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Dynamics of dislocation-mediated melting in a two-dimensional lattice
in the presence of an oscillatory applied strain
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The temperature and frequency dependence of the power dissipated in a two-dimensional crystal
subjected to an applied strain is shown to exhibit a distinct signature for dislocation-dissociation
melting. The power absorption is analogous to the case of thin helium films subjected to an applied
velocity field. Power loss by dislocation motion in the compressional mode is severely limited by the
presence of nonequilibrium densities of interstitial and vacancy defects that are created or annihilat-
ed by dislocation climb. Tables of analogs between dislocations, vortices, and charges in two-
dimensional systems are presented. The relation of the results to published experiments is dis-
cussed.

I. INTRODUCTION

Halperin and Nelson' and Young have developed an
interesting and aesthetic theory of two-dimensional melt-
ing based on the ideas of Kosterlitz and Thouless. This
KTHNY theory predicts a continuous melting transition
mediated by the breakup of dislocation pairs which exist
as equilibrium defects in the crystal phase. This transi-
tion is from a crystalline phase to a hexatic liquid-crystal
phase which contains free dislocations. The theory is
particularly appealing because it makes a number of pre-
dictions which can be tested experimentally. Despite this
fact, only a few experiments provide evidence that the
breakup of dislocation pairs is responsible for the melting
of any two-dimensional lattice, and here the evidence is
not conclusive. Therefore, it is desirable to examine new
experimental approaches to the study of melting of two-
dimensional crystals. It is shown here that the absorp-
tion of power by the glide motion of dislocations, when a
lattice is subjected to an applied strain, gives a distinct
signature for KTHNY melting.

X-ray-scattering experiments on rare-gas atoms phy-
sisorbed on graphite suggest a continuous melting transi-
tion for coverages above one monolayer for argon, kryp-
ton, and for coverages above 0.9 monolayer for xe-
non. Based on a molecular-dynamics simulation
Koch and Abraham' conclude that one of these systems,
an experiment on 1.1 monolayers of xenon, ' undergoes a
f.rst-order transition, but mimics continuous behavior as
a result of the interchange of atoms with the vapor. Also,
one of the KTHNY parameters deduced from this experi-
ment is anomalously small. "' X-ray-scattering studies
show evidence for a continuous transition to a hexatic
liquid-crystal phase in monolayer xenon physisorbed on a
sixfold-symmetric graphite surface' and on a weakly in-
teracting silver (111) surface 'In the lat. ter experiment
the low-temperature phase was thought to be a hexatic
glass resulting from pinning to steps or grain boundaries
in the substrate. Some of these experimental results are
contradicted by recent specific-heat measurements. Jin
et a/. ' find a first-order specific™heat peak for coverages

both above and below 1 monolayer for xenon on graphite.
Continuous melting of submonolayer argon on graph-

ite has been inferred from both x-ray-di6'raction' and
specific-heat' data. However, more precise specific-
heat' measurements using a graphite foam substrate,
which has a greater surface homogeneity, show a distinct
first-order specific-heat peak. Continuous melting of
ethylene on graphite has been attributed to a mechanism
other than KTHNY melting. ' The sum of the experi-
mental evidence on adsorbed atoms is weighted against
an interpretation in terms of KTHNY melting.

Murray and Van Winkle made a visual observation of
charged polystyrene spheres confined into two dimen-
sions by two glass plates. The density of their sample
varied continuously in space. They observed a two-step
melting process with an intermediate phase which had
the signature of a hexatic phase. The actual topological
defects were more complex than those predicted by the
KTHNY theory.

Strong evidence for a dislocation-mediated transition is
provided by Deville et a/. ,

' who measured the shear
modulus p of a two-dimensional electron lattice as a
function of frequency. The KTHNY theory predicts a
rapid reduction of the shear modulus just below the tran-
sition temperature T, and an abrupt discontinuity in the
dc shear modulus at T, . Deville et a/. observed a reduc-
tion in p consistent with theoretical predictions as well as
the expected increase in damping of the transverse mode
as T, is approached from below. Their signal amplitude
decreased continuously, and their highest temperature
detectable signal yielded a value of p in reasonable agree-
ment with the theoretical value of pd, ( T, ).

One difhculty with a measurement of the dc shear
modulus is that a first-order melting mechanism such as
grain boundary melting which is predicted to occur at a
temperature Tg just below the dislocation-mediated tran-
sition temperature, would yield the same temperature
dependence of pd, ( T) up to Tg, where pd, would abruptly
vanish. This mimics the behavior predicted by the
KTHNY theory. On the other hand, in the case of
dislocation-mediated melting, the ac shear modulus is
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predicted to decrease continuously to zero at a tempera-
ture T,') T, . The measurements of Deville et al. were
carried out at a finite frequency: co-10 co, where co

is the zone-boundary shear wave frequency. These au-
thors report one data point below the stability 1ine

pd, (T, ) versus T, . This point might be interpreted as a
finite frequency value above T, .

Glattli et al. measured the specific heat of the elec-
tron lattice in a very clever experiment. The specific heat
varied continuously through the melting region as pre-
dicted by the KTHNY theory. They set an upper limit
on the entropy discontinuity upon melting.

One other experimental result on the electron lattice,
by some of the present authors and colleagues, has been
interpreted as evidence in support of the KTHNY
theory. Guo et al. applied an alternating strain to the
lattice, which was supported by a liquid-helium surface,
and measured the power absorbed at various frequencies
as a function of temperature. A sharp power absorption
peak was measured in the vicinity of the melting transi-
tion. This anomolous power absorption was explained by
the driven viscous motion of dislocations. The theory
presented here was developed to analyze these results. A
thermodynamic force, which limits dislocation c1imb and
reduces the power absorbed by dislocation mofion by or-
ders of magnitude, was neglected in the previous analysis
of duo et aI. We find that the maximum power absorbed
by dislocation motion cannot account for the magnitude
of the experimental anomolous absorption peak. Indirect
effects of dislocations and dislocation pairs, such as rip-
plon scattering from dislocations, might explain these re-
sults.

The theory presented here is complementary to the
theory of Zippelius et al. on the response of a two-
dimensional crystal to an applied stress. The details of
the dynamics differ, and, in particular, the temperature
dependence of the power absorbed by the dislocations
above T, differs dramatically. The response of disloca-
tions to an applied strain is analogous to the response of
vortices in a thin helium film to an applied superAuid ve-
locity field. This work relies heavily on the work of
Ambegeokar, Halperin, Nelson, and Siggia (AHNS) on
helium films and of Zippelius, Halperin, and Nelson
(ZHN) on the dynamics of melting.

II. THEORY

A. Background

We wish to obtain an expression for the dissipation of
energy arising froID the motion of dislocations which are
subject to an oscillating force. Such an expression has
been derived by AHNS for the power absorbed by vor-
tices in a thin helium film when driven by an oscillating
force imposed via the coupling to the substrate. There
are direct analogies between this system and dislocations
in a lattice, and we adapt the theory of AHNS to deter-
mine the temperature and frequency dependence of the
power absorbed by the drj.ven motion of dislocations.

K(T) =4@(A,+p)/(A, +2@) . (4)

The Lame constants A. and p are both renormalized by
the presence of dislocations, and thus K is temperature
dependent. The entropy of a free dislocation is given by
SI kgln(R/a), and free dislocations enter the system
when the free energy UI —TS& vanishes. This yields the
following expression for the transition temperature:

T~T =K ( T)a /16m k~ .

B. Power dissipation with the neglect
of nonequilibrium net defect concentrations

We give here a microscopic derivation of the power
dissipated by the motion of dislocations and obtain a
standard macroscopic formula for power dissipated in a
lattice. The total power absorbed by the dislocations is

The AHNS and ZHN theories will be used extensively
without making explicit references at each point.

According to the KTHNY theory of melting by the
dissociation of dislocation pairs, ' dislocation pairs ex-
ist as thermal equilibrium defects in two-dimensional
crystals. These pairs polarize in the presence of an ap-
plied stress and reduce the strain field in the lattice,
thereby causing a decrease in the elastic constants. The
polarization of small pairs which are in close proximity
to a large pair reduces the interaction energy of the larger
pair. This screening is described by a dielectric constant
e(r, T) which depends on the separation r of the two
dislocations making up a pair. As the temperature ap-
proaches TKT and the density of pairs increases, e(r, T)
increases rapidly for large values of r. At the transition
temperature TKT some pairs dissociate (r~ ~ ) to form
free dislocations. These free dislocations move in
response to a stress and destroy the dc shear restoring
force. Above TKT the orientational order persists in a
new phase designated as the hexatic liquid-crystal phase.
The density of free dislocations nI in this phase is '

n&
' —-2m/~+, where the coherence length g+ varies with

temperature as'

g+ =goexp(bot ') .

Here go and bo are constants, bo is related to the ratio'
E, /k~ TzT, where E, is the core energy of a dislocation, t
is the reduced temperature, and the critical index
V=O. 37.

The energies of a free dislocation U& and a dislocation
pair U are given, respectively, by

U/=(Kb /8m )ln(R/a)+E, , (2)

Uz =(Kb /4n)[ln(r/a) —cos 8]+2E, . (3)

Here b is the Burgers vector b=ab, a is the lattice spac-
ing, R is the radius of the system, 8 is the angle between
the Burgers vector of one of the dislocations and the line
joining the two dislocations, and the coupling constant IC
is given by
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fl ~jloij bi

where e I is the antisymmetric tensor

(6)

0 1

—1 0

Summations are taken over repeated Latin indices.
The power dissipated per unit area in a crystal of area

A is

p=Re A ' f' v"

the real part of the product of the force acting on a dislo-
cation and its velocity summed over all dislocations. The
force on a dislocation, given in terms of the stress com-
ponents in cartesian coordinates cr,", is

ly, the interstitial and vacancy concentrations. ZHN in-
clude terms in 5c& in the free-energy density of the crys-
tal. For 5ca/c& « 1 these terms are

ft, =yu;;5ca+(5ca) /2y,
where y is a phenomenological coefficient. Upon disloca-
tion climb, the increase in c; and the decrease in c, are in
proportion to their equilibrium concentrations. With the
relation 5c, /c„= —5c;/c;, one finds for an ideal gas of
defects, g '=nokjl T/cs. Here no is the density of lat-
tice sites and c& =c; +c, , where the superscript 0 refers
to the equilibrium concentrations.

The coupling between fluctuations in the net defect
concentration and the strain field, yu;;5c&, results in an
addition term in the expression for the reversible part of
the stress tensor. The stress tensor is given by

where v is the velocity of a dislocation located at coordi-
nate R and the brackets with a subscript t indicate a
time average. We combine Eqs. (6) and (7) and use the re-
lation o.; =o. ; to obtain

(8)

The strain tensor u; is related to the displacement field
u(r) as

Bu;(r) Bu, (r)
u,"(r)=— +

2 Br Br,
(9)

The contribution of dislocations to the integral of the
strain component over the area of the lattice is given by

J u;j dr= g 2(b ejlRl +—bje, lRl ) . (10)

d(u;j )p= —Re ~,, (12)

In thermal equilibrium the stress tensor is related to
the strain tensor by the elastic constants C,JkI,

Since dislocations in the lattice can be combined in pairs,
Eq. (10) is independent of the choice of origin. The time
derivative of the average strain component ( u;j ) is there-
fore

d(u, , )

V

We multiply Eq. (11) by o;. and use the relation
ejl = —eij. A comParison of the result with Eq. (8) yields

C&klukl+} 5ca5;& ~ (16)

For the present, we shall neglect the second term in
Eq. (16) and use Eq. (13) for the stress components. The
effect of a finite value of 5cz is to limit the climb motion
of dislocations. This effect will be discussed later.

For an oscillating applied strain u; =u, e '"', the
power dissipated per unit area is

0 0j 0 2 ~uijlm( Cijkl ) kl (17)

where the subscript 0 indicates that fluctuations in the
defect deviation has been ignored. This is the standard
expression for the power dissipation in a crystal. The
temperature dependence of the elastic constants resulting
from the presence of dislocation pairs is given by the
KTHNY theory.

The rather formal equations (6) and (11) are easier to
understand when the Cartesian components are written
explicitly and applied to a particular dislocation. Consid-
er a dislocation consisting of an extra half row of atoms,
parallel to the y axis, in the upper half plane [see Fig.
1(a)]. By standard notation, this dislocation is assigned a
Burgers vector b=b I 1,0I. The force on this dislocation
is

f10
=XPxV 6x jPxx &x (18)

A positive shear stress moves the extra half row of atoms
in the upper half plane in the direction of positive x, and
a compression of the lattice along the x axis (o„&0)at-
tempts to exclude the extra half row by forcing it to move
in the positive y direction.

The components d ( u;. ) /dt are

( o ij )eq Cij kl u k 1 (13) d(u„„)
dt

'g b'u" (19a)

The elastic stiffness constants are given by

Cijkl I (5ik5jl+5il5jk +~5ij5kl
d(u )

g —1~yv v (19b)

However, dislocations climb by creating or annihilat-
ing vacancy or interstitial defects. This results in a local
deviation 5c& from the equilibrium net defect concentra-
tion, cz. Here c& =c;—c„, and c; and c„are, respective-

d(u„, ) '(b u bu") . — —
dt Z «V V

(19c)

Examples of lattices of length L and width 8'in strained
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C. Analogies with a two-dimensional plasma
and with a thin helium 6lm

&& ~tI

It is pedagogically useful to draw analogies between
dislocations in a two-dimensional crystal, vortices in a
two-dimensional helium film, and charges in a two-
dimensional plasma. To this end we reformulate the
equation for the power absorption in the form of the elec-
tric analog.

The motion of dislocations in response to an applied
stress polallzcs thc dislocations, 1.c., d1slocat1011s with op-
positely directed Burgers vectors move in opposite direc-
tions. We define a polarization tensor as '

I'; =3 ' g ,'(b e—i/Ri+bj'ei;Ri ) .

/I I I I I I tl
/ i /1111M///// I I I l

l I I l I / I //
I / i ( I / I I /If/It/If/

I / I I I I I I /III/III//
I I I I I I f 1 I
I / I / I I I / III/II//TV

f I I / I I I / IIl / / I I I I IItllllllg
I / / I I I /77lllllll/7tfttttfl~IIIIIIIIi

l I I I f / I I I
I //! //» I
I I I I I I l I /
I I I I I I I I

(c)

An expression for the average stress is obtained by in-
tegrating Eq. (21) with respect to time,

~ ~ 'j ) (Cijkl )0(ukl +kl ) (22)

where o'; "J=(C;
&lk)

uo&kis the externally applied stress.
The polarization tensor can be written in terms of the
external field as

The time derivative of the average stress due to the
motion of dislocations is related to the time derivative of
the strain by the bare elastic constants (C;Jki )o which in-
clude all screening c8'ects other than the motion of dislo-
cations. The bare elastic constants enter here since the
total motion of all charges including motion in response
to the stress field of other charges is included in Eq. (11).

The time derivative of the average stress written in
terms of the polarization is

d( CT; ) dI k)'-= —(C ) (21)

FIG. I. Illustrations of crystals under a uniform strain: (a)
compressional strain and (c) shear strain, and the respective
crystals (b) and (d) after the strain has been relaxed by the
motion of dislocations. Lattice sites are at the intersection of
the lines.

states and in relaxed states following the motion of dislo-
cations are shown in Fig. l to illustrate these equations.
In Fig. 1(a) the lattice is compressed by an atomic spac-
ing, and the resultant strain is u = —b/O'. The retrac-
tion of a dislocation with Burgers vector b =xb through a
distance y alters the average strain by —u„„y /L
=b„y/I. 8. This leads to a time rate of strain given by
Eq. (19a), and Eq. (19b) follows from a cyclic permuta-
tion.

The relaxation of the shear strain can be understood
with the aid of Figs. 1(c) and 1(d). The strain u «= b/2h
changes by b/2h when L/h —dislocations with Burgers
vector b=xb move a distance S". Thus u changes by—b dx/2L8 when one dislocation moves a distance dx.
Likewise a dislocation with Burgers vector b=yb con-
tributes an amount b„dy/21. 8' when it moves a distance
dy. The combination of these terms summed over all
dislocations leads to Eq. (19c).

kj (C )
ukl

ij kl 0
(23)

(24)

where e0 is the dielectric constant of the medium in
which the plasma is embedded and does not include the
screening due to the charges. The polarization P is
defined as

P=A 'gq R'. (25)

The charge q located at coordinate R takes on values
+ ~q~. The polarization is related to the external field by

P(~o) =
I 1 —[eo/~(~)] I D(~), (26)

where e(co) is the dielectric constant. The power dissipat-
ed per unit area for the case of an applied oscillatory dis-
placement field at frequency cu is

We proceed by making analogies with the equations
describing a two-dimensional plasma. The average elec-
tric field (E) is related to the displacement field D,
which is applied by charging the capacitor plates by the
relation
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TABLE I. Equations for the properties of three analogous two-dimensional systems. The symbols are defined in the text.

Property

Energy of an
isolated charge

Energy of a
dipole

Field of an
isolated charge

2D Coulomb gas

q R
ln —+E,

4m@ a

r

q r
ln —+2E,

2&6 a

E= qr
2&6'r

2D helium film
r

ps 2 R
~ ln —+E,

4m a

ps p r
a ln —+2E,

2K a

—zXg, =p, —r
2&r

2D lattice
T

Kb
1

R
8m a

Kb2 r
ln ——cos 0 +2E,

4m a

—Kb
rr,„=o eii= sing,4~r

Kb
0'„g cosp

4mr

Force on a charge

Polarization

Time derivative
of average field

f=qE
q R

A
d(E) 1 dP

dt t.o dt

f= —p, zzX(v, —v, )

p=g
—z X d (g, ) /dt = p,odP /dt—

f! ~ljirij bi
bke~, R~+b, e~kR~

Pkl
2A

d ( 0' i ) /dr = ( C i i )OdPki /dh

p = (co/2)Im[ e'(co) ]D— (27)

We compare the pairs of Eqs. (22) and (24), (20) and
(25), and (23) and (26). By analogy we define

e,,kI(ni)=CP„(~) . (28)

The equation analogous to Eq. (27) is Eq. (17).
The similarities and differences in the three systems,

dislocations, vortices, and charges, can be observed from
the equations for the analogous properties which are
given in Table I. The electric properties are in MKS
units, and in this respect the definitions differ from those
given by AHNS. The symbols in Table I which have not
been defined are as follows: The electric charge q has di-
mension of charge/(length)' g, =p, v, is the superAuid
momentum density, p, and v, are, respectively, the
superQuid density and velocity, p,o is the bare superAuid
density in the absence of vortices, v, is the velocity of the
vortex core, and z is a unit vector normal to the helium
film. The symbols R, r, a, R, A, and P have the same in-
terpretation in each case. The circulation ~ is Planck's
constant divided by the atomic mass of helium and the
signs refer to positive and negative circulation. The pa-
rameter E, represents the self-energy of charges and the
core energy of vortices. The angle P is measured counter-
clockwise from the Burgers vector. In writing the equa-
tions in Table I, the defects are assumed to be located at
the center of a sample of radius 8 which is grounded in
the case of a plasma, and the normal Quid in the helium
films is assumed to be rest.

In Table II the transcriptions between these three sys-
tems are listed. Here o and u are, respectively, the stress
and strain tensors of the lattice. For an applied strain
field, the analog of the dielectric constant is the elastic
compliance tensor S.

One can observe from Table I that the analogs between
the properties of a two-dimensional crystal and the
Coulomb gas and helium films are not exact. The

TABLE II. Transcriptions for the parameters associated
with three analogous two-dimensional systems. The symbols
are defined in the text.

Parameter

Defect
Dielectric

constant

Fields

Plasma

E
D

Helium film

sc=h /m

ps

—zXg,—zXv,

Lattice

b
Stjl I

differences between dislocations and vortices are the fol-
lowing: dislocations in a triangular lattice have six possi-
ble orientations of the Burgers vectors whereas vortices
are perpendicular to the film and have only two possible
orientations. Secondly, dislocation triplets with zero
Burgers vector sum can exist in a triangular lattice.
These are incorporated as pairs by combining two nearby
dislocations and treating this combination as a single
dislocation in a pair. Thirdly, there is an angular strain
introduced into the lattice by a dislocation and the stress
is a tensor while the velocity field of a vortex is a vector
and its magnitude depends only on the radial coordinate.
Finally, dislocations differ in that they can only diffuse
along the glide line in the absence of vacancies and inter-
stitials, and their diffusion is one-dimensional on short
time scales.

The predominant effect of the additional degrees of
freedom of the Burgers vectors, the existence of triplets,
and the angular strain field which leads to the cos 0 term
in the expression for U is to alter the form of the
Kosterlitz- Thouless renormalization equations. The
effects of the one-dimensional diffusion on short-time
scales is to slightly alter the relaxation time for an ensem-
ble of dislocation pairs when driven from a thermal equi-
libriurn distribution.

Despite the differences between these systems, identical
expressions are obtained for the dispersion relation and



40 DYNAMICS OF DISLOCATION-MEDIATED MELTING IN A. . . 9011

the damping of third sound in thin superAuid films and
for the dispersion relation and the damping of transverse
sound in a two-dimensional crystal. These expressions
are given in terms of the real and imaginary parts of the
dielectric constant, and the differences lie in the forms of
the Kosterlitz-Thouless renormalization curves from
which the dielectric constant is calculated.

D. Bynamical dielectric constant

The absorbed power may be written as
II

=-'mu'u' ~ijkl
2 tJ kl

(
r )2+( Ir )2

~&jkl Gljkl
(29)

(g (t)g„(t')) =2D„5„5(t t') . — (31)

Since locations can climb only by creating or annihilat-
ing defects, the diffusion coefficients for climb motion Dz
and glide motion DI~ differ in magnitude. A dislocation
climbs a distance a whenever a vacancy or interstitial
moves to or from the dislocation. If the attractive in-
teraction between a defect and a dislocation is neglected,
this occurs at a frequency co, =c,co.;+c,co„where cu; and
m, are, respectively, the interstitial and vacancy hopping
frequencies, and D; and D, are their respective diffusion
rates. The glide diffusion of the dislocations has been
neglected here. The climb diffusion constant is
D~ =c&D& —=c;D;+c,D„. The parameter D& is an
effective defect diffusion constant.

A crude estimate for r(r) can be obtained by setting the

where e' and e" are, respectively, the real and imaginary
parts of the dielectric constant. The dielectric constant is
the sum of contributions from bound pairs and free dislo-
cations, e(r)=eI, (r)+a&. Only dislocation pairs contrib-
ute to e' while both pairs and free dislocations contribute
to the losses and thus to e". We will first examine the
pair contribution to determine the correct value of r at
which to evaluate Eb(r).

For a given stress, the force acts in opposite directions
on the two partners of a pair. Thus the pairs are alter-
nately stretched and compressed in an alternating stress
field. The maximum absorption occurs from those pairs
for which co~(r, 8)=1, where r(r, 8) is the characteristic
time for an ensemble of pairs of separation r to relax to
an equilibrium configuration after a stress field is- re-
moved. The relaxation time r( r, 8 ) can be obtained by
writing a pair of Langevin equations for the diffusive
motion of a pair:

dr„/dt = —(2D&/ks T)(V U)&+g&(t) . (30)

Here the subscript p refers to components parallel and
perpendicular to the Burgers vectors. This equation is
obtained by subtracting the Langevin equations for two
dislocations of opposite sign moving in their mutual
stress fields and subject to an oscillating external driving
force 5f,„,. Here U = U —5 f,„„r,where U is given by
Eq. (3), and the parameter g(t) is a Iluctuating Gaussian
noise source with separate and unequal components
along the glide and climb directions. The components
g/(t) along these directions satisfy

deb
Ime~(co) =—r

4 dr r =(14/Dco)
(32)

The contribution of free dislocations to the dielectric
constant is taken from the plasma analog and is given by

gy =lO /CO

o„=n/b D„/k~T .

(33)

(34)

E. Eft'ect of nonequilibrium defect concentrations
on dislocation climb

The net defect concentration deviation 6c& which
enters Eq. (16) has been ignored in the above derivations.
This deviation is proportional to the climb displacement
of dislocations and reduces the applied force in the climb
direction. The insertion of Eq. (16) for cr; into Eq. .(12)
yields the following expression for the power dissipated
by climb motion:

p=p, —a) Im(y5c~u, , ) . (35)

An expression for 5c& can be derived under certain
conditions. The creation or annihilation of interstitials
and vacancies by the motion of dislocations results in a
local and temporal deviation in c& from equilibrium. De-
fects diffuse into a sample of dimension L from the boun-
daries on a time scale of ~l =L /D&. If the climb
motion of dislocations is sufficiently slow, this process
will maintain (5cz ) =0.

time for an ensemble of pairs of separation r to relax to
equilibrium after a stress is removed equal to
-r/~dr/dt~. For the case 8=0, VU =ECb /4~r, and
~(r) is of the order of 4~r k~ T/2DK ( TKT )b =r /8D.

Ambegaokar and Teitel determined the response
function g (r, co) for vortex pairs of separation r and fit
g(r, co) to a single relaxation time g(r, co) =(1 i—cov)
Their best fit gave r(r)=r /14D. The case for disloca-
tion pairs differs from that for vortices in that DJ (CD~I,
and the diffusion is essentially one dimensional on small-
time scales.

Following the calculation of Ambegaokar and Teitel,
we found g(r, 8, co) for the one-dimensional diFusion of
dislocation pairs along the glide line for the special case
0=0. Our derivation is presented in the Appendix. This
analysis ignores the interpair coupling. The best fit to g
for a single relaxation time for 8=0 is r~~(8=0)
=r /15D~~. For a given value of r, larger values of 8 are
energetically favored. An analysis of our differential
equation for g (r, 8, co) suggests that g (r, 8) will decrease
for larger values of I9. We suggest that the value for vor-
tices, r~~(r)=r /14D~~, is a reasonable average value for
dislocations. The solution for climb motion is difficult
because the pair can undergo glide motion (r and 8 vary)
in a climb relaxation time.

AHNS argue that since the response passes from its
low- to high-frequency behavior at car= 1 and e(r) is a
slowly varying function of lnr, the power losses may be
approximated by evaluating e&(r) at r =(14D/co)'
They show that the imaginary part of ez (co ) is given by
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A uniform, but nonequilibrium, concentration of de-
fects can be maintained if the defects created by the climb
motion of dislocations diffuse sufficiently fast. The time
scale to attain a uniform 5cz is r„-a /cdDs, where cd is
the concentration of dislocations. Both pairs and free
dislocations are included in ed.

We assume 5cz to be uniform and small, ~5cz/cs ~
&& 1,

and define the climb of a dislocation as positive when an
extra row of atoms is partially withdrawn. Positive climb
then results in an increase in 5ez. The time derivative of
5c& is given by

d(5c~)
dt

=n g b'X v', (36)

where n is a unit vector normal to the plane of the crys-
tal. The product bXv=nbu„where the climb velocity
U, =f,Di Ikz T, and f, is the net force in the climb direc-
tion. Only long-wavelength applied strains are con-
sidered here so that dislocation density gradients can be
ignored.

The presence of a finite value of 5c& leads to an excess
pressure p in the lattice,

p = c1fg /clc g
=g 5cg +)' u;; (37)

The product —bp represents an additional climb force on
a dislocation. The term by '5c&—represents a thermo-
dynamic force which was first derived by Bardeen and
Herring for the case of vacancies. An increase (de-
crease) in cz results in a higher (lower) probability that
an interstitial will diffuse to a dislocation and cause it to
move against the applied force.

%'e consider only a uniform distribution of free dislo-
cations so that we may neglect interdislocation forces.
The climb force on a dislocation with a Burgers vector
oriented at an angle P with respect to the x axis is

f, = b(o.„„cosP+—o sin P+cr„~sin2$+p ) . {38)

where the defect deviation relaxation time is

r=nok~ Tg/a ~cd Di(1+yy) =r„I(1+yy ) .

For an oscillatory applied strain, we obtain "
(41)

(42)

The climb force on a dislocation vanishes in a time v.

after a strain is applied except for the angular-dependent
term proportional to p, in Eq. (39). The case for disloca-

This force can be written with the substitution of Eqs.
(16) and (37) into Eq. (38) as

f, = b[(8+y)u, , +—p[(u„„—ugly)cos2$+2u ysin2$]

+(y+y ')5cg) . (39)

Here 8 =k+p is the bulk modulus. The time derivative
of (5c~) is obtained from Eqs. (36) and (39). The sum
over dislocations averages over all angles, and we obtain

d(5c~ & '[(8 +y)u;;/(y+g ')+ (5c~ )], (40)

tion pairs is much more complicated because intrapair
forces must be included in Eq. (39). Nevertheless, the
same qualitative behavior occurs, i.e., dislocation climb
results in a net defect concentration deviation which
builds up until the applied climb force is cancelled. In
general, we may write

(5cq ) = —C(co, T)u;;, (43)

where C is complex both because of the finite value of co~
and because it depends on the elastic constants.

The condition that the distribution of defects be uni-
form requires d'or„&&l. Equation (42) is valid in the
range zL '«u«~„'. For larger frequencies, the local
value of ~5cs~ is large in the vicinity of dislocations un-
dergoing, climb motion, and their motion is again restrict-
ed.

The limitation ~5cs/cs ~
&& 1, assumed above, holds for

small values of the applied compressional strain. We ex-
press y ' with the use of Eqs. (4) and (5) as

'-p8/4m(p+8). cs The l. imitation on u;, such that
~5c, /c,

~

«1 is

o« p 1+3 X
4ir(8 +p) I+) 8-' (44)

F. Power dissipation including nonequilibrium
net defect concentrations

+ —,'Im( —p)[(u,„—u~~) +4(u,~) ]J,
pg= —,'co{—,'Im( —p)[(u„„—u ) +4(u„) ]J .

(45)

(46)

The respective applied force components along the climb
and glide directions, f; and fz, are

f;= b[ (8 —y C—)u;; +p[( u —u )cos2$

+2u sin2$] ),
fg = —bp[(u„„—u~~)sin2$ —2u cos2$] .

(47)

(48)

The applied and net forces along the glide line are equal.
The dislocation velocity is proportional to the net force
acting on it. For the linear viscous response of disloca-
tions to a force, the absorbed power is proportional to the
real part of the dot product of the applied and net forces
summed over all dislocations and averaged over all an-
gles. A comparison of Eqs. (45) and (46) and the expres-
sions for the average product of the respective applied
and net force components allows one to identify Eqs. (45)
and {46),respectively, as the power absorbed by the climb
and glide motion of dislocations.

III. DISCUSSION

An interesting result is the temperature dependence of
the absorbed power for various frequencies of the applied

In order to examine the power loss, we combine Eqs.
(14), (17), (35), and (43) to break up the absorbed power
into two terms, p =p, +p, with

p, =
—,'co[ [Im( —8)—Im( —yC)](u;,. )
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strain. The temperature dependence of the bulk and
shear moduli are given by the KTHNY theory and are
obtained from separate renormalization curves. The fre-
quency dependence is determined by the pair separation
at which the dielectric constants are evaluated.

The Kosterlitz-Thouless renormalization curves are
functions of two variables which are parameteric in the
variable l =In(r/a), where a is the lattice spacing. The
separation of a pair has little meaning for separations
greater than the interpair spacing. The dislocations are
considered to be free for larger separations,
r )r *=g+ ~ exp( I ), where l * =hot

' is calculated
from the linearized renormalization curves. ' The con-
stant go in Eq. (1) is not known exactly, and we define

nf =(f/2~a )exp( —2l'), (49)

where f is a number of order unity. There are two other
parameters in the theory. These are D and the ratio
E, /T = —lnyo, where yo is the starting point for the in-
tegration of the renormalization curves.

A. Power losses due to glide motion

In Fig. 2 we present the temperature dependence of the
power losses due to the driven glide of dislocations at
various drive frequencies for the electron lattice. The
figure is a plot of normalized power

Irn( Ii„')= Ir„"—/[(~„')'+ (~„")'], (50)

where Im( —p) =JMo( T, )Im( —~„'), and Ii„=go( r) /
p( T)=a'+ i a" is the relative dielectric constant for
shear. Here po(T) =go( T, ) is the unrenormalized shear

modulus, i.e., in the absence of dislocations. It is about
10% greater than the critical value at TKr. The parame-
ters used in the calculation were f =1, E, /TKr =4.9,
and D~~= —,'co a, where ~ is the transverse mode fre-
quency averaged over the Brillioun zone boundary. The
areal electron density was 5.4 X 10 cm . The
justification for using this value of D~~ is that the energy
for glide motion should be much less than E, -5k& T, and
thus the hopping frequency for dislocations is of the or-
der of the attempt frequency co . The linearized renor-
malization curves were used for this figure. The full re-
normalization curves give the same qualitative behavior.
They result in broader peaks and a slight shift of the
peaks to higher temperature.

The power loss curves have a simple interpretation. A
given lattice stress polarizes the dislocation pairs during
each cycle of the external field. Those pairs which relax
in a time ~=co ' dominate the power absorption at small
reduced temperatures. The free dislocation density is
strongly temperature dependent, and free dislocations
give the dominant contribution at temperatures above the
maximum when the more exact full renormalization
curves are used. The contribution of free dislocations is
small in the curves shown in Fig. 2.

The narrow width in temperature of the power absorp-
tion can be understood by examining Eq. (50). The com-
ponents v'( T) and v"(T) both vary rapidly with tempera-
ture near TK~, but the imaginary part ~" o- rd~'/dr is
vanishingly small for T «TK+ and varies much more
rapidly than ~'. The ratio x"/x' varies from a negligible
value to a value much greater than unity in a narrow
range (-10 ) of reduced temperature. As a result the
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FIG. 2. Temperature dependence of the imaginary part of the relative dielectric constant for shear, Eq. (50), for a series of frequen-
cies. The curves from left to right are for normalized applied frequencies ~/co of 0.5, 2, 4, 8, 11.5, 19, 32, and 45 X 10
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power loss is sharply peaked in temperature.
The shift of the peak to higher temperatures with in-

creasing frequency is explained by the fact that the power
absorption acts as a "spectrometer" which probes pairs
with dift'erent separations at diferent drive frequencies,
I"-~ ' . Smaller pairs are probed at higher frequen-
cies. Larger pairs are more strongly screened than small-
er pairs at a fixed T. Thus a higher temperature (addi-
tional screening) is required to obtain the same value of
the dielectric constant for smaller pairs. The contribu-
tion of free dislocations to Im( —~„') varies as co 'nf(T)
on the low-temperature side of the peak and as conf '(T)
in the high-temperature wing of the curve.

B. Power losses due to climb motion

The contribution of pairs to the elastic constants must
be evaluated at r =(aiDi/co)', where ai is a numerical
constant which we have not been able to evaluate. For
co & aiDi/a, the pair contribution to the loss from climb
motion is greatly reduced. The pair contribution to the
term proportional to Im( —p) in the expression for p, is
identical to the pair contribution to p with the frequency
scaled by 14D~~/aiDi For t.he free dislocation contribu-
tion, the frequency is scaled by Di/Di. The sum of ps
and this term in p, result in broadened absorption peaks,
or in the extreme case, a double peak.

The qualitative temperature dependence of Im( 8)is-
similar to Im( —p) but shifted to higher temperatures
even neglecting the fact that Di&D~~~An exact. evalua-
tion of the term Im( —yC) in Eq. (45) is difficult. The de-
fect concentration in the electron lattice is small. For
this case the eff'ect of the term Im( —yC) is to nearly can-
cel the coefficient of (u;; ) in Eq. (45), since the creation of
excess defects severely limits dislocation climb.

The large reduction in the power losses for an applied
strain due to the creation of excess defects which occurs
in the case of the electron lattice rejects the fact that
only a small fraction of the total free energy of compres-
sion is associated with the rearrangement of "atoms. "
That is, the large value of bulk modulus is the result of
long-range Coulomb interactions, and the bulk moduli
for the Quid and crystal phases are nearly equal. Thus
only a small fraction of the compressional energy can be
extracted by the motion of dislocations.

C. Relation to other work

The power absorption calculated here is analogous to
the power absorption by vorticies in a thin helium film
when driven by a superAuid velocity How. The curves
shown in Fig. 2 resemble the theoretical curves of AHNS
which were evaluated by Bishop and Reppy. The corre-
sponding case of an applied stress was calculated by
ZHN. For this case the power absorption is proportional
to the imaginary part of the inverse elastic tensor
coe%cients. This leads to a monotonic increase in power
absorption with temperature.

According to the work of AHNS, the finite frequency
superAuid density decreases smoothly to zero at a tem-
perature near the maximum of the absorption curve. The

finite frequency shear modulus, which is the analog of the
superAuid density, should likewise vanish at a tempera-
ture near the absorption peak. Deville et aI. ' measured
the temperature dependence of the shear modulus of the
electron lattice at a frequency of co-10 cu . One ob-
serves from an extrapolation of the curves in Fig. 2 that
their ac shear modulus should vanish at T=1.04TKT.
Their single data point which lies below the stability line

pd, ( TKT) versus TKT might be interpreted as a finite fre-
quency value above TKT. Such an interpretation would
presumably discriminate against a grain boundary mech-
anism and provide stronger evidence for dislocation-
mediated melting of the electron crystal.

Together with colleagues, some of us reported a mea-
surement of the power absorbed by a two-dimensional
electron lattice subjected to an applied uniaxial strain. A
narrow frequency dependent absorption peak was ob-
served in the vicinity of T, with a reduced temperature
width of -0.05. The maximum power absorbed per unit
area at an applied frequency of 1 MHz was 4X10
W/m for an applied strain of u =2 X 10
u =u =0. The shear and bulk moduli for this sample
are calculated to be p,o=4X10 ' J/m and 8 =10 p.
According to Eqs. (46) and (50) and Fig. 2, the maximum
power absorbed by the glide motion of dislocations is
-6X10 ' W/m . An equal amount of power is ac-
counted for by the second term in the brackets of Eq.
(45), and the first term is not substantially larger because
of cancellation by the thermodynamic force. The power
absorbed by dislocation motion fails to account for the
peak power absorption by four orders of magnitude.

If it should prove possible to find a two-dimensional
system in which the damping due to dislocation motion
throughout the melting region is not overwhelmed by
other loss mechanisms, the temperature- and frequency-
dependent response to an applied strain will provide a
strong test of dislocation-mediated melting. In particu-
lar, it is the limitation on losses by dislocation climb re-
sulting from a net defect concentration deviation, which
allows for a high-Q (quality factor) response. Thus the
response to a cornpressional strain can, in principle, be
measured well above T, without overdamping.

We have examined the imaginary part of e to obtain
the temperature and frequency dependence of the power
absorption. The temperature dependence of the finite fre-
quency shear modulus under conditions of applied strain
can be obtained from the real part of e '. A measure-
ment of the frequency dependence of the shear modulus
in the region of melting would provide a further test of
dislocation-mediated melting.
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APPENDIX: RELAXATION OF DISLOCATION PAIRS

We are interested in calculating the linear response of a
thermal ensemble of dislocation pairs to an oscillating ap-
plied force. We shall only consider glide motion. This
derivation follows the analysis of the relaxation of vortex
pairs in a helium film by Ambegaokar and Teitel and
differs from it in that the diffusion in the present case is
one dimensional since dislocations are restricted to move
along the glide line, i.e., parallel to the Burgers vectors.
The interactions between pairs are neglected:

2 2

U» =2q f — cos 8—q5E.r+2E, , (Al)
a Z(r)r Z(r)

where 2q / F(r) =Kb'/4n. , Z(r) is the static dielectric con-
stant, 6E represents a small macroscopic stress in the lat-
tice, which varies as e ' ', and the separation of a pair r
and the angle 8 are shown in Fig. 3.

We consider a pair whose glide lines are separated by a
constant distance y =r sinO. The Langevin equation for
the pair is

dX =2DF /ks T+ri(t),
dt (A2)

F„= A,2q'/Zx ——q5E, =F„o+5F
where A,(x)=cos 8cos28=x (x —y )/(x +y ) .

The density of pairs per unit area of separation is

I"(r,8, t)=a "exp[ —U(r, 8, t)/klan T] .

(A3)

(A4)

where D =D~~ and g is a Gaussian noise source obeying
Eq. (31). The force along the glide line is given by
F = —(8U/Bx) ~»

=const. This leads to

By substitution of previously de6ned quantities into Eq.
(A9), g is found to obey the differential equation

x g"+x(2—s)g' —( icox—/2D+s)g+s =0, (A10)

where s =A, (x)2q /eks T.
As a first approximation, we set 2qek~ T =2q /

e, k&T, =4 and define z = —icox /2D. Then Eq. (A9)
takes the form

z g "(z)—[4A,(z) —2]zg '(z ) —[4A (z) +z ]g (z)

+4k, (z) =0 . (Al 1)

This equation may be compared with Eq. (9) of Am-
begaokar and Teitel. The difference between the num-
bers 2 and 3 appearing in the coeKcients of xg' in Eq.
(A10) and Eq. (7) of Ref. 32 arises from the difFerence in
the one- and two-dimensional Laplacians used, respec-
tively, in Eq. (A9) and Eq. (5) of Ref. 32.

It is very difficult to solve Eq. (Al 1) in general, and we
examine only the limiting case: p =0, 1=1,y =0, and
x =r. Equation (All) has a resonance at A, =1. Instead
of solving this case directly we solve the differential equa-
tion for Axed k and define

which leads to the Fokker-Planck equation for I,
d I(I F )+2D

kgT dX dX

Equation (A8) is solved for small deviations from equilib-
rium as

ic—o5I = — — (I O5F +F„O51 )+2D . (A9)
2D 8'5l
g T X BX

We write U = Uo —
q 5E(t) r and I =I 0+5I from which

we obtain
g (A, = 1)= lim g(A, =1—5) .

6~0
(A12)

I = I 0[1+q 5E„xg(x,co)/kii T], (A5)

where g (x,co) = 1 corresponds to local equilibrium. Thus

The particular solution which is equal to unity at z =0
can be generated by a power series. The result can be
written as

5I =q 5E„xl Og (x,co)/ks T (A6)
1.0

and we ignore the term exp(q 5E»y /kii T) since the dislo-
cations cannot respond to the y component of the field on
short-time scales and this term is oscillatory and approxi-
mately equal to unity.

The continuity equation for dI /dt is

0.8-

0.6

(A7)

2 0.2-

0-
-0.&

0
I I

3 4

MODULUS OF z

FIG. 3. Geometry of a dislocation pair defining r, 0, and y.
The dashed lines represent glide lines.

FIG. 4. Response function g(z) vs modulus of z for 0=0.
The solid lines represent the exact solution g(z). The dashed
lines are given by an approximate solution g = (1—I', cur /15D)
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g„(z)=z~I (z), (A14)

where p =2k, ——,
' and I(z) is a modified Bessel function of

order v=2K, + —,'.
The general solution which is regular at the origin is

g (z) =g~(z)+leg„(z) . (A15)

g (z) =1+I (3/2)I (1—2A, )

OO 2n

, I (n +3/2)I (n + 1 —2A, )
(A13)

where I'(k) is the gamma function. The homogeneous
solution which is regular at the origin is

The constant tc is determined by setting g (z) =0 as
z~ ~. The asymptotic behavior of the particular solu-
tion is

lim gz(z) = I (3/2)I (1 —2X)2 ~z~It, (z) .
g~ OO

(A16)

Since all orders of I have the same asymptotic behavior,
the constant ~ is

tc= —2 ~I (3/2)I (1—2A, ) . (A17)

In Fig. 4 we plot the real and imaginary parts of g
Q, =0.98) as a function of (cox /2D)' . Also shown is
the best fit to a single relaxation time given by
g =[1 ico—r(0)] with r(8=0)=r /15D.
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