Universal scaling and the essential singularity at the abrupt Ising transition

Jaron Kent-Dobias ${ }^{1}$ James Sethna ${ }^{1}$
${ }^{1}$ Cornell University

16 March 2016

Renormalization and Universality

Renormalization is an analytic scaling transformation that acts on system space.

From Scaling and Renormalization in Statistical Physics by John Cardy

Renormalization and Universality

> Renormalization is an analytic scaling transformation that acts on system space.

Fixed points are scale invariant, corresponding to systems representing idealized phases or critical behavior.

Renormalization and Universality

Renormalization is an analytic scaling transformation that acts on system space.

Fixed points are scale invariant, corresponding to systems representing idealized phases or critical behavior.

Nonanalytic behavior-like power laws and logarithms-are preserved under RG and shared by any system that flows to the same point.

Renormalization and Universality

Renormalization is an analytic scaling transformation that acts on system space.

Fixed points are scale invariant, corresponding to systems representing idealized phases or critical behavior.

Nonanalytic behavior-like power laws and logarithms-are preserved under RG and shared by any system that flows to the same point.

Not all nonanalytic behavior is singular!

The Metastable Ising Model

Consider an Ising-class model brought into a metastable state.

The Metastable Ising Model

Consider an Ising-class model brought into a metastable state.

A domain of N spins entering the stable phase causes a free energy change

$$
\Delta F=\Sigma N^{\sigma}-M H N
$$

The Metastable Ising Model

Consider an Ising-class model brought into a metastable state.

A domain of N spins entering the stable phase causes a free energy change

$$
\Delta F=\Sigma N^{\sigma}-M H N
$$

The metastable phase is stable to domains smaller than

$$
N_{\text {crit }}=\left(\frac{M H}{\sigma \Sigma}\right)^{-1 /(\sigma-1)}
$$

but those larger will grow to occupy the entire system.

The Metastable Ising Model

The formation of a critical domain has energy cost

$$
\Delta F_{\text {crit }} \sim M H\left(\frac{M H}{\Sigma}\right)^{-1 /(1-\sigma)}
$$

The Metastable Ising Model

The formation of a critical domain has energy cost

$$
\Delta F_{\text {crit }} \sim M H\left(\frac{M H}{\Sigma}\right)^{-1 /(1-\sigma)}
$$

The decay rate of the metastable is proportional to the probability of forming a critical domain $e^{-\beta \Delta F_{\text {crit }}}$.

The Metastable Ising Model

The formation of a critical domain has energy cost

$$
\Delta F_{\text {crit }} \sim M H\left(\frac{M H}{\Sigma}\right)^{-1 /(1-\sigma)}
$$

The decay rate of the metastable is proportional to the probability of forming a critical domain $e^{-\beta \Delta F_{\text {crit }}}$.

Decay of the equilibrium state implies existence of an imaginary part in the free energy,

$$
\operatorname{Im} F \sim e^{-\beta \Delta F_{\text {crit }}}
$$

The Metastable Ising Model

Near the Ising critical point, $\sigma=1-\frac{1}{d}$ and

$$
M=t^{\beta} \mathcal{M}\left(h / t^{\beta \delta}\right) \quad \Sigma=t^{\mu} \mathcal{S}\left(h / t^{\beta \delta}\right)
$$

with $\mathcal{M}(0)$ and $\mathcal{S}(0)$ nonzero and finite.

The Metastable Ising Model

Near the Ising critical point, $\sigma=1-\frac{1}{d}$ and

$$
M=t^{\beta} \mathcal{M}\left(h / t^{\beta \delta}\right) \quad \Sigma=t^{\mu} \mathcal{S}\left(h / t^{\beta \delta}\right)
$$

with $\mathcal{M}(0)$ and $\mathcal{S}(0)$ nonzero and finite.
Therefore,

$$
\Delta F_{\text {crit }} \sim \Sigma\left(\frac{M H}{\Sigma}\right)^{-(d-1)}=X^{-(d-1)} \mathcal{F}(X)
$$

for $X=h / t^{\beta \delta}$, and

$$
\operatorname{Im} F=\mathcal{I}(X) e^{-\beta / X^{(d-1)}}
$$

The Essential Singularity

Imaginary free energy is nonanalytic at $H=0$.

The Essential Singularity

Imaginary free energy is nonanalytic at $H=0$.
This and its implications are therefore a universal feature of the Ising class.

The Essential Singularity

Analytic properties of the partition function imply that

$$
F(X)=\frac{1}{\pi} \int_{-\infty}^{0} \frac{\operatorname{Im} F\left(X^{\prime}\right)}{X^{\prime}-X} \mathrm{~d} X^{\prime}
$$

The Essential Singularity

Analytic properties of the partition function imply that

$$
F(X)=\frac{1}{\pi} \int_{-\infty}^{0} \frac{\operatorname{Im} F\left(X^{\prime}\right)}{X^{\prime}-X} \mathrm{~d} X^{\prime}
$$

Only predictive for high moments of F, or

$$
f_{n}=\frac{1}{\pi} \int_{-\infty}^{0} \frac{\operatorname{Im} F\left(X^{\prime}\right)}{X^{\prime n+1}} \mathrm{~d} X^{\prime}
$$

for $F=\sum f_{n} X^{n}$.

The Essential Singularity

Results from field theory indicate that $\mathcal{I}(X) \propto X$ for $d=2$ and small X, so that

$$
\begin{aligned}
& \operatorname{Im} F=A X e^{-\beta / X^{(d-1)}} \\
& f_{n}=\frac{A \Gamma(n-1)}{\pi(-B)^{n-1}}
\end{aligned}
$$

Not a convergent series-the real part of F for $H>0$ is also nonanalytic.

The Essential Singularity

In two dimensions, the Cauchy integral does not converge, normalize with

$$
F(X \mid \lambda)=\frac{1}{\pi} \int_{-\infty}^{0} \frac{\operatorname{Im} F\left(X^{\prime}\right)}{X^{\prime}-X} \frac{1}{1+\left(\lambda X^{\prime}\right)^{2}} \mathrm{~d} X^{\prime}
$$

$$
\frac{A}{\pi} \frac{X e^{B / X} \operatorname{Ei}(-B / X)+\frac{1}{\lambda} \operatorname{Im}\left(e^{-i \lambda B}(i+\lambda X)(\pi+i \operatorname{Ei}(i \lambda B))\right)}{1+(\lambda X)^{2}}
$$

$$
\chi=t^{-\gamma} \mathcal{X}\left(h / t^{\beta \delta}\right)
$$

$$
\mathcal{X}(X)=\frac{A}{\pi X^{3}}\left[(B-X) X+B^{2} e^{B / X} \operatorname{Ei}(-B / X)\right]
$$

