From e3b663588a30ec4f05afe50c260982bd44a1bb2b Mon Sep 17 00:00:00 2001
From: Jaron Kent-Dobias <jaron@kent-dobias.com>
Date: Thu, 24 Jan 2019 19:01:18 -0500
Subject: style changes

---
 lib/src/graph.cpp   | 82 ++++++++++++++++++++++++++---------------------------
 lib/src/network.cpp | 40 +++++++++++++-------------
 2 files changed, 61 insertions(+), 61 deletions(-)

(limited to 'lib/src')

diff --git a/lib/src/graph.cpp b/lib/src/graph.cpp
index 0cc6a18..526ffeb 100644
--- a/lib/src/graph.cpp
+++ b/lib/src/graph.cpp
@@ -18,11 +18,11 @@ double mod(double a, double b) {
   }
 }
 
-graph::graph(unsigned int Nx, unsigned int Ny) {
+graph::graph(unsigned Nx, unsigned Ny) {
   L = {(double)Nx, (double)Ny};
 
-  unsigned int ne = Nx * Ny;
-  unsigned int nv = ne / 2;
+  unsigned ne = Nx * Ny;
+  unsigned nv = ne / 2;
 
   vertices.resize(nv);
   edges.reserve(ne);
@@ -30,7 +30,7 @@ graph::graph(unsigned int Nx, unsigned int Ny) {
   dual_vertices.resize(nv);
   dual_edges.reserve(ne);
 
-  for (unsigned int i = 0; i < nv; i++) {
+  for (unsigned i = 0; i < nv; i++) {
     vertices[i].r.x = (double)((1 + i / (Nx / 2)) % 2 + 2 * (i % (Nx / 2)));
     vertices[i].r.y = (double)(i / (Nx / 2));
     vertices[i].polygon = {
@@ -50,18 +50,18 @@ graph::graph(unsigned int Nx, unsigned int Ny) {
     };
   }
 
-  for (unsigned int y = 0; y < Ny; y++) {
-    for (unsigned int x = 0; x < Nx; x++) {
-      unsigned int v1 = (Nx * y) / 2 + ((x + y % 2) / 2) % (Nx / 2);
-      unsigned int v2 = ((Nx * (y + 1)) / 2 + ((x + (y + 1) % 2) / 2) % (Nx / 2)) % nv;
+  for (unsigned y = 0; y < Ny; y++) {
+    for (unsigned x = 0; x < Nx; x++) {
+      unsigned v1 = (Nx * y) / 2 + ((x + y % 2) / 2) % (Nx / 2);
+      unsigned v2 = ((Nx * (y + 1)) / 2 + ((x + (y + 1) % 2) / 2) % (Nx / 2)) % nv;
 
       bool crossed_x = x == Nx - 1;
       bool crossed_y = y == Ny - 1;
 
       edges.push_back({{v1, v2}, {0.5 + (double)x, 0.5 + (double)y}, {crossed_x, crossed_y}});
 
-      unsigned int dv1 = (Nx * y) / 2 + ((x + (y + 1) % 2) / 2) % (Nx / 2);
-      unsigned int dv2 = ((Nx * (y + 1)) / 2 + ((x + y % 2) / 2) % (Nx / 2)) % nv;
+      unsigned dv1 = (Nx * y) / 2 + ((x + (y + 1) % 2) / 2) % (Nx / 2);
+      unsigned dv2 = ((Nx * (y + 1)) / 2 + ((x + y % 2) / 2) % (Nx / 2)) % nv;
 
       dual_edges.push_back({{dv1, dv2}, {0.5 + (double)x, 0.5 + (double)y}, {crossed_x, crossed_y}});
     }
@@ -93,21 +93,21 @@ class triangleException: public std::exception
   }
 } triex;
 
-unsigned int get_triangle_signature(unsigned int j1, unsigned int j2, unsigned int j3) {
-  // this yucky function takes three unsigned integers representing the
+unsigned get_triangle_signature(unsigned j1, unsigned j2, unsigned j3) {
+  // this yucky function takes three unsignedegers representing the
   // location in the nine periodic copies of each corner of a delauney triangle
-  // and returns a signature for that triangle, which is an unsigned integer
+  // and returns a signature for that triangle, which is an unsignedeger
   // that uniquely labels the way the triangle crosses boundaries of the
   // copies. This allows us to differentiate delauney triangles with identical
   // vertices but which should be identified with different faces
-  unsigned int x1 = j1 % 3;
-  unsigned int y1 = j1 / 3;
+  unsigned x1 = j1 % 3;
+  unsigned y1 = j1 / 3;
 
-  unsigned int x2 = j2 % 3;
-  unsigned int y2 = j2 / 3;
+  unsigned x2 = j2 % 3;
+  unsigned y2 = j2 / 3;
 
-  unsigned int x3 = j3 % 3;
-  unsigned int y3 = j3 / 3;
+  unsigned x3 = j3 % 3;
+  unsigned y3 = j3 / 3;
 
   if ((j1 == j2) && (j2 == j3)) {
     return 0;
@@ -146,9 +146,9 @@ graph::graph(double Lx, double Ly, std::mt19937& rng) {
   // randomly choose N to be floor(Lx * Ly / 2) or ceil(Lx * Ly / 2) with
   // probability proportional to the distance from each
   std::uniform_real_distribution<double> d(0.0, 1.0);
-  unsigned int N = round(Lx * Ly / 2 + d(rng) - 0.5);
+  unsigned N = round(Lx * Ly / 2 + d(rng) - 0.5);
 
-  unsigned int nv = N;
+  unsigned nv = N;
   vertices.resize(nv);
 
   // the coordinates of the lattice, from which a delaunay triangulation
@@ -164,7 +164,7 @@ graph::graph(double Lx, double Ly, std::mt19937& rng) {
   jcv_rect bounds = {{-Lx, -Ly}, {2 * Lx, 2 * Ly}};
   std::vector<jcv_point> points(9 * nv);
 
-  for (unsigned int i = 0; i < nv; i++) {
+  for (unsigned i = 0; i < nv; i++) {
     const vertex& v = vertices[i];
     points[9 * i + 0] = {v.r.x - L.x, v.r.y - L.y};
     points[9 * i + 1] = {v.r.x + 0.0, v.r.y - L.y};
@@ -181,7 +181,7 @@ graph::graph(double Lx, double Ly, std::mt19937& rng) {
 
   const jcv_site* sites = jcv_diagram_get_sites(&diagram);
 
-  std::unordered_map<std::array<unsigned int, 4>, unsigned int> known_vertices;
+  std::unordered_map<std::array<unsigned, 4>, unsigned> known_vertices;
 
   for (int i = 0; i < diagram.numsites; i++) {
     const jcv_site* site = &sites[i];
@@ -189,8 +189,8 @@ graph::graph(double Lx, double Ly, std::mt19937& rng) {
     // we only care about processing the cells of our original, central sites
     if (site->index % 9 == 4) {
       bool self_bonded = false;
-      unsigned int i1 = (unsigned int)(site->index / 9);
-      unsigned int j1 = (unsigned int)(site->index % 9);
+      unsigned i1 = (unsigned)(site->index / 9);
+      unsigned j1 = (unsigned)(site->index % 9);
       const jcv_graphedge* e = site->edges;
       const jcv_graphedge* ep = site->edges;
       while (ep->next) {
@@ -205,27 +205,27 @@ graph::graph(double Lx, double Ly, std::mt19937& rng) {
         if (neighbor == NULL) {
           throw clippingex;
         }
-        unsigned int i2 = (unsigned int)(neighbor->index / 9);
-        unsigned int j2 = (unsigned int)(neighbor->index % 9);
-        unsigned int x2 = j2 % 3;
-        unsigned int y2 = j2 / 3;
+        unsigned i2 = (unsigned)(neighbor->index / 9);
+        unsigned j2 = (unsigned)(neighbor->index % 9);
+        unsigned x2 = j2 % 3;
+        unsigned y2 = j2 / 3;
 
         vertices[i1].polygon.push_back({e->pos[0].x, e->pos[0].y});
 
         if (ep->neighbor == NULL) {
           throw clippingex;
         }
-        unsigned int i3p = (unsigned int)(ep->neighbor->index / 9);
-        unsigned int j3p = (unsigned int)(ep->neighbor->index % 9);
+        unsigned i3p = (unsigned)(ep->neighbor->index / 9);
+        unsigned j3p = (unsigned)(ep->neighbor->index % 9);
 
-        unsigned int sig1 = get_triangle_signature(j1, j2, j3p);
+        unsigned sig1 = get_triangle_signature(j1, j2, j3p);
 
-        std::array<unsigned int, 4> t1 = {i1, i2, i3p, sig1};
+        std::array<unsigned, 4> t1 = {i1, i2, i3p, sig1};
         std::sort(t1.begin(), t1.begin() + 3);
 
         auto it1 = known_vertices.find(t1);
 
-        unsigned int vi1;
+        unsigned vi1;
 
         if (it1 == known_vertices.end()) {
           vi1 = dual_vertices.size();
@@ -259,17 +259,17 @@ graph::graph(double Lx, double Ly, std::mt19937& rng) {
             throw clippingex;
           }
 
-          unsigned int i3n = (unsigned int)(en->neighbor->index / 9);
-          unsigned int j3n = (unsigned int)(en->neighbor->index % 9);
+          unsigned i3n = (unsigned)(en->neighbor->index / 9);
+          unsigned j3n = (unsigned)(en->neighbor->index % 9);
 
-          unsigned int sig2 = get_triangle_signature(j1, j2, j3n);
+          unsigned sig2 = get_triangle_signature(j1, j2, j3n);
 
-          std::array<unsigned int, 4> t2 = {i1, i2, i3n, sig2};
+          std::array<unsigned, 4> t2 = {i1, i2, i3n, sig2};
           std::sort(t2.begin(), t2.begin() + 3);
 
           auto it2 = known_vertices.find(t2);
 
-          unsigned int vi2;
+          unsigned vi2;
 
           if (it2 == known_vertices.end()) {
             vi2 = dual_vertices.size();
@@ -279,8 +279,8 @@ graph::graph(double Lx, double Ly, std::mt19937& rng) {
             vi2 = it2->second;
           }
 
-          bool dcrossed_x = (unsigned int)floor(e->pos[0].x / L.x) != (unsigned int)floor(e->pos[1].x / L.x);
-          bool dcrossed_y = (unsigned int)floor(e->pos[0].y / L.y) != (unsigned int)floor(e->pos[1].y / L.y);
+          bool dcrossed_x = (unsigned)floor(e->pos[0].x / L.x) != (unsigned)floor(e->pos[1].x / L.x);
+          bool dcrossed_y = (unsigned)floor(e->pos[0].y / L.y) != (unsigned)floor(e->pos[1].y / L.y);
 
           dual_edges.push_back({{vi1, vi2},
               {mod((e->pos[0].x + e->pos[1].x) / 2, L.x),
diff --git a/lib/src/network.cpp b/lib/src/network.cpp
index 3812f43..027946a 100644
--- a/lib/src/network.cpp
+++ b/lib/src/network.cpp
@@ -3,7 +3,7 @@
 
 network::network(const graph& G, cholmod_common *c) : c(c), G(G), fuses(G.edges.size(), false), thresholds(G.edges.size(), 1) {
   b = CHOL_F(zeros)(G.vertices.size(), 1, CHOLMOD_REAL, c);
-  for (unsigned int i = 0; i < G.edges.size(); i++) {
+  for (unsigned i = 0; i < G.edges.size(); i++) {
     double v0y = G.vertices[G.edges[i].v[0]].r.y;
     double v1y = G.vertices[G.edges[i].v[1]].r.y;
 
@@ -15,29 +15,29 @@ network::network(const graph& G, cholmod_common *c) : c(c), G(G), fuses(G.edges.
     }
   }
 
-  unsigned int nnz = G.vertices.size() + G.edges.size();
+  unsigned nnz = G.vertices.size() + G.edges.size();
 
   cholmod_triplet *t = CHOL_F(allocate_triplet)(G.vertices.size(), G.vertices.size(), nnz,  1, CHOLMOD_REAL, c);
 
-  for (unsigned int i = 0; i < G.vertices.size(); i++) {
+  for (unsigned i = 0; i < G.vertices.size(); i++) {
     ((CHOL_INT *)t->i)[i] = i;
     ((CHOL_INT *)t->j)[i] = i;
     ((double *)t->x)[i] = 0.0;
   }
 
-  unsigned int terms = G.vertices.size();
+  unsigned terms = G.vertices.size();
 
-  std::unordered_map<std::array<unsigned int, 2>, unsigned int> known_edges;
+  std::unordered_map<std::array<unsigned, 2>, unsigned> known_edges;
 
-  for (unsigned int i = 0; i < G.edges.size(); i++) {
-    unsigned int v0 = G.edges[i].v[0];
-    unsigned int v1 = G.edges[i].v[1];
+  for (unsigned i = 0; i < G.edges.size(); i++) {
+    unsigned v0 = G.edges[i].v[0];
+    unsigned v1 = G.edges[i].v[1];
 
     ((double *)t->x)[v0]++;
     ((double *)t->x)[v1]++;
 
-    unsigned int s0 = v0 < v1 ? v0 : v1;
-    unsigned int s1 = v0 < v1 ? v1 : v0;
+    unsigned s0 = v0 < v1 ? v0 : v1;
+    unsigned s1 = v0 < v1 ? v1 : v0;
 
     auto it = known_edges.find({s0, s1});
 
@@ -67,7 +67,7 @@ network::network(const graph& G, cholmod_common *c) : c(c), G(G), fuses(G.edges.
 
   t->nnz = 2 * G.edges.size();
 
-  for (unsigned int i = 0; i < G.edges.size(); i++) {
+  for (unsigned i = 0; i < G.edges.size(); i++) {
     ((CHOL_INT *)t->i)[2 * i] = i;
     ((CHOL_INT *)t->j)[2 * i] = G.edges[i].v[0];
     ((double *)t->x)[2 * i] = 1.0;
@@ -106,16 +106,16 @@ void network::set_thresholds(double beta, std::mt19937& rng) {
   }
 }
 
-void network::break_edge(unsigned int e, bool unbreak) {
+void network::break_edge(unsigned e, bool unbreak) {
   fuses[e] = !unbreak;
-  unsigned int v0 = G.edges[e].v[0];
-  unsigned int v1 = G.edges[e].v[1];
+  unsigned v0 = G.edges[e].v[0];
+  unsigned v1 = G.edges[e].v[1];
 
-  unsigned int n = factor->n;
+  unsigned n = factor->n;
 
   cholmod_sparse *update_mat = CHOL_F(allocate_sparse)(n, n, 2, true, true, 0, CHOLMOD_REAL, c);
 
-  unsigned int s1, s2;
+  unsigned s1, s2;
   s1 = v0 < v1 ? v0 : v1;
   s2 = v0 < v1 ? v1 : v0;
 
@@ -123,11 +123,11 @@ void network::break_edge(unsigned int e, bool unbreak) {
   CHOL_INT *ii = (CHOL_INT *)update_mat->i;
   double *xx = (double *)update_mat->x;
 
-  for (unsigned int i = 0; i <= s1; i++) {
+  for (unsigned i = 0; i <= s1; i++) {
     pp[i] = 0;
   }
 
-  for (unsigned int i = s1 + 1; i <= n; i++) {
+  for (unsigned i = s1 + 1; i <= n; i++) {
     pp[i] = 2;
   }
 
@@ -210,10 +210,10 @@ void network::fracture(hooks& m, double cutoff) {
       break;
     }
 
-    unsigned int max_pos = UINT_MAX;
+    unsigned max_pos = UINT_MAX;
     long double max_val = std::numeric_limits<long double>::lowest();
 
-    for (unsigned int i = 0; i < G.edges.size(); i++) {
+    for (unsigned i = 0; i < G.edges.size(); i++) {
       if (!fuses[i] && fabs(ci.currents[i]) > cutoff) {
         long double val = logl(fabs(ci.currents[i])) - thresholds[i];
         if (val > max_val) {
-- 
cgit v1.2.3-70-g09d2