% % research_midsummer.tex - Research Presentation for the Topaz lab. % % Created by Jaron Kent-Dobias on Tue Mar 20 20:57:40 PDT 2012. % Copyright (c) 2012 pants productions. All rights reserved. % \documentclass[fleqn,aspectratio=169]{beamer} \usepackage[utf8]{inputenc} \usepackage{amsmath,amssymb,latexsym,graphicx} \usepackage{concmath} %\usepackage{bera} %\usepackage{merriweather} \usepackage[T1]{fontenc} \usecolortheme{beaver} \usefonttheme{serif} \setbeamertemplate{navigation symbols}{} \title{Universal scaling and the essential singularity at the abrupt Ising transition} \author{ Jaron~Kent-Dobias \and James~Sethna} \institute{Cornell University} \date{16 March 2017} \begin{document} \def\dd{\mathrm d} \def\im{\mathop{\mathrm{Im}}} \def\ei{\mathop{\mathrm{Ei}}} \def\crit{\mathrm{crit}} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Outline} \begin{itemize} \item Renormalization and the Ising model \pause \item Metastability and complex free energy \pause \item Analytic constraints on the stable free energy \pause \item Closed-form results for {\sc 2d} Ising \end{itemize} \vfill \end{frame} \begin{frame} \frametitle{Renormalization and the Ising Model} \begin{columns} \begin{column}{0.4\textwidth} \centering \includegraphics[width=\textwidth]{figs/fig2}\\ \tiny From \emph{Scaling and Renormalization in Statistical Physics} by John Cardy \end{column} \begin{column}{0.6\textwidth} {\sc Rg} methods typically used to study critical points. \vspace{1em}\pause\\ {\sc Rg} analytically maps system space onto itself. \vspace{1em}\pause\\ Nonanalytic behavior is preserved by {\sc rg}. \vspace{1em}\pause\\ Critical points characterized by common nonanalyticities. \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Renormalization and the Ising Model} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig3} \end{column} \begin{column}{0.6\textwidth} Ising critical point has power laws, logarithms in thermodynamic variables. \vspace{1em}\pause\\ Connected to line of abrupt transitions. \vspace{1em}\pause\\ We've identified predictive nonanalytic behavior along the abrupt transition line. \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig11} \end{column} \begin{column}{0.6\textwidth} \includegraphics{figs/fig12} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig13} \end{column} \begin{column}{0.6\textwidth} \includegraphics{figs/fig14} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig4} \end{column} \begin{column}{0.6\textwidth} Thermodynamics can be continued into metastable phase. \vspace{1em}\pause\\ Decay rate related to imaginary free energy, $\Gamma\propto\frac1{kT}\im F$ (Langer 1969). \vspace{1em}\pause\\ Ising metastable decay somewhat well studied (G\"unther 1980, Houghton 1980) \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} Decay of metastable phase occurs when domain of critical size forms. \vspace{1em}\pause\\ Domain of $N$ spins entering the stable phase causes a free energy change \[ \Delta F=\Sigma N^\sigma-MHN \] with $1-\frac1d\leq\sigma<1$. \pause\vspace{1em}\\ Metastable phase is stable to domains smaller than \[ N_\crit=\bigg(\frac{MH}{\sigma\Sigma}\bigg)^{-1/(\sigma-1)} \] but larger will grow to occupy the entire system, decay to stable phase. \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} Formation of critical domain has energy cost \[ \Delta F_\crit=\Delta F\Big|_{N=N_\crit}\sim \bigg(\frac{\Sigma}{(MH)^\sigma}\bigg)^{1/(1-\sigma)} \] \pause Probability of such a domain forming is \[ P_\crit\sim e^{-\beta\Delta F_\crit} \] \pause Imaginary free energy is therefore \[ \im F\sim\Gamma\sim P_\crit\sim e^{-\beta\Delta F_\crit} =e^{-\beta(\Sigma/(MH)^\sigma)^{1/(1-\sigma)}} \] \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig1} \end{column} \begin{column}{0.6\textwidth} $\im F$ has an essential singularity of the form $e^{-1/H^{\sigma/(1-\sigma)}}$. \vspace{1em}\pause\\ Near critical point, $\sigma=1-\frac1d$, and \[\im F\sim e^{-1/H^{d-1}}\] \pause Nonanalytic behavior is universal! \vspace{1em}\pause\\ Can directly observe by measuring metastable decay rate, but what else? \vspace{1em}\pause\\ Thought to be unobservable (Fisher 1980). \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Analytic Constraints on the Stable Free Energy} Analytic properties of $F(H)$ give Cauchy-style constraint \[ F(H)=\frac1\pi\int_{-\infty}^0\frac{\im F(H')}{H'-H}\;\dd H' \] \pause Only know $\im F(H)$ for $|H|\ll 1$, so constraint only predictive for higher moments, for $F(H)=\sum_nf_nH^n$ \[ f_n=\frac1\pi\int_{-\infty}^0\frac{\im F(H')}{H^{\prime n+1}}\;\dd H' \] \pause Approach well-established in statistical physics and field theory (Parisi 1977, Bogomolny 1977, others) \end{frame} \begin{frame} \frametitle{Closed-form results for {\sc 2d} Ising} Near the critical point with $X=h/t^{\beta\delta}$ and $h=H/T$, \begin{align} M=t^\beta\mathcal M(X) && \Sigma=t^\mu\mathcal S(X) \notag \end{align} \pause Our analysis with some considerations of field theory (Houghton 1980) yields \[ \im F=t^{2-\alpha}\big[AX+\mathcal O(X^2)\big]e^{-[B+\mathcal O(X)]/X} \] \pause Yields moments for $n\geq2$ which agree with others (Baker 1980), \[ f_n=At^{2-\alpha}\frac{\Gamma(n-1)}{\pi(-B)^{n-1}} \] \pause Cauchy-style integral diverges for truncation, $f_0=f_1=\pm\infty$. \end{frame} \begin{frame} \frametitle{Closed-form results for {\sc 2d} Ising} We can use the constraint to compute the susceptibility \[ \chi=\frac{\partial^2F}{\partial h^2} \] \pause Yields a scaling form \begin{align} \chi=t^{-\gamma}\Xi(h/t^{\beta\delta}) && \Xi(X)=-\frac1\pi\frac AX\Bigg[1-\frac BX-\bigg(\frac BX\bigg)^2e^{B/X}\ei\bigg(-\frac BX\bigg) \Bigg] \notag \end{align} \pause Prefactor fixed by known results for zero-field susceptibility \[ A=-\frac{B\pi C_{0_-}}{2T_c} \] with $C_{0_-}=0.0255369719$ (Barouch 1973). \end{frame} \begin{frame} \frametitle{Closed-form results for {\sc 2d} Ising} \includegraphics{figs/fig6} \end{frame} \begin{frame} \frametitle{Closed-form results for {\sc 2d} Ising} \includegraphics{figs/fig5} \end{frame} \begin{frame} \frametitle{Closed-form results for {\sc 2d} Ising} \includegraphics{figs/fig20} \end{frame} \begin{frame} \frametitle{What's Next} We have an explicit form for a new component of the universal scaling forms near the Ising abrupt transition. \vspace{1em} \pause Hope to form parametric scaling variables that include this, correct leading analytic corrections to scaling, and (maybe?) extend smoothly through the metastable region. \vspace{1em} \pause Remain on the lookout for other novel universal properties to incorporate. \end{frame} \begin{frame} \frametitle{Questions?} \small \begin{align} \chi=t^{-\gamma}\Xi(h/t^{\beta\delta}) && \Xi(X)=-\frac1\pi\frac AX\Bigg[1-\frac BX-\bigg(\frac BX\bigg)^2e^{B/X}\ei\bigg(-\frac BX\bigg) \Bigg] \notag \end{align} \centering \includegraphics[width=0.7\textwidth]{figs/fig20} \end{frame} \end{document}