\documentclass[ aps, pre, preprint, longbibliography, floatfix ]{revtex4-2} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{newtxtext, newtxmath} \usepackage[ colorlinks=true, urlcolor=purple, citecolor=purple, filecolor=purple, linkcolor=purple ]{hyperref} \usepackage{amsmath} \usepackage{graphicx} \usepackage{xcolor} \usepackage{tikz-cd} \usepackage[subfolder]{gnuplottex} % need to compile separately for APS \usepackage{setspace} \usepackage{tabularx} \begin{document} \title{Smooth and global Ising universal scaling functions} \author{Jaron Kent-Dobias} \affiliation{Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France} \author{James P.~Sethna} \affiliation{Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA} \date\today \begin{abstract} \end{abstract} \maketitle \section{Introduction} At continuous phase transitions the thermodynamic properties of physical systems have singularities. Celebrated renormalization group analyses imply that not only the principal divergence but entire functions are \emph{universal}, meaning that they will appear at any critical points that connect phases of the same symmetries in the same spatial dimension. The study of these universal functions is therefore doubly fruitful: it provides both a description of the physical or model system at hand, and \emph{every other system} whose symmetries, interaction range, and dimension puts it in the same universality class. The continuous phase transition in the two-dimensional Ising model is the most well studied, and its universal thermodynamic functions have likewise received the most attention. Precision numeric work both on lattice models and on the ``Ising'' conformal field theory (related by universality) have yielded high-order polynomial expansions of those functions, along with a comprehensive understanding of their analytic properties \cite{Fonseca_2003_Ising, Mangazeev_2008_Variational, Mangazeev_2010_Scaling}. In parallel, smooth approximations of the Ising equation of state produce convenient, evaluable, differentiable empirical functions \cite{Caselle_2001_The}. Despite being differentiable, these approximations become increasingly poor when derivatives are taken due to the absence of subtle singularities. This paper attempts to find the best of both worlds: a smooth approximate universal thermodynamic function that respects the global analyticity of the Ising free energy. By constructing approximate functions with the correct singularities, corrections converge exponentially to the true function. To make the construction, we review the analytic properties of the Ising scaling function. Parametric coordinates are introduced that remove unnecessary singularities that are a remnant of the coordinates. Then, the arbitrary analytic functions that compose those coordinates are approximated by truncated polynomials whose coefficients are fixed by matching the series expansions of the universal function. \section{Universal scaling functions} A renormalization group analysis predicts that certain thermodynamic functions will be universal in the vicinity of any critical point in the Ising universality class, from perturbed conformal fields to the end of the liquid--gas coexistence line. Here we will review precisely what is meant by universal. Suppose one controls a temperature-like parameter $T$ and a magnetic field-like parameter $H$, which in the proximity of a critical point at $T=T_c$ and $H=0$ have normalized reduced forms $t=(T-T_c)/T_c$ and $h=H/T$. Thermodynamic functions are derived from the free energy per site $f=(F-F_c)/L^D$, which depends on $t$, $h$, and a litany of irrelevant parameters we will henceforth neglect. Explicit renormalization with techniques like the $\epsilon$-expansion or exact solutions like Onsager's can be used calculated the flow of these parameters under continuous changes of scale $L=e^\ell$, yielding equations of the form \begin{align} \label{eq:raw.flow} \frac{dt}{d\ell}=\frac1\nu t+\cdots && \frac{dh}{d\ell}=\frac{\beta\delta}\nu h+\cdots && \frac{df}{d\ell}=Df+\cdots \end{align} where $D=2$ is the dimension of space and $\nu=1$, $\beta=\frac18$, and $\delta=15$ are dimensionless constants. The combination $\Delta=\beta\delta=\frac{15}8$ will appear often. The flow equations are truncated here, but in general all terms allowed by the symmetries of the parameters are present on their righthand side. By making a near-identity transformation to the coordinates and the free energy of the form $u_t(t, h)=t+\cdots$, $u_h(t, h)=h+\cdots$, and $u_f(f,t,h)=f+\cdots$, one can bring the flow equations into the agreed upon simplest normal form \begin{align} \label{eq:flow} \frac{du_t}{d\ell}=\frac1\nu u_t && \frac{du_h}{d\ell}=\frac{\Delta}\nu u_h && \frac{du_f}{d\ell}=Du_f-\frac1{4\pi}u_t^2 \end{align} which are exact as written \cite{Raju_2019_Normal}. The flow of the \emph{scaling fields} $u_t$ and $u_h$ is made exactly linear, while that of the free energy is linearized as nearly as possible. The quadratic term in that equation is unremovable due to a resonance between the value of $\nu$ and the spatial dimension in two dimensions, while its coefficient is chosen as a matter of convention, fixing the scale of $u_t$. Solving these equations for $u_f$ yields \begin{equation} \begin{aligned} u_f(u_t, u_h) &=|u_t|^{D\nu}\mathcal F_\pm(u_h|u_t|^{-\Delta})+\frac{|u_t|^{D\nu}}{8\pi}\log u_t^2 \\ &=|u_h|^{D\nu/\Delta}\mathcal F_0(u_t|u_h|^{-1/\Delta})+\frac{|u_t|^{D\nu}}{8\pi}\log u_h^{2/\Delta} \\ \end{aligned} \end{equation} where $\mathcal F_\pm$ and $\mathcal F_0$ are undetermined scaling functions. The scaling functions are universal in the sense that if another system whose critical point belongs to the same universality class has its parameters brought to the form \eqref{eq:flow}, one will see the same functional form (up to constant rescaling of $u_h$). The invariant scaling combinations that appear as the arguments to the universal scaling functions will come up often, and we will use $\xi=u_h|u_t|^{-\Delta}$ and $\eta=u_t|u_h|^{-1/\Delta}$. The analyticity of the free energy at places away from the critical point implies that the functions $\mathcal F_\pm$ and $\mathcal F_0$ have power-law expansions of their arguments about zero. For instance, when $u_t$ goes to zero for nonzero $u_h$ there is no phase transition, and the free energy must be an analytic function of its arguments. It follows that $\mathcal F_0$ is analytic about zero. This is not the case at infinity: since $\mathcal F_0(\eta)=\eta^{D\nu}\mathcal F_\pm(\eta^{-1/\Delta})$ has a power-law expansion about zero, $\mathcal F_\pm(\xi)\sim \xi^{D\nu/\Delta}$ for large $\xi$. The nonanalyticity of these functions at infinite argument can therefore be understood as an artifact of the chosen coordinates. For the scale of $u_t$ and $u_h$, we adopt the same convention as used by \cite{Fonseca_2003_Ising}. The dependence of the nonlinear scaling variables on the parameters $t$ and $h$ is system-dependent, and their form can be found for common model systems (the square- and triangular-lattice Ising models) in the literature \cite{Mangazeev_2010_Scaling, Clement_2019_Respect}. To connect the results of thes paper with Mangazeev and Fonseca, one can write $\mathcal F_0(\eta)=\tilde\Phi(-\eta)=\Phi(-\eta)+(\eta^2/8\pi) \log \eta^2$ and $\mathcal F_\pm(\xi)=G_{\mathrm{high}/\mathrm{low}}(\xi)$. \section{Singularities} \subsection{Essential singularity at the abrupt transition} In the low temperature phase, the free energy has an essential singularity at zero field, which becomes a branch cut along the negative-$h$ axis when analytically continued to negative $h$ \cite{Langer_1967_Theory}. The origin can be schematically understood to arise from a singularity that exists in the imaginary free energy of the metastable phase of the model. When the equilibrium Ising model with positive magnetization is subjected to a small negative magnetic field, its equilibrium state instantly becomes one with a negative magnetization. However, under physical dynamics it takes time to arrive at this state, which happens after a fluctuation containing a sufficiently large equilibrium `bubble' occurs. The bulk of such a bubble of radius $R$ lowers the free energy by $2M|H|\pi R^2$, where $M$ is the magnetization, but its surface raises the free energy by $2\pi R\sigma$, where $\sigma$ is the surface tension between the stable--metastable interface. The bubble is sufficiently large to decay metastable state when the differential bulk savings outweigh the surface costs. This critical bubble occurs with free energy cost \begin{equation} \Delta F_c \simeq\frac{\pi\sigma^2}{2M|H|} \simeq T\left(\frac{2M_0}{\pi\sigma_0^2}|\xi|\right)^{-1} \end{equation} where $\sigma_0$ and $M_0$ are the critical amplitudes for the surface tension and magnetization, respectively \cite{Kent-Dobias_2020_Novel}. In the context of statistical mechanics, Langer demonstrated that the decay rate is asymptotically proportional to the imaginary part of the free energy in the metastable phase, with \begin{equation} \operatorname{Im}F\propto\Gamma\sim e^{-\beta\Delta F_c}\simeq e^{-1/b|\xi|} \end{equation} which can be more rigorously related in the context of quantum field theory [ref?]. The constant $b=2M_0/\pi\sigma_0^2$ is predicted by known properties, and for our conventions for $u_t$ and $u_h$, $M_0/\sigma_0^2=\bar s=2^{1/12}e^{-1/8}A^{3/2}$, where $A$ is Glaisher's constant. \begin{figure} \includegraphics{figs/F_lower_singularities.pdf} \caption{ Analytic structure of the low-temperature scaling function $\mathcal F_-$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The circle depicts the essential singularity at the first order transition, while the solid line depicts Langer's branch cut. } \label{fig:lower.singularities} \end{figure} To lowest order, this singularity is a function of the scaling invariant $\xi$ alone. It is therefore suggestive that this should be considered a part of the singular free energy and moreover part of the scaling function that composes it. We will therefore make the ansatz that \begin{equation} \label{eq:essential.singularity} \operatorname{Im}\mathcal F_-(\xi+i0)=A_0\Theta(-\xi)\xi e^{-1/b|\xi|}\left[1+O(\xi)\right] \end{equation} \cite{Houghton_1980_The} The linear prefactor can be found through a more careful accounting of the entropy of long-wavelength fluctuations in the droplet surface \cite{Gunther_1980_Goldstone}. In conformal field theory, the prefactor is also known to be $A_0=\bar s/2\pi$. \subsection{Yang--Lee edge singularity} At finite size, the Ising model free energy is an analytic function of temperature and field because it is the logarithm of a sum of positive analytic functions. However, it can and does have singularities in the complex plane due to zeros of the partition function at complex argument, and in particular at imaginary values of field, $h$. Yang and Lee showed that in the thermodynamic limit of the high temperature phase of the model, these zeros form a branch cut along the imaginary $h$ axis that extends to $\pm i\infty$ starting at the point $\pm ih_{\mathrm{YL}}$ \cite{Yang_1952_Statistical, Lee_1952_Statistical}. The singularity of the phase transition occurs because these branch cuts descend and touch the real axis as $T$ approaches $T_c$, with $h_{\mathrm{YL}}\propto t^{\Delta}$. This implies that the high-temperature scaling function for the Ising model should have complex branch cuts beginning at $\pm i\xi_{\mathrm{YL}}$ for a universal constant $\xi_{\mathrm{YL}}$. \begin{figure} \includegraphics{figs/F_higher_singularities.pdf} \caption{ Analytic structure of the high-temperature scaling function $\mathcal F_+$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The squares depict the Yang--Lee edge singularities, while the solid lines depict branch cuts. } \label{fig:higher.singularities} \end{figure} The Yang--Lee singularities are critical points in their own right, with their own universality class different from that of the Ising model \cite{Fisher_1978_Yang-Lee}. Asymptotically close to this point, the scaling function $\mathcal F_+$ takes the form \begin{equation} \label{eq:yang.lee.sing} \mathcal F_+(\xi) =A(\xi) +B(\xi)[1+(\xi/\xi_{\mathrm{YL}})^2]^{1+\sigma}+\cdots \end{equation} with edge exponent $\sigma=-\frac16$ and $A$ and $B$ analytic functions at $\xi_\mathrm{YL}$ \cite{Cardy_1985_Conformal, Fonseca_2003_Ising}. This creates a branch cut stemming from the critical point along the imaginary-$\xi$ axis with a growing imaginary part \begin{equation} \operatorname{Im}\mathcal F_+(i\xi\pm0)=\pm A_\mathrm{YL}\frac12\Theta(\xi^2-\xi_\mathrm{YL}^2)[(\xi/\xi_\mathrm{YL})^2-1]^{1+\sigma}[1+O[(\xi-\xi_\mathrm{YL})^2]] \end{equation} This results in analytic structure for $\mathcal F_+$ shown in Fig.~\ref{fig:higher.singularities}. \section{Parametric coordinates} The invariant combinations $\xi=u_h|u_t|^{-\Delta}$ or $\eta=u_t|u_h|^{-1/\Delta}$ are natural variables to describe the scaling functions, but prove unwieldy when attempting to make smooth approximations. This is because, when defined in terms of these variables, scaling functions that have polynomial expansions at small argument have nonpolynomial expansions at large argument. Rather than deal with the creative challenge of dreaming up functions with different asymptotic expansions in different limits, we adopt another coordinate system, in terms of which a scaling function can be defined that has polynomial expansions in \emph{all} limits. In all dimensions, the Schofield coordinates $R$ and $\theta$ will be implicitly defined by \begin{align} \label{eq:schofield} u_t(R, \theta) = R(1-\theta^2) && u_h(R, \theta) = R^{\Delta}g(\theta) \end{align} where $g$ is an odd function whose first zero lies at $\theta_0>1$. We take \begin{align} \label{eq:schofield.funcs} g(\theta)=\left(1-\frac{\theta^2}{\theta_0^2}\right)\sum_{i=0}^\infty g_i\theta^{2i+1}. \end{align} This means that $\theta=0$ corresponds to the high-temperature zero-field line, $\theta=1$ to the critical isotherm at nonzero field, and $\theta=\theta_0$ to the low-temperature zero-field (phase coexistence) line. In practice the infinite series in \eqref{eq:schofield.funcs} cannot be entirely fixed, and it will be truncated at finite order. One can now see the convenience of these coordinates. Both invariant scaling combinations depend only on $\theta$, as \begin{align} \xi=u_h|u_t|^{-\Delta}=\frac{g(\theta)}{|1-\theta^2|^{\Delta}} && \eta=u_t|u_h|^{-1/\Delta}=\frac{1-\theta^2}{|g(\theta)|^{1/\Delta}} \end{align} Moreover, both scaling variables have polynomial expansions in $\theta$ near zero, with \begin{align} &\xi= g'(0)\theta+\cdots && \text{for $\theta\simeq0$}\\ &\xi=g'(\theta_0)(\theta_0^2-1)^{-\Delta}(\theta-\theta_0)+\cdots && \text{for $\theta\simeq\theta_0$} \\ &\eta=-2(\theta-1)g(1)^{-1/\Delta}+\cdots && \text{for $\theta\simeq1$}. \end{align} Since the scaling functions $\mathcal F_\pm(\xi)$ and $\mathcal F_0(\eta)$ have polynomial expansions about small $\xi$ and $\eta$, respectively, this implies both will have polynomial expansions in $\theta$ everywhere. Therefore, in Schofield coordinates one expects to be able to define a global scaling function $\mathcal F(\theta)$ which has a polynomial expansion in its argument for all real $\theta$ by \begin{equation} u_f(R,\theta)=R^{D\nu}\mathcal F(\theta)+(1-\theta^2)^2\frac{R^2}{8\pi}\log R^2 \end{equation} For small $\theta$, $\mathcal F(\theta)$ will resemble $\mathcal F_+$, for $\theta$ near one it will resemble $\mathcal F_0$, and for $\theta$ near $\theta_0$ it will resemble $\mathcal F_-$. This can be seen explicitly using the definitions \eqref{eq:schofield} to relate the above form to the original scaling functions, giving \begin{equation} \label{eq:scaling.function.equivalences.2d} \begin{aligned} \mathcal F(\theta) &=|t(\theta)|^{D\nu}\mathcal F_\pm\left[g(\theta)|1-\theta^2|^{-\Delta}\right] +\frac{(1-\theta^2)^2}{8\pi}\log t(\theta)^2\\ &=|h(\theta)|^{D\nu/\Delta}\mathcal F_0\left[(1-\theta^2)|g(\theta)|^{-1/\Delta}\right] +\frac{(1-\theta^2)^2}{8\pi}\log g(\theta)^{2/\Delta} \end{aligned} \end{equation} This leads us to expect that the singularities present in these functions will likewise be present in $\mathcal F(\theta)$. The analytic structure of this function is shown in Fig.~\ref{fig:schofield.singularities}. Two copies of the Langer branch cut stretch out from $\pm\theta_0$, where the equilibrium phase ends, and the Yang--Lee edge singularities are present on the imaginary-$\theta$ line, where they must be since $\mathcal F$ has the same symmetry in $\theta$ as $\mathcal F_+$ has in $\xi$. The location of the Yang--Lee edge singularities can be calculated directly from the coordinate transformation \eqref{eq:schofield}. Since $g(\theta)$ is an odd real polynomial for real $\theta$, it is imaginary for imaginary $\theta$. Therefore, \begin{equation} i\xi_{\mathrm{YL}}=\frac{g(i\theta_{\mathrm{YL}})}{(1+\theta_{\mathrm{YL}}^2)^{-\Delta}} \end{equation} The location $\theta_0$ is not fixed by any principle. \begin{figure} \includegraphics{figs/F_theta_singularities.pdf} \caption{ Analytic structure of the global scaling function $\mathcal F$ in the complex $\theta$ plane. The circles depict essential singularities of the first order transitions, the squares the Yang--Lee singularities, and the solid lines depict branch cuts. } \label{fig:schofield.singularities} \end{figure} \section{Functional form for the parametric free energy} As we have seen in the previous sections, the unavoidable singularities in the scaling functions are readily expressed as singular functions in the imaginary part of the free energy. Our strategy follows. First, we take the singular imaginary parts of the scaling functions $\mathcal F_{\pm}(\xi)$ and truncate them to the lowest order accessible under polynomial coordinate changes of $\xi$. Then, we assert that the imaginary part of $\mathcal F(\theta)$ must have this simplest form, implicitly defining the parametric coordinate change. Third, we perform a Kramers--Kronig type transformation to establish an explicit form for the real part of $\mathcal F(\theta)$. Finally, we make good on the assertion made in the second step by finding the coordinate transformation that produces the correct series coefficients of $\mathcal F_{\pm}$. This success of this stems from the commutative diagram below. So long as the application of Schofield coordinates and the Kramers--Kronig relation can be said to commute, we may assume we have found correct coordinates for the simplest form of the imaginary part to be fixed later by the real part. \[ \begin{tikzcd}[row sep=large, column sep = 9em] \operatorname{Im}\mathcal F_\pm(\xi) \arrow{r}{\text{Kramers--Kronig in $\xi$}} \arrow[]{d}{\text{Schofield}} & \operatorname{Re}\mathcal F_{\pm}(\xi) \arrow{d}{\text{Schofield}} \\% \operatorname{Im}\mathcal F(\theta) \arrow{r}{\text{Kramers--Kronig in $\theta$}}& \operatorname{Re}\mathcal F(\theta) \end{tikzcd} \] We require that, for $\theta\in\mathbb R$ \begin{equation} \label{eq:imaginary.abrupt} \operatorname{Im}\mathcal F(\theta+0i)=\operatorname{Im}\mathcal F_0(\theta+0i)=C_0[\Theta(\theta-\theta_0)\mathcal I(\theta)-\Theta(-\theta-\theta_0)\mathcal I(-\theta)] \end{equation} where \begin{equation} \mathcal I(\theta)=(\theta-\theta_0)e^{-1/B(\theta-\theta_0)} \end{equation} reproduces the essential singularity in \eqref{eq:essential.singularity}. Independently, we require for $\theta\in\mathbb R$ \begin{equation} \operatorname{Im}\mathcal F(i\theta+0)=\operatorname{Im}\mathcal F_\mathrm{YL}(i\theta+0)=\frac{C_\mathrm{YL}}2\Theta(\theta^2-\theta_\mathrm{YL}^2)[(\theta/\theta_\mathrm{YL})^2-1]^{1+\sigma} \end{equation} Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes its real part up to an analytic even function $G(\theta)$, real for real $\theta$. \begin{figure} \includegraphics{figs/contour_path.pdf} \caption{ Integration contour over the global scaling function $\mathcal F$ in the complex $\theta$ plane used to produce the dispersion relation. The circular arc is taken to infinity, while the circles around the singularities are taken to zero. } \label{fig:contour} \end{figure} To find the real part of the nonanalytic part of the scaling function, we make use of the identity \begin{equation} 0=\oint_{\mathcal C}d\vartheta\,\frac{\mathcal F(\vartheta)}{\vartheta^2(\vartheta-\theta)} \end{equation} where $\mathcal C$ is the contour in Figure \ref{fig:contour}. The integral is zero because there are no singularites enclosed by the contour. The only nonvanishing contributions from this contour as the radius of the semicircle is taken to infinity are along the real line and along the branch cut in the upper half plane. For the latter contributions, the real parts of the integration up and down cancel out, while the imaginary part doubles. This gives \begin{equation} \begin{aligned} 0&=\left[\int_{-\infty}^\infty+\lim_{\epsilon\to0}\left(\int_{i\infty-\epsilon}^{i\theta_{\mathrm{YL}}-\epsilon}+\int^{i\infty+\epsilon}_{i\theta_{\mathrm{YL}}+\epsilon}\right)\right] d\vartheta\,\frac{\mathcal F(\vartheta)}{\vartheta^2(\vartheta-\theta)} \\ &=\int_{-\infty}^\infty d\vartheta\,\frac{\mathcal F(\vartheta)}{\vartheta^2(\vartheta-\theta)} +2i\int_{i\theta_{\mathrm{YL}}}^{i\infty}d\theta'\,\frac{\operatorname{Im}\mathcal F(\vartheta)}{\vartheta^2(\vartheta-\theta)} \\ &=-i\pi\frac{\mathcal F(\theta)}{\theta^2}+\mathcal P\int_{-\infty}^\infty d\vartheta\,\frac{\mathcal F(\vartheta)}{\vartheta^2(\vartheta-\theta)} +2i\int_{i\theta_{\mathrm{YL}}}^{i\infty}d\vartheta\,\frac{\operatorname{Im}\mathcal F(\vartheta)}{\vartheta^2(\vartheta-\theta)} \end{aligned} \end{equation} where $\mathcal P$ is the principle value. In principle one would need to account for the residue of the pole at zero, but since its order is less than two and $\mathcal F(0)=\mathcal F'(0)=0$, this evaluates to zero. Rearranging, this gives \begin{equation} \mathcal F(\theta) =\frac{\theta^2}{i\pi}\mathcal P\int_{-\infty}^\infty d\vartheta\,\frac{\mathcal F(\vartheta)}{\vartheta^2(\vartheta-\theta)} +\frac{2\theta^2}\pi\int_{i\theta_{\mathrm{YL}}}^{i\infty}d\vartheta\,\frac{\operatorname{Im}\mathcal F(\theta')}{\vartheta^2(\vartheta-\theta)} \end{equation} Taking the real part of both sides, we find \begin{equation} \operatorname{Re}\mathcal F(\theta) =\frac{\theta^2}{\pi}\mathcal P\int_{-\infty}^\infty d\vartheta\,\frac{\operatorname{Im}\mathcal F(\vartheta)}{\vartheta^2(\vartheta-\theta)} -\frac{2\theta^2}\pi\int_{\theta_{\mathrm{YL}}}^{\infty}d\vartheta\,\frac{\operatorname{Im}\mathcal F(i\vartheta)}{\vartheta(\vartheta^2+\theta^2)} \end{equation} Because the real part of $\mathcal F$ is even, the imaginary part must be odd. Therefore \begin{equation} \label{eq:dispersion} \operatorname{Re}\mathcal F(\theta) =\frac{\theta^2}{\pi} \int_{\theta_0}^\infty d\vartheta\,\frac{\operatorname{Im}\mathcal F(\vartheta)}{\vartheta^2}\left(\frac1{\vartheta-\theta}+\frac1{\vartheta+\theta}\right) -\frac{2\theta^2}\pi\int_{\theta_{\mathrm{YL}}}^{\infty}d\vartheta\,\frac{\operatorname{Im}\mathcal F(i\vartheta)}{\vartheta(\vartheta^2+\theta^2)} \end{equation} Evaluating these ordinary integrals, we find for $\theta\in\mathbb R$ \begin{equation} \operatorname{Re}\mathcal F(\theta)=\operatorname{Re}\mathcal F_0(\theta)+\mathcal F_\mathrm{YL}(\theta)+G(\theta) \end{equation} where \begin{equation} \label{eq:2d.real.Fc} \operatorname{Re}\mathcal F_0(\theta) =C_0[\mathcal R(\theta)+\mathcal R(-\theta)] \end{equation} where $\mathcal R$ is given by the function \begin{equation} \mathcal R(\theta) =\frac1\pi\left[ \theta_0e^{1/B\theta_0}\operatorname{Ei}(-1/B\theta_0) +(\theta-\theta_0)e^{-1/B(\theta-\theta_0)}\operatorname{Ei}(1/B(\theta-\theta_0)) \right] \end{equation} and \begin{equation} \mathcal F_{\mathrm{YL}}(\theta)=C_{\mathrm{YL}}\left[(\theta^2+\theta_{\mathrm{YL}}^2)^{1+\sigma}-\theta_{\mathrm{YL}}^{2(1+\sigma)}\right] \end{equation} We have also included the analytic part $G$, which we assume has a simple series expansion \begin{equation} G(\theta)=\sum_{i=1}^\infty G_i\theta^{2i} \end{equation} From the form of the real part, we can infer the form of $\mathcal F$ that is analytic for the whole complex plane except at the singularities and branch cuts previously discussed. For $\theta\in\mathbb C$, we take \begin{equation} \mathcal F(\theta)=\mathcal F_0(\theta)+\mathcal F_{\mathrm{YL}}(\theta)+G(\theta), \end{equation} where \begin{equation} \mathcal F_0(\theta)=C_0\left\{ \mathcal R(\theta)+\mathcal R(-\theta)+i\operatorname{sgn}(\operatorname{Im}\theta)[\mathcal I(\theta)-\mathcal I(-\theta)] \right\} \end{equation} \section{Fitting} The scaling function has a number of free parameters: the position $\theta_0$ of the abrupt transition, prefactors in front of singular functions from the abrupt transition and the Yang--Lee point, the coefficients in the analytic part $G$ of $\mathcal F$, and the coefficients in the undetermined function $g$. Other parameters are determined by known properties. For $\theta>\theta_0$, the form \eqref{eq:essential.singularity} can be expanded around $\theta=\theta_0$ to yield \begin{equation} \begin{aligned} \operatorname{Im}u_f &\simeq A_0 u_t(\theta)^{D\nu}\xi(\theta)\exp\left\{\frac1{b\xi(\theta)}\right\} \\ &=A_0R^{D\nu}(\theta_0^2-1)^{D\nu}\xi'(\theta_0)(\theta-\theta_0) \exp\left\{\frac1{b\xi'(\theta_0)}\left(\frac1{\theta-\theta_0} -\frac{\xi''(\theta_0)}{2\xi'(\theta_0)}\right) \right\}\left(1+O[(\theta-\theta_0)^2]\right) \end{aligned} \end{equation} Comparing this with the requirement \eqref{eq:imaginary.abrupt}, we find that \begin{equation} B=-b\xi'(\theta_0)=-b\frac{g'(\theta_0)}{(\theta_0^2-1)^{1/\Delta}} \end{equation} and \begin{equation} \begin{aligned} C_0&=A_0t(\theta_0^2-1)^{D\nu}\xi'(\theta_0)\exp\left\{ -\frac{\xi''(\theta_0)}{2b\xi'(\theta_0)^2} \right\} \\ &= A_0(\theta_0^2-1)^{D\nu-\Delta}g'(\theta_0) \exp\left\{-\frac1b\left(\frac{(\theta_0^2-1)^\Delta g''(\theta_0)}{2g'(\theta_0)^2}-\frac{2\Delta(\theta_0^2-1)^{\Delta - 1}\theta_0}{g'(\theta_0)} \right)\right\} \end{aligned} \end{equation} fixing $B$ and $C_0$. This leaves as unknown variables the positions $\theta_0$ and $\theta_{\mathrm{YL}}$ of the abrupt transition and Yang--Lee edge singularity, the amplitude $C_\mathrm{YL}$ of the latter, and the unknown functions $G$ and $g$. We determine these approximately by iteration in the polynomial order at which the free energy and its derivative matches known results. We write as a cost function the difference between the known series coefficients of the scaling functions $\mathcal F_\pm$ and the series coefficients of our parametric form evaluated at the same points, $\theta=0$ and $\theta=\theta_0$, weighted by the uncertainty in the value of the known coefficients or by a machine-precision cutoff, whichever is larger. A Levenburg--Marquardt algorithm is performed on the cost function to find a parameter combination which minimizes it. As larger polynomial order in the series are fit, the truncations of $F$ and $h$ are extended to higher order so that the codimension of the fit is constant. A term is added to $F$ whenever a new coefficient of the high temperature series is added, and one is added to $h$ whenever a new coefficient of the low temperature series is added. We performed this procedure starting with $n=2$, or matching the scaling function at the low and high temperature zero field points to quadratic order, through $n=9$. The resulting fit coefficients can be found in Table \ref{tab:fits} without any sort of uncertainty, which is difficult to quantify directly due to the truncation of series. However, precise results exist for the value of the scaling function at the critical isotherm, or equivalently for the series coefficients of the scaling function $\mathcal F_0$, and the accuracy of the fit results can be checked against the known values here. \begin{table}\label{tab:fits} \begin{tabular}{c|ccc} $n$ & $\mathcal F_-^{(n)}$ & $\mathcal F_0^{(n)}$ & $\mathcal F_+^{(n)}$ \\\hline 0 & 0 & $-1.197733383797993$ & 0 \\ 1 & $-1.35783834$ & $-0.318810124891$ & 0 \\ 2 & $-0.048953289720$ & $0.110886196683$ & $-1.84522807823$ \\ 3 & 0.0388639290 & $0.01642689465$ & 0 \\ 4 & $-0.068362121$ & $-2.639978\times10^{-4}$ & 8.3337117508 \\ 5 & 0.18388371 & $-5.140526\times10^{-4}$ & 0 \\ 6 & $-0.659170$ & $2.08856\times 10^{-4}$ & $-95.16897$ \\ 7 & 2.937665 & $-4.4819\times10^{-5}$ & 0 \\ 8 & $-15.61$ & $3.16\times10^{-7}$ & 1457.62 \\ 9 & 96.76 & $4.31\times10^{-6}$ & 0 \\ 10 & $-679$ & $-1.99\times10^{-6}$ & -25891 \\ 11 & $5.34\times10^3$ & & 0 \\ 12 & $-4.66\times10^4$ & & $5.02\times10^5$ \\ 13 & $4.46\times10^5$ & & 0 \\ 14 & $-4.66\times10^6$ & & $-1.04\times10^7$ \end{tabular} \end{table} \begin{table} \singlespacing \begin{tabular}{c|llllllll} \multicolumn{1}{c|}{$n$} & \multicolumn{1}{c}{$\theta_\mathrm{YL}$} & \multicolumn{1}{c}{$A_\mathrm{YL}$} & \multicolumn{1}{c}{$F_1$} & \multicolumn{1}{c}{$F_2$} & \multicolumn{1}{c}{$F_3$} & \multicolumn{1}{c}{$F_4$} & \multicolumn{1}{c}{$F_5$} & \multicolumn{1}{c}{$F_6$} \\ \hline 2 & 0.18041 & 2.1295 & 1.2447 & 0.49975 \\ 3 & 0.19613 & 2.1999 & 1.2402 & 0.39028 \\ 4 & 0.19563 & 2.2433 & 1.2964 & 0.37080 & $-0.028926$ \\ 5 & 0.19553 & 2.2321 & 1.2804 & 0.36318 & $-0.028924$ & & \\ 6 & 0.19737 & 2.3981 & 1.5091 & 0.39200 & $-0.090023$ & 0.017233 & \\ 7 & 0.19730 & 2.4229 & 1.5454 & 0.41320 & $-0.12161$ & 0.026346 & \\ 8 & 0.19655 & 2.5513 & 1.7323 & 0.59677 & $-0.29521$ & 0.078509 & $-0.0072514$ \\ 9 & 1.3754 & 0.19652 & 2.5482 & 1.7278 & 0.60278 & $-0.28737$ & 0.072411 & $-0.0072455$ \\ \hline \end{tabular} \begin{tabular}{c|llllllll} \hline $n$ & \multicolumn{1}{c}{$\theta_0$} & \multicolumn{1}{c}{$h_1$} & \multicolumn{1}{c}{$h_2$} & \multicolumn{1}{c}{$h_3$} & \multicolumn{1}{c}{$h_4$} & \multicolumn{1}{c}{$h_5$} & \multicolumn{1}{c}{$h_6$} & \multicolumn{1}{c}{$h_7$} \\ \hline 2 & 1.2114 \\ 3 & 1.3498 & $-0.014909$ \\ 4 & 1.4490 & $-0.10871$ & $-0.0031747$ \\ 5 & 1.4719 & $-0.11399$ & $-0.0031669$ & $8.8574\times10^{-7}$ \\ 6 & 1.4358 & $-0.19533$ & 0.029301 & 0.0039906 & $-0.00011913$ \\ 7 & 1.4324 & $-0.22077$ & 0.036245 & 0.010120 & $-0.0011434$ & 0.00010095 \\ 8 & 1.3710 & $-0.35150$ & 0.0050232 & 0.053659 & $-0.019806$ & 0.0033531 & $-0.00026034$ \\ \end{tabular} \end{table} \begin{figure} \begin{gnuplot}[terminal=epslatex] dat = 'data/phi_comparison.dat' set xlabel '$n$' set ylabel '$|\Delta\mathcal F_0^{(m)}(0)|$' set format y '$10^{%T}$' set style data linespoints set logscale y set key title '\raisebox{0.5em}{$m$}' bottom left set xrange [1.5:9.5] plot \ dat using 1:2 title '0', \ dat using 1:3 title '1', \ dat using 1:4 title '2', \ dat using 1:5 title '3', \ dat using 1:6 title '4' \end{gnuplot} \caption{ The error in the $m$th derivative of the scaling function $\mathcal F_0$ with respect to $\eta$ evaluated at $\eta=0$, as a function of the polynomial order $n$ at which the scaling function was fit. } \end{figure} \begin{figure} \begin{gnuplot}[terminal=epslatex] dat = 'data/yl_comparison.dat' set xlabel '$n$' set ylabel '$|\Delta\xi_\mathrm{YL}|$' set xrange [1.5:9.5] set yrange [0.000005:0.05] set format y '$10^{%T}$' set style data yerrorlines set logscale y unset key plot dat using 1:2:3 \end{gnuplot} \caption{ The error in the location of the Yang--Lee edge singularity as a function of the polynomial order $n$ at which the scaling function was fit. Error bars denote the uncertainty in the known location of the singularity. } \end{figure} \begin{figure} \begin{gnuplot}[terminal=epslatex, terminaloptions={size 8.65cm,5.35cm}] dat9 = 'data/h_series_ours_9.dat' dat11 = 'data/h_series_ours_11.dat' dat13 = 'data/h_series_ours_13.dat' dat15 = 'data/h_series_ours_15.dat' ratLast(x) = (back2 = back1, back1 = x, back1 / back2) back1 = 0 back2 = 0 set xrange [0:1.05] set yrange [0:0.55] set xlabel '$1/n$' set ylabel '$h_n/h_{n-1}$' set style data linespoints plot \ dat9 using (1/($0)):(abs(ratLast($1))) title '9', \ dat11 using (1/($0)):(abs(ratLast($1))) title '11', \ dat13 using (1/($0)):(abs(ratLast($1))) title '13', \ dat15 using (1/($0)):(abs(ratLast($1))) title '15', \ 0.5 - 0.675 * x lc black \end{gnuplot} \caption{ } \end{figure} \subsection{Comparison} \begin{figure} \begin{gnuplot}[terminal=epslatex] dat1 = 'data/glow_numeric.dat' dat2 = 'data/glow_series_ours_0.dat' dat3 = 'data/glow_series_caselle.dat' dat4 = 'data/glow_series_ours_9.dat' set key top left Left reverse set logscale y set xlabel '$n$' set ylabel '$\mathcal F_-^{(n)}$' set format y '$10^{%T}$' set xrange [0:14.5] plot \ dat1 using 1:(abs($2)):3 title 'Numeric' with yerrorbars, \ dat2 using 1:(abs($2)) title 'Ours ($n=2$)', \ dat3 using 1:(abs($2)) title 'Caselle', \ dat4 using 1:(abs($2)) title 'Caselle' \end{gnuplot} \caption{ } \end{figure} \begin{figure} \begin{gnuplot}[terminal=epslatex] dat1 = 'data/glow_numeric.dat' dat2 = 'data/glow_series_ours_0.dat' dat4 = 'data/glow_series_ours_9.dat' dat3 = 'data/glow_series_caselle.dat' ratLast(x) = (back2 = back1, back1 = x, back1 / back2) back1 = 0 back2 = 0 set xlabel '$1/n$' set xrange [0:0.55] set ylabel '$\mathcal F_-^{(n)}/\mathcal F_-^{(n-1)}$' set yrange [0:15] plot \ dat1 using (1/$1):(abs(ratLast($2))) title 'Numeric', \ dat2 using (1/$1):(abs(ratLast($2))) title 'Ours ($n=2$)', \ dat3 using (1/$1):(abs(ratLast($2))) title 'Caselle', \ dat4 using (1/$1):(abs(ratLast($2))) title 'Caselle' \end{gnuplot} \caption{ } \end{figure} \begin{figure} \begin{gnuplot}[terminal=epslatex] dat1 = 'data/ghigh_numeric.dat' dat2 = 'data/ghigh_caselle.dat' set key top left Left reverse set logscale y set xlabel '$n$' set ylabel '$\mathcal F_+^{(n)}$' set format y '$10^{%T}$' set xrange [0:14.5] plot \ dat1 using 1:(abs($2)):3 title 'Numeric' with yerrorbars, \ dat2 using 1:(abs($2)) title 'Caselle', \ \end{gnuplot} \caption{ } \end{figure} \begin{figure} \begin{gnuplot}[terminal=epslatex] dat1 = 'data/phi_numeric.dat' set key top left Left reverse set logscale y set xlabel '$n$' set ylabel '$|\mathcal F_0^{(n)}|$' set format y '$10^{%T}$' set xrange [-0.5:10.5] plot \ dat1 using 1:(abs($2)) title 'Numeric' with yerrorbars \end{gnuplot} \caption{ } \end{figure} \section{Outlook} The successful smooth description of the Ising free energy produced in part by analytically continuing the singular imaginary part of the metastable free energy inspires an extension of this work: a smooth function that captures the universal scaling \emph{through the coexistence line and into the metastable phase}. Indeed, the tools exist to produce this: by writing $t(\theta)=(1-\theta^2)(1-(\theta/\theta_m)^2)$ for some $\theta_m>\theta_0$, the invariant scaling combination \begin{acknowledgments} The authors would like to thank Tom Lubensky, Andrea Liu, and Randy Kamien for helpful conversations. The authors would also like to think Jacques Perk for pointing us to several insightful studies. JPS thanks Jim Langer for past inspiration, guidance, and encouragement. This work was supported by NSF grants DMR-1312160 and DMR-1719490. \end{acknowledgments} \bibliography{ising_scaling} \end{document}