From 330000dcacd34664b2baadbda8e4a4afb57e41ec Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Tue, 28 Feb 2017 18:00:01 -0500 Subject: changes made --- aps_mm_2017.tex | 91 ++++++++++++++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 83 insertions(+), 8 deletions(-) (limited to 'aps_mm_2017.tex') diff --git a/aps_mm_2017.tex b/aps_mm_2017.tex index 47f5e77..eda12da 100644 --- a/aps_mm_2017.tex +++ b/aps_mm_2017.tex @@ -5,33 +5,108 @@ % Copyright (c) 2012 pants productions. All rights reserved. % -\pdfminorversion=4 \documentclass[fleqn]{beamer} \usepackage[utf8]{inputenc} +\usepackage{amsmath,amssymb,latexsym,graphicx} +\usepackage{concmath} +%\usepackage{bera} +%\usepackage{merriweather} \usepackage[T1]{fontenc} -\usepackage[scaled]{helvet} -\usepackage{amsmath,amssymb,latexsym,graphicx,soul,amsthm,rotating,etex,sansmath,listings,tabularx,tikz} -\usepackage[export]{adjustbox} -\usecolortheme{beaver} -\usetikzlibrary{decorations.pathreplacing} +\usecolortheme{beaver} +\usefonttheme{serif} \title{Universal scaling and the essential singularity at the Ising first-order transition} \author{ Jaron~Kent-Dobias\inst{1} \and James~Sethna\inst{1}} \institute{\inst{1}Cornell University} \date{16 March 2016} -\usepackage[normalem]{ulem} \begin{document} \def\dd{\mathrm d} +\def\im{\mathop{\mathrm{Im}}} \begin{frame} - \usefont{T1}{phv}{b}{n} \titlepage \end{frame} +\begin{frame} + \frametitle{Renormalization and free energy} + Rescale a system by a factor $b$, with couplings $K\to K'$. + From John Cardy's \emph{Scaling and Renormalization in Statistical Physics}, + free energy per site $f$ + \[ + f(\{K\})=g(\{K\})+b^{-d}f(\{K'\}) + \] + \begin{quote} + However, if we are interested in extracting only the \emph{singular} + behavior of $f$, \dots we may obtain a \emph{homogeneous} transformation law for the + \emph{singular part} of the free energy $f_s$ + \[ + f_s(\{K\})=b^{-d}f_s(\{K'\}) + \] + \end{quote} + Defense: $g(\{K\})$ is an analytic function of $\{K\}$, while the singular + part is nonanalytic +\end{frame} + +\begin{frame} + Follow thermodynamic functions onto metastable branch. +\end{frame} + +\begin{frame} + \[\Delta f\sim\Sigma\gamma(N)-HMN\] + Near the critical point, $\gamma(N)\sim N^{\frac{d-1}d}$ + \[ + M=|t|^\beta\mathcal M(h/{t^{\beta\delta}}) + \] + \[ + N_{crit}\sim\bigg(\frac{\Sigma}{HM}\Big(1-\tfrac1d\Big)\bigg)^d + \] + \[ + \Delta f_{crit}\sim\Sigma\bigg(\frac{\Sigma}{HM}\bigg)^{d-1} + \sim X^{-(d-1)}\frac{\mathcal + S^d(X)}{\mathcal M^{d-1}(X)} + \] + $X=h/t^{\beta\delta}$ + The probability that such a domain forms and the metastable state decays is given by the Boltzmann factor, + so that + $\Sigma\sim|t|^\mu$, $\mu=-\nu+\gamma+2\beta$ + \[ + \im f\sim e^{-\beta\, \Delta f_{crit}} + \sim\mathcal F(X)e^{-1/X^{d-1}} + \] +\end{frame} + +\begin{frame} + $e^{-1/x}$ is nonanalytic at $x=0$: all derivatives vanish, means that free + energy (which has no imaginary part in stable phase) is smooth + + \centering + \includegraphics[width=0.7\textwidth]{figs/fig1} +\end{frame} +\begin{frame} + Analyticity of $F$ means that the imaginary + + \[ + f(h)=\sum_n A_nh^N + \] + \[ + A_n=(-B)^{1-n}\Gamma(n-1) + \] + + \[ + f(h)=\frac1\pi\int_{h'<0}\frac{\dd h'\,\im f(h')}{h'-h} + \] +\end{frame} + +\begin{frame} + Field theorists (Lubensky, blah blah blah) + \[ + \mathcal + \] +\end{frame} \end{document} -- cgit v1.2.3-54-g00ecf