% % research_midsummer.tex - Research Presentation for the Topaz lab. % % Created by Jaron Kent-Dobias on Tue Mar 20 20:57:40 PDT 2012. % Copyright (c) 2012 pants productions. All rights reserved. % \documentclass[fleqn]{beamer} \usepackage[utf8]{inputenc} \usepackage{amsmath,amssymb,latexsym,graphicx} \usepackage{concmath} %\usepackage{bera} %\usepackage{merriweather} \usepackage[T1]{fontenc} \usecolortheme{beaver} \usefonttheme{serif} \title{Universal scaling and the essential singularity at the Ising first-order transition} \author{ Jaron~Kent-Dobias\inst{1} \and James~Sethna\inst{1}} \institute{\inst{1}Cornell University} \date{16 March 2016} \begin{document} \def\dd{\mathrm d} \def\im{\mathop{\mathrm{Im}}} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Renormalization and free energy} Rescale a system by a factor $b$, with couplings $K\to K'$. From John Cardy's \emph{Scaling and Renormalization in Statistical Physics}, free energy per site $f$ \[ f(\{K\})=g(\{K\})+b^{-d}f(\{K'\}) \] \begin{quote} However, if we are interested in extracting only the \emph{singular} behavior of $f$, \dots we may obtain a \emph{homogeneous} transformation law for the \emph{singular part} of the free energy $f_s$ \[ f_s(\{K\})=b^{-d}f_s(\{K'\}) \] \end{quote} Defense: $g(\{K\})$ is an analytic function of $\{K\}$, while the singular part is nonanalytic \end{frame} \begin{frame} Follow thermodynamic functions onto metastable branch. \end{frame} \begin{frame} \[\Delta f\sim\Sigma\gamma(N)-HMN\] Near the critical point, $\gamma(N)\sim N^{\frac{d-1}d}$ \[ M=|t|^\beta\mathcal M(h/{t^{\beta\delta}}) \] \[ N_{crit}\sim\bigg(\frac{\Sigma}{HM}\Big(1-\tfrac1d\Big)\bigg)^d \] \[ \Delta f_{crit}\sim\Sigma\bigg(\frac{\Sigma}{HM}\bigg)^{d-1} \sim X^{-(d-1)}\frac{\mathcal S^d(X)}{\mathcal M^{d-1}(X)} \] $X=h/t^{\beta\delta}$ The probability that such a domain forms and the metastable state decays is given by the Boltzmann factor, so that $\Sigma\sim|t|^\mu$, $\mu=-\nu+\gamma+2\beta$ \[ \im f\sim e^{-\beta\, \Delta f_{crit}} \sim\mathcal F(X)e^{-1/X^{d-1}} \] \end{frame} \begin{frame} $e^{-1/x}$ is nonanalytic at $x=0$: all derivatives vanish, means that free energy (which has no imaginary part in stable phase) is smooth \centering \includegraphics[width=0.7\textwidth]{figs/fig1} \end{frame} \begin{frame} Analyticity of $F$ means that the imaginary \[ f(h)=\sum_n A_nh^N \] \[ A_n=(-B)^{1-n}\Gamma(n-1) \] \[ f(h)=\frac1\pi\int_{h'<0}\frac{\dd h'\,\im f(h')}{h'-h} \] \end{frame} \begin{frame} Field theorists (Lubensky, blah blah blah) \[ \mathcal \] \end{frame} \end{document}