/ yoQ5W/sO3kgRaN3IfG5uzoRvOZRNqFkCgkaU62dlmPDinHOZAVEGm8IuGHcz GJDoJJQd11kGlwzTLW5RGBBvQX/yU6Acll9Pf7w+nQEP5Jd6P7cvh3Ch2mW7 ExkQ+omx/N9MOfzMm6JphjHATUPUpXBnJTgseJv7xJIB68cKZvRLquHh40kJ ZjsdgutNb/z+WQ1mL+vUa5vowM6oFcteVQMpUXx3W2rpEOnevl7BrwaeycxL swvoMPZ11kpAvhayVTtZXs/o8KFc71XT1Tp4X52Hv+3p4PiM2HtGrwGMPCgC yfU02JPSVm9t3wgKxaISk8+pMHYz26PcpxFqgygr5WOpEH8qnLcjvBFkB/hP mEZSYWDLFs1N2Y3Q5xJa7x9I/l5hhcbyL2qC7/+qzAKsqVBVr3yURWmCdcl5 EsL/cmH3dMCAgsAXWMUcKbh7MBfMrST4Jxkt0CYn8en3Vwrcd2kJ1SA6QI+v xdlPKAMqrWVFbSW6wV1ROoA+/Ap+KkiHNCZwgN/pU3Sn+hMIuLDZ7f6KPpi4 kVK+3DsEWjrE7TyqBuCj44ltX2VuomvQzn4ByyGIXu47/u9hIpZu1o0sXTwC Ed4fbbyepaGSUOFAqsUYBJSe3f3oWC7KFnqbL44YBwPf9a/eRzKRb3Zhun/P L2iLbTnS4FaIf/a/dy7f+BtUs+enNi4qxnZtlzUbb0yCLuPcbkP1Mjx3RHy5 YscUxLI/3GUfr8RVsVz7RbLTYG6ao1cSUIPZR5PfTlyaAXHrM+F7u+vxiME1 i6r3s2CkVNx/8NEnzHX2UdSf+wucF55WqNOI00tN+fMO/QPJOD2R0wLNaPd5 h45s/DyEsQvxXfEXXLpDuLjw+TwcWDoqFFD9BYtTv+5zSpkHZ2bAb8PPX1Dj UpDbs+x5EO2Rymju+oJi64i7q8rJ9zu8ixXgY2P1GS2O9K95UHrcbhNlyEYj wU0PxCx54Nop91qokI3TftOrs/fz4Olr94q+UjZS2itfWx0hHUS/UVbLRjmK R8Hd4zzI+Lmw9Xo7G+cOpfYtDeKBmOlDNv9fNhIp6wwE3vCgYDuf7Eb9FvQV Ha18844HnlUFC0VMWlDp4ge7Xbk86E7qDZ/Y04Kxe4+dulnIA6kqOfsyhxb0 H094xN/EAyeXE+Y+QS2oetRLLqWVB77G9fwO11uwu0wv3eQ7D1Qj2p3M77Sg bXzrh+s/ePByIPT7uqctKLgwbY/CKPl5A71LxF62IHpfbC76zYPplVHVc2kt GPhll4vrLA+GQo8oDee04P//Xw/J6lqyHawW/D9T3HEf "]]}, Annotation[#, "Charting`Private`Tag$4186241#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmHk0FN77x5XskaTUp2wpClkKberJ0kJpkUJESlS2Em1CH6WsJevMkG1m FB/ZGlnz2Pd9hhn7FklItpDMb77n/P6653Xuc8997vO83/eec2WvuxjfXM3F xeW+iovrf6MKbBpjs9mYyZpQPXGOBS6Lcn6LS2z0qO7M1z3FgoxP6vIzc2xU E/lQCTos2LvL6PrIDza+UtC0ObyPBfvXv+isZ7LRj36JckCCBceGftUS09nY G/vB7XQfE4xfNfy3z5qNK29SG1tdmPCw6YWTfdEKykYf4nMKbQcGQ2isxOYv uhw1kaPkMUCy2EV8/7ZlFLIKFfEUoEO2QznPup4l/KXMLzp1pwWuBalPdfgs 4p7v0VoT9k2wEOrhh7CA2YyPIdkG9UAW6d1CGJjHSee1/itcNRBjqO5K959D TZuO6PSBCvBxtHm022AWU75ZMFiiZeDBnfLQdWIab/Hx5q+SKQabZ0072j/8 Qne4o2S8nA8RX4YJMXemcJe5d06M8GfI79u1NnX7JFZqe4b7L2WAnOgxXZPY H9jyOXStuUgyZCn63RkcGsXOI/cPy22Oh76KTBktrRFsnDN15d4VAsPKEXvx 8xD+p/HEIcXNDhS9qJOj/w1huPbWqbgyW3Buyk4RSxhCWpnNUtKGG7Bwr327 XeAQJkiJ9HY4WYNgjsQG4WtDeMB7PK1P3BjUdEgzVwSGMLtzlCfb/hh6XIqj zVsM4sRxhmKrvxMWJ6XflbkwiKeCZvumN7ngmgVUNjwxiP/sclJ3vXAXX5P6 Ke/UBjF7oKCR1HUP4/tkI/R5BtFfx9Urb9QNK29T3EPTBpCQpXglc/gJrvdK 1lJZNYA64n4qB/Y9x5efd1WL/u5HPiuNFP+Xz3Fp8r35zHg/CrQ8rAvpeI6D 1klPc1n9aJl8qL/I6wVm6ZBLdTP6UWZj65XQCl805nl31tS6H6W0kkoY+n6o sEW2gcujD32pCcPhfMEoGiA9VWHXhx6Lka3cF4JxYUlyQ6BxH46s95KTIgVj dfc/5hsV+/BCKrpdVHqNt+LFh3d39OK9rL7Dnw3eYIoC/1/j/b2YrjxydHVB CCpr/VSmznTjhj2hn76Vh6Kdird3Xk83tvO75PqOhGKc/LrWhqpuFPcYGv/O F4ZiEqoP56O70TKogcBtGIa/fzuXnNTvxvG0wGzXujAszZu8NBbehQP+r15P l4bjcqbXhxWvLpQa2/6+tj8cNVNE/ojd7kLT6cEzN1bC8QNJJf7wkS70w+RM xoEIDPZwHgsa7sSGP1oFqSkRaHZk0ktVqxPbhRSIjH8jMVTTq0VPphNZWldN XkRHYt0ekR1mgp04y59An6BF4lEplZpnvR0oKih+ZHwkEuXYThtaX3aghcKL Y/4no9Dy99+bI3c7UChmOGXRKgojfwbnLl3pwHvVsz+lH0Qhf//Hq3KqHbhH fPp3IDkKJ4sn3rsxWch7ynkHfSkKFfI8l/xKWNj742T40DoCXssUNnr3Hwud jdTeUHcQkJ6wZ7rCm4WW/xF6DhsRMNfHSVtiFwt/83Q9SSAR8Ln+RHPeIyZS O4/cq9pJxNJT4+c0bjAxuPD4vJUmEbmMfjSmGTHRlth+KEGfiE8vfa8nb2di ILbZyF0n4gO74erg+nY8uth/TohIRNqdryf5c9rxoX0M3wiViNPOQ5U+Ce3I 55PHZ5dFRJeHA+UPH7RjncOBv8a1RLzl11NsI9OOHjQCb/0cEZOCuqFbsB2H P+aZF7KJ+DWkq+jyXBu+5vefOS1AQhtiR+Hp2jYcuSzQdHwrCePfsQ5X0trw fk+NW5ocCXsTmPnH4tpQM+jc7k9KJLyS0par6daG75+kOAYfIiEhjbE/w6oN v8c/PWOjQ8L2LPpnRYM27Kjn7Wk4SULxnFZN6r42PCKafazViIQXC1po0lJt mKn7LMrpIglDsXkfib8NT5n+WIk1I2FzWVOW+AwDm+a4Qm9eJaFIdaP6mx4G llpcuF1sQ8Iz9Q0ZAtUMtPCfIqXdJGFAc73qiywGHkK3Q6q3SVjNqEtbiWHg uQtzZjqOJOTtqN3z+BUDv9MFeL46k/B4T03qzD0GTr2vMdx0j4QvBqqVnC0Z GPqjbh/TlYSlw1UpoycYWMBQqNrpRkKuscrdN9QZyO/hLrDKnYRHJys+9Gxl IHtT07I9h59OlyuY8TLwbWFrvDmH8+fLklqn6CgZRZlmcNYvLJXuNOqio+3H X+Os+yTczy6hVFXQcYvGzCtbzn4PuEvkdDPo2OXumvfgLglpfMWJhSQ60kwb 3EQ4+U4Loex+X876f/+kKDqQUE20KD7ThY5LauGGtfYkdBb/Iq18hY6PSxgw foOEqZsLY5P06Xh3/L3bG2sSjm0rkJRVpWNe48fmrCsk3C2bHxO9hY5lufoH L10i4a2deVs3raHjSmvoW/dzJEzanUsKmWxF1biQfDEDEm7f+5ngW9aKNOfe 30Wcfl/TypbgSmtF6aCksrq9JIw7RIt8QmjFN2qKTecVSbhNLyvcxakVv7bQ V4okOHo5mblhzLQVEyVl66jCHL2czgi11W3FvIEYBS5uEm40SQsxl2hFY9fJ RsFxImbJB+Yf525FII/1hPQT8fyi/Vf1ny1YkCQdTWAQMSBW9oBgVQvKtrxS 311ARIV7KzbzWS14NfPw+oyPRCzX6wocjG1BM1XjVFocEVdGw/vyH7SgauPw ln0+RIwuuCfw/noLbjiUOZHiSsQDr8/uCzvbgl8DUr1jOP5z3cf/ykG+Bemh Uj2jx4g44umhsq29GfeHON4X/M3x93kzM/7SZtzMEFLXGCKgjJymz+zHZmxi jKU2NRLwSvVkW71vMzpI+34zpRCwUey6p6dmMz55FNDx9hQBHYaPvr8t24xv /9bN71EjIH/u1pZLws14aixxlYYEAX3zUwwsa5swyHGTxJOhKHQ+95bwZXcT PtkYbcBwi8IPs4bjEauaULrKqYlqGoWDxDXHnDsasd3w51zHwSi8/PXhNyn/ RnR//LvAbjkS4bGV1rPRBkzcFL3/z+NIfCK1OcCsuAGT5M98rjWN5Ly7LT1q hAbcLbnj0bxGJO4SOe47cLIB5fVGF6wnIlCUrMTQfV+P00/T825djkDDU8MK W73r8VSj7TyfagS+mIj1mLlcj7N/rAJWeCNwYb+YHIW3HrMfxzT9pIXjQP3C PR67OiQa6Vkw+cMxa75iXfWOWjxt/p3mFRKKr1MSS48u1qC8+pN4lSuh6GDl 7Z7dUIOnX7ZFi8uF4o7KA12JD2rwm1xQ0/OstxgZ8V+SZ3U1vtpql7pUFYJP NN4e2edYhQKBKlHN0cF4edRpKvlYFeKYUvTzTcG4L8aQLLOxCotWfQ788iYI x7nXCIgUVaJX4kx/q2cgWtEfMEbXVWKocNjxkVP+qOtq6RD7qRxNu10crGNf oJT8QamNfuXoW+jgdZX7Bf7p2NgSaFmOtN/V4or2z5Gm06T1mKccqx+HlZ1Q 8kH59bqrTUzLMEb5g53nGW8UzFAgCvwpQRsntX2GnW5I7RoO/v6iCNk24aK5 rurQ+XRT3Lt9Rbj7LlGSpaIHIlInMy4MfsHD3T82Zbw3ggfXPrTmwRe8m17D O3DeHE4M35EIWCrA06/26/9QtIfRyZ/xinfzsInLPNpC4gEorl765GBBw0tS BIffNr5gRVaskBakoVP5YNUY90sI1bdop+d+wqrJLTfNqS9h6WXhwuFNn5A1 9VsoauQV1Al5H1nbkonpctFBMtcDgKXI/9o8OA1XSPc37zr0Bq5e2EbrukHB aj3fGoJyOIzPzB10LyejFsNeJu1uODyNbEKRnWT0KPC/bUYLh5gunzqdkQQ8 B3D+9qEIoNW1VpxricWRpWP5jjqRkD7rKDfaGY69Kx46kYcI0HhQRnVrTBhu f5q0tfghASa96IfOXg1FkRgtu0c0ApiJuVFu4Ru0SLOKDlMmwsXDIqtX1fii 5wr8uCtBgmeMXYytZUZ49m2/TgEzGpTX9dzh2aMBonf4TEqFY6D9l0+c6IIZ HCDesTbViwGPsBO1Dhp3QacZO5U+xkCZjP+rd6I+QPOvdfHxeAf29op2n1dC 4WV22w1R7jjIE/RoK3Ung+GOP9PYFw/xezbS07dTYN2GDI2guXh4eT69OaaJ AoNUCat/hBLAJHKo7sHuJBCTVTDz1EyAKdkzpYo9H4BX2yzK9lUCyB+UTA/V T4N4liT/T+lEWGuZk+r9Kw0ow0LN8+qJMON1IcUxNh0+GSQ6leslwrXBUmO5 pxlAK3Tbk2WXCCq7fhv9bcuEUnHZnt7kRKj5ZK2f6U8D/bqEieydZNCuUC5T 6KeBcFqf/0ENMmS0L+rEamVDmLGB4CtdMkQuhkHgUDaIXj+d+8yKDLZQfejm kRzIElIrnwsjA+t8RF5XWA4sr/np2RRPhtPXrx8wHsuBub7Hm90/kmGv77Im ROXCz7dXx3ZUkoFdq6a+5VceNB9bqZecI4Nr99/0NyfzgctI/8pVLgqMTNSq 8Mbmw8rv5s93hChQL3pTecawAM7XCTX/lKEA6TJRoYFSCO/eum9IMaCA5uAq qX/NEOStbB3FQimgkm/6Sy0ZwcqoiIRECsiHfizvX0RgKH8/qp9AAaGEVM14 o2LQWrs5lpFOgeXzZt3syWKYXyUbv6mOAgva3JWmEiXwPWHe7kULBWZ3paWn Qwk8vCnFX8ekwDjXmufWISWQHMzzamiIAj0Z6btRvRSe/5rYdWKJAp0xVzZI XCkFfaFKd282Bdr9eP46+5TC16KOX6FrqNB4zaJZil4KPVtfSRqIUKH2DG/+ gz+l4LriLD0uRoXKA5nkRrky2KmgOndbggpFonwPvdzK4G+xUtG8NBXylzOv tceUgXNv1SreHVT4PGppqFJRBhvH/+RNKVAhrThLsndjORQPnZI3V6VCSupV Pq2j5WDCxdrF3EuFJAL/r2C7cvBm/tBW16JC3F2r8iM55TCiPbvviTYVYiwF 0iL6ykGH7nHjNlCBcIoWNcFXAT3JaUc0dakQIiPo8M6sAg4qpvrdOEmFoLXZ JnPPKmBpjYp+pQEV/BasjxolV0DcmlrgPUOFZ83Z6/8uVoDx0MEAqfNUeFp4 7Y/J9krYpvdL9vcFKjz6IDScalgJ9y8HBH68SAW38M+Na+5XQsnwyJjOJSrc fWaTaxldCXPU9Bu0y1RwdFybSCurBIaPyRYeMyrcMssJXDteCfJja1U1zKlg q3/d3Va8CkolWFU6V6hgoyZsXahdBdeve/KqWFDBalvuKfGbVaDlHyS8yOEr /Df2OgZXgdRqK3aiJRUuzwpvK8+ugtenNqwoXaWCcX8uz7beKlhRjlIK5/DZ +hs/7/NWw+iO2OQuDhvminTUqVSDTnQScbUVFU5Q8krlTKvBSmdxmwCHdUNs Uz28q+HEtWSTn5z4o0/XRdLfV4OFYoRNNocP3cr3VmquhsvCdrYWHNYyuXn7 +UI1BK556znAyWfvMdGLXTI14PDjcsNJDqsoF2jvM6gB7eby+685+StutpMP vFcDf07QQrI555Vfs150iFgDdwrr9L5w6iE3VbB4qLQG1Gu8Uqmcej1t0Hsx O1EDNlwtbhdNqdCeUieStqUWTAlTVd2ceqv5XSTaH68FX1+ZBh0TKgTc7JKT vVcLYo+t//MxpsJX3RtpnTG1cOvqLf84Tj+PyPw4EF5dCx9as4IJZ6kw1blk xCdTBwy7dwnShv+rjw+r+HQd5GT0L3/k6IUSIXjjycM6kOlI3bjlOBVMz//z aKKxDm7uNhd/ydFbxp7E1e+X6sDEt03Pj6NHQSHF4Gvy9XBQUrzc/iDHDxUH E+me9XAk3OwkcvS8mVyiHJxcDxpruEP3c/Tu+swg50RbPXSW5RUGK1Fh52Hz +jzlBlAxnT7KkOPoNePRfFxXAxj7zZQ0cPw2Esz1rzlfI1CaxToPcPx4zMFP aMO+RkhS8hz2EaDCzE6CzMuARlj31tOCxvHzlegcQ8eDTbBNv8syZIwCtEfQ tvNmE0hzRSbPf6WAyOUq676QJtjr8u+kdh8FSkSZbsajTVAqd6bvNp0C4noe 52JON0OXREXFqXzOvDqKP7ZphshHEUezPlHAWYa789LDZgh/v+b9cioFqv8G 2K4jN4PF6qQijTgKeOSSHvssNUNnzY3jmj4U2PW+96i1aAs0zv99lPyEAoyI 7Wu05VuAOc/9iu3KuQ/vp7yeu9ACAWHylAs3OO/OnnzyreQWGFttOReiSwED ckfDWbNWEOc1nAn7Q4Yp3zS7CqdWOLPI22M1TQbCrefsw89bQVVYyELkOxlG 9+xR353WCif/qrtvbSeDX+6zcO41dLigm1o6lUaG6gYFi9x0OoQ26p2NsSDD 3YzlGZUKOvxL64goOE+GzWEtQdROOnxl7BwpPk7m+NejKJSHAW5yCoueqmTg H2qUdbJggF6J/enyVWQ4ueA+KsvXBoZWrw3DExJhstPwX8K2Nnh+q1xdKiIR Ir9I/7NubxvMeoq6vfFLhBGfmtPLlm1wZxau7HJJhJfCkuntWW1AvNDJ0jyc CJXby90Drdqh8PeNuObGBDhuJMY9l82EAWHDrFdf4+G1jcCvxRomhNek5im1 xwPLnatvpYcJlr3D5wur4uFO7GQ+Py8LmBTzm+QUTvzPWtdtl1lQZfMtLsCF E//2+aDePAuWr8b0v/0RB3faZ0tCtTqh+MM6/8LRd/DGmvlMLacb3p0dfM7/ mAgvx7VhpL4bItbbTymeJ4LX48S/0YPdUAuur+UViOAc5vSET6QHGpQdK5IZ BDhbxe3Wa9sD5roaXwf3EEBEVc0+SKwXrJRTkzU7IuH1ip/RqFMfXGtoteER D4eqs5LC58UGQEZy07FbR4NgQnajVytpCHxOCo53yV0BdzclmzebRuBMVEhf iYkfMrtFje2qR6F7OeSqS2YMXnus/Y3vzA/oDf872PQ5CcuU9geU8UyCnErO r7z9GSgvUDhKOTUFQWLlLoYC2ShZ6HCcx+8XPLqptfyBKx+5llYnuw5Owzmv Agc5CuLvC1+sKnbOQvG8OmX4TSl2aVhv3fliDgSktzodpFbgXVPR9du75yFx +cDYy6pq3BL+1WyN5ALYMLu4/tbWYZpF/PuZR4swfuJ0ub5CE5oe8T5V/WUJ 4uuCYltUWzDTymn7oeU/sF+j2cSqoRUXBPW48y79BUlD2wNKBAYatxzWkiSs wNosqRPXjNpR8LBQSeG7FQhKE2NtuNSOJZTO05bkFUiP8VhfbdmOao8e20Sn rcCByL1P9jq2o4h0TtCWihUwuDYkvS6wHWsc9w5tnF6BFrVvCd+q2/EY/+4Q kTNsWHS1TRc/zsSFewv/pF1gQ6hP41z3GSamd1VRjUzZ0H1xto9qwkSpdLuC oOtsmGauxB60ZeLyJcqI4GM2fBwfLL/1nIk5ZOkjfElssF+hRA6XMNFZ+GdV 0n9suJSiLZRbw0T5h0XGJzLZ8H5XmWxgCxPDDa/e8i1kQ1aJosa+ASa6/iKF cdPZsBRp8COAi4WKFnekyCw2hJVoO17nZ+FA+cFk3V42rBLSfn1IlIXnCayi f7+zQdFykjYuzUL+1R8MZH+yQXvP7bxKBRaiw0NG8SwbmOneVgmqLHzQdsL6 2hIbxAY2Up7uZ+H//59DQdW6ADNg4f8BrWdJZw== "]]}, Annotation[#, "Charting`Private`Tag$4186241#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmXk01d/Xxw0pFGmQCKGMIUMpot2oKCoJUSEZIiXfylSRzCQzcXE/l2iQ ociQbGPGa3bdzEOkgQiZ3ef+1nr+Ouu11jnrnP3e773POuuIX79jYM3GwsIS wsrC8r9REbb9ZDAYGOZxf/ixPh3uLOwKWFhkoJyA5naPU3TI/qAsNT3LQHGN bKrLETqoyOhdH/3FwEvcf4ucVehwYJNPV0MnAwtGthC3t9HhyPBU3YssBmpI pb173NcJBv7Ut6rmDOR+tNaE5U4nuDT5ONqWrCKrUph/aDgN2tvX/yyzXMGx 3i+irwraQaT0ztYDwssYdt7HyYKzDfIcKjk29i7i3tKMlHc3W8AiRHnyq/cC Mt5lL3BYN8F8hEcAwjwOOaznN9dugBTePsG4wX+4nj9FdetKDZB0lZ3bAmdx 9nsCO19vFXjfsnSV1ZlB8aX6G9brK8CD/Y2L8/hf1Jtdl3BTsBQsvZp2015N odWh9JCrv4sg+vNIHMl+EveXhmWJLOZBUb/MhgyJCXz5X2d+32A27OI7csww 6Rfih93bs5pewXu5APuh4TEcqzAeSA1Mhv6qHDE1tVEs6+qOFAsMhRH5aBX8 OIx/VI9Xfde8DHKPX06MvR3GM8LJyRc+X4LbTXlvNhPDOCJjEUsBA5i/S5Ow CR7GRO/bKsuR2sCdL7CFx2IY1zlsYVUz2I1KR+OnTbmG8UsAuwi14yp6XErO /Wc2hKUOtDHN4nu46fFrNUXWQeRenzwQ1OeHfh9lavjmBvDm2q8jFQf8cXEi /fL07wGMGMDLGOaPQ+ZpDwvoA5ggtji/fDQA3x9NKT+WPYAhOr8XQ4lANOBI 1Dc2H8Da9HfEb8MQlBYUp7J49OPahtqg4qow5AvaOVll04/fuCb3m06E4fyi yJZgg36k3jeKpW0Lx5oeocv8cv14Lpcq6WAbjnbkrSOyX/tQqdmei3VdBL6R 5lwxONCH7ou2Og0QifJqf+RfTvdgSKa7jFZsNNooenoW9vaguHRlSXBJNCZL bWylVveg3CXnyqyRaNwssNflX0IP/uAXiHdRjcG5udtlp070oCL3x2o2agyW F05c+hnVjTd3Fx//MReLJloTj/eqdWFL/D7K0p54jNj/uOW4WBe2BfwTztWL x3oF3t0m3F3IPd/qpnUnHg+LKtZ69X1F7WOXD5TnxOMuhuOWVr+vaP5A6Mjz fQk4UTqefq+TjjL3SD6blUn49MR4c6FrJ6ZveCPsuyYJy0//PrfPqhOFfgVR fHcmIYver8ZMvU6sSPQ5cVEjCR9e+tGQItGJpeargpfuJOEDm5GaZw009GDI UsZpSWgX0FtqKUbD5N26YSdJyZgW0gM93DQEepoKS24yfgvrLjGa7cClRfV8 n/pktHzxtfhMXQdyit4M/LmQjKZvOgr23+vArCTRqE1yZDzbQM3mqmnHAdbm HG5PMgY1N+z1ed+Oo2pisbKBZKxpr89cJbVjQsGt6D2RZDzZW5sxfbcd9+4O vkpPI+PhiapXvTvaUeOg5vOWBjI+/FspbbK2HXfNVedw0MhY9K8irXWyDT3/ Sxjd0U/GA4yy1OqqNiT/qFkZnySjEl8JOedOG+KGc7ySWwi8vfXzTnnTNhzw uTFlvYPAjO3FSWkn2tDG+GS9/y4CZcWLSAmCbVhb+KPRUZVACZWPcb4Vrdj0 YGGy5AKB/IaZYZcFWvEriMheDCDwvVRw0Un2VtyoZrpZOpTA8wu235T/tGDr KRtqbySBQUniB7mrW1DV7ILcdBKBq2NR/UUPWvB+KotP4QcCEz7d5Uq/3oI3 JKvZyAUEHgzVV43Ub0HhQ4Lydp8JdFbl9HeQakHaQ65h0hcCRx95KArTmtH2 qHZQZCeBT8+bmHCWN2Mlpyvn024CxXbt955514w73McnDPoJNK2Z6GjwbUbL 51G6kaMEzsXXMwruNuNgzqOb7D8JjHJ8JfvyajNa39164uI4gY2brz96tL8Z Z9+tuIVPE+gwcjj9pngzlp1vdPf8RyBnwY6WSzzNSDl03PvsAoG+RW90rtQ1 4XXbgR/eqwTTVzcS91GasOvC9M9fLBRcXCM6tcG9CSWD3PapslPw9rnwuM+y TSiwe67bbB0FX83o/o5mbcIbRQMdmlwUHHqx5sjtr40Y9lfo/BI3BYWhJFI7 pxH7zWa3xW6goNE3l++igY1oH8L7byMvBcMClQ/NWTSimcr5AuuNFKxT/BXa dLARlzh+ScfxUXBNe+pQOl8jWiUY8KZvoiC4XVPzGqNi/Gb1fRGbKeguuj3I pJSK5alBlpe3UDC3oqVXKY6KCxtuXl1m8oRdsDKXExV96qUm3LdSUIb3pO/g KSp+PnrsazuTr39YpRfupKLGS4thLn4KkkwK5CPmGvBxzelmQSbTVu562Tc1 YEB+7/U1TOZL2dN+LL0B7aQEr9Yy1+ueHpHe4dmAa7I5vOyY7DOe5DFt1IBr hwuCB5n7l0SYNNUrNuCUkB7sY/L8gc27Utc2oOSubhML5vlVeusfPOyrxwji v2hrZny3vH3rDD/W4xft7TnHmfGnSYOoQmg9Fpbm2iwy9RpsmL/LYVOPfY4C ToE8TH2d31f1atUjifrDd3I9U1+BW4If+evR+u0r871M/cOKJR1Dx+vQgJX0 4SQnU1/L/lKbqjrc87xRTXUtU991L7ZCYh26S3AkzjHzezjDwE7gfh0qhuTF RbBS8P2/qo01u+uwPj52y5llAkPfUMoPL9TiRVufMmmmfxyued7Po9Yi/fCY Russgbu/HOymPKhF0xbj3tAJAlnc+UMFz9Si1ZNwaTLTr70Kf4+E7azFyQk3 z0dMP8dEv017VFODYTLST+J7mfWiE3B5hlSD3IZi6l/pBJ5bubHB4W4NNvOv 3THUxvSvtaiziVANGqn1mJ2vJdB9X7iW6q1q7N+rKxeWQ6DRmOPk6yPV+Pym MWnTWwJVSbopYvzV+PnN+TGTVAJ/s6/h4i35gssXutLUYgi81vagfWzjFySu /dgi4kKghv9Ff/NvVejF1lL+6TaBAoeUNGgFVSita7h1hw2BzZQfyRWWVfhh 3ClzuyGBx5yvOCR9qMQ5D3P2RXkCRaXURfkDKrHh1Os9ARIELn3lbwm+Uoks PFG+zQIE5h5tUnPjqET7jHCxEFYCpTYdYzM0rsB18pFxkS1kZKsSzavbU4Hz p17upFeSsd91yfYoSwXeiZLMbcwnY9xALlXxdTlu+7tNn0oiI3e29AuupTK8 We6w8Ps6GUet1pz1airDOk61vqSLZKwQGFz9l1KGwzydx+aPM/uvZ/yNb2fL 0PahoHHCLjJO6PMoYVIpYv4U7XtxMr7sHnn2w6cE7csl1R89ScKuh9uSE1VL UBoD962aJCGv6KnsC0OfsZiXy+LtXub9Y/GqtRA+45fO3HCXrkTUHrEXCFr8 hAvWig06kono7pcgc/j1J5RhlPUkz5IwU7pB/a/xJyyKv+A3V0lCAXuFK6Z5 Raiux7Y7woKEYxN/yHJOhchCLkn9EJSAwmFi7/tEC5GozThobJCA55UvVERQ C9BUu8ytfHsCFvz3fmRRrgAnaE+SqUQ8Bs7fk6sf+Yhfnx0Pz015gSUvXh7y jPqIyQbP66ItXuBfDdpZ1eMfUWWle2Zqxws0fXTgTgI5D03d7Hb/eRaHcmyL HxzMcpEaZkP9dDUWr6XIVe3kzsWMws6C/TyxGHHCjNZW8AHn+B7eohbF4KJf 8fyhbR/w7seKcUm+GKxf76m1oSUH7Z8kjapSopDlXZZ+qWcO/uDNuX3paBTu 0x8wv6eYg6y9v8U1+yKRFHbUuyc4G8/d3hJ4cFMk0uU4Qy8/y8RHh2qp+mbh eMTxZnbZz3do6y8u+e97GL7KqmuVPf0Ob0xT+7Wdw9Bt3zOBRbYMZLX5T26W EYpChzcT8a6v0Wtr6nAqazBevSCc222VisUDURH2ht74e3pW/X5lCnLgl0mn g0/wYUwT8kqmILus/gOqkBeSur3rjzLrkj7o2W6d74G59a1V51qSMNxM0ycz wxmzZm7tGuuKQvYkJQnpIjlsVBfbu4MUiTm745UUbfbDxOM2Df2rEdhn1LZ6 bOoMmGy+l2qHz/G979SU1co1uHiIl4211hePJvzpvsfmBF7tMu07KvSQK0BM WcvJE+Q39tpzKOyDpY/rT1wkvIA25Z3MN28CWjWidY/8n4BHpHadwz4nqPvc oV+u+xQqxAL9E/m8wduY9UzCOz+wtZWz+bgaAVXf5pcXfobAaQkX06daUTC0 Sy7XN+0ZyPRW6J9/GA3/iVyXe2weCj8Nrh74uRALuxP573fVPodbh8M4RWdJ EKXmz0McCYdCbo+O8vspwJp55NbpskggK/C3ZUmkwpDYxiffNkeB3/msZlJT Krx0F7LXt4oCw5jh+geyaaC0pWAkiSUaJsXPlsv1voLKbzyyHxRiQEpdJCvi RCbs4Xu25uqlONhwJT/DcyoTflAjlIei42D68YU3t5KyoG23We+DjjiwGCo3 2PUwG9buS9zUc+EFKMrM6a105IDOBeLGH4iH2g/mJ3ICcyE41r+1fjoBNKvk K6QHckElJVgwT4oE2bSFo0lqeZBXsjew24QEMQuREDycB89kpeBHEQluQI2G tVY+7Mpc+1X7QSLQz0cXdkfmg2wbW4xJSiKcuX79oMHPfKj2Iy8XNCWCiu/y fogtAO+lnveOUknAqFNSFpwqhEWpEK6e+iRw7lnJen6qCHS2bn4ZN50Eo+N1 imuTiuCmfvuX90LJ0MBnLT+t+wkIE2GLtbbJEG/0QpqaWgxLLec8TOaTYf8Q q+gTE4TXZ/I0H3uSQbHIeErpNYL4avGJl8/IIBXxrnJgASGQx4z+PIEM64mM /WS9UnCqnc7O+UiG5fMmPYyJUvj3wUNI7ScZ5jXZvxgLlIGe6/0n/v/IMCOT mZUFZeCStOYqmY2A3yxrnpqHlcE1n1vH5IQI6M3OkkXlcgjJtxF8q01AF8l0 i4BpOVAjfvicuEAALYBj5bZ3OayWa3a9MiOg0cKsWbStHBS+vulru0NACd86 l8f3KqBN5+jxkmgCipZzLGikCggWKlguTCLg49gVXcWqCqjhj/7wNJ2AzNL3 In38lVBSkBzoXUBAstO1Sq38Slj5o0I5QCeAdIUrM7q/Er616ex4109A3Onc 2PF1VaB64abB9CgBYWLcDokmVbBlQurk9AwBIRvyDGe9qiD+pHbKuyUCAubN D+u9roK1M+5rNNgo4NWct2lloQqcVIu56ngp8LDYYslQ4gsEGfKfbtxKAddX 60cydL9AhI5UyUshCjh5WRZcSfgCIe53PJokKWCpxGNerFkNp5OUFLZpUOCa cMHprdbVELE9WaL4MAVMOa1Ubj2rBkF/i5ADx5kv1IECDuG+auDl76vLOkMB /QarP/+trYGwxdjd785RQLeA92u9Yg3kuaUve12kwLGwGxkenjUwsawq+86U AocfboxpS68BR4rfMsc1CmjYFXnuaa6BNSkDZ9QsKaByhO9it1gt7BU1MRS1 pYCi/CdNVZ1awM3BfrSbFJDbbiMVfLcWJnT+SdneosCuyU8LGuW18NNeOnHz XWb81OM+M+O1cIXPw/jyfxSgvannzRSsgxb7QxnO9ymgFHDxhe3JOvjsMjF0 zYUCQdbdu8Tv1kEq55Fjom4U+HbMKrOLVAdsQRx8Oe4U0BL7dTCqpg5ico+G CzykQMyKc4XeTB28kpXhNnhEgcmuRb11YvXQtShWYvH4f/F700vP1MMG0YY/ xz0pkBrNbeXuUs/sB2sGl5i86hwxrppSD886v7UGeFHA+LyQ63hjPTR3VHP8 YnK2AoUtfbEeckz1CyWeUIB7vdwzC6kGMFxnKa/E5BtjOQJCBg3AHamauIXJ JVXqlLZHDUArO6VDZa7fnlIm/+x1A3zVdXK8ymRnL5187Y4G2JDVdrKSuX/D 1ZajLKxUKGL5w8PGZMlDlxsK5amwiRTHIsA8/+Ptg0b/mVBBuYXNhJ0ZH33W blDehwrCXiV61R7M/LRNOoxmUaEj7bOQFVOfkGzXf8ndVNgydGmO5kqB0Wcs Ty6vawT6wLEdu5j6HnEIWL9FtRGO17/6fIqpf/xpvpiGa40wStrGf5KZn2nJ ODG/oEZYcg4w3sHM31l2sbfwsRHyG28W1d2mQNpA+v6FwUbY2hDrfJGZb9OE fN1b6k1weUfkhykbCuS6QoekdROQl6xT1t2gAK9RtXl/WBOc/BT1cc6CAmV8 nfcMxpqgYa/xRlum/3hcshgc3M0w8LA5f9SIAkXW05VDO5uh8M09naNMv249 7nGOdKYZnuxMHfNn+rtMGbe6WTZDqbjKpXunKHBbjL3rkkszfGSfsdNk1kPN StCNjSnNkNjJBhbM+vEoiHfzXmwGTtbf8UtSFJBJ7ztsztcCO0lz6nXiFGiP llijKdUCG89+GL0vzPT3f29CZy+0wKmgB1uZ7wUYUihKsXvdAhwBQZfTFwjQ SflK1TdpBYkxWZ7+CgImfTNtqhxbIUyjVC23mNk/7J4yDj1thRLtWSH7PALG FBSUZTNbge+WbrJrGrNfFHhFsa9pg8/CRma7/QmooUqbFWS1wWzuIrXtGAFO 2cvTilVtsGbTwN1KdQK2R7aEvOxqg9NW5P5YJQLsTDxKIjjaQV95b+R3EQI4 hxvFHc3a4XG4VprCHBlOzd8fE1/XAdFvh7bcTiXDRJfukzjhDuCT5FF58YIM MZ93Cm1U6YBOlv6xV6FkGPWuPbN8pQMmKa4hD1zJ4McjkkV73wFBcmJRVF0y fJGovB98jQZ38qqC2DqS4aTeZvbZvE7Q8JASu6SQBKGWXFMLtZ2QcYWNT3BL EtDvs/Sv9naChRYt/P18ItgnTRRxrqWD2pmXNJuKRAj9U+csbESHu3QjaboR 8z4Mfzp0/B8digQEtZfuk8CeNlMWodYFllG0mV0x8fDh56+sWN0usDGszPz6 IB6WV4cSSde6QL9F4a+dcTyESre4pfl1QaS4SMDW7cz5ru+Ui2hdEH6wiysl 9gUsC9kQgw+6YXJm6nXe8zh4bt7ppZTfA79o5GcON2LA77cmjDb0wIGk6XuP tGLgsRtlJWGoB3rpYmw222LgdqSj+zreXlAztgv4VB0N+tXs9/pu9AKj2i3S QyYaePcq2YZs7oMS17fBN4ciIXQ1QG/MsR+MQrubKg6GQ7W+CM/5zYMQp9fM avbTD7YqDm5zFh4EBS2zoZnnfmDB81IsSmoQXtXZLl3Y7weL9fL76BqD4FvC Ym3k6QvyOppmFlaDEOsh8CeYzwfCjpu9dsodhKSZaxI10k/A9OCLk+FGQ7Bn b55Ln+EDGBfnf9waPwxJLpw8GUGn8P69PZbPt41CBlfk4nNSCHb28BnY1IyB qNwB9x4iCS3cNL+vO/sLbvolGmskpGPFngNBFRwTkCVi8X2CnI1SXMVjqacn 4ZDAKRFThzwUKXY4yREwBe56FJO0K0XIssj22nnoL9APWEdcX0Scu/D5WpXk DLy+vofjTUE5du8z3yHpMwtkFRdSUX0VOhnzbZLo+QdeOoyrvL9rUDDqm8ka kXkYOygl0DNej5lm5PRp1wW4u8Oh6unpJjTW8jxd83kRHGVqCkqhBXOuOUpo LC+BTIw6W1ZPK85zH2cvvLQCwitHDvaltaNByyE1kbhVeH1kU3+wGQ25D60v K05che8b18trWdGwLLXrzJWUVdArPiL+x56GSq5ulgmZq+Bo+I39kjsNeXfm hwhWrYJ9WFaazAsa1t5SGeb/uwobbkae+kOj4RFO2TDeswzYf7VEYsGgE+fv zgtlXmBAu/opTTTtxKzu6pd6xgygamsv+l7vRNEsm08h1xngz6dsxe/cicuX Uke53Rgw7e89cii8E/NTdmqtS2OAhI9XRHpTJ97m+VOd9pYBbe9zRlw6O1HK pcRAO4cBnDp+3af7OzFK96qdbzEDAq3SMn9PdKLzVHwkexsDtMIS/xzipaOc mb1oCp0BKX8rDTdto+NgpfrrY30MGFV9Y/ZdhI7n4+glT34woFFfUz9agY6c bK90xP8wwAqy1R330xEdXNpLZxhQoOn05aQWHR90aJtbLDLg5C/zGdGTdPz/ /wpwXbheMX+Wjv8HeA3r7w== "]]}, Annotation[#, "Charting`Private`Tag$4186241#3"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmXk0ld/3x6WUiFSkkFCZQmaValORFMmnkIyFRCSRlDIkZMo8D/e5VKQM mYfaxszDNVw38xCJEqkMxf3d71q/v571Wmd4zvu999nnrHWEr93Wt2ZmYmJK WMfE9L+vDOycptPpKKajMOGhS4Pby/sCllfoGHVhz273MzTIzZcTXfhNx+OG Ba2uajSQF9e5NjlDx2nbo6VO8jRQ2ebb19JLx+GkocRbO2mgNj7fFJ9DR7ZQ E8JjqBf0/VuzFMzpWOQufXzNsRfc2n0dbnxYw4bwCZ3gcCp0d7NPV1mu4gtP 3/gXJd2wp/I2t4rAP1Rxq4s1Ze2CQvtalq2DK/jhAZ/d65sUsAiWm/vks4yd WwMC16zaYSniYQDCEq4aTQcYaLZAGufQ7rjRP0hbKZRiW22AJG05565nv7Hj qLzUhsE68LlleV/i7C/8pWnjaMheAw/Xv3Zz/v4Tmf9KFRntrgRLr/b91Ix5 LLCoz1T8VgbR7yfikuzm0Cmfq2hmuRDKhsW3vBGZxSz3Ha6po7mwj0vt5KWU GbRpjzrD2Z4B7yQD7MbGpzDqZB0u+afCcF2ekLLyJEZ/MwwO8Q2FCaloeSwa x7OKk3p8bFdA8vGL2amscXxVVLRNJfAyOLYXvt5OjCN1glXv6BZ9WLpDFbEJ GsdYu8fzcwc1ga2YdweHxTjCuuVP9/4dQFn1hAXjzeOoaU7vL+Mww4eXUwv+ XB3D7oGMUznNLrjtcaayzLpRFFMP+rxjyg/9isQbuBZHkB5rE2mi7o8rs6+u LHwbwcJ03u4bCf44Zv7So4Q2gh1ffrrVnQvAd+pp1SdzR1BQ4cXR+KxnqM+S rGtoPoKXg/6mepsHo9hu4Vamh8O400L8K9EchlyBe+fqbIZx79Un7Nq/wnBp Zc+OIP1hNCX5rHYIhGPDAN8VHslh9O8PX3ngEI62JO4JiU9D+IDatnyMIwJf i7Gu6qsMIVUtoNBaMxKllH9IvVgYQBeeAdXMlGi0kfH0LB0cwKx9Y8abPkZj qujWztb6AXzOU8Wj+j0at/MecvuTOIB3pt4MiqjG4OKiY9WZ0wO4S7lNeK47 BqtLZy9PR/Wj1d2QQ1ZMcWh0fPbxIeU+/LNGG6lQSsAIpceUU0J9WGo4MR1k mIDN0pz7jdj60KLYWlDKPQFPCMo0eg19wvtXK68PlyfgPrrDjk6/T7ibh3sT ByTibOX3Vy69NNy8ravO4lgSPjn9vaP0fi8euPE8pXxbClZrfbugeL0Xr8p1 vBqUSkEmnZm2bJ1eTP9kr956JgU9Ln9tSRPpRVGjv3bcj1Lwns1EQ0gLFV0L L948PpGCtgGDlZZCVOS/+uB+e1YqvgwegAE2KlYLD83k16Ti57D+Dwa/e7Bz v1X/tf5UtIz/VHGuqQfzHDSyt7KQ0Ph1T4mSSw9e9xEL8JMn4fmW1tzNDd0o N/E1TCOAhIEdLYd833Vjd0Tr18cRJGzobs5eS+rGwDnTmsQkEmoMNr5ZuNON 0eby3p65JDwxW5cxyN+NxbPh1BkqCWW5PpDybndhYsB5/2OCBDpyv98rZdyF v+nKtqmiBL7ZVZHy8nQX/rx9s21chkAJ4bKkxN1dCNu5yVxAoIh8UdzTmk4M UQmI/2NKIM+l7LArvJ14TNjGsDuawHeiQWUa6zuxe4ytiJJIoN7yjc9yPyhI 6/KNekcQGJgifJitnoIuXfN6gm8JXJuKGi67R8E8q1CVhGoCE8vvbH51jYIX CtI35tYTeDhUVyFSl4Kq/Ks6GS0EOiuw+tuLMlhlsRyoBE4+eigjQO1Az60j ahunCHyiZ2TEWt2B4xaL9IPfCBTap+Tz620H8vD94leYI9C4Yban5WkHmuZF UD8vEriY0EwvudOBvR06ks//EhjlkCHxwrQDh08JavDRCWzbfu3RI6UOpD1U Vu5kIaP9xIlXN4UZ7bZZH9ZYychawk+5zNGBj6RDnNm3kPFp2euzJk3tOBVe WlG7jYyV5lbJiuR21HPbxXyHm4wrGwTntzxox7aSzZR/O8noeCE87r1EO87t 1rd+x0/GjF/a36LXtaOXhAu1fw8Zx+I3qDl+asMQ6XLxz3vJKAAfIjXz2lCq dEm2WZiMBp/dvgg+a8Ou+eCasH1kDHsmp7po0YZeLVYFigfI2CQzE9p+uA1d 1JeoRaJk3NCdPvaKqw1P3NNa2ylORnA3U/aaakXq4OC/SxJkfCC4K9CoshWf 6X5Md5IkY0ENZVA2rhWvc0TW3zxIxlnbILnNTq040GagrCZFRnFOjaejZ1rR 5U1a1QKDr+Wv0Ur3tuIi57MjvtJkTDIqkYpYbMFtIeEO8wymrt7xsmtvwa/v K6VUZcjIlXaw++SrFrSmh2lYMlhba0KM37MFaw7NP73OYN/vKQ8XDFpQ3Phk uTqDP0QYtTfLtGDH5cvv/jLmW1LZvi99YwveNrRVCWew/GDzPY+hZrRx2b+T mcG3fJ42XSpqRmvexN26jPW9FANB6dBm3GhzaosrQ89oy9IdFptm/BuzWHyP oVfA+V3d4PFm1D38c0Kf4YcB763dRTzNqGndbLaZ4VdYxQGH0O9N6DDjOh3P 8LPJcrjSpq4Jj5gd09vA8HvDpnhuSG7C1l0fDLQY8TjxRt+W17UJ9aS/1Vgz 4vXuT93Whv1NKGEQO3mQEd/Q1+TqE8uN6KshT03lY+SXmadrYWsjflMY0pzg JeP+j4f7yfcaUYcSfnuckU9MD3hCd59rxKGNm/wTOck4KP1TLWxvI5rKmA7t YydjTHTWy0cNDXi/9ho9bT0Znc8GXPmV1ID8fcF7Exn5fGHVaov9nQZsbPSS smTkO6u1oLMRXwNuLw18Y/STwAeK4ccVbtXjdzUfk5lBAg2mHOYy1eqxv4/E rEcjUCFJO02Ipx7Fr6rle3US+G39hs2cHz5iFulFxumPBJp13eue2voRz1nX 47ksAo/6/+dv/rkOL7x4ksqSTiCvquxRakkdnsEk7YAkAjvIX1NrLOtQLW/o 1GQwgSedTexT8msxykxi35IdgYKiRwR5AmpxTUG0acaSwL+feChBJrXoqPU8 JN2IwAL1dmV3llqc3/bH/roGgaLbTjJfMqxB3w8CfKwCBDLXCRY2HazBXNVR jZ3bCBy+//eGOlMNHt/23mCChcC4kYJWmcxq9K2dH6iZJSFbrlj85r9VyGev 2H3nPQknr28479VehUeYLkXeY9TTGt7RtT9pVYiORw1V0kjo4Zlg9fl8FXr3 7jw57U/CWV0OWUypxJoNfw8x65LwRf9EyFffD5i/bv+ftLhU7PPYmZqs8AFj b2T86HVLRU7BM7kXx95j8dmPRZ4GqXjPIqOzFN7jmHxw4P7tqag5YccbuFKO h0iXdWN8UvCBX6L4icxy7K0dWlA1TcFssZYjPw3Lce1olaiWSgry2kmbGBeW Ycm2+Kbgr8k4NfuDJOlUihQnbfswzWQUCBN6NyRYimWjl8UVBZJRT+5iTURr CSotx2jLzCdhyd13EyuSJbj+a2OkQHwSPltykWyeKELlcC355JFElGReybe/ WoB2/iwRTecS0CxNsm4vWwE68nPtieNhnM+nr1K7SvLxpXRVSMhQPK74VSyp 7sxHR7VzfiMO8djM7nl8CyUPhVl3quR6xyHT2xzdSs88bJE9fezM6ThU1B0x d5HJw9c3lOTGWOIwKUzdZyAoF3dZ3M7l8ItFmiRr6JWQbORNHz0U6h6Dag43 c6um32LB+NyNeIUYzMhp6pTQeosbuDQO3v0Wje6KIbwrzG+wRSZP4bZxNPKd 2E4k3M9EH0/kdhSNQh+vuzXM1Aw89Y/doKcnEmequyfsFDLweF5CX+6TSKw4 EyupOvsSvVVKFZ/0RaDpRYGC/uvpmM4tlmjjHI7fFn4fca1Nw9iEtw8O8oSj R0w7ch5IQxW7p6xVhWGY1O/TrD5JYHGo8Y6E4eco9djkYr8mgR6LosTgtudY LqTc6/KKhF2K5WW3ToRiQXNn3QVKCjL79t4N9g3Gbi4/ik9EMjr86RNlTg7C hctHBgv/S8ILFYt3n70NRPmR1F/81HisuJIgXJAfgBcP/Md0ITYOtfP6f0a+ 8kcnu41bfIxikfumEsf6MD/M+XVr31RfFMblhb1xOeqLbUeEDvEnRSKzvvbT oBUfnH3cdVTXNAL9H/NzP8/yRqPtLum2+Bzzdap+6OMj/E+Vk3ld41N8eTLR es7sDkbUuey+ce4JWsQKGMlo3cKOC/2yra1eGHz1ruHrDmtMbNBD+RduKB7G MW3Kq49e3eLd/DU6OJBxsOgEkxlIbR20Y5FWBPf8c5V5KVZAnfdJ5VoyglPS mlMTO+zgYaRmk72iEwhva9fiOOUMNULP/JO5fEAh2vfn8qeH4Bsj4qQS6gvP RBe+9ux8DJpbKowo7P7gYCl0103ECxoWZyVYNgWD80i0ep+qD9y4IWlTtBYB H98RDmH7/UBLxM34yfEoGFPuEvnC5Q/igzW6eh7R0Czbbiy95A/T+qYq08ux UFdbIHCl5BncOhHGKvg7CWahYbfEhhAoZXvYU+2aBn/VlzRCXcKBJM3TlSOS DnV/L5R/7gwHP72cjqT2dCg13DvrfSgCLsWMN9+TeAkZ5QfSqscjYE74fLXk YAa4Vl6rizsSBb2nJ5E3MBMGKi/PWQdFwYcbXu83qLyG12YmS239URD0tqBk KCwLDirx74q5Hw2iR/bkRJzOhrsjR6fayDGwxaT4jed8Nvi16Kldmo6BhccX X99KyYHc9vOVObKxYDFWrb/PIxfGLnQyrSuLBRnxRZ3VnjxY5FQrf4lx0Jhv fjrvWQF8dE64o5SYAMfqpGrERgrgh2w9k1dnAuRSl9VTlAtBNc+2fZo1EWKW IyFovBDc/zOiytxNBCtoOGp9vBjyzzQUNh1PAppedGl/ZDH8zj8g7+yYBOeu XTusP10MP/m7uvRTkkD+6T8liC2BXTJO15r+JgG9SVZu93wpsAVcKut7mwzO A6s5z8+UwVtOg7+RtGSY/N4kszGlDPJp0YYJzCnQwmUttaBdDkPJTYqxl1Ig wSBerDW9AjwULpoGz6WA0tg6QW8jBFh8tp2NhQQyZYbzspkI0qJunQrcJBCN eFs7soxQdPJqjsA+ErATb5RIOpWQ/uSBuowaCf7pGQ3QZyvB0etjpqUbCZaO rf9oyFv1Px+1o31J8Es8OycHqoCrRLsyOJwE35g2PDEPqwKz6ayLja9JMJib I4Fy1RBasT3dv48EfUnGO3iNq8GtdCR8aoIE1ACWVUefaqDNMN3cNk+CNour HYJd1eC97mxBxUYCPnBtcnvsUgNiL2bu+x0ioOxfngU1qQa4yTPuCkcIKJoy 0ZapqwEd9plfWScJyK58t2eIpxbOtJvRmS4TkOpkVnu8uBZqmZbiNN0ISDLZ nB09XAvxkqMZxp4ExGkVxH7fVAcPrXoMjvsTECbEZp9sVAcGIw3MTjEEeHUU bltdroOiiI4AxgUePCos/l4S+Qii0lu9xUoJuJ/BPvFG+yNocjKNBiEBTl6W JSaJH2H0+uEDTc0EWMpymFccq4eZdweSDowRYCZQosVtXQ8Tz/yLz38hwJj1 uvytkHpQ+aJWcuYbAfojJSwCQ/VwVjY6quw3Abot13/c3dgApV0H1yusEKBd wvmpWaYBKKL8j7zWCDgZZvXmoWcDeAQR2YkbyXDCY2tM16sGeBpfO3+TjQxH bcs8D3Y0wDyPpSEnJxnk1bj+6xdqhGMjAbF93GSQkSo/pnC2EeLmKv4w7yKD 5C4b0aA7jcA/XuPNzE+GfXPly0erG4HvRzF/gBAZPFpP+f763ggZmv6bT+0j A/V1M2f27iaY07KQbT9ABtmA/+JvaDSB0J29Q1LiZAi07t8nfKcJgm+SzE0k yfD55PXsvqQm6P1TzWQmRYbjQjOHoxqa4ETN7S3yMmSIWXWu0fnVBJvYk1to h8gw17eis0moGVgO/heoL0dm6PehVZ5rBqHteSGp8mRIj2a7/sCtGepj5vZU KpBhzTniu0JaM0jk2XkXKJLBUI/v/ve2ZtiYmLjqoUSGXGky86uVZhjvEe3d rUwGNnbJEAvRFnDa1X8xiMFWU3m8fPot0LyvKJfC4A91R8hdjxjt3lNK3xm8 K61KKiSzBe5IfhIZYrCz19lizZ4WeLNLoiSdwS2mFHWmda2QUl2kpM7gA6pX WkqlWuGRD9GXz/j/412jBneNWkHg6/mJf4z10X7bjkr5toL26vVIAQbLd83Z T+a0gpDtgPAOhp7g3Pt/UvtbYTB0uWWEoX8yhMn7yqY2qE+40PFUlgxq9gHs OxTaIP72Rxtmhl8JWlwxLWZtsBqW1GQgTYaFA3FCfoFt4LV4U+nJQTKcXy+U BUVt8LRHZMRfggwvR14pLY+2QeR5vvXWYmQwTizWvnWkHQY5/j3PFCFDwX3o OWDdDhPdj29sY8Sf06DefDisHV7I34vQ30OGKq5eF/2pdmi86FNsyUsGDrcc OgtbB2jLB/PJMvKrzHqhdmxvB1C8l8k0LjJwn3p4IelcB9jTB3+UbGaMl0Nu d0sGJ8/tmmchg6PQ+r7Lbh3AWUfIbmAmQ8NqoNXWtA6YVLX7Ub5MwMOSBHef lQ5w5kj7co+xf8RfDZ0w56KAKWH0MYixv7qjRTYcE6XAzAgf56NBAmTuvg79 fZEC3i/5Q353EjAmXZZmm0mBdad6BE9VEPBcYM1WAynAPT8jqFZEwDH2kzIi PRToD/GZ4MslIGaqsaSfqRN4Blgc7NIIOJv2qVXXqBNKTpgMuwYQMPc026bO oRPkevmG/bwZ9cT2CV31SSd8NkvYff8BAVPS0nIS2Z1QyWdB+WtPQECJV9T6 DV2wcb+DarAOAQ2tYldLcrogU2XD7R9sjPqR+29Bpq4LJi1MU7mZCdgVSQl+ 0dcFJ3VfyAosk8DW6OGHCJZuaHx+93fnJAlYx9uEHa52g+MDM9exShKcWXKd Et7UA29EaeNpt0kw26ftHSfQA5wcyYGrViSIeb+Xb6t8D9gP9jmrGpNg0qfx 3D+THjA6mupmdZoEfhx7cqjvekAj99BlR14SfBSpdQ0yowL/Opnn806poKGz ff3vwl7gmeJjVmhLhlDLzfPLjb3QJ6bjcawgGWiuTMNrg73ANndKgD8hGexS ZstYN9JgVfS9iZE1o/+PJmcBAxp4qye9py4zzsfwJ2On/tBgzD1Kdh1/EthR f1VFKPfBu7Ny5xdOJED+9ExOrHYfZPyMrxnbmwD/1saSk8z6oHZ4090spgQI FaO4v/TrAxWy4Y+GqnjIv/9WrozaB7Sm8WcqJ+PhH58NMXqvHwZUlPn/qcbB c/NeL9niAaCn7183uiMG/L4dg8mWAZDlYq0R+x4Nj93Jq4ljAxB0jzZy+mM0 OEY6PNjEOQjJHDveMjPuG7r1612GrAbBwivsy/NPUcB5SPZG8PYh4Fru1GGP joTQtQCdKYdhcJXruK43Gwb1uns49LaPgoVHolCnuR9wy4zudBYYhYlVJb98 Fj+w4HghFCU6CoFeT3sMs57CSrOUIu3oKFhVXqj6+tsXpM4eu2pxfRSeXcou UA54AmGnrmY6FYyC8WvpikjCC4wPx2uEG4xBh8OMx3M9V/guzPO4M2EcQlMv sGurXEBXl4OWz3dOglFnX5Yyewj2DnDp2zRMwTkxzycTXSlo4X7sy6bzM6Ab fNrr8LtXWHNQJbCGZRYoTjziT7JyUXRzxVS61hxsPnzOXdG1EPdU2GuwBMwD +WcW77h1GTKtMGc6j/2E6cF2eLquEhcvvjerO/ALzp9bW19VUY39iub8B3x/ w55vdSKx7XXoZMi1TWTgD9jx/x0v/tGAu6M+G23YswRugqV9xvPNmH2V9Grh /jK4vqan0c61o+FxT62G9ysg2MFqe0WdgnlmDiJH//0FZsO4apWhTlxiO7W+ 9PIqgMm4oGFGN+pTVJX3xK3BJ7a3kosmVGRTZa+qSF4DqRGt4xlWVKxK7ztn krYGR14qLl25RUXZ++6WidlrwO3jZYMPqci5tzh4dx1jvEWQcEQCFRtvyY/z /FyDAArxx4BGRTVWiTDO83TImSjWMr3Ui0t3lviyL9JB+OxFyX0mvZjTX/9C x5AO697czf16vRcFc2zKg6/Rgct2MPP+3V78dzl9ks2dDiEdW3RTInqxOG3v 8U0v6fAz4MRJVkovOnL8qH+ZRYfI/AwzGq0XRd0+6Gvm0WHIo2FP5kgvRmmb 2j6toMOXR4VPzs/1ovN8QuT6Ljq03ds7k7CVhpJX7QTTaHT4HMTF58RLw9Ha I5knh+jg5ECZ1thLQ7042gfvr3Swc9C7syBDQ1bmjLPCPxh6wnpEm5VpiPZu 3ZW/6LAnsORR2gka3uvRNLdYoYPc7wFXD00a/v97DFxzE91qoEvD/wPbCGD1 "]]}, Annotation[#, "Charting`Private`Tag$4186241#4"]& ]}}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox[ TagBox["t", HoldForm], HoldForm], TraditionalForm], FormBox[ TagBox[ "\"\\!\\(\\*StyleBox[\\\"S\\\",FontSlant->\\\"Italic\\\"]\\)\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> True, PlotRangePadding -> {{Automatic, Automatic}, { Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["h", { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"]}], ",", RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{3.8871885224783792`*^9, 3.8932376275906477`*^9, 3.893237839180531*^9, 3.893237876356636*^9}, CellLabel->"Out[52]=",ExpressionUUID->"f282764d-6683-431e-bd66-aff690b1329a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDut6", "[", "2", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDut6", "[", "2", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDut6", "[", "2", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDut6", "[", "2", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", RowBox[{"PlotRange", "->", "All"}], ",", RowBox[{"Exclusions", "->", "None"}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "t", ",", "\"\<\!\(\*StyleBox[\"c\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", RowBox[{"LabelStyle", "->", "Black"}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, { 3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9, 3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, { 3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9, 3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, { 3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9, 3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9}, 3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, { 3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9, 3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, { 3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9, 3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, { 3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9, 3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, { 3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9, 3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, { 3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9, 3.887187764733572*^9}, {3.887188007450289*^9, 3.887188008193816*^9}, { 3.893237873044557*^9, 3.8932379005484257`*^9}}, CellLabel->"In[53]:=",ExpressionUUID->"502b8651-e019-4a6c-8e02-02b77d829c3e"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtl3k01e/zwKW0KJJWyi5r2T6WNk3JUqTSghSiUhGljbJFlKwlt1AqXWS9 901SFBOyRrZ73/de+xKJsia7+72/c35/zJnzOjPPmTlznmfmGRnHK0fP8/Px 8VXz5P+0Gqzr53K5GHB0jaflHyZemZILnprmoq+ZgPrdASYS7zQVxsa5KJ43 czv1FxO1lMwdewe4uFNw9bfpHibqrQpsqmZxMVki5lhMGxP3dI9UxdK5OLKp oqqwlolHH9Sk/2fPxYXbT9I+ZDHRozbQ9ULhPJrUNIeY3WAig7G8v8hhDuMT lPcf6GOgxJcra/Q2zaKhvpPh2CkGvnf5KrCydRrPLdIJLS9vxDNhmsOcgCmM Pj5zb3xDI05GeQUjTOJDP4eV/ecbkCrcJhbT+Q9P3XPvyY2oxxemmtcaH46j bV7qDH9CHQZcdvBUPvAX2Yp8I3/MatFrYZrHtT+jmD0Xv+JLczU63K2VJ1NG 0O6egM3VbVVIKeiJeeE8jBcnxfRyt5VjfrvSigzZQRyz7LAPvFyCciJ7DI6/ HMAjs0pyMomFmK0S7NzV3Ye+p7fHKjzLwfbSLGld3V6kfn/yXnuCij1bKFqY 242+S4yeXbWzQBXfpMG+9G5kXn70+LCrPrrVvk8TTehG17DHZWqCm2HSnZR1 Cu3GnJViboH3LUHww/rVQme68ZgR6mziuoHG3rgxm2Xd6OXD2GTt7g9eJ17l /DvVheHi3Y5pAlHwJZl+VdqiC1erBO2OpETBokncYmrchd+k1eaY8k8gIq4j MV6D5+8WHxGwNxpet8tQDAW6MM60RFfl+lMou5R4M4rWieLtxitMc+NglW+q rtqCTow7Yi95xToB7ucqVYhMdKDUD+r4yKMEmB58e3Lsdwc+W7Y1SLwyAbrs k70/sjswZT8ZZrPtDWTvpRYbEB0YuNu44L4oFY4KxB+ysu/A+JGZ0PXvE6FM f1PH9hMdeGl8iJXzMxF23HruvsmsAyknlC4OiSWB7M/Y6E7dDnTOE3Ha4ZME YxVPm1yEO5DhkPBcHJJBUUymhs+rHSftP7Jf0t+CSIjUcKlTO3onhdtymt/C 5LTE6tCj7ch/h7k6bUkKVLSIn1yr0o58Eivur7BLgYuv1/Qoc9rQjs97vEog FdIUl84d1WtDzXQrsfY9aRAVs1h6g1wbil0aumThlAZ3lgnsaxVuQ+qDtmvH Q9PAdGDBwwu9rVj5NTd0OSMNBmgza7wprfjSx/+Q7pl02KI7tCVprAVNvGbf mpzNACc1P7+8Vh67apOqgRnwSmFlQ015CyrrlUwHJ2aA6Hp1j3/PW9C/dN40 szsDJibcikwMW7AU/Z7EnMoEjeH51afVWtBHSmtwt2cmOPdFOF3d0IJKv5mV p6MzoYVNWx77uxnlxptvz1dlQnHe4In+6GbM638TRGrSYDbLN2Xetxnn19Nf 6pjSQCdNeEb0Es9fY+GF5Y40SIlTe71TvxkNjFVrxB/RINzLrT+spwlVViqN lffQoOz6/K6E2iZUWGDg2TxFA77LEZHv85pwcWyRz3khOlw7TdNuC29C7xoT 2VYtOljrD/qq6zah9vJfi0970CFKx7d+n3QTPry39p38Azp82yosby3YhIej ko6ce0qH3ZJqlXfbOBh5erRs/zs6eKwr3Eip4GDqC13Ony90IIQPuaVmc9Df 7edhwe90kOO6rm64z8FNYW0Tqb10OD0xd773KgcvUt7d3DpKh6dD4R+nbTio 9335iNIcHZZ2ZNrKqXNw8NeDA1+XEmDA1if0xDj4us897JYQAV51NfwHF3JQ pX3v1p5VBAx++fP2BouNutHwd0KMAMU8n+ngIjay5FcdeyFBwJksIfP4dDYG b17hPydNQFxq/KssChtFBozjN8oT0JiwdbTUj43n9g6V/1MgYEVcgWHTJTaC xn7ZSGUCjKPMnw0eY2PI+7fff6gS4BfS+ot/Nxurb94YnthKwMcA113rldhI OsplVKgTMHpnLkJVlI191jqKVpoEqF4P74RZFgZmawdTtQg45yKhfbyXhaqN 2f8y/yPg5dnM+xfrWLgz1ej5LW0CWKf0Od75LNyiGPRqjscix2tUHyey8GzO UrV9OgSYHrT1TYpgIZty7poJj+8Z/qnL82Rh9SHFWEEeF+//fVj7LAv5T1yn RfLO85kPfKeZszAtxM+K5MXbbdFvrryNhU7FikVtvHy8T/yqpsqysOKcglgq L9/8k31mkkIsVBlYFaGjQcCU7c+qmAkS447bHA5UI2CbY++B1V0kKlKMwylb CLjl1FMRXk1iJnfE85IKATnOP0yWfiDxXNoBQz4lXj3cussCEki0+75M1mYz ARrXu4zmQknUkv1k5CFLwBWPzq8et0icUSe6raQIoHl17Bs9Q+JQMr/m7EYC fvu1F182IzEv5dHZcxsIuBjc+sVBmsSOkvhj/iIEJIe1QIsgiT9an97VXUHA j0fNhZbjTLy4KN+dWEKAQyzns1kVE41bUPjnDB1ex7N3luUwsVB4s8GdETq0 JbDy97xiYmtAVEMM737apDE/6vDmoPxi1cHbtXSIoTH0CDsmnglyc9MvoQOZ 3ZircoCJTxvbdSJy6XDsU32OlCQTzSmXojjP6XCwuoZYVsFAMdugiM0OdAip q1YPzGZgUNQHMwcLOlQwvtHmXzBQE5bbq+2lg1FrZcaYOwP7fdoTfaV472uw NKV1I48tDxGLWTTwHv2qaL2YgVXjY2ItJTTI/1eS3DDciONBtltNCBrocYsS y0sbsb9QN7zjAQ00RApfZ11pROmBXH4NLRq4rSmQ2mLTiHXK5UHFG2mQseHz y2TDRiwUDYChRTRQlsl/8VysET9aT6aLkZkgq5UbE1TSgAt/fu4svp4Ja4/T Hp1c34Ah648H/X6RAdkKoflGCxvwhs8xC8uADDgydeGH5lA92oZ7sa9cyICQ lzLbBMvrccA5ckOORgbM90W359/i2e0eX43EdOj18VLbRNZh8s7NyF+bBm6H H8cUKNdibMTwatePKZDy1/Q3ZUEtbpTVLKuMToGu2EV73Djf0TG73av3agpY /vD4KfnwO9oFWM04KKUA3LbTvdtXgxtX2gRfiebNF6oqw+BtNXbpH9tn6ZAM 2f9KV1bIV+GA5XvNhnoqRKS9Kd49VYlYvzs5gkoFFzu/m+9rKjFE0TtB9CYV 5Mu2Nb+5VYm2EcVx19dT4SklPdmnogLV2zf6p518A3e0H+v/d7kcj8fuCnJn vAaDa6ddXr77il8km7PbDj2HpOae8F+Bhegrl+M1ExgKthabcprPJuJel7UF y5xCME/Qi1nMi3P9psmE6BwVdboWSPpbI9zON7fYwiVQbvjT1I7iStCpUzT+ IP0BD1A5NYesG8DCrYaSZlSARuaiC8ffs0BHRYsT7lSEkfasuxofWuDm1COH 3q8lWH5IQuiIaCcovlrHZypThn9k1vo2xHXDON+sYp1SBd68oeoQua4XRhqS HXr5qpDVInLUqaIPFkX/m9Ns+YZnbu/6ueTgAGzpTFRv9qzBElW9kBKBQVDM UhW6Jl6LCss+9yXuHwbXXR+fFeyrQ4nPLkYCwSNgcNNYGX7XId80f+q1rlFo fyhvGRJTjxMWBXalm/+CXd66YU+NBmzWtt+4OXAcOkfX+JyvbsCrViKrZFv+ wQUzoTM+to0oFv3DepHEJLhQlLbbtDUi7dTrt2OeU3D5bejYq7MMtNL3219R MA33ih/G+TQxMMvOVXbH7AwktUrE7TBl4qTgvoV5J+agtPLKkYBC3n+3fqeu RMw8UFndebkKJAruXF70OX4elJ8vE/VTIrEoscnsNHUecpgUCRMVEjU8bzs8 p82Dnr/hYXIricJSH8LESueh6Fe61Ig2iZWXtbrXjs7DKuclIRv2kbhnqfIj 4YNc+PusfKu6PYmT7pPiNAsu3D30VWaQ18fozeVJ5lZcEHqjVJ3hSKIk3elT mCMXdlwIMlR2InH2RGKv4G0ulC0WL5N0JfEDVUp/STIXzBo7pWfvkOgmNFSe nM6F5i8a93O9SVTwKDxqnMUF6VdW1Ku+JEab2l4M+syFUuYDgR/+JF4biXuy sJEL2wL7XcqDSVQ55SxJZXPhZYx7lF8IiZ1ft6catHHBuTvQXS+MxCMx7EL/ X1zI8Ek9mRxJ4lL+lAMyQ1xIOPfT0fYxiejiwfjylwuLswQ3r3lC4i2msf2Z aS54UJRfV0WT+P/7CkTssGHcfUri/wCiH9o9 "]]}, Annotation[#, "Charting`Private`Tag$4195771#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtWHkwFYr3JzxLZevJS5ElhEi2knSEkIg8SpGtUETxLCmFKCIVUcpadpUt +3auy+Va77Vde3ZJsstSuV+/md9fZz4zZ5vPnDlnPkfE7paJ/TYGBgZ2RgaG /7NysHuaTqfjG/HX36vNaHhrXSxkfYOO3tNXciVNaZj7+YjE0godxSX1lcJN aKhw0NBu8jsdb5zW8LloRMOjPEF9zd10PB1xZWVKj4YaYwuNb3LoyMbBlUJX o6FJcMsHRWs6KtjX6fwSoaE3JcjFsWoT7xNd+iR+dGFn5/bpats/OGwfIE3y 6kJBwq2/j+77jVw32mVFmLqw0LmWhWtwA6mPJxUCn3aizdMj870P17E48biI DUsnrkXeC0FYw5NnLzKE+ndgMueXPTEjP3GRgzPdYaod4/SPuHc8WUGiWidj 2Zl2fHjT9o7UmWX0tgNH/Y9teI8py9v9xyJmK7ybaV2hoq0/5QAtYwELH7oI fj5JxejKiZg4p3lU5DCsdNtoxbKhgzs+is5izGWRQYcjLSjGraFpmvAdK3jn ml9ZNmG+dIjT6NgUOvco6dlKNOAQKU9YRWUSFeKz2Us+1aHvv+vaxw5N4tdQ 1WOU5Dr8Z0TjxnHRSUyk3ioaflOHxr8peSc5J9Hk2qHAxUd1SFCY1dSdnMC9 4laB1Ct1mJQobW/+agKNb3vz3NpRh3Y+yZl3f44j920DqY1rJJw4FK2ARWPY +GI5fT9jLUo/SJ2d+jCGL0zmOh4t16ArpTCL990YLp5+qTv6tQbX3GiiDmFb mGyJ91trkKOYf9dOmzFM/N60diK2BuVPvV26zD6Gnn2MB5sVavCeWWLBT4tR XI6LDEu4RERCWs5t4fOjGOOtE5J+lojMa3hIX2cUNRWkZFPUifjs7XBKvPwo CrXbcNwRIWLSkEi0NssomuyeVg+eqsa6GymekdkjKC7h3CvjUY08DzJV5BhH UMGxbH+VPwEfFx0kc68O46AvcyiPOwE3ZtMvLc0MI7PA9pELVwk4ap3mW9Iz jPqybf1FpwmYfyqZqJk7jEPT+vFkdgKasMSfu2g9jDJ7Xn2QFUKU3CPSwnBv CO07KWFkgUrkDt0/T3IYwr637in26xW4tiG4K8xkCFn5Ve0HuyuQPCBwiU96 CE0D0r0toirwetLfE1K9X3D5cl1j8PYKzJJk+2Ny9AvK7fINM1gsw0Mqc4dS lwbQPTjLLi6hBB3k/PxKBwfQbXHVNdijBBMluNpb6gew8D2/u4p+CfLyH/b+ GTuAQRRC5uByMa6uulbrag9gzvYQV3XdYiSWzppNR/Vjko6zbsJQIZqrzz44 rNKH8ax6qvK9+Rip/KBNS7gP3RwY1vjT8rFJlvOAOUcfmhab5Wa45+NJIbkG /y+9KDWwo5PAkY9idJdd7Y970fgIQ8AnlTycJfxI9+juwd7WVOaFtWwM1P5B Lb3TjbFCTVf+uKQjUW/GSOlqN5o5eD4vmktDBsPvrdmG3djiJD3jfTsNfc2+ NSeLdqPc8HdZ1lup6OUwQQ5vpqFKQInaNptkvB4ySLAVpmEBj5iIrmACpj0d gAEOGnYsB9tQNuNw/EV/1YWVLozZOc7C+CUWbd/0Vpxt7MLmeKda7eg3eDmr q0TZowtvT1SLP5mMQoPmllx2cidO2Vmzee19jKHU5sNB+Z2oJSs/yRweiOTO puzNuE7cpfjSib7mj6cHGz4uuXXiJ8XWrlU/bzw5S8oY3NuJYqt+flLBGijP XZWUd6sDV4ufr4Y+eQR8ptkvLvG3Ixtxp7Xz5DvIlwgrO83UjnLvqk6tZb8H 43XH8SNzbZjN9FuczycZQhNEjnHUt+Fp0yESM28qbE5FDZV5tWGdrr7g4IUM mLx/T24fjYos18onmWVzwNUoIqZSioJ/JUxd7t5WDBnL+jPRjBR0BH2vKb9i GH3DrOHa24oCbTNNmX+K4cK491ehJ61o9plULf+rBMDHSsV/qgUlWY4qzP4p A+5kmU7N9GZULjVidhZCyP9J4iIfaETdPatjVdQaeJb1nnhyvQHpBxXY6AK1 4Gzl51nY0oBMi9puMva1cKDuWP97rwYcLvDgkluvhVfRH9Luk8k4uXTv+9/7 6+CuUoS64s16FKmUUGmyIMOFKZf5TI16HCiK3bR4RwbFOP1kYb56JMrt3bwy SYYZJmZ2zqo6PDOtVvjStQGsOrw6p7jqcHkyjrvbqxE03S2dEz7X4iWbx4+N rJtBSEJViC+kFscOnXf59boZfvXytYVZ1uJ4arvkS0ozFJyiqPiw1OLxiect jmotIMGjuc30Yg0yD/LE9zO3wjaSUGGjTA1OPGqbFlBqhaE7vxxPMdRgjccN a067VogZLmiRyyRiZvraro3SVuDIlXzD/qsaVcuPNBheosDkVWYDf0o1Dtu5 10Tfp0AN/8jmz+RqDO3i+XgjiQK+fm+vjRtUI+9Hpuq0EQqYK3rzW4hUb+3K wVJmBioof/23sW2FgKzvhyM8Oakwe26nPCYQsCnIfjuPFBUat02PKv9HwKm4 ugpVZSqkF9VFf9QlYMaBoR0JGlQIckrWE9tHQIUeXRf1s1QgnGBYVRxBXLHq 8OE3o4JPSqmlSChiOOu1NRkrKijs+I/IqYjI929Wz10HKsz8d+jg7/4q3EVu VmR2pUJq/0T4t6Aq9IhdP0v2oEKf7+7EeMUqlK/jbnS8SwVOId3c86OVKLuS LW7pRwVN9K5miajEYyPLi6mBVPCyyWgvhUo8Y2Y+djqYClmMvWMusxW4oshD OhFKhS/v2VdE4iswb/ruw7CnVODVPv4X7WwFii05iSg+o4LOhBN/6EY5arDf Jyo9p8Ldx7EHT2aWYzjRLCliC2dLNqsuXizHwKMDnGe38Cj5t37aX+U48Z/z XbuteH4nWcvLhWWYaP/boXcrv8F2KxfOa2XYyXTmVt5Wff+Pzx4Qecuw5Po3 rZmt/goM8blXdSkKv3HOCguiwtTsXJL07VJkL3DwjfCnwr4XwvlfhEpxQTM0 jX6PCsZHztdEtpRggW2WZI/XFv/tAZ06viVY6NbAJehGhZL/8ic2pEswjE3Y j+q0xe/fYz+ze4tRrk4sdfkqFYSLdrFdDSnG2dJwDLOkwpM1D+mmiSLs+bXA vs+AClVvUtX8oopw7ubc0h4tKiwepxkoahVhSNdN7ShVKly+f/RWbFIh3tXy /8UqToVnQtf9jYwKsXG03PEvASoQMSaCabMAjbp+aIVtzZP0to3PzhYFW/dy +Lj9DAWskqVJ+zkKME0gJr6gnQKR2ha0jpLPaDex45N4CQU2Hlesqe3+jL2u rGMB/hRo2u6nvqMtD33fjQcWsVKA4VPOOYJfHibE2mykfW0FpXPD1h5yebgf QXOsrhXiXpx6OBCWi2NpWnymga3QI8327FJ4NgZ/zopMW24BDZcbudXTn/Cj BM+jR5QWyMhpbJfS+4Q+eSHTPZkt4KMUzr+x7SN68VZ4z1u2gMBJ3ndv72Si skSigGNlM1w5v6+g/2oK2ixLilo5N8HM0oqqZ20y7qDtvx2k0QS+ryjIKZ6M JrTLyY58TRDX/7Dp1OQ7jM5fLHSvaoSCpnaSUVsCxl4RMF/f2Qg5yzfFpvqi 8HjX5yqfVDL4dx7s3FtjiDml6XXiZBIc4hp0YpFVgjb+JlHztySgLTxM5F4z B/71n0+jb5Lg3kudRmel2xBirH7yKA8JaoSfBMdzP4Qb+Rc11CxqwdFR2qFo MxJKpXSPnlkiQinHvS6iZzI8WL7u/kyVAEmyfB05oilQara+ELCdAI+Nc6hx lBQQaA0X1SpHMH011uQllQa5nraFLcwI8yIGROnBDKiNDb0vGVcJEqqCOZHa 2ZD2JyvSYaAMGj5ba+c9KQD/8XFKfUohnCAdqpEcLgCu1w+/3jcthFza+qkE lULYpVot9ZK5EF6tv4SwsUJYVpWHPvsCuAbk4/bqxfBrLu9cx6HPQG+UP7Jn oRRIT1I0ZJpzQXmUUSjAHOH1SGfd09gMkCu7uCCfidD2IfV3ikAGSER+qh1e Rzj64N90w7fpsP3dR+UkQwIkNpQYGsamwW9j8wH6LAHoI9ds5pNTYDA3RwqP EEFtvivqH0oSJN62qlUvroV5xixBPq6XEGfJnh09VAv7f7OnOcpFQoxewesf rCTQfrkok3UuAl4IczjHm5Mgvf9qwqLYc/CnFvL8WSfBPo/cs3K6IWArv9O6 4kQ9KB+vPXqqzhPE5svXjxMbwCainj1b+z76tmgFLf9ogGCjaXaJc/5Iy2ri zN7TCN+exBMk1wIw1L5fTMStESb3ctdRdB7hfN+GIatwEzRo3w5mo4RhFUn1 fcf9ZuDiZXzwRScKL8cW699UpQDTy0xXJpUkPJPc23LOvB1SLN8l+Jz9gPOP sh1ILu3QkeZaYxv/AWOuB9LVAtshrkV3B+PcB5ySlT0ild0OMfKbHQ4RHzGk xD+KibkDlgS5n/W3f0Jyi6RFSU4HaJ8Iyrl2IBd11zynRFi7QPne+X21Afl4 2pCXaaWwG4ZTGfaZjRfhM1v2hfWGbohdFtFwZyrGHk+Goc3BbghJlArxES1G p4TZMra/emAlZMeKjk0xPptrdN93oQeGOHcbDfdt+UcEjmr97AENf+XmA80l 6ERbro5U6YOw+sPZmYll+Ny621++eABu7j1MQ64qrD8nuNOYdwTcDQIfh5oT 8YcI34P2t2NQoptKXGQjoaeHjO3z3ZMgG7Hnzj6beuwe4DZxIE/Brj1jboFp DWjjc+Irq8F34Pymx7MZ0YQ1MkdDa1hmYZaiKcx0pwUl2CumUvTmQd76mHfv PxQUrHA+zRKyAJFPCPMrZ6jIsLEt0310EZYqb46dZG/D1fOVViTxZaBMcl3l ym3DfiXrveJBK8ArGFWVcqkdb1/k5hEd+AkVFeX7RX+2456ocXNmwTUgKcWb Sm3pwWyLpPSlO+sQ6+ZszcnZiRfV/fTIlRvwwKNHZSGsE/OsXESP//4FLW0e qQTGLlzj0GIqNfsDZbIM2n33utCkTU1FMGYTAkyXK4emupBDbXt1RfwmrKte t6uY7sLqlL6zlsmbcPPV4dyYmS6Uv+NjG5u9Ca17VfSM57uQc3/x0z2kTei5 +9SlfLULG24qjPEtboJM+p2MgL+29DKb1AtOAzowGmFBqxhtS4+tCWSfp0NV ggQmidMwp78+1fAiHZhVP3m5S9JQKMeh/KkdHcZfh//4W4aGv81SJjl86FCZ 3vzHTIGGxcn71VnT6HCMPbGarEFD151z9Wkf6GCy/OZDtCYNJbyrTHTy6HDL /qG2nTYNo/SvXH9UQYcc8/DADV0aui+8fcnUQQdufK8quaXvpS2chJJ76BD2 QCRhwZiGI7WqmZpf6KCneSu/3ISGxjE9VQHftrDf1+lzF2jIti3jjMgcHVIy znD9Y05DdPbuJCzT4YnK9NjwJRp6delY22zQYXpg/HqmBQ3///8AlqfMEtyu 0PB/NIzz6Q== "]]}, Annotation[#, "Charting`Private`Tag$4195771#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmGk0FYrXh2UoTcKNrorIFJnr6pralUxlpigy5GowJGWMiygVKhkimWWs Do553MbM4TiO6RwkXJnnUJy/d6330/6y9+/LXmuv59kCN50MbRkZGBiYdzAw /F+VAu5JOp2O0qYhk11XKei0Lvh8fYOOR4Cmr3iFgjl5siJLK3Tcp9fqlmhE QbkTOjfHp+hYQj21w0Gfgmc4nvS39tDRQGFuP8MlCp77vtD8LpuOpWEnV46o UNDwWdvHU5Z0/Mve/O5xQQq6tz9xvF25hXONLsq2s91IJu+drLbexN4voj5n PbqRt8rp4Jmjv5GP81H4IHM3FtjXsRygbWD34VyR8FdktAqRne/zX0f6nM3A 8C4yroV5PUdYQ4K+zmRoQBemsA3yRH9bxeixP0bFpkkYe0n2QdeLFQyyrJZ9 oEtCfwdrDzGtZTz6HILliJ3oxZTl/mBmEe+5LLO6b3agtV+7ECVjAbOadq8l aHZgZMVYdKzdPL5iv+seeLAdS4dO7Pt0fBa3bos9M77ShoLs5y4Yx08hbSKG 5+qrFiSKP7cb+T6Bs2ksbulOTThUn8svLz+OyYre7n68DTgmESmHhd/x6kcn JBDqkMMnU15qxzd8Or+bZpZVjYGFJxrZfw7j3XMhXKfiq3FjNv3a0vQwBhPV fzOGVeOIZZp3ce8wch6OygnxrEbi+ZSaCznDKGhgXqiuWY2GLHG6JpbD6C7K tVdntApFeQTaGLyGMGI1I+cGdxVKyM9JpC5Rkf+RDJyrKsdbUr6+JTQqarz2 KlBMKscEkQOktgYqZudUyPP6lyPnIWn31fdU/CGtVfNOtRx//rxXrXGRir/D +6od6suwpmT2ymTEAD64kKZqUleKpiqzPtLy/Ugc/ePOAUIxhv3l06nK3495 rMpcpcHF2CLJJmS6px8v+F28oHG3GM/ySTX5Dfah7tqWFqtQMQrSHf8gBfZh WvsOuWPRRThbNZPu0tOLT2jMbk6PCjHg4kxHiUcPais5yM0J52ON5rTeaZse /LzT7+NJhnxk0Jn6StDpQRdpO9GL/XnofeVHa8rxHpT5VLmL9VUeut0aa3zZ SsEjxGSTriUi3nlOq7Lmp+AEHvM8XZyL2q1tObsbyWhxM+5bhCoBgzpapZ8Q yWh4mOl7x8xnbCS3ELZiyThxVLaVEPUZ1WhNn5acybj5lDSsPfkJz87WZ9CO kDEvIkloPegjyrBXJuY6deEdU5/RsyUZyGVMCL12iITXNJOc99ckI1EkuFSN iYQ2M5sW522TUX/99qjsXCd+11YMYmZNxqB4gb/3NHSi78TToVPaSbg1ETFU 6taJr5rMfU/EJ+D4v15SRykdeEuLwc3R6x3e03sTXSHWjkFTFbe72p9jxvKl 6cgd7cgmmFL7N88zHHnHfO5e31ckz4zaHrB6ildH3f/je/EVT382dJgZe4zg aSHvN9GGbIzTDT3JrsiecpJ8Ib0VxXTDnK/vsQTiav2BRqFmTB0f2+gbfgOv spJrzq43YRPHwDRlZzjYW/i6FrQ1odCyQZSWdAQIffl7INmtCUuOFxjWPHsL byM/pv3b2IhibzbNPUzfw6PTb1ROOTTg/v4ESf7aZLg64Tifea4Bex6Liik4 psCp2Esp/FwNKNYhAWw8H2CaiXk3W+UXTIy32P2nWypYdLmRJw58wTm7+6Pz 6hlw4YG5fXxeHVZ36/WE6BGAT0SBj+t5Hd78y0LK40g2/Orj6gw2r0OlCItn rJPZkH++Xd6TpQ7NVn4t5DfkgAjHBUZjk1q0vq6v3e5DBMZ6voLmk7XIPsS5 8HKeCEMev26fZ6hFn9+XAjdt8iB6OL9NKrMG4z+teIrp58OeHNF3u39Vo27M tL0zFMK4DbO2X3s1PjB/YHO/qhBqD33bWk2pRnLDudB01SLw9o35Z1S7Gu8Y aThxGhTDrO5+GYyvwnrrhwlWQaWQOjD28seTSnTV4tESfo3Q782dEHeqEoND PrayHa4CNj6NHIORCpzSdOo0vlcFblYZpBKowLWs0t7Ao9WgPmZ3KGijDAcV Rq5nvamBR4HvT5zNLENl1sNFUcs1QBBtVVg0KcOTSY+YV67VwiE7SfPrBaU4 E5aVf1OiDiZm5xLF75fg66shJfOL9XA0lJ84yFeCVtmSFioOX0Bf1qA2rK0Y kx6detQ98QWKHxLHNsSLUfxtrv3N6QZ4seYi3jJWiLSZPCcj/maofJeq5BtR iLKR58yuFzXDoiJF+5RqIarYCPgnGrbA9X/POL1PLMDfRs0MV9+2gjjjRp69 WT6m1m6xfTVuB4sU8fpje/IxokytmJe1A8IumlG6ivPwGoTbyd/pgI3A8jUl 7jx0lnp/z0e6E1r2+qrs68zFSY2lUqY+EjB8ztat8s1FysTIlIdmF5zWHbZ0 kcrF1oyPW59KuiA29Lw/NTgH967tiwlIJEOvOOuray8JqJ37zMXBgwLnHO/m VE9+RlvizeU3sxTIyG4miWl+xuVjn4jrNj3gefrloQ3GTzi+c7GLeKkXRtxm FW5afcRwZrF8lrJeuFSiZ95ckYVRDNJnE0/0weGznEkxHpn4dkZg7el6H/j7 PaxlpGQg52iLToVZP0zVkMfsTmXgf+LG7/4s6QdjFnnWrtB0fPFP3F1ujgEo 14gSV5pNw/4Q80BlmwEQClrTTrmchs4X1JkOZw9ASOs1p72ZqfhFP0tWa3kA ltnK3jzcmYqJi8aWznJUuGFwNH/A5gNu6nMYad6lwvTSioJrXQrmq9yJLY6i gvfb7dshnILdp/eaVlVSYZ9CplrG02S09ftmpDFIhdgB/5bz40lYovKVQ22V ChI+5gYD6kl4fSviSdVOGpTxy/e4pCdiw2MZ7/YDNLhUe+AGG2sixh13b4rk oEF+C6lerzMeq5QuCV7cRwMye2Cnf1gc6r9W6+NmoMHSFQVagVEsKvuOWhnP UIHz/fTExMH3GCVh0XyZTAW54YTlI5R3WFjMK25UQAUDYSMGvaho3HGrk/FL KBXu2+3c528ahX/czi1luk2F0OySQwU8b/GHyJrQvb+pkL3sIDjRH4GOO/NF 7rBQ4asCv/SR2HCc91DxNv46ALM+XYq6N8KwafJrckT4AJhyuny4g68x7wBr YtDBATBSYmPc0fQU+21BfnB7f37kE+QjtTp42Vw8JPN1D0gcoNmxSJ6GYFOl OsfzPUBZ8E9gXzOFzxcjjdyXKOAVrt5sf/o+LDaXltaYUqCW/8WzOHZ/OKyq 7+Qs3g23b4vfKtwKAyWlru6kZRJoHne/HqASAWqxyRxbuSQ4QavV1feOhMkq Jzat+ySYNLxxZnI9CpQ5K+Iy5zrB4WwoK99KLFzutHniuN4BJXu8umtcU6DM YlnC2fErJEpydWUf/wBHWeR0FH61QaB+dkds+wfQ0psu/RrUBsZvv7e4iaWB nsdQqFJ2K8wLaNeI0zLgiZqzMPe+FhBR4M0Ou0gANZvWrKX9jbDPvOiT7wIB DmbE7dXLb4AlH4Msh/hsyKDpVk2bNYDVSI2hoHcO5Ckw7CURvoDUiZ86m925 sDm/etP/Zj005VlezH2RDwr+I1Mbv2pAuV6iVnQ4H/5szHJyzKuBHMr6+Xj5 Amjiy7lcbV8Db9fDIfh7AUx3dbFtDFbDP9CoaKtSBCOHNGmy7VVAb5aR5Vko Ab+eLbJJWgX8NbKD77EpwnLSPtHylEKQKjVZkMlEGLDenWenWggiYZ/rhtcR XJt9E6a3c/cmfforUacKvKSSxG+IFsBvfVMqfbYKmoT8/owqygNaTrYYytZA pKCGVM9GDiTct6hTKaoDmklhadxKOsSa7yZEDtUBx1NBYTHLdIjWzI+a2VUP MZ0UxYqmNAjl32MfZ1oPWdf2hy0kpYJfRwHH5no93Ms7kSlpkQLWMvsty5Ub 4JuDx063nfEgOF+2rljTBG3xz+tuE4PBu031yfJMEzh8F34mGfcCKFktbASe Zmg+ttSrEvwMgmwHBAWcm4E7W5GT2zkA5vs3dHbxtwD3sfjgk/VuUFmvkNz1 byvE9M2yBHyywuvviy45KLTD4VqmBXJiKOZ7QLewbTvkaC3e5/J9g2xXGyyH QtvhnUT6v1LmYVjN3uNiONEOa3usJVc5I/Cgqpde7OUOcCKeZ5Z8GIVexTGe /hsdIFeWwpTAEI9aKX1tuqYkeFdeNOook4rzTwm36h1JUG+wS/Xby1SMvhNA VwogQfdlnuCpyVSckJSUFSOQgGsh0rUxJQ2fF/tFMDF3wTDtjxvl7BnY2CZq VpzdBecafhRr9mahxprrhMCubpifzPTM5MhBNR1OppWCHnAOiSzLGc/HV9a7 F9abeqDDkb6ZzlqAva4MQ1u0HpARLr0cIF6AdvGzpaw7e0Fk+HXluGMBvppr fnD0ai9U3Wcbtl3a7n8TMKK62gtzaJNtt16IdpTl6jD5fpgWUItOXyzG15Y9 fjJFVLjyISz2wzZPB04rw3grFUr/1uwS2+ZtH8/kzfcjVFCMMbONHizHe+GO j3ax0cAg+F9+uSMVqNvA5DL4Dw38WXmfmoVXIJu0zO0QzkFIILgWJflW4qut 5zoTjkPw2fvamq1QFTbo8u7X5/wG8sIE5ezOapwR4PIhxXyHwUPdOYSEOnR1 OWn9mnsc0kV3Bp3fu81VVHbDW40TYPXaby7XugmtPJX/26U9BeTjh9oNTVuw 9uSZoFqWWVDuDD4TpdGGIrvLJz5ozkNSTB7LybmvyFtur8byfAGsQ9VDvpzp QIYNxswHI4vQUuLWbLvegT8NKizqhZeBqG86yZDciQOnLY8IP1kBr3Mk21M6 JLxvws5xnLoKAZu+LUxTJOSJGDVl5l0D++XBhUNuXUgwS0xf8lgHmSkZ+ioz GU1UfDUbKzaA+NlKNSWAjLkWjscVf/8C9aPuVsc2tv1vjypTyZVNiEtLlKS5 dKNhp5I8b/QWyEvqv7w70o17lPZWl8dtgdoXkzuao91Y/aH/snnKFrguvZgS Ge9GGQ9P6/eELRgvmJ0c+dGNbMeKQnjqt0CaqNh5daEbmxzkvnMtbkHNaqaJ FMO237KKhbJp0yHhYatIHC8F15zXDhMM6PBoSO6i8zEKZg80pOqY0IH0OGO/ mgAF+bJvlYXcpANbskLqlBAFf1/5ML7Hkw4DRgqTpyUoWJRyTGVX2va8StZY kSIF7+2fa0j7SAfuoPXOQGUKirhXGqrn0oGnUNbhylkKRly6cedpOR0sFzqy Fs5T8MFCTDhTFx0OP1oxEtGioLiZHV9KLx1q8gqJi9s+/q1OIfPCIB3GGjSq KrUpqB/dW/n4Bx2KBi5PXNn2d1bGDC2BOTqUf//JKGBIQbR3J1ct04GhZ6x1 atv33brVLa026HDioJx64RUK/v+/AH5Mrt3zM6Hg/wC/QLd2 "]]}, Annotation[#, "Charting`Private`Tag$4195771#3"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmHk01I/7xYXSgrR9WolItkikVDyUKIoIiaRdkUgkWUIqISRlLWtlHdtY Gx5r1rHM8h5hENJQDZJCMd9+5/z+uuf+f+8593WlLjqbXeHn4+MTW8TH93+q DP+N8Xg8FFu/I52wJNB5Vjpodo6HNyvWiWlZEJhXqCo7Nc3DVTWpe1NPEbhb 7sTFka88BPbx+psnCdy7KrC7lcVDPcG4Ln5DAnWGJptjc3lonrWHKqFFoNlj apaaHQ+/bN5iu12aQI/2QCf7ygU0ya5yvMZlIoOxYqz6wjxSwm/pHbrLRPEq 57V7t/xFQdaOpUOCTCxyrFu8kj2HjntGbsaEMfB8qOrEx4BZ3MSK1/sixMCZ SK8ghBn8qe6VFfOAjqmifRtjPv3C60FSQWrfaJhgqOpKfzKN9ywkDH2NaRhw 48Jd+WM/cd4hI1e3oBO9BDI9XL//wDIWNSt4vgMv+LXLEOmTmPyjwLnsaAe+ qPgck+AwgeZnvjo3rW3H8n454extXAyg7hjOs6CitJjOIfPXX9FaRGw3EdaC BQpBDoNDHKyISk6/7NKE/fX5khoaIyjJ2XY9RaIBPyu92I3FQ7jMlKTtlleH q3wzNJQXfUJDQ0fNWznV+KhYrlHs9wAKRHfamCRX4xz33ZmpbwOYZyuuI/ui Ggft3nqXdg3gvSMZipXe1Vigm1pzKG8AP/H+RL8wqkazxa+MT9sNILcvqqf7 SxXu2ChF5fPqR0uGoIb3pipU0hhXejPVi73dMrRHLRS8qnz/fhm7F5FI8EvO pmCi7EoataEX09N+kdKeUnD1ehWPX/G9KJz2+M8lEwr+/n2z2kCvF73o10/V dL7HmjKuxVhUDz7ZJN3b21mOVlpcXxWNbkzlDIk6VZZi5B7fzsOS3ajsP3DN KKEUW3aKylgt78ZzO+ZWidwrRW0J5Sa/vo+44/DVcM09pSjNc1pDe/QR60qX UVUzS5Bb9f2dG6sL76QSp13DivGB3veOsrssvGEqWknSJmPN0W8m6pdYeCsz b1RnIxn5TnxtI51g4cbWNc/ypgrR22K0NXUbC9UKy8x2pBfinaufG5+2Ephm td/DcWUhXgtiV12QJFCwWzVwNSsfj7dS85Y1MrBrO6fxzTMSBne0qgQWMHCp jIfKGi0SNjJaSAsJDPzuoeoox8nBI+ym7Klb/3zUgreBVg5qc+vT2ZsZGGi+ Qu/wUBbuEqtMynemo8EqFYUH4hm4zpwUcWY9DW/miJGkj6RigWxI+REBGnoO bEj3HkvBk7P2w6rjndig3qXvEp6Cwa+l9i1v+JdT4ff90l3JuMCJ6i+/04kq AnfaUy4n4YiPl/IWogP3JvpzjWlxeNPkWUyFfDuOG56NlbsUiuk/Db+9WNSO uOt20NeKYByMFdS5+bENXfMwO/i/J2g57PFF4kkbOl8aX2VQ/RDB85yGH4eK t+OXPFSc8UGxVEXGoXetyN1mkeCwSQcLftWvbJRpRu1NyxV0h0MhLDOlRnu2 CauWbXHTWxwOjufuuxdRm9CtZ/DZeFQEyHzY15NypwnPmX2YXYyR8PJF1luf xkZstPm8kykfDffUn2mp3WjA4lgHLaFdSWDJcZrI0GnA7KYOgwONSaCWYJgq ua4B5w/35IVdSIZvAoLLRCs/YG6P92hadAqco99hcFZ+QKqUaZbI6jdwyPWs 4+vCOrxI552X0csECVlNiXVBdahWxNMJn8iEPx/XdYacrUNqS4bAjddZQNZt 1/BcXIdZPuTEqIVskF11iN/8dC3mfSC6bTtzYXnejthlf6oxcKxAKX2oAN70 fH46GliJRtZqX0fiyqDb+7/EV2qVqMV1puUsLQdRCYM808EKbKNPt6V5lMOd 8+m0MqhAHx67VPvMe9D/7LA+eO49xtKsXv1QrAAOdzxJwaUMj5qM7nQOqYIt EZIFfRJleIrzbGc1tQpOqprWRlJLsVdM8Mi0WDWU3i74PKdQispuKv3icdXw ZMZNoeVzMfKWrWrXLK0BBf65QkcbMrJ2daXtV6yHc6kK9VuXk1EtQUby6f16 iNSzIeilhRga2rfFllkPc48oMwf+K0SlM4urCx9+gJYV97WEO/NxbOW+cuU/ DcCXk2tcdT8f3a53dlnbNoK68YCdm3I+HhqPPZ1S3QgJEboBvSF5eEbkYceP iCboUlgaduYpCQ/clp/aZ9wCOk7X86rHcvDrqKI+o64F0nObafJHc1BOhx5V pt0KnupP18/xZ6NZqcs7Iy0qDN7hal48n4WHRaaGfGqoYFhmcra5IhNHw8PX Cx1vg03aq5Pj7mbgd85ykRCndgjwu13LT6Sjs+/wrJJAB3ytYXx2UEtHgzht kZdmHUAxiFY4wH2Lgzd3x8T96QCZ4JnjqUZvkZnFV8Sx6ITQ1jPOKzLe4Ezm SEUyuRNsTbeQey6l4Tt50X2X/WnwbWpa070uFdv0It0duTTwftmOottTcdpY 7fb6i3QQ1sw4kv4wBZNDl4zrsOmQ0BPQojuSjMrWu4OGzjNAyfesaY9+MurH Kv3axmXAe0kNltu7JLzma25x8hETyC20epPO1+gsOpVdwiaAIfaoMyDyFaYn m3JiklgwZaHJLjqVgMcjFQfy3Ltgdfw3DmdtPNaeNCNp2X2E3QOJPzcTsXjK 087Gx64bTLef4jOJjsGluVMs97s94OKwRDjAKhq1slv047N6IffnDWlOdxRu F+jQ2ni+H9o0JVU2JzxHux216bNOA8D1pe83to3EAT3viOTdn0Ck7pG+v8Qz rMvWFpWd+QRWq93SrmE47hN3k3pZPAjRCd3v23Sf4oaWb0Wul4eAkNWlq9cF 40SUyzz19xCszX83FqcfhEvdh8vY9sNw6oAo/6Kmhxj8VLIokjQMkfVuG+2N HmB50qXpjKZh6DDp2UWl+qH5ffIIq3wYJMgPIq4meaPlTAn/ysfDEN94Ene/ 8cCzskIuB/cMwwa2OHchwxUTfysKTLUOgeIQU/OlrSNGydgQ5yyGwI8hx9hc ewJV5I4dSDMZBKWVbIfFO9Xh8nye/3zTJyAmAxLFZqwgVKJN8qD+J/B6rt/s qO4CtHOFXV6GA7Dg6xmfqOIOwt0dvrLp/eDnkH2DrnAPbuu6N2790Ae1kk8e vxILAL/c54J629gQ+HKby96wQKAMqqVU2fWCvjDFqnPFY1Ckmud0v+2Bxt9c +cVCoQBkr0MpJt0Q7BS0OjEwDI5F5/Uo5n2Et5MRPlv8I+BuKiVxzYaPYG+v cLV4IRJeC9ASZ/+w4Og2D+sHWlFwZdETjxUeLJBj1xqf9H4BQRR+IuU3AWNm tnvHZqMhOW7u+4gQAc0imYol+2KhkukvNfqSCVmNv7YGesTB85mcwk0KTLih HbFUYjoBiqvmBxdsGHBitvfvmNpr8Nfqeblvjg7KZPnJEtdEuF1C6iPF02Em 6tM3uZkk+Gg/sP/ZFxqULfdi1rinwojimc8Frzshaec6eu62NFBtuaJGN+qE RydzOxLa0+DMwM0o23/9M3851HJH/i2stQTezgsdMCF1vEaBnQ7ioz5SFk/a gKU3guuDM+BYTpj8qEAbVNr7VQjuzQQ7zYW2fH8qhOSQS/sisqDs1mMv40et IKspnhupR4L38JhQyWsG4bMl2fcnSXBxwV2vQ6cZpnxNM2+8zoVFfWenyfQm OD9YYybtnQep7awVP3iNoCz3+8Q8Mx/0rScvibg0QFOhnV7+EzKEvE1Y655U BwfrlWp3DJCh+MzjJbzjdZBHzOq+1iiCtdihxpirhZezzyFkqAguty+j7bOu hcvQuP+KVgm4uujs58rWAK95l+rGyTJY0tYbEDKI4No7nxtuUA618qf7DG0R Rr43Ky95XQ7Dmeyl5I+V0Cp2RWnK8D3cm/aNtGZVQJxl7A5qGgV+O97t/jr8 HvYMLpLwt0JITzGnU3RLQbn89OSuDITzrFmuUXcJyEbm1A3MIsyzD8iwb5fA iuTsPUknqqDmsoH6j4xi+HvSqpfHrYLN/Pwjl6WKgJ2XK4+qNdAgvMmuWrMA El3O1WmV1EHbPrOh3RMZkHB2GelFfx3Y123J4JplQMxRcvR3oXqwDnc9RRSn Q4TkcsdXVvWguku1bn3AO/DrKFo1P1sPIFZl/X37G7iwS8SOcrABogYmnX0S k0B64v3s/pomOJxmWJD0MAK8qYcDf35vgg8E1bHkcxgQmS2ipI3NoGDTuLW2 NhSCr/RIS91qhituppY3goNgonvuhJBkC3BF1UcbdPygsl4zhe7TCvFWB+SY 67eBdXyJ4Q3Ndmj2fMds9HmK5LvA3H6lHf4EXCf6DoejqGWDXX9EOzz1tbtf 9SACq8VYbmacdlCqNDheczgS1x72Mkkw6oDd609eTSx6gV6lcZ4Bcx1wnX2R 5HQpAY+lfqQaW9FAoSDNWtcnDScekq7WO9EgXy7zlnpvGsZce8A78IAGG3It I8v2v0HOzp2q8iQaeBbOfvL59QaDSv2iBATpoC09GrPs+jtspO6wKc2lQ0jt Jb65/ZloMOPOkRJiQqvSgyeiMbl45MRqgekiFgTHFotMksgYdmHZ5GwTCxgb KarQScYud77+BTYL+qpaI12myOjwmlu+dEkXKFELWnz2FmHYeLPrFssuEDiu cNCgsgi7nj0YPPyrC/4qb6iq+FCMDsTP6kiNbrCplhK+UFeK4XYsv10lvfDq i735i3sUfPTtIIy09kKAx1Nd01gK+nqmzMcP9kInU37drxIK3nzudE9IlA1G g/2zcz8paNwg4NZ3mQ3JfirO004VKKqyyz50dR+QBdI/NNlUYthC0AmOUz/w xvf/GVpThQ3G4iInV3+C2Of1GU9qq/G71DpfWtwQKAXL/1cdVYfubooXwv8b Ab9HW6MD+BuQ1StmdrWRA5w0dYc06yY873nwi9Dxr8B5JNXobNaCtYp7g2sX c8HrqyNf5iEqyi6jcNKOTkD/iMzv8bE2FKc4HlkcNAlaa/zHuHs6kG+OP8N1 8AdIX37v1vK7A3+bVpyr3/4TNj0xv/kiqRN71O02bw+chtK5cIEfRjR0OS22 alvvL0i31xoaHqXhxqhhK0HxGcgS8jm91p2OJJukd1N3Z+GvgHaFsCADT2vd P9pYMQcvFl+5Sg1gYP45p237//6BqrmaOevZf/y6/LBAmcU8lKrK2Mm7MdGs 84CGeMwCTCo8t639xMTlB1ZUU14twOLSplspQ0ysTus2Opu6AFZkYWX/z0zc ddfzQjxpAab+7EvUGmWi6NaS0I31CxA1kWNfMMHEphu7h9b9WAAd9dHsEB4T dZbKR4ge5wGlZ9Pw/BYCZ27NbCKZ8sCEtGYvTYL4t6sb3pw4zYPazXwab/9x kUTu1fehF3kwZaS074QMgX8t0kaWe/KAt2GTabQigSWpW7WE3vIg5vnp8c37 CbwpMt7wNosHOpeDVn49QKCsR6WZfj4PnqU+ZpdpERhlaHvtIYUHNX+uPLDU JdB1Mu65AJ0HzPC22ZCjBCrYOEikdvHgVFViiJUhgZ/qNDMO9fFAaEy2VeY4 gSdjuir9R3nQ2tJ0hmJC4FL+9GNS4zywypV499iUQHT0YFT95IHyUHyq2SkC 7zD17c7P8cCOZWsibkHg//8dsOi7X+YXSwL/B/POLlA= "]]}, Annotation[#, "Charting`Private`Tag$4195771#4"]& ]}}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox[ TagBox["t", HoldForm], HoldForm], TraditionalForm], FormBox[ TagBox[ "\"\\!\\(\\*StyleBox[\\\"c\\\",FontSlant->\\\"Italic\\\"]\\)\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> True, PlotRangePadding -> {{Automatic, Automatic}, { Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["h", { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"]}], ",", RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, { 3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9, 3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, { 3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9, 3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9}, 3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9, 3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9, 3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9}, 3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9, 3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9, 3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9}, 3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9, 3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9}, 3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9, 3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9}, 3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9, 3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9}, 3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9}, 3.887187744969038*^9, 3.8871877776872168`*^9, 3.8871880220364237`*^9, 3.893237910849724*^9}, CellLabel->"Out[53]=",ExpressionUUID->"632547c6-cf8a-4755-9e26-5f9a8c901698"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDuh6", "[", "1", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDuh6", "[", "1", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDuh6", "[", "1", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDuh6", "[", "1", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", RowBox[{"PlotRange", "->", "All"}], ",", RowBox[{"Exclusions", "->", "None"}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "t", ",", "\"\<\!\(\*StyleBox[\"M\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", RowBox[{"LabelStyle", "->", "Black"}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, { 3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9, 3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, { 3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9, 3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, { 3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9, 3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9}, 3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, { 3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9, 3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, { 3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9, 3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, { 3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9, 3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, { 3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9, 3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, { 3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9, 3.887187764733572*^9}, {3.8871878714397583`*^9, 3.887188002562066*^9}, { 3.8871882148709106`*^9, 3.887188249270643*^9}, {3.8932379251256237`*^9, 3.893237957397731*^9}}, CellLabel->"In[54]:=",ExpressionUUID->"a33a6443-e55c-45ac-8ec6-84306b68cf53"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwt1Gs01HkcBnCxFCqyyUruaqVZG1s6q+zjKC2KomxKLsOuLSrl1LqVFK2p rbRkV2i7zKhISoWY4edaQ6RQFCWmmUbWbczMf1jmv7Pn7Ivvec7n1XOeN1/L sGi/n9TV1NS8Vfdf2mPRJ5qmyVIXB/tnIi6iJ61Zk1M0USqNRMEjXNx74LBs QkaTpG7BU4mMC0db7zDREE2OpvnY2mjysGZB6puWLprkNxf/cMeaB1fBePOl uzThKG+aBzJ58Etrvf1NCE2ae1P8Hfp4iG1L3f9ztZJI1m1zWSWsQmen7qda 5gxZ3dZuwbKtgWlN9MI1S6aJTVBVn9eBWpRGNWjqvZ0ibwtubUh7WYfQsw5j r09OkkqDMPbN9AYoMhJZBApSfixfFhrxGOz574yz++XEfubY9xr3+Mjzcojp OC0ji5+/Kg33eoqT+5hxyz2lJMVlcbPQ+BkSNQpjY4YlxJ3x/rpNx3Mwk9ts Xt0aJz1GWuOTde3IqhJm50WOkVZB4Ok6RScq+2znFlmNEG3lwejKx12w1nd1 2/7XENF+4ZaT3PEG9+1YkQMCMemNbfGVcd6hr7HEwslJRPivYz4ePtwPISPL kZQJSHOS+EEbR4AFSQVO9rP6yddJfI9JWxEYTqOM/IlewrI4pe1zRoyUDcPP K+K6iKjVQHlt9hAMtxdf2GnUToJEZ/YmewzjvrxRj2/TTKRdZe4RdqPI7xGe G0ytJtHO4sKQhDEE+S552BPOIazwTXtdVo2jQifxZd0RNg6uc8hldoxj9cAs sxMBBFfUv0pkREpgPcaddK5rgt0ky6ddKIEn+3WrT0A7FJqFeqd2T8Dd20BD VtqF3PVzTTc2TCA9pCt5ZXkvvis8KcsykeKJj+m8rQb9aNGqz2AfkmLY0jCp PUeAX9+7tJlwpThyeAUzfZEIkp1R1zgzUnT16vtF8MWI7/vD/zdXGULj132c vXkI9Odba/ITZKhfseZMveYIUqZc/FmlMizT5ok5HmNgdYvPWwzKYMqLctdk jSMj5VXfhy/kUJtSL4gZkIApSzYTespB+VYFNy6VwnS/zyW3I3L0rAoxWZoq g1izX2/0mhwHd+gvsOqVg7crgFH0VA7jix8CPjNVYFq/fo9gTI7iwKs3J+Im 4ZZcJU0zorDD5bgHv2oKRcHu562cKZQE77dynv4HcqdtNU27KCh01mtU+M+A lZNZIDpKwe/FWifTbCUi/Fv0/syloLNWt5Z3WYlGk+tlpnkUajlvNu1mKzGQ tdCTo/LKuHhmbrESz34cXFlymcJ88/Kzxo1KlNCa85qvUGja5ygwlCgR2HN5 mmJTcJ2z/ML8zTSua7kJNxSp+g8pFhf70riUOaLbpPLdnif53jtocL9UM/e+ Q8HsbgT3bBgNy+JIHf9iCtP+HJFOPI3CDC0q/B6Fcra5y+wbNM6dz2UkPaRw YN7okxu3acAzasmsUgrLYqv9NpbQ4H+iFSkqX/QK2nOKR8MsIT3udBmFmPGc TI0OGscD/v498xEFu8BIM3Y3jTtDaWLDCgr9Dd8WuL2jobvFiJGt8tbs7uoT gzSM+LYJeZUU5qjf8rQcpaEeV5ZqxqVAomI7a6SqPYwtR6+q/MvLjSGhUzR2 FylCrXgU/v9fsOM+cuSo/C+985py "]]}, Annotation[#, "Charting`Private`Tag$4205127#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwt2Hk4FIrXB3CRiEibuIpICNlpd6yJiJTSVdZLRSkVKkJyI5G4kjW7LNl3 4UjGvu9rZCdmzDDGUjO/3ud5/zrP53m+33P+P8LW941tmZmYmAS3MDH935QB 3nkGg4FGIWdO0F1fwf31w37rGwxc+pCzIeXxCnLy5cWWqQz8co1++4bPK1CQ MLCe/snAUU9nQ8K7V3B8l89gcx8DPyyffFCc9grUJsiNEdkMXFHVvC04/AqM fVsyFC3+5J1KM5g1fcG1zeferUo6Tlledvfh94Pubs75r1a/0ZemT/Dl9YeD Vff3Hj/wC/1Ijxt2ygVAoUMN686RDeTbQqoW9HkLlgHySwPe66gT85HjWf47 WAtx80NYwzE+JktjtRBI5P7OH/5jFZmNAoy/KYZCtJ78w67XVGR2fDHb/jgM RDn1Gtt9qGibuS119XkYZDRZi7R6UnGHB0lDxDcMyvRDO+udqZg2YSv0JiIM Bi7SFCqtqFh6/xlLUmUY8F6uWE49SUXrE9930rZ/gCAzXWePuRVM3JyTPZ/8 AbzvWj05qruCHbJ1ckOkcPj+1jy6THMFHX285AI3w+FUrlnVBdUV7M243KbD FgEUqgm7o+IKFlM3d/QJRoCVp1543sEV9FbJfW5+MQLUQhRLTlOWsTMjeyt/ dgTQi1nXDKKWUQzfBj93jQQ3lnTXh4sUZJO54acsFg2OEebbLGcpqDb5QdNe MRqsZfe8N5ig4DGC4pdUtWjQM3PPkxig4G+Bsm2aZtHAl39x8XsNBbffZRIl vouGAutl6wvRFOQM1NUVp0cD8euZi6IXKCi5d9HHcSwGrLzaRHtTyZjpZDDW UBsLVwdiVUcSyfjz4deRh72xoKfwwHTyIxmjxA9vik/HgtIkTwAllIypJY// GWKOA/bzxsvcL8g4muPAVSASB1k7e77qXCejbJV8SIhNHGx+HDQv3U7GpTkF F6X5OHhfMRUebb+Eeqylrz/vSADzJ5Eex22XUPti8SzX/gSQUDT8p9NiCZ8R +FOfCCdAWWqJLLvJEtL11FzsVRLg+39vah/BEhK9n32oskwAcXv5Fb29S/jJ 39dWvTgBHh7b+EhxI6HR1fqZBYdE2JpoYy/hREJP3b0CIa6JEMbXomxuR8KZ SSNtjZeJ8IUlrrnBiISyb+eKvkX+yQ9qb8QdIWFvYVmMfuOf/KtgE8M2Io5k b1F7KZUEZaMSOz6LEPHKNXVe0moSuJ/ZkhnJR0QrYsikDEsynI0YMHjNTUTS uXri053JUGXsH2S3sYgCfqwkeYlkqCP83C3cuYhfvMqkpf5Ohu6MLP6wF4tY +eXcNcOqZCC6Kol7jS2gTryIUMP7FMjp3lHv2LuAu3KZrgYmpoCT/NTtm80L SP14v9g8NwVW5t+nnypZQO76cNWjLSmweZN2jBq0gDkBzloWrJ+AXatMyR4W 8JmlQ5X5k09wmEdN48rHn/jjrz3nZe6kwlu5H8/s//uJk3IiShzPUmHNyDvf y+8nblIDbNb8U6E5uEY08+FPrGuWW+PMTIXHe3TZtun8xDcx7dTdlFSo5TVu LibNo6cEf0+JZxrYH/znqoD6PKptNVxUTE+H7rOsQfIq86hV1Gf1riIdVM1T 6nSk5rFjMXOUuSMd9sTOnni8bx5Vh4o8JdfSofzQPYGWuTnM2sYs4KeTAdyi LmMeIXOoR/qbGDWfAXmSfvbjE7OY2xHrIqOZCUIdlqVSA7OYdszhquT1TAhw Pcnu3DqLb2KF96rdzwTbmvlkttJZPMmV01oalQl85gY/pN/O4o1gpf55aiY8 D95t6npiFvldNvfdyc6C82vR2jsCZ/D80bBhzgM5UPjROdTEewavm3XTOyVy QET74sRH1xkkWjr8SlPOgc1ghpe89Qyub7dd8TXMgSwp6/Krx2ew8qJs2zaf HNhrIa4Y/2MaRbQ2Pkss5cAoIfeQiso0FhcfyWzpyQX3y+taJ6SncUgq5Tph Ihf4fqjdOSUyjenZPgdayblg9KstV5V7Gt3WPK/u4c6DKgWihs70FOqz6VTd 18mDuFhJW9OwKXRRTTP1r8gD66eJac9WJ9G7WuHM4ZJ8oG/72eK+MIm9BpGH ntbnQ2SoAsVjfBLH9h4WmuzPh87sr6detk6iX2XF7/X1fNCcHm16kzKJF7k+ mR49WwCilw8Qo69O4pYs60sldQUwJf1eAYsmUH/3k+piYiFIeiQTZzMm8Dax 6UQ8SxE4thWm746fwMwGycI0viJYc+oVsXszgad+pxbzaRYBR/H+PVyWE9je EN/oHFEEcuqRy39vn8DUHgEHW/1icDOJLVg1G8ch5dJytpYSqErJfnDo0jh6 +QUcvDpdAlvXUFrv3DhKtxr7NjNK4G3kWFKM3DgaZUfVKyiWQtyo8Hst1nGc 6ChwIUaVQu2dJOeQrB9IuFzN6+RcBrs80lRktvzAMIMDxXoXyuFVkUQ9D20M 27uKz529XQ4bxE/XlxfGcPL7MZ+b/5bDuEWKe0n/GHJxCflKVJVDnnpitUbO GPq/f31t+XgFGLPGXLxmMYYnCd65BXKVIM4v3MLkNor6Jn68ZNEq4PEXWiLY jeLOLMN/M1SqYG3j4J43xqN4Y0Wv9uX5Kqgf/uv6PslR5NzKXvv2bhXcjts7 dXTgO5J6P+7lLaqCdHH238bHv+Plw8c3xAy/grQKSTp5eRj/62GJtIqqBjsZ T8/SkWEM2LNH6Ex+NcSK7exsqRtG5rWbrNpN1bB7v6zratQwHi+sqp3YrAYa zfGrjtYwuokuHrS2+AbVpUST+dAhfNakFdMqWwO/cj1S6R5D2JIX86JerwaU 07k3d98ZQrFHtulrtjWQGikTd/rsEKo516/8jq6BQDfH+YCpQeS4/GElg4sA pmeJHrIqg1hx75vw/g0ChCh7dGgeGsRjZwl5pXy10HSMW9SUYxDX1ALIUcdr QVVQpsHr+wAmDx7hFnGphcOMe3s6Xw0gmTlITWe1FohVi58e9/Wj75Vp7yCW eniptdhe+qQPdW+5R+hfa4Tq8wuGSjZ9GPY4hBTo0QhMBj9bswz60L+pml80 pRHcTeaaE0X68JQ7h77xaiO42E3VBzb34uCsrFprZBPc9hupsjrUi6nBh9w5 qc2QEjAMwxy9aJ4R9ZJFpAUm3w1VXqX24G43zxpzwxawihgov9DYg0Q79RaN jBb4O72nRPlxD56UEjEdvtUK+s0tOdvru1EgOzFXmdoG/u3Nsj553SjGpapy d2871Hc3ZdGju/FdpZOWq0w7aI80fF526kaD9F/vzti0gyqRkDoi0I2EpqL+ kLZ2kOOpjMu934W9djvmpvM7YN+VrHfX93ci062E3rWsLsgTe1OmzdKJw/M8 UdjaBUbrtyblSR1oFjdsX0fsAv+Pwic46jqQeeRebZRsN9BnQ0fLXDow7Gbw deuCbph+7iZzoLcdL0lO/1Xa2AOOhsHhFUfbUDi5VT5duh9SV/QW3m9pw0Fh M1clk34Yj9iq5jjQijxDSqbsHv1wddJ1RvB1Kx6RFN8X2N4P8NRcxWu2BTX5 bntxPB0AnkSpbo1PzZip3s7+rW8Q8lYJO+tFGzGJMOys2zgCb9MTqlXXG3Dy 0RW9HsYIOJh7Ohe2NODOvxVG0pW/g2jtiaEElwZcLeijyiR8h7D3GSnP6+tR IbHE5pnHKDxTCj6reLcO2WfIb57Gj4HGwxsOH/NrMPBlgs2U6zgIip0U3OdX g4Wg39X5fhw2B/Z1vLlRg8UCdp8b8sehQL1N5SlrDRJfxPG2kcZBbJcG85Vr 31BnZ10j3+0J4MgRj9i++RV3c94rTDKdhOShqcA5n0oMXesPzZafhkF33tgY xUpUpwcbZ+tPA7egTs6l8QrUIGavhN+aBhfL1M5SqMAc7OQSj5mGc1P2+/03 vqA2p0OkANsMzBJJcZIPSrFI8pPUSM8MSDJv5DuYFWA3p96jR2ZzYJ4oSRDi KMCewczy5IdzEKJl1ttVko+rx0lr+a/nYONV+dpp3nycsx//YlM8B02cnmd3 dOSi/9p3G65d89Avyf72emAWbiceorlXzMPNSwcKhmyScNuY7iuuzZ+wsEw9 6VyTiE577BTNuBbAPawNuY8k4raE82m+QgsQPeTdpD4dj1mG0inPNRegoKmT YNjxEXd8yRaZeL0A2St3D88OhiLxUtiRrzyL4NUt0S3wzQBdG5ZvXmIngvTO EXvWY0ogmBOpO8pLhF6ydyzPminwCN1dMj5CBLf/zjU6KD2Aven1ZgvqRPh2 6LVvDI83pLoa8RKfEuHWLUm7InoI3Mkit1pMEaGUw62n2jkRnBWGtL0zSBB3 bF9XtkgSJF7ke6pQQoJXRtnt0W1JcEeQs7uphgRXwiaaXI6mQLNrPK1shARL wvrVkiOpQL9fV3+ebQnETh7MDtHKgjSNiidHVZagId9CK/d1AbSUjBBbA5bg DEH6m/hYAVB4ZfxJwUuQ07uu/lGlEAq6tzCzf1iCsPX/4M1EISiNGYwcil+C f6D+lO3ZYvA/U/92pWAJGI1y8vzkUvjwxN9ReWgJlMe3CL4wRSAHcznFiJBB puwaWS4NoYkpSDZMjAxiIZk1Y+sIW51uNb2WJANn/GflOIMq2KFxvdFKgQy/ jEyHGcQqeOFqJdGrToaRnOyjKF8Ngvezdw1akCH2gXnN2eIaaCZaFr8PJ0P0 je1Z70droPeRSho9igzh5ws+LLIR4OWZiGKbWDK8O8ThEGNKgOfdY3oiKWTw ai/c9XudAP/uviP9MJ8MVnJcFuVn6qC83yPSpoUMh5e+rJ+qbgDfA9sWKulk cG/R9FlZbIA8ov379S0U6E1v4s7ibwTpH50FcqwU8LcdOizs1AipL1QfhXJS YGlww4DtUBPo686VKPBRoJJwMqHreTOsEl2ftMtR4O+oYr27J9vA5XqCZ4UF BXQTB1oumnZCHpiaBxX+6f+bZUe41wmcmjMzHCUUCL/9knH6ZSfMmLJd8Smj wOyxY/JHszpBWUxn/AFSwK/EK5RlaxeEb/11Qr6BAvUt4mYl2V1w+MYA4dIw BXTWnGeF2XogDJc9JLYsg7bBbhZqYR/4fGrxr9NehiCLPi+54mEwn67Yzlm8 DHUXD3IZ7f4BWuc8fZWFV2BReJ9HZ+QE/Luza8PtyQo4P5ayCuKdhuNCC1nm hBXoG+YxtqufhQsFgV2bPFSwfHpmhk3/J+za4Uf3vESFb1LH/b+xEuF2dxKd GkwFse3ls0nnl8DMaPJkQwMVDpY7aLP6kSH4ReA5xi8qMG0wpz0cp8CtCaur gvKrQLtUYU44sgKC9BLmJfNVGFKyEDjiQ4WJ0n650cBVeHCNZ5fI8Cr41Rzl eVG6Cvyhk6ZbD66BZeLqZxhbhSyzuE/LT9ZBSTViwISdBtfOep6vr9gAbgvX D4LSNMg1vydy6tcm7LP5zd9sQIM1Dk2WUpPfcLzl662pBzQw7jitcjCcDq1S Rs9vvaMBx2nOr+UxdHAydY0g//HXpMELNxLpwKIQEusWTAO5J0+torLocJ1W dScohAbcQsUB/AQ6rEL3amEoDRruKkzso9DhSJXRBj2cBmrsR99x6zNgxbVj wCv+z32ntb+yLjHg/qV8DfYEGmQP1SUbXGNA95JTWNAfC2bbfQmwZkDC53h6 TCINfpkkTXM8ZUCVR1BnaTINihOFzrKlMOCpQPnbxTQaOHKR6lIyGDDGnpP6 KJ0GYq6VxudyGXCulZS5/sehejdv/1vOAAMpx2esn2nwkBz5H0sXA7hcRA8c yKKBpJm9YGI/A0xeKgfH//GPmpNpGt8ZoJJUTxbLpoFReH/lizkG7KIHOcvn 0ICdOVVXmPRnf0xHeNEfo4Nrd9UKA0IO5Hw6nUsDl55zFpYbDCgQU0io+uP/ /+fAfhtzP+08GvwPkw2GqA== "]]}, Annotation[#, "Charting`Private`Tag$4205127#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmHc0FY77x6VBKpRKUjITISWkPjy0lEpSysoKhYzsIluEkJUQQkJlZYfH 3ntvQsbFde81Lir32++c31/PeZ3zes7zz/u8/3h4DCxVjejp6Ogst9DR/d8U g4MEGo2Gr777OEyt3wHLdT7f9Q0acrkl8vVt3oHM76ePL63Q0EGCY6lxqyqc OXHLYGqOhpdOHttStEcVpPd6DTT10vCcFf/fDB5VkJ8gN7zPoOET1aywbUqq oOrT/EVCl4aLy3zWGjGq4NDqZf64dBMfEVerNhXvQlfXLkK5/l+k2/gkqTJ6 D46WWe6XPvIHcxOpnM/f3Idcs6rtLMMbmEHo4HE1VQe9gNOkfo91bKvhcu8s 1IS1ECdfhDX0/trSxyX5EBKZRzgif66iL3/AJz1hPYhROm3d+XoFX3w+Vm+8 pg/8u5Qa2rxWUMFtK6GQpg9fGg14W1xXkMTGVLKXwQCKboZ11NmtYJHr0uvW AwbQr0w9U6q/giJvDCW8JAzg4N2SpRSZFcxgtbHrtjSAIK3rdi6zy+jNkXtO at4APJ7qOwpdX0Yb666cleVHMBKoE1N0aRmF9Ie/3t18BOeztMpuyC1jc4RZ UAGDIVBW1BgtJJYx4j29+LvDhqDvqhSZfXQZ4YxzUoq8IciHSBRcoCyhj3Ri Im+gIWzmb1+7Fb2ExwTkJD+LGYHT1jQH6wUKKqbGcef5GIPFe50dejMUJO1L q1IKMQaDU2zhtyYoODeTJTMdYwxKWs7ZJ/opuKJ4I0862xgOfVdeGKmi4OeU nj7pYWPIMVgyuBFDwesnGkd+nH0MxPL/lPlvUPDTwa6/ewiPQd+tlb8nhYxT 7/U5+i1N4H5/nNxwIhnHwr18jJ1NQOmMlfpkLBkP8ynk/PU1gbOTrAGUMDJe 1Z2wvp5gAozXVJeY3cmoZa2f+qDbBNJZussVNcioUZalrC5rCr9jB3QKd5Ix vm2a+9wBMwgv+RUZY0rC5T8qU2zTT0HHMcpF2oiEUdc4QoqoT+GExG3DDl0S KjzrVrNiNIeilIJTjGokjHenWe4UNoeRUP8aGyBh+qbZlmVzcxA0Pb2stJ+E xIsOgT/WzMFadCOW4rSIyh813BIOW8K2xEemJ54totuqRY6qqCVEHGqW1DFe xLPtQaH75S3hx9b4pnqVRWx1uZfebPTPH7iyES+wiGn0dcPs2f/8V2/VbrcS 8fMLshWroBUUjZ7Y/ZWXiA9WuIc1GqzA+b8t36IOEVGP84T2qS4rkH3ff+s1 MxHTuU/N7RmxgjJVvyDjjQVk+DRnPEW2gtrquX08HQvoqj17aMfhZ9D1JZ0j wn0ByXnkCqanz4DocFbQbWwerx7W5nBjt4bMrt11Fj3z6HGQXyCI1xqenf71 5GHTPEZYzXWmiFrDMiE87XzBPNrdslL9c8kafj+kiq4EzaOG6396As+sgfFy 0VlTmMdIkyN2Ac3WwMcqf/Fe7BzKDJ434giygUDxny9MQ+fQRl165+cYG1hT 8fju5juHduEsdpfSbKDpbRX/N+s5vLfb/09KtQ3Ysl1n2KE4h9MnDWSF/tpA zUHVpvxFAkoRCKn7LG3B9KjhfU4FAtoPRKRI6NpBl+z2oNNSBJzRUrhZZ2EH cjrJtYonCTiSFdVm4WIHbHEz52wPEJAtO2GO/MEOirnNOZtnZ3EpWfV157Ad MPPbj7mEzOImz3c2Ln17yBb2NR2fmMF67yXvNHsHONauV3iyfwbZo14a6Ps6 QICDDKNdywzGcSzcEI1yAKMqwieGwhmsaHvasq3UAQ7p3PopEjiDpvW79fJ2 OMLLt/vUHc7NYLTJVfZLMY5wbS3myu430/hig310T/9zyI21C1PzmMaybeWX 0xeeA+8V5YlYh2m0nzALfUL/An6/pbmdNpjG9vo/H06KvID0kwbF96Wn0Vtw Wpvk9gL26wpKfPw5haRrVrYfTjnBaHUWt5TUFNLJu5dNJDiD8931y+dEppBi 1CXnXOgMh37Km5znncLvAoXN4m3OoPKnNUuOeQpP87EOEf86Q9kZ4kXFqV9o /vzVzirNlxAfJ2ykHvELV7PFnDY5XMDgeWLqi9VJfCtkXSKU6QqbO+aanecn sbNv63xKgytEhZ2huIxPopi06W+lX67QkVF+3rNlEonZLNrOe9zg0tRoo3/y JEoOaXXRXXYD/rtHiDH3JzH9gfhn9xw3+CUSfgbzJlDPqWRKM8kdhF0+EWe+ TGBHmfGabq47WLTmpu37OIFGskOTLjXusPash9fYfwI5jusL7Jp1B6Z8drY9 ehNYovbu6qNTHiCuELWkuXMCU1Xr6C6Xe4CTWlzOqtY4Rug28zr+9oSy5Awr 7jvjmCu+pijC6gXb1lBE6eo4bmFWkKQX8ILAqLGkD+Lj2OF3I2L/bS+IH+UJ v7x9HN+UaE0OJnlBjUmSXUj6T9T7dE/gwgNv2OuSKiW25SeuhntcTeh/Ba/y TtSxUsfww2p/9UvyK9ggftZYmh/D0iBmV7edPjCum+xc0DeGO6r86f7K+EC2 QmLFxcwx3P+LwjMU4wOq2z8oP9Adw9Bj0urepr4gyMHTTOc0iqs8i72qJ/yA 1e8Yqdp4FAn5r/S6r/jB2sZRNn/VUeTcvlU94JEf1A0d1jggPIqMBRYh7+P8 4En8/l9C/SO4tem1Jxz2hzRBxr+q0iP4fiaP7/ThABCRWhT5tDSEgsLf8mqv BYKxmKtr4fAQrval8jM/C4S44ywdzbVDqExIWEl5Hwj72E85rEYPIb1Hod/o XCBQqRblipeHMMrzXpNZWBBUFBLVCGGDmHDlR7CNUzD8yXJJ2XQZRM311y72 IcEgmcb8e5/JIILwll1fU4MhJUos/oLsIDrZ7HyU1RcMb5wsCAG/BvC1fvtV KZm3oC5LdDklNYD36xc/Fm0LgRBJl/ZL3ANYzZfFcfZYCDSKMvOrMw2gU0Xw EEEmBOS4xOrdRvrxy6NkZTarEOCjmbN1vOpHVoGWEaPRECCWLXy27e3Do+dm HzQ1hILn5YW2QsdeFJseGJAeDIeKa/O3zz7qxRLLxy0Wm+FAd2uuJf1WLyaL OwrReCLAWW22KZG3F6MSnJfFTSPA3vhX3ZumHhyyjOb7sxkBT3yHy/S5e9Dq d6WEzoVISA4YgiGmHix/rPe23jASJoMHS++vdKN+eqhLUmAk6L/vL77R0I1f yhaeZ0xEgmZad4GkbTd6fM4ouxb6Hm42NWfurOvCGhktEgdTNPi1NZ3yyu5C Hkd2c5UL0VDX1Zi+GdOFHfFmu/ebR8OV4fqvS8+6cEqJqH+jIxrkiNUpw5xd mPPA/31hYgyIs5bGZ1l2YqZgXXaOYSxY7C85JqLZiZcJotsG4mLh66Hi2OTL nbigc/JbzmAsCPEUxURzdKKrXP1SuFoc8J7Ji/Su7MBvN8PSTwnFw4F76cEa 7B3YrnE8z1XmI2Qf9y+6srUDi83VvrBpfQSV9ceTpxfbcb8vfw7zy4/gF8tz jqm2HR0EperlKz7C5kzYaJF9O7YriLnW3EmAqZdOYkd62lDDJDVnm08ieKqo qzNWtGF/bXTibEYicPNJeix/a8OVtGv6av2JoFlH7G7ybsPV3KaWBtEkaNln 8PKlZBvyqLTy2gwngcXtt5ElQq3os2VP1iHNZEhZVpoP39KKLLohE8kByTD+ fpu8RX8LfmTtWp3BZLg/6TDN9boFfRWP2Eac+AzwXEfKbaYZaWqzpr/pU+AF 1yE/9bJmlPJ/8yPgQgrkVLYPi0c2o82nuYhF2xQ4wXzF+6diM8Y5e/qdJ6QA a+LJroufm7DIouOd7mgqKF37Jcjp2oQLzduqV7nSwGsh1mnpfhOqERQCPXXT YE16H1/Sjiasyj0rFzKRBj+b1p5tN27EpsCc9xxrXyB7tZqljr8BmYkK7OsP 0iEwLaFCbr0eYXT226vMdDDTcbXLba7HcyLsQ6lMGcBfc24wwb4eCctzaX2V GRAR/iX5ZV0dOo6JhLl+ygTr674ayzF1qJB+905GXybc/mu42+xZHYa2XC3u 3p0FjEZc1uqH65Bl0ZZ8zDELXpx9KyvxtBa1J63bjbWy4f6MOSlVvhZjpuO/ MrzLBokYpUTuA7UYpKbm3duZDfNbt+1kLq3BMwrnpvnvfAedTvuuGZYarKDW CZlp5cBFa22z2O9V2CGl9Pt+fh5wHZfhOuBbhdlMkt76TPnwu/9Au792Faoq ajJe1s2HHIVWqefbq/AVa4VFPXMBHN97kf7eg0pkUHKycnlVCPTVXLkNJyux vuEoEGcLYdTx92MFukos8cE7ubeLIHIsp1kstQI1984nhPH+AKZMwfc7f5dj 1Lsrum3TxTD1aNtNt9ZydC+QvySmVwKV7D83VxPL0XNzJ1PgYAk4u0YZTt4s Rwe2VSwYLAWi8h5xjC1Dz9OhOdoeZdBATxiXtClD+jpBU5amMvicVxP+VbEM qzgWJfLYy6HsPzqqxE/E7ZVs8fy55fBp8NebWa9SLHO9OOLHVAkDzgfjPkiU oiqXGLFYtxKYuRQz74yXoHlCKbdQfiXY66V0FEIJqlpmft14WgVXf5my+238 QBEPhtKs1Wp48Sr6hFzqD0x4d2jLmG4NpAs2yVAe/MCn7O5Mi401wG4qqq2Z W4QVnNDI8q0WZoiL8cJWhfiI80mGQEQ9HAnmzh7hKsReL9EiLo4GUDl9pzKk uQADj2052hjXAAU22b82hAtQIiFJ8XtBI7xesxVu/JWHwfxHWPceaYHS958u uIbl4c218NFFbAHK+Z6bEpfyUJTld5j9k1bQfCltGR2fixdGCQx/HrWBMP3G 9385QENOYgfTeDvoJApXH2PKwXf3w+3lrnVAyGWtns6C76hOnXl6LqsDNl4V r104+B2riAJ2af6d0LjLVXZ3exYOacjcM3zUDXTfMpTLXLOwZe7m229j3XBW eUzXViwLX87P+03r9UBMsILHkH8mfkz202c37YU+YcZAjTfpeJ5KSdsf2w/y 5iaZ5YRv2LO58jjp9ACkZDR0CF37hhMxZhBbOwDPz75h36D/isYxddmXNgbh sNy+j1GOqZi8yecSZzcCD+8cyRl8lITrHeetzzX8hPmlFRm7qkTM5Obx3Ht4 HJwjWpFZIBEb882tnpqMQ8ygR6PC1Ee0jFRVurBjAnIaO6pvt8fiSyO9mEjJ SehifdXuEfIBpzYXx7tcJmFJTWY4924MfqrPHZismYQzY3HLnD3vkVvYj/HW 3V+QsfyUb2YgDJ9dDipW1J6CFhnuU5wxoWhqK/mFM3oKiC6d55UfhmD1i58D b/qmQH2fbdITDMJsNQdTldvTcPcCM/2Wem/k1R3hSxSZgZBqW47HNzzxswtP 7Xe9GWi7PSje3OyGbldWRDxCZyC6TgXPfHJABp7m67YrM+DWdaKLs/IWPjlp kuL2ZRZEWIZNt4ueBU9dZcbbPbPQQ/aIY11Th0jBfdyH6AjgFHq1weysFYRT z5UVqhCgkvu1zwdWD7jB0+POMk0ArwheK+lAL5i2CSn2ZZqDq7uL1dt3+YC1 s0aTtOgc1FGJQtsZAuAZJ+ePO1Zz8PixsHHeZgjMLXyY4iHOwTVeB01P2TBo ZAuSXds1DyeGK5VVnMMhUvbRTwmheSCoPpQmrL+D5m2HORf15+GpXDAj10oM fBCojqY2zUMhk1N3hV0inBLvPjcQsADxogc6M3iTgKdn88tE0gK8Usloi2lN glHe+kXX4gW4FzHRaC+UDGWWD5NcCAtA4rlZITycAsIn6a4uKBDhuMzRjJDL 6SAsfXmSNEaE3dr5X13J6WCYFRDusUSEJZc7aU9jM6CGxedL2/ZF0BuvUOVz zoS2m0cupQotgtgJ6q2/3Vnw20njlJPFItR/172c9ToHDI7OCc0tLMJ/1SKV gmM5wMZfoPf3zyJk9qwrxErlgnuP0RXydhJErIeC/0QuMF3rnw3bTwJDqDtv JJsP241LQibESUBrED/NQS4E4/2v+TaNSCA5voXLXR3hBaNjbGAVCcSKHpDF UxFEKHtF0+pJcDzkW9XYOsKGvI/5jxYS7Pr4VTL+Vhm8IWV8xT4S/FFRH6IR y+Al/RO/u/MkGM7MEMLTFXCom7Svfi8Z4qx0qmTzq8DroS1T7X0yxGjvTA8f rQLS4QDxQU0yRF7LebfAUA1R8wVDMzpkCOZmMvugXg1vM8SPkI3J4NaWu/fv ejWoVVvY5NuTQV98j27xf7UwwPufqEg4GfhIP9bPV9TDC/kLtsItZHBuvuS1 vFAPdrQjvQPtZOhJa2RO/9dzu6mHt73qJoOf0SAfz7MGcOcuWG8aIgNpYOMW A3cjZAtskrnmyFBaLZPQ+bIJ8jVDYHQHBTSj85WeyrTC0lqbveAFCuQ4QreA USsQe/I8leQowHy/Vnc0uBW8rp8aMlGgQDlrr63qTCt0LfmGfVCkwP5LTrdj brSByrjKkYG7FHAqiHrusdEGTBV6c+lmFLie2N+srN4BwJ7S+ieSAiTvdONq 8w4oLa0+/DWaApFPPGkXPDvA5Gt/oXosBWZERU8LpXfAm+c3mNISKeBb4Ba2 dVsnCL5QeSOaToG6ZkGtgoxOEH9E/lpcQQHFNbsZHoZuEFBXKj9CoMCVW/u2 ruT2wmv0c6s5swSB+jvJ6/W9cEfbgFB3dgn67OhGN4d7YVP5wGi91BKYxhKL GHf0wRYJeuva8//8xQbrI/f7gFXf1ynr4j//ref4pdU+WCs3Wb+o+s/vWS4P kRqAiE7eQBOrJQjS7XUTzx+Cx3d9bgumLkGt8tE9Kvt+gnyHeX/TwWVY4Dng 0hE1AfDR8Zus1TLY2Z7UDzo4BftGR40SS5ehd4hV1bhuBqYWD5603bUCes// m2a4OQcGyWKhbTdXoPKktF/ldiK4fNtR8/vNChzfWTyTdI0EwkVq2vdqVuBo sdmV7b5ksI+ef7K8vgJ0G/Sp1uMUkJNw9n8mtgrUOyU61QLLcPxI/4y/9ioM ntXlFPD6t9ezyFrivwpWD1j38g6twiThtlN4/ipwhE2qbzu6Bmv++Nl1ZBXS teI/Lzmug2x/cHjpDio8kHW9VleyAemTXA9ThKmQpWPOe/7PbyCtaWhZ36TC GtOlrYVqf6HsqPdksiUVVNsvSB2N3AQ3uVFHCKIC04Vd5cUfNiGbWLZU/4/L kwZuaCdugmG5sfq9YCqIOz7Xj07fBGuto6NP3lKB+Vh+AEf1Jnx5uGsiOJQK 9U/PTBygbALRxLtx6B0V5BmFgplv0mDH4IaqYfy/+8/WDqffocF/VeP75/9x xmDtp1sPaNBe6VRu85EKXBnGPwIMaPD30/CARwIV/qglTTE9p0GxzwmW+CQq 5Ccek2VIpsGVB7u8elKoYLFnsTb5Cw2GOx8sa6dS4bhDqerVLBo8ka+5PfGP w5QePvEu/ucn8NctplHBmhwVurWTBhc7UpDhGxWEtUy5Evto4C1e8/rNP/5Z JZN6cYQGN8P/A7Z0KqhE9pW6z9LA5cftp1wZVGCkT7nOs0iDjkMbE4n/GM0c usqWaeCZc0hRKJMK9t1XdfU2aLB4Nzs8/R///38bdhU2t0pkUeF/0p8S2A== "]]}, Annotation[#, "Charting`Private`Tag$4205127#3"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmXc0Fo73xyVJSz5KKGRmJluImyQSEZHMKBJlVZIdkqJCSMjICGVGtmuW TciWlZHx8DzGY8Tz7XfO7697Xue8zr1/3fe551wuSwddK2oqKqrEHVRU/1dF 4cgMhULBXz9C3+2rYQOHdZ7A9Q0K5u3bnbXcyAY5X8RPLK1Q0OzuWdHRDjaQ ENCynJyl4LbCYbfaMTaQ/c+/v7mHgs+4+Fzzqdnh7Dix8V02BePij/UrqLCD 7rOWT5LmFGxNYv6z+o0dHrX537tdsY1RYpfE3/VxQFfXvpkqiy0svVAd+jGP E9grHQ7Lsv3FX5YZIfV7uaHArnbXwaENdCx3MrwdyAM3gsUX+3zXsWBvjKir BR+shbkHIqxhwVE1gQJTfkii/8UaNbqKdQ/6reyGBCFWQ9y58/kKHhRb30yv FAHefRqN7f4r6PcpR9ayWQQ+NVlyt3qvYGn20CpXrwiUaIZ31D9cwZ7FWdai BRHou0yWqLBYQVqV8s9w/CQc0StfSpP710+oca7K+yS8Nr740OvPMr5y7f1Y c0EUfO9auApeXEa1Luv3poRT8OuVWWyJyjKyDrTbGG2dAvlc48pLSstosh3K LU4rBqQVfTp7yWUUfxKVdZFJDCy8NaLy2JfxWqoJT4WkGJwNkyxSIC1h25t9 z4qdxGC7cNeaVswSbjPtpuIliYH7zoxHzvMkVLurPy9GKwH278xob0yTUIms PvyRXgIsTx2K0BonoVgLEyMfswRoGHvkCfSRsHPZQ09CQAJYvlye/1VLwruV jGtRGhKQb7lkeSmWhAzSB1xjQySAUHXmMu8lEp56N/LmE5ckWPi08XanEfH3 TuNC3+tSYNAXrzSURMTygAzflzelQEPC0fB3HBE5EpE14Z4USP1mCCaFE1Gd R7d58IkU0KnrLtE/IWJmm+jJggwpyDr4s0rtOhFbHk3q/dmSgs24frPiPUQM cXDTf58hDRHlE1Gxtov4V4p4V/u4LJi5RnvJWi3ikRSt1EQRWRCQ1L7VYb6I mkE7lyhyslCSVnSKTn8Riewm1KNXZeHXm6Bv9+Gf30qfKBMkC/y24ssahxcx 0s/UUXFDFpxPbsSR3BdQgC+OVXjsNNAk3bQVcFpAJt3ONxzE0xDJ0iJtZr2A r3uLxTip5KB0Z0Jzg84Cyj0vPHaZQw5o+lU3EvgW8Ol2Z5mBsRxEBoTqa7cR sNO8s0a4Vw5KhgX2f+YmIPejfVqOQ/LgcWZHZjQLAQU1RxxE5uVB8V2f1nN6 Aspb0Bwi/5WHSt0Xr6035vGHtD5PEZsCfK+bZeTqmMcj55WdZ00UoOtTFmvk k3ksdhUw5R9RAMIjKX6fkTmUPdvp6U06Azld++vtu+fQ/oCmkTiNIjiJT9iY Ns+hFOu2wjKTIizPRGTIF83hun68TaacImyakk+uvJ7DNU/asYUnikB3vkTK FuawSxgyG5iUgIfh7LmrcbNI6xid434J4JXYqJvtm1mUf7ZqKWwBsKbj+8Un cBb/TEmUkVwAmkNreTOdZ/EDwW2x/gPAg0MXd9OqzWLZe6VLbzcBvh3RbS5c mMHuXAZqguFZsGW/ZXBMeQb3vZQX2ceqDF2Ku16Ly8xgkDhB1ZdPGZTMUr+r Cc/gzyNembsllOFQ/PTpB0wz6ELZX6l4SRnKOO8da/nzB02OFDld91IGel6X Ea+wP2g3RRV5c0oZ8oQCbcfGp/GqlLKTU905OP7jRrFw3zRG3Pgv6n3nOQh+ JEf3sHUasxvLIvtHz4FV7UzK7uJpXBM98/zZ9jlgMdMaFXk1jZat9y7nnFYB z1BGw0enp7FiOcvFIEcF1NdiVfe/nEId1VvLjZnnoSDuYbi+7xROsm+nXKo4 D9yql8fjHk3hxxSOQ6Ot52EzlOIjbjmFZZHhWRqL5yFL2LLMQHYKP/P0j7JJ qcJhc37JxNFJzKN9RRlCVRiuy+WUkZlE0p+BrZnpC+Cht37+tMgkqoi6slI2 LgDL6Nk78tyTaLsfMgQPqIHO37ZcJfpJLH9HX1strgaVEoRzapMT+PwFH8se DzVIiBeyMoycQNG+NoM9TOpg+Tgp3W31NwZzd4fsNLoI27SzLR5zv/Fl8viA jMNFiA6XIHmN/cYxw2sMAf4XoSO7St6v9TdePVqw7Zp9EVQmh5uCUn/jvkD3 oK+0GsCrx0aINfiNMzf1KitKNGBCJEICv47jhllSfYi8Jgh5pRCmP43jK6oe rRZ9TbBvK8hgTBxHMYqbtKSTJqw5dXNbB43jKfs8f480TdhbyHzowI1xfFpu XkXPqgViytFLRnvGsaBUtvAJ9WVw14/PXzUeQ4rC4leDdW2oTM125Lwyhu/r dRzOHNABmjUU0bgwhtxmFi+n2XXgVfRI8nuxMTR3Od4fBjqQMMwVcX7XGCoN Jz+W8deBb3eSH4ZljaJfUJcSifEK/OeVLiO6YxR/P4cifnVdCPgqUM9AHsFy 3m/iYKwLG4SP15fmRtDp2StGF3tdGDNP9SjqHcFNYWY+lQhdyFNOqj6XM4JP 9FkfW/7WBd1d7y9fMx/B+t4oIjlQD/hZuVqo3IfR7Feid8X8VWB4cXyxznoY N72PhZrs0oe1DfZDQbrD6N0qGc/Lrg/1g0evMwkNI+VamoaUlj7YJByeEOz7 hSn/WRiYZutDBj/dlq7sLzxpZK4h42EAIjILIilLgyikZ2KprWAI1qLe3sVD g2iyvPNSsLEhxJ842NHyfRDTvrY07/cwBEbmU49WYwbxnMFWykC5IZDJ9lVq 5wfxuZnbm2/nr0N1MUF/JnwA3au6FV/cMIK/uV5p214DWBT/8K/FUyOQzqDf ZLwzgAqGWX0vMowgLVo0QUFxAPWc+mo7V4zgpbv9TPBEP4bSdlKZhRiDoSLB 65RMP5odlT+i1G0CYdJeP1Q4+5HRnVL5gcoUmk7S8xru7Ue3A1GZd4RNQYlD tMHnVx9WcDw4xeNrCjyUe4c6AvowokKQ10bKDAiV8x8f9PSiioFboVWmOfid n28vdu3BmYlivQlPC6hWn9OWutmDxnPjDEejLYBKa7Y1S6sH34SceB751QI8 9P80J3H3oED6aITtogW4WE/Uv2zuxrX91n4xty3BJnCo0oKzG8VL+c4dsroJ qcGDMLi3G7csArvPBdyE3yEDFQYrPzH4je5W08ebYPGur+xS40/89XhJcnH2 Jhhl/CySfvAT6ZrotlNcb4Fmc0vOnvouZK5nydubYgUv2ptP+ed14UXt8iGP Ziuo72rK2o7twrNyji43lq1Adajh85JTF5rN0JB8Va1BiVCXNnSsC+WtyMds 5q1BjKEiIdehE7MH+sBO3wbsD5cfFzHqxKLd+sr9/jbwmaUsLvV8Jyo2LokN 5NuAIFdJbAxrJ46b7vKLPXIHuCW+Rj2t6UBiHpXTzdE7wHQ1K+Q6cweaeW65 WUXaQd6JoBLVnR1IJ5Ljd6nZDnTWb/8WX/iByjvWKnqo78KLOK7Te7//wO7S p53zTndhezp8uMTlB35+FkG4YXgPJj3dRdm621GCxSua7aID+OkYGtJVt+MF moapHy8cgJNH2nc5sx1THqkfsWhxAKN6ws/mp+0oT5HUfSXkCK2Mlp6e0u3o zSwjXV7oCPbaoVHlgm3IWZdytO+PE6Qta8xF7GjDSSrVyKeMzjD2juasfV8r OtF/na9RcAaD34+mOJ634lXdAw93hDgDPDaT8ZluQY9nDqUdcB/cOFheGFa2 YGJqmuuNe/chv+bHkFhUC955hk+iYu6DAL3q01G1FiytiBRj2rgPDEnCXec+ NuNnT0emVHwAGuoT/Me8m/FmTEP+DOkB+M/HuS8ZNOPJo2se5BMPYU2WkSeZ thmLqNUs3UIfwmjzmtMu6yaU4IuaS3R0gbzVuoP1vI04Yi038s3YFV5lfKhW Wm/AWGJOu1WSK9iZeT8saGnAv28f/7wy5wq8304PfHBpwG+j828lfB9DZMSn VM/6epSka61mQDdwvhh4fTm2Ho8+PXubgdEdtLdu7bdzqkcLilfIR2t3oLPi cDY8Wo/0Nekl3w97gJtUqKLk3e+444m5y6EATzCYvreYfvY75luJbTNMeYJk rEYSJ9N33CMrOUSr4QVzO2n20Fd8+5e3gXcOH/EGs06XrumD3zCKX6Va7JYP yD/Te2b+uw6rgntzb733AWYFMfnuojpc1h+v6OrxgfYPf+JrLOqQLoSJ/rXO EzjnbGIX96UWuez2mb7Q9QWOE3IcTIG1KJz/ta8k0hc2+5h+BJnUooe10C3P QV/IV26TebyrFv3Hyf/N3fWDE/+do756rQZZLpXzr37wB+o6joJG4RpUyD8g Lb/iD8Oum7eVqWow4g6wBlx8ClEj+S2i6dWotKpa47H2FPbm8L/bs1mFRxTj zWmdn8HkTRpNn7YqjLtzVTSl+xnUMI9uryZVoWz0n5lFxUDw8I6+9VuzCm3j fWKXDz8HwuUDYhhXiR6MAfeLpl5AI/XMmPT9SnThLOGsuRUEH79+i/isVonO vd4iNhNBUHmGiiw5isiRypfERAqGlIGJl3/8K/Dpse73boqvod/jSPx7yQpM cBiz5v7xGug51HKujJUjC4058ZVUCLjcSOsohnIcubYVYNkZAhk7+sbvEcrQ IEoy2uZEKPz6sGeF630Z3h5z4113D4ULE7bMLzZK0XZneL3AqTBwC4gRUEov RRPHgXM7X4ZBFn+zHOlaKebKLgkMz4cBs+1JE6OCEkxn4SHxFr+BacJCgpBj Me5zkIk+7hYBbCGceb84irF5LslAfDkCdMSv1IS1FKG0vOKOMOdIKLqfN7Eh VISSfvaCRz3fwtzh8dWsvkLs0lxRK9wTBZxfD9HdDCxEqM/heB0TBc/XHgg1 TXzFWMZkTtr2d1DxLkXBO/wrjt5p9TtzPxpI8t2akipf8Yr24R+DbDFg5Cnr EJNQgC7D+ZZ1/rEgRL3xxc44H6XllvMi8+LBLEmo7vjefLz7jk3qpEYChJ03 7u4s+oLRm1WnD1YmwEZA2ZrCkS/47bzNKGNZIogKzO9ZrM3DAeqLa+PnPoBl A/ux5Pt5qPAm1Yip/QM07fNW3P8jF0++qpy5REkCqszsy5XeuUg/tZ6u/CEZ pC6PmD8QzUW9I3pVblopEBui7DsYlIOB7/UbD2EqtIs7vwmRz0EatrDw2oCP QJeqevF5Rza2Bp65b3o9DXqF6F5df5mFgY81qpK4M+DsvTs5VTOZKNw8vyV5 7BOkZTd2CKpn4phdx5gL92dgIAmvhKZ8xlIVW5U4uUx4LPWSeYP6MwY9oHXd tMiCMReCnOWNTyhdzaOy8302aBRrmzSWZyDn7S4uQZccOKrEmBjtmo5iOZr3 X0/lgq/P/Rrq7jQMFEjQuP0lD2aruyZsJdOQcpdlPublF7i6S4auM+Qjcri9 THj5KB/K1N4KKRBSEZY3X39zLgDeF2uaSZdSsYRZK4DqyVcIbr7usC89BZu2 /z4WTi4E0yts+QM3kzFqwPe7jkQJzC2tyD2sTUIMHDf8G10KHpFtSM+XhGwN Yf4/uMphv1y6atrTD5io+zyRrbECYgd8m5QnE1GGPBLfcKkSRLxMrgxcSER+ ntmtU2pVUMop0/PgYwKq126zvb1eDRo1B03p6RLwNfWWdfTTGshv6qjT/hGH gwaO2xyttdDFEPDDN+w9rtIOS+nLfIMlfbmhAr1YXO5mTy2o+g6MMXPT04dj MC/gtin5fgNIjMQvH+t+hw7Xi+03dZrgCp8elfbbKBzcv22abtICjra0+30N 32Jk5f6mr9FtEJJdzFzAGokNfD+NhHb/gOzluzzT/eG4474457BJB7TKcZ46 FvsGV034q7paO4Hg1Sl/2TQMSxbj9+qa/ARDxgfJNvga621u6bdiL7yN7S9t VX6JHjQhr9OC+6H7hHKnVO0L7P7SVjNnOQh6CvTUOxqe4h2vSd6TtCMQVveA 9fYlP7Q+NvibeXoE2rUHxFpafFD6tr8NT+UocOT7hVgneGAOJWCSL3gMYup1 UCLlEW6whOgMaIwDyxA7YTvdGXfwX41s2RwH4fGfcpGmdjgXSeYRjP8NPl0C XcdqtPB9/6plL06AyMEh210npYDRy3aZESahm+gbz7BmCMRZg//U8ydhUZuf 5OBsDTuuXLnlwTkF7m8uNNpJOUL1YQm7JP8p2PZ6HBN/6iEUcY+tRo9OgY/t 57udQm5AM8LYJHh6Gmo4nz97z+ALi4mO7MVd0+Afye0o+8ofRM7Izw0e+wMX 9pcZ/tj3DJ6oPKseM/sD9WSC4K7dwbAv5CaLYP8feHEvkDHe/xXQ69NoMB2a gVRiiCfbkxAwZ6PmU7o4A7dvC1l/3Q4D0vIfa9msGVDnfmTkpxgO9rQbXg5D MyAwVHNZxyMCqCXnnAv2zsKMrqnszPpbmE9uUt9xYxYaD2QIF55+B3cjy1LU A2fhU/3qcf9H0XBufKiZK3sW7iqF0HGsxMKNThvv2bVZ0Fof/DsjGQfXRRf0 drPNgWi+ILHQOR4+uTvt3680B2vho3MCawkgTfpvmNF7Dor3uv+sfpgEQb2y X+NW5yDhJFNnNncyBPBrZc4fnocAnez22LZk0JbyX7gnMQ9XI8ebXARToVyp //tJu3lY5NKsFhpKA//WT9rZXfPQc34SmV+kA/M7C9bw+XmouO1TTiObAQdr a4YJuwgQlJlf9CvkE7iHF9hxSBPghBx7dtj5LOhNiddZf0mA/SaFn72JWeA3 VUvmTSLAkteVjLtx2RA9cYqGUEiAG2PVujweORCacHXaeoTwL1/JWls/c6Fr RPWm9skFaPhifj73eT4kLLAbGxQvwJk6kRr+kXy4L8peW9iwADnd68pxMgXw 9k//6+G+BYhcfwNB4wXwBc37A9cX4BbUy1spFoKHVTC3zLFFoDSKibMSi2Gl 4Fxuk94iOA9uZb9WK4HTm4/mnxgtwuR8oyhtXAkY7xM4w2exCM0MViJLGqXA YjncImW/CNEG7/hbkstAUav5mN+zRZAe28HxxBChINk4SKRwEURLrhHF0hHo o/KXvMsW4URYZu3IOgJt1tH071WLsC/xs3SCViXkKqd1SDUvwl8dw0EKoRJS s/MKgkYWYSgnWxDFq+FOQempq7uJEO9oVqtYWAvpFlWzJpeJEGuyJytiuBZ2 RdGaBusSIUo9/+387jqwetfQlG9AhBDOvXbvDeuAON5PQzQjgk97wX9b63Ug THPUi9WBCBZiB8zLznyHpUGjZsVXROBZLF2Xr26AJwGJm4b1RPBoUfFfnm8A T6X5fUebidCd0USfxdoInraqsT/biPDCaoCHy6kRyOnnn5zpIcJi/4bWbs4m IBw2EGiaIEJFndyHTs9miGFyvb6+gwRGMYUad+XaID3GFskyJMh3hZ98Vm3A 2qvVyCtPAnqD7+bDIW0QyZK3qaVIgiqGnge6022AhiHr4SokOKzirh17qR36 Uy/ar2qTwL0o+rHvRjtQbaoLH7QhwcWkvpbLhv8u86698+0RJFh8mmVdd68D 7O4uhQdEkSDKxo+i4NcB3icWPeRiSDB98qS4YFYHBD4c4H2bQILAIp/wnTSd gBdOu0h8IkF9C79xUXYn+JSzE+eRBGprD6e5dv8EWROxRzFTJFDVYty5UtAD n+KpM8vFluCVxR7iekMP6DuJ0ddILEHvQ6rh7aEeuHrBdemb1BLYxhFK6Gh7 IeVQnF7j6X/+QqMzm0EvROzYnYFn//mhfmMqq70Q08kea63zz+9ergqT6Ycy n7CNL/ZL8Nq8x0escBCaDL8M5X5cgu+X2Q/oMI7CRT7d0CKmZZjnYvLqiB6H zJLyd7ccluHhA2GL10cmwUh6D+tS+TL0DDLoWtdPg+bU7tXxvStw4/GZqd2a s5CQ6V9toLkCNcKyL2r+7fGHKua48JcrcGJP2XSy+iJQtfuPbNStAHuZnequ QCLottBUp6yvANUGdbrzGAlWq0rdRERXgXyl3KyObxn807nPXDZZhQEp82N8 /ivgknn2SEDQKjheY/iPe3AVPtXp7b5VuAqs4b8NadjX4NACV6zur1XIMk74 uOS6DrnyjmkRtGS4puitXl++AUtmm3W+QmTINbvHLf93E85mDidpa5Jhba/K zmL9LbjWPjwb4EAG3R8KMuxR25DpbF/L9ZoMexX2VZW93wa5zH71z/+4Krn/ kknSNrjI0xbKhJBBzPWxRUzWNtyaKta5FEoG+uOFwax123BvzMbt/hsyNNyV GGcibYMEtV8mviXDWTrBEHpNCmQqff+mlvBvvtPa0awrFFCaSQlt+8fZA99T tK5RoPOsuNq1RDJwZFuXBltSoDna1tn6Axn+6idP7n1MgZ6JU41+yWQoTDqu uDuVAgkbsk9L0shgf2Dhe+onCnwek94+m06GE48qdC/kUuCj5xXL7/84XMPU 5mkZBd6GbM12ZpDBmRj9ZmcnBeqqZnbNfSaDkLEtR1IvBTKIb3udMskwWiuX fu4XBXR3REeS/7FOVG/Fkz8U2DpU1EWdTQY66rSLXAsUMC0avRr4j9HuUVfl MgVUvd0rD+SQweXnBfMbGxSoFwtmfvOP////Ay9Djxqx5JLhfyEsbYw= "]]}, Annotation[#, "Charting`Private`Tag$4205127#4"]& ]}}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox[ TagBox["t", HoldForm], HoldForm], TraditionalForm], FormBox[ TagBox[ "\"\\!\\(\\*StyleBox[\\\"M\\\",FontSlant->\\\"Italic\\\"]\\)\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> True, PlotRangePadding -> {{Automatic, Automatic}, { Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["h", { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"]}], ",", RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, { 3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9, 3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, { 3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9, 3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9}, 3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9, 3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9, 3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9}, 3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9, 3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9, 3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9}, 3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9, 3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9}, 3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9, 3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9}, 3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9, 3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9}, 3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9}, 3.887187744969038*^9, 3.8871877776872168`*^9, {3.887187917169589*^9, 3.887187949227336*^9}, {3.8871879838276787`*^9, 3.887188010158411*^9}, 3.8871882575514183`*^9, 3.893237964294105*^9}, CellLabel->"Out[54]=",ExpressionUUID->"18837f4b-03ee-4fc9-b362-36801a1721f3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LogPlot", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDuh6", "[", "2", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDuh6", "[", "2", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDuh6", "[", "2", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Re", "[", RowBox[{ RowBox[{"DufDuh6", "[", "2", "]"}], "@@", RowBox[{"invCoords6", "[", RowBox[{"t", ",", SuperscriptBox["10", RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", RowBox[{"Exclusions", "->", "None"}], ",", RowBox[{"PlotRange", "->", "All"}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{ "t", ",", "\"\<\!\(\*StyleBox[\"\[Chi]\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", RowBox[{"LabelStyle", "->", "Black"}], ",", RowBox[{"PlotLegends", "->", RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, { 3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9, 3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, { 3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9, 3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, { 3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9, 3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9}, 3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, { 3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9, 3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, { 3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9, 3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, { 3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9, 3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, { 3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9, 3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, { 3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9, 3.887187764733572*^9}, {3.8871878714397583`*^9, 3.887188002562066*^9}, { 3.8871880651171618`*^9, 3.8871880740271997`*^9}, {3.887188109820418*^9, 3.887188166220853*^9}, {3.887188266607832*^9, 3.887188319744246*^9}, { 3.893237970542515*^9, 3.893237996990089*^9}}, CellLabel->"In[55]:=",ExpressionUUID->"f223d556-482e-413f-bd97-027e350d7fc8"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtl3k0lfv3x5Uh6oiUJEOSKFRIlGhTKcrUKUMiQ0WX0qVMkYRuJLdouKVJ 19DgRmkktR9KVJQkMmQ4zuzgnPMYDsX5Pr+1fn8861mvtdfzWfuz3++993oW Bx+hH5guIyPDo57/e6+E+XypVIp8OfdPGQVlcGR8Sfr4hBQnlGu3DXHK4NET c0NyRIpeZgkP/E2egMUy12B2vxQd0+pVPcuegPWctPb6VilGtkUWlBBPwb5P 9PFaqRTd4rIdZnc/B/qZhuLVAVKM32KhfFb/FcR+STsc+mYKT0vUdPczqqC5 eRa/KmgSbdv1XU4lfQId4sg8a+3fuHyX3ljc/iZ4Fv5OXuXnBGrJn9OO0WyF wHPmwraUcTxo0hdTEdgJkpyEdAQJMlqVC5xf9UD+7C7Nq72jaGA5GP9Pdh/c 2GYe9S1jBMvsXN7wD7Eh5VBQ3HLnYfRPFOz9pM+DBNkHsVEDYhR//2AdrSGA oOQvBi33RPivh4q91ddBuPyadfVGmBB/S5yCox4LYW9cbpL1ASGeDqtSb30u hGWr3fc3BQhR+XFD97pKIVTce7lK0VOID6efyR9/L4Sui5nvj4IQNxvI7Anq FIJRmPnwtnlCnLgb+ateQQRRKyZuiROGMDbwSsvgbhFUdC+j/ac/iOuerXg3 WyKCRNtpD3MXDCKvfUo94bcI7K61uWbMHkT13d/CmDJiIOhnz4dMDKCtQ5t8 iZIYamv61RY3DaCjM7lbW0sMzcUlmldODeCUzkLDQDsxDMZaGiX3CFB+jKHu c1IMj5ppdREtArynRb7xSRVDpDnroH+9AK2X9t3yPCOGYf7lBzYvBbi0q5Gz 6bwYfvmPrRg5L0Cdlcs6RLfEoLi5wjIMBJg7+VMj67UYlqjab9x1qx8PqMz4 kDUmhr/Neo+HXexHs2+S1h2/xCDxSHmSnN6PltNS9qpKxVCf/c7gYVQ/OjWu eJCoQMKxuc4zFLb2Iz1nt94cdRLez6fXvxji49/snHQ9cxLMrEm5z0w+LvAt dTxjSUKu9yU7Zhsfj+X2NnOsSThytaVE9R0fL4+Wb7iygYQFC/dk/3GVjyO0 YLW720kI09nvpeXAxzuaY8vP7yeh2U7+vLkVFTf/eygrlIQNe4tqt5rwMWJt cuvpMBLm3uauPabOx2/Vq3sD/yShUu+wVgOPh+9WzrxZnUDCbIOYnqQcHhq1 HfvXOJuEuM0ampfP8PBf7Z0rnl8kgbH/5Y7iRB6mropfbHOFhBeFE9WtITys 37xyvsl1EgKNThaaredhwfYTfaUFJJQZp4cx+rjY/k30l81zEhZ9DSw3aeMi bXpIqt1LEs7FrlOM/sxFe+V/o9dWkHDgHb9wRjkXT/r30ua/oe6717XX9G8u dhh7YEQNCWlyhmYxqVx86iezxKyWBNGDqSSM4+LvUx90eXUkfBwr1abv46J5 2eFSh3oSTmSr+cSu5aK/UgQvs4kEvnV/EbGCi2AdX63YTIJX19sRpSVcfOz8 sjnxO6WHSfTFG8pcVMtTi972g4QbX10ZrOlcTPJw7M9vI0EpztB8lYSDNbM6 wobbqXq8a/1cxeDgXraN1/GfJLiHP9KZ9YODpXtkH5R2UfWdk3FoVwMHrdtM Wju6Sbi812Ym5wUHbcjErAUMEpwkNxxpWRz0Xvd+gT6bhGe3oi95pnCwebMT m8YhQd/Rre9WLAftFV+YDlL8K1uabB7MweV0ueGLPBIOrv3x5bg3B9l/PvPz 4VP6dz3SfefCwezvEuW5/SSUmARXellzsKvnu2a4gAStJptZeaZUfswNfooD JKTHzfXlLeag67a259cpHtYV3LPQ4GChQ5bO0kESgmrejSXQqO/PbEoroPhz +M0tNdM42HSN1aU5RIKNWszl2WNsVOT4Lz5N8d2XbkxvARtXyl8FNsXzAoxW 3+ml4szkFXZCEk7Jy6TwW9jImDajO4PiweIfjavr2Xgib6FTPcW+9MeLTlSx MXrioZ+ciIRaSUbE++dsNIh/pmpBseXt4Ncq/7FxjG/k40lxnuN62u47bNxW MWUYQbGyYO6ef6+wscTAKjKR4uM5gvv9mWx8FNVgnEwxe22NxPIUG1XMarfG U7yz++bWpBg2Ru1fXhlKMXE65kptOBvT6icTtlNsaurOUg1iY85ceoIBxdea jCx9vdh4UXltiZjKVyFeJjV/OxuLRDWKzymOWtT2VWDPxslL809GUNxd81jP yoqNNkXO8toUJ+4c37zWlI1fmlIsa6j6LOi1/8NGn41DWw/U76f4aUR6lu0C Ns7x2/N2gqq3x+8vjzfMZmNA1TeVMxQLMjRa7OWo+GOHe0oUp2sETGycYOH4 fJ3UFEo/wmJw41Y2C83j57V7UXr7EWtCnTsp9lq3qYzyg8T1ROb2Jha+f/uz TpZisz9oze5vWJiuTMpmUH6qH90p2fGUhcHu14oquZS/0q5r73rAQj0nY3s2 5b+828YHfK6w0GeowkKL8qvtiqgM33MsLLXWjzdkkfCjovyhXwoLo2o3ZRsx SVBtcRoNjGDhwP3GObMov/+378LCffup8//pCB3oofwvat1wwJeFtoE9YTVU f5yihZ75YwsLP2aG7fSi+kk3t6Q43JaF8lENhiqdJFQYjX45bMFCIpeV8prq P/HG0wuidFnYUufyeKKVhOD4/PvHR5mY8yF9YOQrCVMK/Q2JAiZeYA7QfBup +XrJQpzEYKL2K/2IJ59JaCqtskn9zERlT/jm+ImETezuT5lFTDS3O2DNfUtC z1EjYdYNJtpGGhwbqaL0m3Zk3oUcJm7c5V4yhpRe2lN+l5KY6LXq7Hj7KxIM dmoP3vCiznO8I6f9hNKjZ5/abRcmznJOcGx8ROkRUWx1ZyOV35GNG+NLSLiU YXOycCUTK/o/ut+/T4Ic4aNaosBE/pNF3cm3SWCZXrbA533IW+asNyODBOOk wkFucR/m+Y4+qjpNQsSXZw/U7vShy5LVUREplL6RLfohmX14LvNy8C1qns98 oTFXObAPx5bdk/c+TOntkEv6KvVh9MCF8SVuJETnPChNm2JgtknmxUlnqr59 FeElJAOvpk9vr3Ok6vFXR9+0LgaeLRG4WdpR8/KTdvO9Mgbqhvqr7jUhIcHz 9tPRPQz0tp+lPCZH3beo9E+9HQwcF+it4VL7UE6Cptu2MHDJy4a8jxPU/szt KbhpxsDGp02m+4RiyOtefHmzPAOve9anMtrF8P6Pguickl48UH5yQv2hGOYk 3bdaOa0XNf7sDV2zRQx/PV9WpzrWg6+Pno59DWKYGLy7mxT0UPu/y23tOjEw AooSX/7oQQd6m4eCqRjKHPKrNz7qQc9/NmTJzhEDXf6mm3dADza2W9xJ+SEC I83FDTIJ3fhilYnsP/4iUD27SFgT0o35nuU74jxFIJnQmZtJ78Y5SYJkF1cR 1HUu3K1u3I0KskvPNdiK4GDePNbyti78qnHrnoWWCB4YKU7SrbvQd8cJUeZ3 IZhaDZkWkp149VBGzlV7IYSsPHmy/GcnvrdRv0+zEsJtQ5WmhtpO7HvtKhNl IgQ1jVWxo9c7MVd7a7bqfCGMjUVUbd3ciZEq1+i234egunzQk3+pA+3GJZoK +kPgYzeYtMqqHeUSFg4dLRqA1M0DjeVxrdhvmMCVBPCh2kngbrmvFUM8kteX buaDjGv/5xLXVow6/UbOfTkfEj159fn6rbgqWyFyu5gHMSGsuqz6FjwV8WTC JpUHB9N/EkF6LZiH2RdV7nDBpb7hkVJdMy5/s21JeAMb1HeVXNit0YRwy+TV fCEDykZrVOoMPmLxL2X7Wu8WKOxgZfHS3uDgYgetBfll4L9D+2nHvgL8ZB1q 7NZSi+UzE75XR+dDY32A9ZnqDlzDmKZ7ygdhVeTwk1B1Ni4Rvhq3qf4AP3Ri 6cddBtA5v63BzacJfB66LtJ1E6Ojq5rsyLNWYGXnyY/nj+D5gNZksxedsLqx iemXIcFaNx1lD7Ve+JuuXFwe/QsHFqsnNeX2gZz5T26kzBRGHzMJOj+fDX2R qpM1xjJEa6cqPaSOC5k6c90VfKcRgfG2nBku/aDk0T8/cN904q2J9dm38oOw 6duy/opIWcJQqZJb4CQEu7W+J48HyBE6leGO8ukiEObWVKjZyhMyE9PvRzHE sMjgMlmgq0CM7Xi9t2bpMPTU0u/achSIDssAraVpI2AUdWek6dkM4k9v1Tn6 naPwbIct/78YRULzEtNHTkcCjeD3KkxfiSjZk3eXjBuHsZ2phTHNSoS33Umn utcTkKxqEXf96Ezi8d7D+ja/f0FQoJ5botIsQjJzk2y55ySs+SfXubxwFkH/ ut5K5+oUfOy1zRo2pxEz18+qqrw5BQVbWrX2WNKIqoL27X75U2CqKLO1yopG mMXFB10vmYLJoJij59bTiNmLXpzTrJmC9m9bl+k60ogPhyz61MVTUNz2U2uV D42wV1x+YbaLFNqumf+akUQjJJGShSU7pHAg+LpncDKNKO2oLXT1lkII38mj MoVG6JaGvDoXLIW4KwzDI2doxG/PAvbMeCl8t13j13iBRrzIX2Q3o0gKF7K8 ZE7l04gI5aHaomIpKPFCD30vpBGGsW/oWx5LwV2Udnz5PRpxaZv/wdOVUnjm Rz/R+B+NiBLlXpT9JoVO+ja9hc9phPGeMN38H1Io0v5wO/wljeh9t+7+xi4p GMxYXV1ZQSM8rv54c4onhTINa6E/0gjF6fecFw9JwTBL8ffDKhqB4bHNxDDF 1auLJ9/SiJjvWwICJ6SwwqF50uU9jfj//09Qy5Afvl5HI/4HZdvh0Q== "]]}, Annotation[#, "Charting`Private`Tag$4212189#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtV3k01P33t2bmM5OlqCR72dosNSXp/eZJISqV6FGikCdLUbYQRQ9tksqj slRKtNhSlnA/mAljZ6JIGkuRLGViEPOd3zm/P+6553XO65z7uve+/rhX/dip fe5iIiIijcL4v7wOLfkuEAjgv1HbmOrcQnRqWjN2ekYAh4xlH6pMFaLcVwZa E78FELQhhBlpWoQMdWyPfR0WgNS2JQwPdhHaJBfdWd8hAK/nRave9Bcj3PeT fTdHAHpxny18lErRvpiG50ZHBbAEgl5mWpIoqCna50T5PLR5DkZ+bmIiDof2 vcJ1DmRMf/ybzWtEyuQp+U0r/kCf3Vmd5b4c9NqLKSnTPQMDAQlU9oWPyOWa wfjHi9Nwe6bH1t+qB/ETQmMB8cFIhhuwJ7QXpUt/VkziTsJQXtGhqJIBlGxt 4N92+TdojEa8k18xhC56uwbrWvFANVHFbkPADxQq/izIf+QXrGW47JPQG0eu kU0r2zN/gqfOTvYexV/oTtlAUvLJcbBxCdu8XIOHSnp06C80RkEvRk6qIXoS acpi8wOpw+Dnky2fOs5H+XqxJ3v7BmE64x6N2jKLelh5agzGVxhKZtxS/DWP BtbcMYQ3fVBXEO19fpkoljufxVgnyoXmn11WL+XE8RrG2JonE59AJI1/K1FT EkdtH2kuDu6AmIu1fcxkKVxp+WPPhuMdEPfGjsXMkMIitsON2bYd4DqaIcfK lcJh9kP16RodUGJo6fuOKYUDPQZqrte3A4Uj/6jmhxT2jO0mXdXa4ZNVhcvz rRRsU9+QS63hwM7j1buLOin4SnP9+uh8DgSsv2cY1E/BNZy67PlkDkQ1/f1S f5SCLbprX0z4cSDIaaVjgigVbxtlZXYrceB0FL+UokPF+rLlD/JOtUGM+ecF 589QscKB7PhDS1tB+s3+R1QxAudrXS2xEG+FDQ6FnAEqgfdOn+g3GGuB5Cjz D/lyBL6Sqr6ZqG6B4sS6h8rqBJ4fvN1TEtgCmksnZnQRgb+Gh65b0d4MRnrJ 6q+DCBy119GRUtkM4Qa8+BPnCaymufEi72UzRM2t1BK/ROC/a0bf119qhq4r fjcmbhK4cdGx8PCNzcCVu/tv1jMCew1se/qPejNcS9t++E4ugSlFSi32C5uh YWFAqfsbAl8qeWZ1mN0E3ANxT/MqCOy752ZSmW4TUCN2/NvfTuBMnvWPO6JN MPDf1hV9XQTuvSuBfT82gk5RoGrFFwIf7A/6pnK5EXB7bsmy7wSOv2xgMuXS CH9kX/DiRwnMXjcc17S5EW5enuwZ+EVgFOLMiBxsgEUV0bMaswQ+p7LsiiPZ AKHfEUkVELigqqVbP6kB/jw7cJQtRsM60haXuDsbQNqGs72dSsPHXs1/KFZt AOqH4cVqC2k42bFoTcJUPVSYf2zEsjQsm76aY/60HjjLmmkSS2jY2nJAWymi Ht7oDNOfLKPh6JHU0ImD9TBnocdXVKLh8gTHprp19XBoQRlxTJmG+ZsWaT5e UA+WxfQLYao0bNhdFxj2uQ4sw98neqrTsPfFS+wDb+pA4TiOWaVJwxnaSGVt XB30pc1fy19Jw9x6vp+kRx3MNrr3SmvR8Ar/fFa3aR3cML9eYaxNwweXeiu+ UaiDBce93Qx1aDi+dJVP3AgbHJRmJPhCzHbtIT1YbPDda9t9WZeGJaTuyqMU NnxwKdf+JsTbXuzzXBrAhv1ZVFUZPRoOtqOXjtmwQZY4My8ixPmTLJmalWzI PfFdtFTIj3v2qHLbdC1cHGp0MBRiL+eIgNcNtWA1NrTfQ1jPctFhnTWPaoHN NRNxEOpb+W5z16PAWnhBee4pLtQvck4hTnFXLdibSd4/Keyve+0vHK9aC7Hz 555e1aDhEm7jxAJeDViHVzxwV6PhxDvPM8JraoCn+HfylHCe/laxh3jJNZCa zcnHwnnvmXOje/nVgH3vIhEs3MeaPDPgWtSAYPe1dJ48DVPcVfwdl9cAcewW eUSOhvuXza5sGq2GwM57588J911R39FhUVUNeqxQqrXQD+c23DQ18q6G92Ic m3mhfw4O+oxn4WqY1QoK4M4Q2CjZOl1NoRr25XzYdfY3gX+IS1Cly99BZmqD asYQgWsKv7yNTngHKLXy7V99BH7iVeY76/FOyK8yj/tEYOe2QM6gzDsY5Zkm aTcSeEvM/pij/SzQahszCXhH4KUm+lvai1iQf+dhgE85gZsfDaVVubLAhO70 zOklgc39D3ulvmLCLtPGbxoxBFbRMlZRiGWCspYzpyiMwLMfFVquHmZC0R+Z jZN+Qv+bNTFCJJlgzEw75eFEYC05c7EDDlVwzjPk7TI9AouxVF6zV1eB5J1O /sAKAvcEz54wE6kCkSm7wUMyBE76UtCwLqsSWqKcMWOCiolc7bvU2QooCD7R yXpDxV+PS9hENlUAo0zVrSGDiquWcucn0yvAXj8qJDyRisMi7rn121SAIk9n 7sNZKh7dvVAfUkmYdV/85OpaKn7SNXB9KLocLNI40v43KLgzbElailE5LFA0 JQpCKVhaZWeuXW8Z8DMCb746QcGBLpmtxagMVvc/iRndRsE7Bk4uvTLzFpzc d6z0/i6FB0fHHuidLob+58EBBxlSWE9s5pWXUwEw/BaeUsmSxEfsVhR0HX8M qb2ldl8YYvjHxG/jAGY6OC5dfoiqJIbDEptAelU62F/2i10vEMXJXRfrzL4+ hCHVtxsCq0VxQV0ra09LKlSuYXwWOIjiHJ635mDnbRihnTFJCBHBkRwdjlKV LXg/l1g0HD2HionQ95UB6WjjKrfCeMEkerBWoS1H4zGy3uJXeLl2Ev27N6c5 uekxOnQ2xDvv1iQ6kNhXF6ibgYLfTzGv60yicXWbSr3uTBTde0M+4sBvpGWs nJOwPRtReK0pLq8nUO2ro9vzLhegrtHBAv/742gra02V9pcCtIlfKePrNY5y 26fNUhmv0Y/ZHsu7JuMocfoWutr3GonK1H+bKxpDbqhmi7tpIeIqVvtQzEaR gK1voPizGLk+0uG/PjaMNvaKqlxwBGT/+Sg68n0ArStx+KmfBehaRO2nf+4P IK2El8wv04B+8rIDK2wGEO3hi40PbEmkyff22Jvbj/7sdfwkGCVRYds/1/rP 9aHu3BxdMKhEjf6bk9KUuSjttDPTtJCJmPnJ2y3XfUSa42+nt1TWosURHrct NCpQWMNf0byRWgSrUFrMIhK1P6uTzlZkoyuzSnuSpMrRFfcuTXU/NhosXVn4 UuiM8c4ZWym1OrQ1JYJ9OzIPlbOMH7WF16PDg+qVSdfPoL/vF1p7Gzeh0m2C 8PqpMrBK/9iw27EV9UlFah/ufA/jl7I9WD6tiEhvPiFv0Q5JnlECk6hW9E76 SE9ATjsMrl1roJvdik7ZluxnRHVAbFHkbXGJNkTfwzEv0foINQ3aTkU5bYg/ WWRm5PwJdvIDBtWl3iPzFSfv/7bkgoXtIvHfrzuQj2L8KjW5b3DjaEekfuEn tOOJtv9lm3Go3q28cO8iLqpevCm+sYwHI+oK51vv9aE2U7HdQUf4EHB2teuN JV9ReWaS24+YWej4JLvPo2YQ3fSidvBT5sElZOs3KZth5JCi0CGXIkJWrd50 pUpyFOVYnywSfBMltailg48tx5G+s1qwkYQ4qVzqZSEZ+xON6V9XH14gQYrM iGX59/5CUyVpRoguSU7ZlTmzVvEQez8zYPe4JNm14ajSqujfqLL3qrj1hwXk aQdZOY1Pk2hpmIRDcLYUqXi731FCmY8uRMrbBnpRyGynB08ngqdRtd4e15a1 VNLBNMKypmwGFe5tarfppJJ5zj4aW/7Moln+xiOVoQTJJ/4SL7afQ4a6kiKa mjRyX4sJQzlpHtVuetafUkQjCRNaRWnKPNKZeBy6+i2NrHjcuetw+jxqN7FO LiqjkfrBIa73s+fRkXvbQlsqaaS0auE1RdY8UvnvdMFcPY2s9TbsUxDeleQI bMZcGokpuvHSNgJk7vvqmS+VTvL9+Muz7QQopLCqeoRGJ3O6qp/YOghQ4Kkn Z7yl6aRKjsfba8cEqNgtLNhzMZ38Y//4KxEiQFfcGrc4KdPJwnRVU6kMAdKd 8mWuNqCTvgvHqjOeC5CxqDw33YhOagWV79uRJ0CWC+bjlBh08rb1Ec9LpQK0 XtkkjWpCJ/1/3rsl3iZA5/uu3vmynU7qOZ1USf8gQM8Lr2L7nXSSyzTOMv8s QAeLxc7XWtHJvUkfyi8MCdDWbyO5ubvpJEUs00p9TIBSXr3M0LSjk+AVxCF5 AtQ3Ero+cT+dDHy/46jLjACd23h+F+Ugnfz/fwZ5LemcCXGkk/8DRFly1w== "]]}, Annotation[#, "Charting`Private`Tag$4212189#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtV3k01P3/zc6YpqGZ6SlLtpQ1lQjxflsqCiFFUSpPKUskS1KSSrRKiKLI mmrsWw9eH1v2bJNdNCIpW5YsMd9+5/z+uOeee879595zXue8rvRpd6sz3KtW rVr4i/9jVcQY5XA4sDfF/EJnSQFyX5ANWVjkAOnVv7s1eQtRZs42+elZDqRr D65P2F+Itm8xOz38gwMhMvwiUR2FSFPkVndDBwcapbMt+X4VITw4VReTwYHj +x+p/dlSjKzuNL7Z4cCB0/liqtkHCeTbdMvNqXQFJKyXxr07KhGLJTxadmoZ AtZmt75b/ogkCHeapvgfKFTLiz1/iYXyXCr51vQtwm1Nh1B6SBc6eX/bZFfQ AvgQopsYlv1oPtw/BNA8eAZIG41fZ6NEyuf10V/m4AB1DvSJIRS7f5tnW+gs VHjmWJnIfkdBrqcuK5jMwLFNM0ZaAT+RP0+6r+fYL3BMbpbv2zqJTgU2ybWn TYFZOOXdV6lfKLJkKDrWeRIirYOPiCjPoPf9W8hvZcbhbirtVWj4HJKlYgPr Fz/AK+FwWirPAspWDHFmD44A00fvoeTYEuqvypLS0BiGxONCR1ZLcNCQcuR2 yB8EZp1szoIWFxYJeK2hyvUF9MXvbww/wIOD87fUUH8PwIT/Y8Vvh3jw4njq 0emfA1Cc3KGkb8+D2Q4pVws7ByA1/eMWXjcenK2fWG6QOQCejw7lfnjIg634 4sxtHAaALTrlZdjGgzevl25c5d8Px1zMGCYnebGyxoRy8nQvqPa7Pha7z4fP ql6/XtTXC185r+n5UXz4pfya1sbqXpjxckuwTeDDouu2+s4974V5bqlV+fl8 +PfvC2X7jHrBKOucetsXPlxeNH54NKIHgpc3pr3S4se2uuMBWzW6oUhM8t7s BD8O3xnQYijVDXL5aiXpS/y4XoUiZ0vqhh/m1vnnBQSwnqRqbeDnLjBp/qHH t1EAy3Lc1rYGd8HFx3xXcs0F8DgxlurV0Ql3jJ+mcmcK4JtGY81FlzsgrCy6 pP+KIC43/nlQ3bEDXg9aPMu5I4hXmf34yDTrANaVeypPIgTx1cPfGxJl/mqW V4M3UxD7nB2qedDQDux9lAP1bEF8LqSPOCXVDg0lz/jrzYSwaUNjplANC179 GY+vUSHhu80NW29ls2CXVCJZfzcJ17DqmSuxLNAJp1rV7CfhPX21b6cvsuDg ATU2zzkS1huvSusTY0GhxrNL2xNJWI1aGp/l3gb6UYmuoeLCmG7NDDu6rhXS ahUkaeJknC1/7/0enlbg+x6dc0+JjC0WnL5um2iBO5wNUjQdMr77QnoXqboF dvCHkG2PkfHKSET/e58WKFcIVsmMIePha/6q4u3NIBlLaSoXW40vHHwcXaLQ BB8OfpOJUKXgtJn9PyO5mmBU1YHLC1MwO4YXX+j6CAUW1WRnKwo+8tX3m2To R2gOGrgc40PByO+ERuBIIww1R7gJExRMTVRiGaQ2gKKdlqirzRqcPVe1pkau DoJ8rS+xTan4Yfqrcr2FWuChxSlZ2lKxy4nr3nmNtRC45aJXiyMVy33Y1fPK pxae+1Z7CPhTcVTkm5RrNTXgSj2obZ5OxVfUH+vucK2GQJnUCxfJItjA097l RU4lLNmV1jgPiGBJeS1JekglSGhuZZ0fF8FLXfSWe/aVMGS0wzvwjwjO1W/S 8OOrBEWpA7TZf0SxvIgBt7VNBVTyqcdwrEQxKXNzjNBSGaQ+9ypg1ovi5J6h B99vlYLQxwdTvz+uxd1XGS/jdpRCWbdJJHxeiymS+zIt2SXwZLt8fuT4Wuxz Mq21CJWAm9yNW+cpNLx3yHnd3cX/oI0+vvOhOQ2PjE/EK3oUweecE82Hm2hY PEwq+7NkEZi4igma99OwxTbLivDGQrj8bui3+gQNF17KHlpULIQOvYVpoNBx 6LyXYv1QPqRqP2YeNKXj0phknesR+ZBoH11gZEfHv7TbTXcY5kORuEg+lzMd H7um6f48Pg94ZJ7VFwbTsSL3Yo6LXS74cf3csKeYjk8kKlZtJOWCtTBfYEoN HYcb2bW3FebA5bP9xg9YdPxh6N63O045MBi/IXu8n44Xg4vndRg5cOlNlyOM 0rHqljGhycps0NBiXpyeoePTtRJiSZeygf1E0D5ghY6jnM2VbWWyQXzOee0h AQauF76uS27JghMnXy07rmHgVe8yzInrWaDiarz8isHA6uYDDl6qWYA8Wvy5 JBj43AT14pa+TLgy6OTjIcPAsWH6Qb33MsG9r/nBgDwDN2/zfBKmnQl1jg/W GygysGDKHpPQ1gwY8D+pd1uZgT1GUlymtmYA6bSV4DMVBu5UFHx49AETxJJ2 hnj81djtfGbZ6DsgbX4+M6/EwGkZda0Kxu+AFsn/UVaBgam/lGYfJ78Fw090 frYcA/upP1i3yP0WbDuUFTZtZGC2z7jW6ZNvoNqedrd/HQPvLzpoX1eSDm1L HRd4/+bLXsoM2C6WDhS1NXohvAy8QU804dnl12AxGP/m5DwdBwVequBuT4P+ 0MXBW3/7/FHOGnLekQavCpNzx7rp2JpPQ7AtLBXsGmSyImvpuHjfU0Wd8RTg Vpiz8sunY7m786aJB1Jg3/2RtU8T6Ph+w1F34dfJYD8Vc2PiLh0ftxTP7XFM gpSXsnrHben45/SslndlIrhtz4qh6NLx1agmoGxKhPge5XgZKTqO7Qmq1x9O gJCA8Oq4LzSsHGBv2bM3ATZEQaEkQcP/SWl0eKXGA0P9TPbOOBrOrW+tOtjy AtykXTecP0TDLGpwS1B4HGR+TJp4rUzD04e1+vIOxYKh0+LuWl4a3j7wckas PQa6otNJM1lrccaMq+xIdwSM1Wq26nKvxR+1pLaKxT6BcxP2zzNZong8oE3b /Hg4uB+JX5ecIoptRb2SzsEjGGiZrjhhIooP6VC4uWpvg7yq1sKfeyI4kLWF JVZhBisCirp2olSsvKbPmU9FHemXH81Uq1mD26eCXlLnbdGZ2ZZdpq5rsP+T vXUu6h6oHH7mROVTcIVU6J04ahDy+KolccN6NXZyUjybvxKOlscELNLfk7Cx jO+xm7oRqOG2EzPOhYS39FWYW1yNRJF6Hdo3JEh41Oq45ujCUyRy5qYH45YQ dtULE5ScjUWmTr1NR+wFcRHJ/1O5dyJy3BEXeVqTH8er0NsyZJJQbuL0o3VT fDjYIqM5tikJ1bOO3C19w4etowbrfRRSUOTOp19bZfnwpLRpuWJfGvIsVOZN leTF8loSGeFGTNR4+7ZxlA43JtsXvL0+xUTL13YHxXBz4+kAy3TXFxmIqrt5 wrKOC59kl1vJXs1EmnkJTJYd19/7/W22/CkLFfrE7a4KXoVrcxyMskJzkXGY zDqj6WW0u0q5YvNALuJcsLuzFLGMMtsX9F9o5KGp+LIvJZrLKGrhCbo3mIfK 1NxjDgb+Qf+iGu0zugXIMyrmj4zEEuLUqW1bP1WEfFSe/Si5MY92srkkb9gC MmjSKaP0TSPV9zZTaq8BZdqsq5yMnUby4e8qBxYADcSbfbM5Po2EE97ujDcj 0Ev+wffv+n+hPxa2vZxxAilbNv0yGJ1CfZkZCrCtHPmC34379En00uNEpW5B JUpWOnKA3+s7irUXYkb2V6KCizMZQPmOoo1zn44JVCE2fbFaLn0EhUmRXOJs q9CFitz739nfUGBznsjyQhU64+zYIms/jE6prXYo3l2N3P5sOPHGZRDJTv63 oF1ei0b22VvsGu5BVxsNb82M1SKXTqUdCdt6UHt6PYW5vg6NPflBkwroRnfP 9MhKX6xDTRY76Yc2dKHJ7kUzAal6pJfTlKHp0I5Kq7RetV1rQKRaA3TxnxZ0 7HnBfletJtSQf9TMqrsY5V5GnzadaULVc7qZudfeI8qRaof+sCbE/q8mT0mu EJVRO7ysRpqQ8eunibuu5CCaof/B2APNSHfuvMjckyTkX/jML2ixGbEPFKxc 3fUCTBK7Gs1tW9GB9TzvV5IqYfI282yVWyt6RGJQ+xOrIPrcTY7OzVZEuy7G Tkr4ACMqKtsUmK3IPzMrYDSmBkIKAyN4eNtQyeMjz15ca4Caxs12hRlt6Hje y8hGoVbYN+89Ii3wCUmc23xztVEX7DET5ZnN60BB1wbNWbsH4eEpoamF2g4k YB+239hlEDq9V/Wv9HUgjeFWx6iYQXB+Mf5ekL8T/RT58KVs9q9/os5T/Egn opxbeGj/9it0Pr7JNpzrRJu74oXaRIfBuX2mLFyjG42a0LR1P4zAI4eOQLWC XjSznUftVMsYBP/cjYYbelHFelVv1aUxCPB7tfyc3YtcxK+M9sqNw4UnblcE KH3ooljcP599x8G8msfr8799yP+DkrWP+ARQtqo53Rf9jBr9Wc0iapPwcCXE bMStH918ii32nJ+CanOJ1RaiX1BYbaPX27xpGJOmB7Q+G0SUzhBk+vA3eHsp nXrEGEac0M61dgOL0NFLtTpbM4JuWSZ/yKGvwEm/3d8ETH+g8nJu0T7HVUSF kubdCr5xpHtFwmOwgIuQFyoeSTKeREfO7lwo7uYmJIpd9vCFTKFGbl73XDYP sWqR+7Un+xeSLNu94/VPXuK3ZcmJqk0z6Ntow/c9LD6iR91BbNOtWdTIDGN6 Az/hYUMVkemdQy9qUur3RAsQ6yO+2vJKzKORXdbvj9kIEky7+NTpywtIc/+V K6liQoSN7nXjmpJFlM5xl8+tFSKyTrjJaP9ZQo+OCbbccCUR8yRDnqLDy2js fFKTAl2YsGrR0ZCIXkGXOtxrs94IEyQd4bLiuBVkGN5QZ8gUJsqSug/YJ66g Ftvbhz5lChNql/1OPWeuoMOp/y3N5f39IDcW3F9ftYIaD5HeqhPCRK3r9kH6 rxXUlHw0O4YlTGBBhTCKKQcN52gHCS8LE/MX5zcwLTmoRXOo/CFHmMjoqU42 s+Ggf1mGYSLcZEIy4+x/909zkPyJ8ha6AJn4czhpmOTHQRsphjP/iJCJgsSN ugIpHGQzuNwttIlMXFg9UZ3yhoM0rNYu3t5MJuR9S632ZnGQCcUpjUuRTETs P37udjEHDQidz/mtSiY8p5494WnjIJmcrXc+7yITinbOkomdHDRTGSZno0Mm vlRqvTb4zEHWu9ysmnTJhEV0Z+mN7xw0gXeeLDUgE4LcaSbSExzEJe2Od+4h E+DiyyJmOMhrnsh6s49M+Hza63BykYN0iixzpfeTif/f36gRGxs/NSUT/wO6 LMC+ "]]}, Annotation[#, "Charting`Private`Tag$4212189#3"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwtmGc81W/cgOmYx+l0yJaTESFJEhn1vZUkWSlRKlRUMvorowiZESUiISlK sssO988K2SN7RSSZIaM4z/N8Ps+r69317npziV9yMrHZxMTExMrMxPR/VAD+ SQaDgYPUVEZWSwvAaVXyweoaA2/cY6syZymE7I97pReWGJiHbphXoVcISjIG l8Z/MfCjwD0dBV2FoMrt39vQxcAHarhsdv4uAjQ6/+V5FgNzOUj8oMuWgElQ Y9o+SwYWl/VVqjIiwK3Z3+Fq2QZuj2q6GNxVBR0dXJPl1us4YISzv2q9CUQJ J17Vbf8wyTdkv9utDsi7UcW6ZWANkw99SJF60ANWoXvnenxXcXXO6TzZk0Ow EuHxAMMKbrnPLbTmPQJJ1EGhmG9/cGLvOxdjYgzi9fY6twcv4fJ+Wo2F5E/w tbd2lz2+iDNE/SyNvabAg/TezXn6N/a+ViE+tWcOrH2ad3S+m8dNXYPCK2K/ Iap0LCbebg7bsx4bkZNfhOIhGUq6xAx2vuE1kB7xByRp6PDphF+48Lh8QDdp FT7IPbAbGZ3A167tKLad/gtD1TliKirjuN99es5DlAFj8lFKOH8Ub1303Wes zoy4vVJVFJi/YV6rgI8y+iQUmC9TS1sexv5NGjTv0yS0NpNydmFqGMfeWrTt PU9CI5ZvPQu7h3FJg65wogMJfdBKqjicPYz3qI5oXXtMQiasLwzNLIfx9uOP WObbSWinkHgjk8cQXvieeZjHmgXJq8zKv1nox/dkVWcVwliRrYK3d9FAPxaY iApseMaKXkpvaWus6cda68mKzq9ZEY/AHrc/cf04LElp5msBK1pediw/pt2P pT+PODKNsqKKohnTyad9eCG/Z3xKnQ2ZH5zx2qPSi882pOoGzLOhiP1erUfE erHvn5jrsM6G6ndTd5iTezGJ09aGxMmODtEV6nwGe7DNRQ3FVDF2JMlw2NoW 2IO1fKNmHIzZ0QwxnXK7qxuf53Py+pXDjvy0p1uK3LtwxBa/y5r3OFCF7pSR 8uUuDHc/OgmGcCAmg19NmQZduDDD+QzTMw7kafqzIUmiC3fwRHAtZnMgV9ux 2rCGTjz8OyLYYYwDXXswQFiLdWKCM+VUqTEn0m9ozOas7cD3EtaKfPeSUUhL wx7/Dx14/cjvMk5ERrUd9Zkb8R04MsBk/KUhGR0dqEtf+K8Dq9OMRdZukNGh mep3AyId+IrJ/YzrKWSkSCtLzHFqxyaTkSdOiXMhvtOZ4WcF2vCftM1xZhIU 9EH6YfFRUhs2ylTx+LmXgoxXr37fO9uKi/7lloVqUVBIgvgBck0rNvVVoHBY U9DGxNOhYtdWbGTXKtWZSEHj9zwUtnW2YBUfqxNLkpuRo9GTmFLZZrwU3F8R pEZF7xb1pqKYm7GOzhLrixNUNPKcBTn2NGHbF/VE3QUqOvPd7Qc9uAlbdlyI tPOlIrhzUcVnohE7prs9b2mgIlrSro7DKQ3YybR07prtFvThT/WW2h1fsMMY yzEnMxp69P51xaHVOrz7/hU/scs0dOOit0teYx3WzRS1GXOkoR2fD/S9dq3D zfmOkmmBNBQdlfb2Xm0tXg5WkVQooKG7yk8O7rOvwb2XSDWntnGjMxMOc6mo Bm96VZBgLcuN9sXrJYnx1WDFLtU/QSrcaIrEwkkt+4y1CgJjtp/kRhfbXTsm tnzGehk6+gFB3Oiw8/kbCR+rsJmtvXTQKjeiS6vR+R5UYZfCbD0DDh70t4ev 9eH5KlzNcbNdSYAH5Wo1q9xhrcLkZ6BwcT8PkuY+vOm0WSW2Pmr3+OgtHkTO 3vmc8285/nR6dmloiQe96RsL++lfhtXAg3gowot6PflfvthXhq3qe5gPK/Ai Kv1Y9smRUpw6KxEup8WLXK3etRVBKWaUp3VGX+VFOmN2AiFrn/Cwplnr33xe NDEzmyh3swivakyO8FvzoW3hYh8G6UWYNtunHOjGh4z3nqyMaCzE1uSxxIOP +FDhrQ9ja3KFWFzzHUdoCR8KXrktVz+Wj++JF30a2MaP5DatfbxhkYvtyGY8 BjP86GKSXPV2ci7Wzm1rRmQBFKFt0dle+BG/4Fk3SZIWQGuBJSsa/B/xb1Cl VVgJoHou74OU1hzcpy26u6FXADFlZBkS3jnYf2cRI3ZNACkbDlveVsjBdc5z x5aFBVF8uJZv/8NsbN5Skmd3QRB1y3E8OhuWiSdy7Btqfwoi5HA9u3wyA7sM hjWEUYXQu6wvbbK6GfhnliaVrCyE7iiHCaxtSscb5wKi0H0hJHyI51Wseyrm evH8lqmUMLpwcltu3+VknK/prKj4XARNLSypuVQlYesH0SKkehHkGd2MqVJJ WLOSSeTTugiK7/Ot1xp/he+tykQm2WxDufVt1UatCVhWU/soVVMUddACW30j XuCHzJin8j9RtGCqNpB3Kh7XML2bqngrinjipiYmeOOw6No+6t1eUaQ0/HJR pPM57lqROrGLQkcnpU4xGT2LwYF/75z9oU5HN+3YKL7mz3Bjr8aonw0dhWcV CeQJRWPPhxxpkSF0lLVoLznR+xQbXPdbtH5HR01qYntE4iMxOYVwXSyhoxmv dnXDCxF4H3cct+BnOtpcFahzn/4Ez3Kyp3qW05E5z+3ka/gx3t54ZGkknY6e xfd+atIKw9H2c5PnAumoU1qrXbkqBL+cja0O0acj3pyUyVidB1jG8drQ7IYo OqVB3cRcF4A//iUM2BNEUUT1baGrJ/ywvgBSM94lilqM+hQbG33w/kH7sR2p 2xA91y/cNtET3yLN294W3obiao2x0hs3bLUh5OPkK4IEB0RnNlKdsbBxsq/G d2G0a/SrWvSFG7hHWGax4LAw8umQ6RCpNMDz+UkpUgxBJL9lwI51tzLQnoeK v7ISRJ3zvi9pK+Ygb/IvaKZaAHlE6ny5oXwT3jpEHW9N4EcbXnfiXu5xgfmA GT/ZrfzIxy7dvl3uLrjJa5guh/KhSrHgoBc0X7BY+zZdE86L/KMlbqo+8oeP rwqu+wv/b1+UEvNWriAojXdxUUndimqXZ2RZ2UNBTzIrNbyDB129KmebvxEB ocbCfd7nuZGuhNs5v4NP4Qf/qJM9OzeSGag0NPaMgpn1Zgm/PBqaNLmgOrn6 DCx2JXbdEqahL5vf7yo48BwaHgh4zr7agtJq/2z3d4sF8Yq59N9btyD7Q+Ec 9KV4aGFeX2pipSKD1f5/k/sSQFApiSodsBkp5MrOFzi/hPOK6RO3ODajlaff pmRWEmG676YLXZiCisgeXytckqA37Idy3BUyStzN154lkQxDp/1jfy1xokDj rJb45mRoHs/caRjCiU5Hj9a7yr4F/3/5KpmfONCcuH6F3MA7EC+r1Zc6yI66 tMexQEgqdFJCQjVH2VDZVZ9SFtX3QA6xULR7yIYeZuQWDoanQeNP2rOMb6xI Wk00K0I7E/haBjUSk1gQ5XxBuvd8JkSa0ufkzFnQgtfJ9/YJWTAbaEvaT2VB ViMVJpKe2WCxR97ukRcJKcgsG6x/zYH3Fy4FzTluQnUfLbVzgnNh90OezD0B TEizWr5y53AusLU0PjbSZ0LZnataCSp50D8YUmnAy4SiVyPh4WgeiFHH7aMN GHAFatVtDhZATkHA5WPv14HxRXGv0HwReDXWuia9WQPn/vWsx8eKwVTPITFC bw3Gp78osCUUg4V2T++ruVVooNnIL+h9grRkBRIrWoXYM893NiaXwM470cVy v5Zh/wgz/b45hn/3w/w2OS6BQrHZvGIqhgz5TgXlnUsgHZFRNbyKwfPuvUN8 3xaB61X6/kQDArbfCjbpPrMI/4zN+xkzBJzWIdWS9RZgIDtLFu+tgC3t7eMp +vPw8ubFqoMFVSBLOtFbc+UXxJ/nzIwaqoIj1cVDSyuTEKOb+2yavRrW+Btj 5sImIVyMfOOFeTW8SRlQR8U/waclj3t9tRoKxOHcisgEWCtutizRrIHHXD5m 95jHQHLu06p6RR0wJosjp4IHwbPxiP/idB1wee4PsWkcgM739dRMoS/wNLLJ RpBnAEJs+iTF//sCYuKT+SIv+2Cud82AXawe/pNjuSRf0w1l1Wqv2+81gMak 7UkD/XY4F1egZ6/WDNfTiLhhmQrIdYevUjbNwNf4K1tungDqmRrLofBm8Dyx r+yoK4ZyWtdtk4lmCMrffJ3/XTHwHvEwij/RAjGC2dzeSjngURh7x3etBfTm C1nPGDrj40k9jYbmbSB/N7/Jub8czwVk2lY7tIFju6HSwW8VOOaaH0PDrw0a JIzYer9X4ondu/fKZrbBHLtHXdRENX5Q6POUxNIOudKW2pYjdbi2cadFYVY7 sBd6s+W1tOBjKy4T4uxfoSdCjpys0I2PGvCQlvK6wGWY9jK5cQQ/suacX63r AqWn7SzV/0ZwtwvT0MZAFywbOM+X7hrFdgkzxRxs3fAndNJGPXgUP5r94rzt TDd0W8x9vnL4O+5+4jdy5E83eFNZqvMyxrBd52J5hEovuHVe5x28PoEfW3b5 KBb0w/erZufO+03jwClNGG/oh3+zbwOiM6ax153X63Ej/bD1mPtqdtc0dox0 uMtOHQCZDqp70K4ZbFhDuj14ZQCqy0UncOsMpu5RvBrKMwgNCzpMRyhz+NHG A4MJhyFQPqD25JjuPK4xFN1szPMNzjIbBF1+voCnxfm82mJHIV+/+LaT+zJ2 ub3L+jH/OHjsfSTa27SGu/ppJra1E+DX1ikRxb6Bre5o/mDX/wXs/ndVVy4w EZW7VEMqWWeAL8LYffEDMyHNWTKRrDsHx/fHHfXp3ESIltw4yvpgHqjGJsmk IRLBtLYp1XnkNwTwfRG79ZOFWD5ZerFaahHcpMRSHFpZiT5lSxEp/yVAK8mf 5kvYiJtmNG6J/j/AldgyxhbNTgg9/W7OIroCvwQvBpiYchCZFokpC+6roFy9 Rm4T4iTMDnrr1pauwQuSZAR7LSeRc9FBQv3fXwiLe6K+YkcmVshHSEWm6zBF PHQt38pFmLRqqIjGbIBGtm3xlfdcBFmDq7zkxQYkvD+jsJzORZQn9544n7QB RUa2ssFZXISi+x3ruMwN8ByNykvL5SKo2wtChao3wPIb565fZVxEnb3SKN/v DVBMjcw+1c5FIA7ZcKo+A7hlak41/OUiVv5bEc48yYCPjFqG0QYXkdVX88bA jAHrr48daGeiEPQs20+hlxjgNWVl1M1KIf6ZJo+T7zDg4JZA4YEtFKIgaftB 9rcMMPew1W2VpBCOm2dr3qYxwFn8ZrOBNIWQdisz0clhgBLdb6xOhkI81btw LaCEAXm6NpjYTSGc52MjSe0M6F52VUhVpRByFnb0pG4GCHjLKEmoU4hvVWqp hwcZkBwu/jlWk0IYx3SX3f/5v76BoJchWhSCY9O74+KzDHBMPTLGrE0h8A23 DmKRAeES3z+561AI1686llZrDLh1IVxyVpdC/P8/gNPnnLbZnKAQ/wM8aBta "]]}, Annotation[#, "Charting`Private`Tag$4212189#4"]& ]}}, {}}, { DisplayFunction -> Identity, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0]}, AxesOrigin -> {0, -4.225253979208682}, FrameTicks -> {{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "ClippingRange" -> {{{-1.999999918367347, 1.999999918367347}, {-3.597953707140854, 7.693451190080213}}, {{-1.999999918367347, 1.999999918367347}, {-3.597953707140854, 7.693451190080213}}}}, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox["t", HoldForm], TraditionalForm], FormBox[ TagBox[ "\"\\!\\(\\*StyleBox[\\\"\[Chi]\\\",FontSlant->\\\"Italic\\\"]\\)\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, CoordinatesToolOptions -> {"DisplayFunction" -> ({ Part[#, 1], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Part[#, 1], Exp[ Part[#, 2]]}& )}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange -> {All, All}, PlotRangeClipping -> True, PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ StyleBox["h", { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False]}, { TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"]}], ",", RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, { 3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9, 3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, { 3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9, 3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9}, 3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9, 3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9, 3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9}, 3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9, 3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9, 3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9}, 3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9, 3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9}, 3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9, 3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9}, 3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9, 3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9}, 3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9}, 3.887187744969038*^9, 3.8871877776872168`*^9, {3.887187917169589*^9, 3.887187949227336*^9}, {3.8871879838276787`*^9, 3.887188010158411*^9}, 3.887188089249675*^9, {3.887188126546927*^9, 3.887188177721342*^9}, { 3.8871883124067802`*^9, 3.8871883283898573`*^9}, 3.8932380037534246`*^9}, CellLabel->"Out[55]=",ExpressionUUID->"42596919-1903-49e5-8e75-1a532b575569"] }, Open ]] }, Open ]] }, WindowSize->{949.5, 1010.25}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, FrontEndVersion->"13.2 for Linux x86 (64-bit) (January 31, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"3a2ec9ae-362f-42b0-9bfc-c766461c7128" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 318, 6, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"], Cell[879, 28, 209, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], Cell[CellGroupData[{ Cell[1113, 35, 166, 3, 50, "Section",ExpressionUUID->"c6615333-57fa-470a-9d07-45b7998853ef"], Cell[1282, 40, 1292, 34, 91, "Input",ExpressionUUID->"80831edd-bcaa-4fc0-b1cf-e561a87ed645"], Cell[CellGroupData[{ Cell[2599, 78, 3285, 61, 76, "Input",ExpressionUUID->"43cfc45b-1fff-4120-afd4-982fd6195a7d"], Cell[5887, 141, 29139, 618, 234, "Output",ExpressionUUID->"7e2943f8-381c-42b0-8f9b-5bee0ef91468"] }, Open ]], Cell[CellGroupData[{ Cell[35063, 764, 1662, 39, 144, "Input",ExpressionUUID->"8fa1ecb3-1ecc-4bba-8fa1-06377280f14b"], Cell[36728, 805, 22174, 481, 186, "Output",ExpressionUUID->"22fc8cc4-070f-4958-a56e-3747a3946f91"] }, Open ]], Cell[CellGroupData[{ Cell[58939, 1291, 3554, 72, 186, "Input",ExpressionUUID->"98d70064-2bee-4c5b-a8fe-984577f41f88"], Cell[62496, 1365, 4296, 64, 178, "Message",ExpressionUUID->"0a6c061e-9d22-469f-9a77-bdafbf23ad0b"], Cell[66795, 1431, 4298, 64, 178, "Message",ExpressionUUID->"373d98dd-b1a2-4d6f-95ae-eed0eb8466ed"], Cell[71096, 1497, 4310, 66, 180, "Message",ExpressionUUID->"dd61bf6b-294b-4bed-aba1-2e9c5e3c51b1"], Cell[75409, 1565, 494, 11, 22, "Message",ExpressionUUID->"e21c2683-2071-4eaf-8b43-f1a927c53e45"], Cell[75906, 1578, 21815, 477, 191, "Output",ExpressionUUID->"ff6a7053-cfa6-438c-814c-b29d04a9cf5a"] }, Open ]], Cell[97736, 2058, 2498, 66, 43, "Input",ExpressionUUID->"ffc53174-430d-4e0b-b71f-902d34f687b7"], Cell[100237, 2126, 483, 8, 22, "Input",ExpressionUUID->"249e2bea-239f-4870-bccb-94af3730f0b6"], Cell[CellGroupData[{ Cell[100745, 2138, 2207, 48, 70, "Input",ExpressionUUID->"a6d0fc76-cf0a-4234-9fe3-d57ae603ad2e"], Cell[102955, 2188, 38371, 715, 223, "Output",ExpressionUUID->"fd2b4eb1-d3d0-47e3-9856-c74924a73143"] }, Open ]], Cell[141341, 2906, 2524, 67, 58, "Input",ExpressionUUID->"22e15b10-be95-4312-870c-ebe3402ea67c"], Cell[143868, 2975, 490, 8, 22, "Input",ExpressionUUID->"6e3ba380-2dbc-463d-8279-e42bb1e3c387"], Cell[CellGroupData[{ Cell[144383, 2987, 1962, 44, 49, "Input",ExpressionUUID->"965d5a6e-a5d2-4e2f-8234-02ac11e44315"], Cell[146348, 3033, 51438, 932, 181, "Output",ExpressionUUID->"e027c86a-5f73-49af-9682-15a84fa4ac67"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[197835, 3971, 237, 4, 50, "Section",ExpressionUUID->"af69f70f-b3b9-4794-8398-01134650a149"], Cell[198075, 3977, 2232, 60, 135, "Input",ExpressionUUID->"fbadbe6e-e274-4fc8-b8ff-31d7d09129f7"], Cell[CellGroupData[{ Cell[200332, 4041, 2213, 56, 110, "Input",ExpressionUUID->"3f75c1e0-258b-4769-8308-40547e5bc66d"], Cell[202548, 4099, 22045, 413, 288, "Output",ExpressionUUID->"9917cd53-ba22-4159-9239-28c8a5b2c68a"] }, Open ]], Cell[CellGroupData[{ Cell[224630, 4517, 2283, 58, 110, "Input",ExpressionUUID->"3f8b6e53-ff20-489f-b395-47d925d34ae6"], Cell[226916, 4577, 13931, 278, 288, "Output",ExpressionUUID->"9950232b-1eb6-4bf2-a1cb-424ab941d88b"] }, Open ]], Cell[CellGroupData[{ Cell[240884, 4860, 2405, 61, 126, "Input",ExpressionUUID->"f1b88156-90fa-4eff-991c-fedc7873189b"], Cell[243292, 4923, 24259, 450, 288, "Output",ExpressionUUID->"4fd8761c-1544-4b9d-b5b4-9faa986a6608"] }, Open ]], Cell[CellGroupData[{ Cell[267588, 5378, 5365, 129, 158, "Input",ExpressionUUID->"7af4aaca-fcbd-4164-a23f-452af7281199"], Cell[272956, 5509, 35446, 648, 254, "Output",ExpressionUUID->"f0d6a512-a16b-45e4-a62c-27480dbdbe2d"] }, Open ]], Cell[CellGroupData[{ Cell[308439, 6162, 4865, 118, 158, "Input",ExpressionUUID->"efe0717e-1a4b-4a72-a5da-a2e9186bd1ec"], Cell[313307, 6282, 5389, 80, 98, "Message",ExpressionUUID->"50c6b3be-692b-4bb3-b631-dd6ed0112f44"], Cell[318699, 6364, 4526, 66, 92, "Message",ExpressionUUID->"1390bb82-7e0c-4a82-8be7-3aa0578e2c3d"], Cell[323228, 6432, 52833, 934, 247, "Output",ExpressionUUID->"5632f44e-d2ee-4570-afa0-630f5721d24c"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[376110, 7372, 212, 3, 50, "Section",ExpressionUUID->"7bcdac80-37e1-4f66-bc64-b0d2db5bf4c3"], Cell[376325, 7377, 638, 16, 39, "Input",ExpressionUUID->"18ba5487-e161-432a-b28e-40a5d59488df"], Cell[CellGroupData[{ Cell[376988, 7397, 2322, 64, 128, "Input",ExpressionUUID->"973946cb-df1c-4924-a2f2-30f2ee7fc843"], Cell[379313, 7463, 44903, 816, 190, "Output",ExpressionUUID->"f282764d-6683-431e-bd66-aff690b1329a"] }, Open ]], Cell[CellGroupData[{ Cell[424253, 8284, 3588, 81, 128, "Input",ExpressionUUID->"502b8651-e019-4a6c-8e02-02b77d829c3e"], Cell[427844, 8367, 34814, 647, 193, "Output",ExpressionUUID->"632547c6-cf8a-4755-9e26-5f9a8c901698"] }, Open ]], Cell[CellGroupData[{ Cell[462695, 9019, 3642, 82, 128, "Input",ExpressionUUID->"a33a6443-e55c-45ac-8ec6-84306b68cf53"], Cell[466340, 9103, 37930, 698, 194, "Output",ExpressionUUID->"18837f4b-03ee-4fc9-b362-36801a1721f3"] }, Open ]], Cell[CellGroupData[{ Cell[504307, 9806, 3746, 83, 128, "Input",ExpressionUUID->"f223d556-482e-413f-bd97-027e350d7fc8"], Cell[508056, 9891, 35544, 664, 194, "Output",ExpressionUUID->"42596919-1903-49e5-8e75-1a532b575569"] }, Open ]] }, Open ]] } ] *)