% % research_midsummer.tex - Research Presentation for the Topaz lab. % % Created by Jaron Kent-Dobias on Tue Mar 20 20:57:40 PDT 2012. % Copyright (c) 2012 pants productions. All rights reserved. % \documentclass[fleqn]{beamer} \usepackage[utf8]{inputenc} \usepackage{amsmath,amssymb,latexsym,graphicx} \usepackage{concmath} %\usepackage{bera} %\usepackage{merriweather} \usepackage[T1]{fontenc} \usecolortheme{beaver} \usefonttheme{serif} \setbeamertemplate{navigation symbols}{} \title{Universal scaling and the essential singularity at the abrupt Ising transition} \author{ Jaron~Kent-Dobias\inst{1} \and James~Sethna\inst{1}} \institute{\inst{1}Cornell University} \date{16 March 2016} \begin{document} \def\dd{\mathrm d} \def\im{\mathop{\mathrm{Im}}} \def\ei{\mathop{\mathrm{Ei}}} \def\crit{\mathrm{crit}} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Parametric Ising Models} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics[width=\textwidth]{figs/fig7} \vspace{1em} \includegraphics[width=\textwidth,height=0.5\textwidth]{susceptibility.jpg} \tiny\texttt{a plot of susceptibility with precision parametric fit and it isn't very good at the abrupt transition} \end{column} \begin{column}{0.6\textwidth} Scaling forms of Ising variables that do well globally. \pause\vspace{1em} Incorporate the critical point in a natural way: \begin{itemize} \item singular scaling with the ``radial coordinate'' \item analytic scaling with the ``angular coordinate'' \end{itemize} \vspace{1em} \pause Typically do a very poor job near the abrupt transition at $H=0$. \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Renormalization and Universality} \begin{columns} \begin{column}{0.4\textwidth} \centering \includegraphics[width=\textwidth]{figs/fig2} \tiny From \emph{Scaling and Renormalization in Statistical Physics} by John Cardy \end{column} \begin{column}{0.6\textwidth} Renormalization is an analytic scaling transformation that acts on system space. \vspace{1em}\pause Fixed points are scale invariant, corresponding to systems representing idealized phases or critical behavior. \vspace{1em}\pause Nonanalytic behavior---like power laws and logarithms---are preserved under {\sc rg} and shared by \emph{any} system that flows to the same point. \vspace{1em}\pause Not all nonanalytic behavior are power laws! \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{The Metastable Ising Model} \begin{columns} \begin{column}{0.3\textwidth} \only<1-1>{\includegraphics[width=\textwidth]{figs/fig3}} \only<2->{\includegraphics[width=\textwidth]{figs/fig4}} \vspace{1em} \includegraphics[width=\textwidth]{figs/fig8} \end{column} \begin{column}{0.7\textwidth} Consider an Ising-class model brought into a metastable state. \vspace{1em} \pause\pause A domain of $N$ spins entering the stable phase causes a free energy change \[ \Delta F=\Sigma N^\sigma-MHN \] \pause The metastable phase is stable to domains smaller than \[ N_\crit=\bigg(\frac{MH}{\sigma\Sigma}\bigg)^{-1/(\sigma-1)} \] but those larger will grow to occupy the entire system. \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{The Metastable Ising Model} The formation of a critical domain has energy cost \[ \Delta F_\crit\sim MH\bigg(\frac{MH}{\Sigma}\bigg)^{-1/(1-\sigma)} \] \pause The decay rate of the metastable is proportional to the probability of forming a critical domain $e^{-\beta\Delta F_\crit}$. \pause \vspace{1em} Decay of the equilibrium state implies existence of an imaginary part in the free energy, \[ \im F\sim e^{-\beta\Delta F_\crit} \] \end{frame} \begin{frame} \frametitle{The Metastable Ising Model} Near the Ising critical point, $\sigma=1-\frac1d$ and \begin{align*} M=t^\beta\mathcal M(h/{t^{\beta\delta}}) && \Sigma=t^\mu\mathcal S(h/{t^{\beta\delta}}) \end{align*} with $\mathcal M(0)$ and $\mathcal S(0)$ nonzero and finite. \pause \vspace{1em} Therefore, \[ \Delta F_\crit\sim\Sigma\bigg(\frac{MH}{\Sigma}\bigg)^{-(d-1)} =X^{-(d-1)}\mathcal F(X) \] for $X=h/t^{\beta\delta}$, and \[ \im F=t^{2-\alpha}\mathcal I(X)e^{-\beta/X^{(d-1)}} \] \end{frame} \begin{frame} \frametitle{The Essential Singularity} \begin{center} \includegraphics[width=.7\textwidth]{figs/fig1} \end{center} Imaginary free energy is nonanalytic at $H=0$. \pause\vspace{1em} This and its implications are therefore a universal feature of the Ising class. \end{frame} \begin{frame} \frametitle{The Essential Singularity} Analytic properties of the partition function imply that \[ F(X)=\frac1\pi\int_{-\infty}^0\frac{\im F(X')}{X'-X}\;\dd X' \] \pause Only predictive for high moments of $F$, or \[ f_n=\frac1\pi\int_{-\infty}^0\frac{\im F(X')}{X^{\prime n+1}}\;\dd X' \] for $F=\sum f_nX^n$. \end{frame} \begin{frame} \frametitle{The Essential Singularity} Results from field theory indicate that $\mathcal I(X)\propto X+\mathcal O(X^2)$ for $d=2$, so that \[ \im F=t^{2-\alpha}\big(AX+\mathcal O(X^2)\big)e^{-\beta/X^{(d-1)}} \] \pause The resulting moments for $n>1$ are \[ f_n=At^{2-\alpha}\frac{\Gamma(n-1)}{\pi(-B)^{n-1}} \] \pause Not a convergent series---the real part of $F$ for $H>0$ is also nonanalytic! \end{frame} \begin{frame} \frametitle{The Essential Singularity} In two dimensions, the Cauchy integral does not converge, normalize with $\lambda$, \[ F(X\,|\,\lambda)=\frac1\pi\int_{-\infty}^0\frac{\im F(X')}{X'-X}\frac1{1+(\lambda X')^2}\;\dd X' \] \pause Exact result has form \[ \begin{aligned} F(X\,|\,\lambda)&=\frac{A}\pi\frac1{1+(\lambda X)^2}\Big[ Xe^{B/X}\ei(-B/X)\\ &\qquad+\frac1\lambda\im(e^{-i\lambda B}(i+\lambda X)(\pi+i\ei(i\lambda B)))\Big] \end{aligned} \] \pause The Cauchy integral is only predictive for high moments. \end{frame} \begin{frame} \frametitle{The Essential Singularity} What about the susceptibility $\chi=\frac{\partial^2\!F}{\partial h^2}$? \pause \vspace{1em} Has a well-defined limit as $\lambda\to0$, simple functional form: \[ \chi=t^{-\gamma}\mathcal X(h/t^{\beta\delta}) \] where the scaling function is \[ \mathcal X(X)=\frac A{\pi X^3}\big[(B-X)X+B^2e^{B/X}\ei(-B/X)\big] \] \centering \includegraphics[width=0.6\textwidth]{figs/fig9} \end{frame} \begin{frame} \frametitle{The Essential Singularity} Two parameter fit to simulations yields $A=-0.0939(8)$, $B=5.45(6)$, close agreement in limit of small $t$ and $H$! \vspace{1em} \only<1-1>{\includegraphics[width=\textwidth]{figs/fig6}} \only<2-2>{\includegraphics[width=\textwidth]{figs/fig5}} \vspace{1em}\pause \end{frame} \begin{frame} \frametitle{What's Next} We have an explicit form for a new component of the universal scaling forms near the Ising abrupt transition. \vspace{1em} \pause Hope to form a parametric scaling variables that include this, correct leading analytic corrections to scaling, and (maybe?) extend smoothly through the metastable region. \vspace{1em} \pause Remain on the lookout for other universal properties to incorporate. \end{frame} \begin{frame} \huge \centering {\sl Questions?} \end{frame} \end{document}