% % research_midsummer.tex - Research Presentation for the Topaz lab. % % Created by Jaron Kent-Dobias on Tue Mar 20 20:57:40 PDT 2012. % Copyright (c) 2012 pants productions. All rights reserved. % \documentclass[fleqn,aspectratio=169]{beamer} \usepackage[utf8]{inputenc} \usepackage{amsmath,amssymb,latexsym,graphicx} \usepackage{concmath} %\usepackage{bera} %\usepackage{merriweather} \usepackage[T1]{fontenc} \usecolortheme{beaver} \usefonttheme{serif} \setbeamertemplate{navigation symbols}{} \title{Universal scaling and the essential singularity at the abrupt Ising transition} \author{ Jaron~Kent-Dobias \and James~Sethna} \institute{Cornell University} \date{16 March 2017} \begin{document} \def\dd{\mathrm d} \def\im{\mathop{\mathrm{Im}}} \def\ei{\mathop{\mathrm{Ei}}} \def\crit{\mathrm{crit}} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Outline} \begin{itemize} \item Renormalization and the Ising model \pause \item Metastability and complex free energy \pause \item Analytic constraints on the stable free energy \pause \item Closed-form results for the {\sc 2d} Ising susceptibility \end{itemize} \vfill \end{frame} \begin{frame} \frametitle{Renormalization and the Ising Model} \begin{columns} \begin{column}{0.4\textwidth} \centering \includegraphics[width=\textwidth]{figs/fig2}\\ \tiny From \emph{Scaling and Renormalization in Statistical Physics} by John Cardy \end{column} \begin{column}{0.6\textwidth} {\sc Rg} analytically maps system space onto itself. \vspace{1em}\pause\\ Fixed points correspond to phases, criticality. \vspace{1em}\pause\\ Nonanalytic behavior is preserved by {\sc rg}. \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Renormalization and the Ising Model} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig3} \end{column} \begin{column}{0.6\textwidth} Ising critical point has power laws, logarithms in thermodynamic variables. \vspace{1em}\pause\\ Connected to line of abrupt transitions. \vspace{1em}\pause\\ We've identified nonanalytic behavior along the abrupt transition line. \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig11} \end{column} \begin{column}{0.6\textwidth} \includegraphics{figs/fig12} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig13} \end{column} \begin{column}{0.6\textwidth} \includegraphics{figs/fig14} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig4} \end{column} \begin{column}{0.6\textwidth} Thermodynamics can be continued into metastable phase. \vspace{1em}\pause\\ Decay rate related to imaginary free energy, $\Gamma\propto\frac1{kT}\im F$ (Langer 1969). \vspace{1em}\pause\\ Ising metastable decay somewhat well studied (G\"unther 1980, Houghton 1980) \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} Decay of metastable phase occurs when domain of critical size forms. \vspace{1em}\pause\\ Domain of $N$ spins entering the stable phase causes a free energy change \[ \Delta F=\Sigma N^\sigma-MHN \] with $1-\frac1d\leq\sigma<1$. \pause\vspace{1em}\\ Metastable phase is stable to domains smaller than \[ N_\crit=\bigg(\frac{MH}{\sigma\Sigma}\bigg)^{-1/(\sigma-1)} \] but larger will grow to occupy the entire system, decay to stable phase. \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} Formation of critical domain has energy cost \[ \Delta F_\crit=\Delta F\Big|_{N=N_\crit}\sim \bigg(\frac{\Sigma}{(MH)^\sigma}\bigg)^{1/(1-\sigma)} \] \pause Probability of such a domain forming is \[ P_\crit\sim e^{-\beta\Delta F_\crit} \] \pause Imaginary free energy is therefore \[ \im F\sim\Gamma\sim P_\crit\sim e^{-\beta\Delta F_\crit} =e^{-\beta(\Sigma/(MH)^\sigma)^{1/(1-\sigma)}} \] \end{frame} \begin{frame} \frametitle{Metastability \& Complex Free Energy} \begin{columns} \begin{column}{0.4\textwidth} \includegraphics{figs/fig1} \end{column} \begin{column}{0.6\textwidth} $\im F$ has an essential singularity of the form $e^{-1/H^{\sigma/(1-\sigma)}}$. \vspace{1em}\pause\\ Near critical point, $\sigma=1-\frac1d$, and \[ \im F\sim e^{-1/H^{d-1}} \] \pause Nonanalytic behavior is universal! \vspace{1em}\pause\\ Can directly observe by measuring metastable decay rate, but what else? \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Analytic Constraints on the Stable Free Energy} \end{frame} \begin{frame} \frametitle{The Metastable Ising Model} Near the Ising critical point, $\sigma=1-\frac1d$ and \begin{align*} M=t^\beta\mathcal M(h/{t^{\beta\delta}}) && \Sigma=t^\mu\mathcal S(h/{t^{\beta\delta}}) \end{align*} with $\mathcal M(0)$ and $\mathcal S(0)$ nonzero and finite. \pause \vspace{1em} Therefore, \[ \Delta F_\crit\sim\Sigma\bigg(\frac{MH}{\Sigma}\bigg)^{-(d-1)} =X^{-(d-1)}\mathcal F(X) \] for $X=h/t^{\beta\delta}$, and \[ \im F=t^{2-\alpha}\mathcal I(X)e^{-\beta/X^{(d-1)}} \] \end{frame} \begin{frame} \frametitle{The Essential Singularity} \begin{center} \includegraphics[width=.7\textwidth]{figs/fig1} \end{center} Imaginary free energy is nonanalytic at $H=0$. \pause\vspace{1em} This and its implications are therefore a universal feature of the Ising class. \end{frame} \begin{frame} \frametitle{The Essential Singularity} Analytic properties of the partition function imply that \[ F(X)=\frac1\pi\int_{-\infty}^0\frac{\im F(X')}{X'-X}\;\dd X' \] \pause Only predictive for high moments of $F$, or \[ f_n=\frac1\pi\int_{-\infty}^0\frac{\im F(X')}{X^{\prime n+1}}\;\dd X' \] for $F=\sum f_nX^n$. \end{frame} \begin{frame} \frametitle{The Essential Singularity} Results from field theory indicate that $\mathcal I(X)\propto X+\mathcal O(X^2)$ for $d=2$, so that \[ \im F=t^{2-\alpha}\big(AX+\mathcal O(X^2)\big)e^{-\beta/X^{(d-1)}} \] \pause The resulting moments for $n>1$ are \[ f_n=At^{2-\alpha}\frac{\Gamma(n-1)}{\pi(-B)^{n-1}} \] \pause Not a convergent series---the real part of $F$ for $H>0$ is also nonanalytic! \end{frame} \begin{frame} \frametitle{The Essential Singularity} In two dimensions, the Cauchy integral does not converge, normalize with $\lambda$, \[ F(X\,|\,\lambda)=\frac1\pi\int_{-\infty}^0\frac{\im F(X')}{X'-X}\frac1{1+(\lambda X')^2}\;\dd X' \] \pause Exact result has form \[ \begin{aligned} F(X\,|\,\lambda)&=\frac{A}\pi\frac1{1+(\lambda X)^2}\Big[ Xe^{B/X}\ei(-B/X)\\ &\qquad+\frac1\lambda\im(e^{-i\lambda B}(i+\lambda X)(\pi+i\ei(i\lambda B)))\Big] \end{aligned} \] \pause The Cauchy integral is only predictive for high moments. \end{frame} \begin{frame} \frametitle{The Essential Singularity} What about the susceptibility $\chi=\frac{\partial^2\!F}{\partial h^2}$? \pause \vspace{1em} Has a well-defined limit as $\lambda\to0$, simple functional form: \[ \chi=t^{-\gamma}\mathcal X(h/t^{\beta\delta}) \] where the scaling function is \[ \mathcal X(X)=\frac A{\pi X^3}\big[(B-X)X+B^2e^{B/X}\ei(-B/X)\big] \] \centering \includegraphics[width=0.6\textwidth]{figs/fig9} \end{frame} \begin{frame} \frametitle{The Essential Singularity} $A$ is fixed by prior calculations (Barouch 1973) Two parameter fit to simulations yields $A=-0.0939(8)$, $B=5.45(6)$, close agreement in limit of small $t$ and $H$! \vspace{1em} \only<1-1>{\includegraphics{figs/fig6}} \only<2-2>{\includegraphics{figs/fig5}} \vspace{1em}\pause \end{frame} \begin{frame} \includegraphics{figs/fig20} \end{frame} \begin{frame} \frametitle{What's Next} We have an explicit form for a new component of the universal scaling forms near the Ising abrupt transition. \vspace{1em} \pause Hope to form a parametric scaling variables that include this, correct leading analytic corrections to scaling, and (maybe?) extend smoothly through the metastable region. \vspace{1em} \pause Remain on the lookout for other universal properties to incorporate. \end{frame} \begin{frame} \huge \centering {\sl Questions?} \end{frame} \end{document}