From 6590154ae3e4ee97e5e1a2792f9f2ebf716ed251 Mon Sep 17 00:00:00 2001 From: pants Date: Wed, 7 Sep 2016 17:30:19 -0400 Subject: created new fracture program which has full capability (support for variable lattices, boundaries, notch or no). to do: get embedded square lattice working, add flag for constant lattices --- src/ini_network.c | 666 ------------------------------------------------------ 1 file changed, 666 deletions(-) delete mode 100644 src/ini_network.c (limited to 'src/ini_network.c') diff --git a/src/ini_network.c b/src/ini_network.c deleted file mode 100644 index cfb8d53..0000000 --- a/src/ini_network.c +++ /dev/null @@ -1,666 +0,0 @@ - -#include "fracture.h" - -unsigned int *get_spanning_edges(unsigned int num_edges, unsigned int *edges_to_verts, double *vert_coords, double cut, unsigned int *n) { - unsigned int *spanning_edges = (unsigned int *)malloc(num_edges * sizeof(unsigned int)); - (*n) = 0; - for (unsigned int i = 0; i < num_edges; i++) { - unsigned int v1, v2; - v1 = edges_to_verts[2 * i]; - v2 = edges_to_verts[2 * i + 1]; - double v1y, v2y; - v1y = vert_coords[2 * v1 + 1]; - v2y = vert_coords[2 * v2 + 1]; - if ((fabs(v1y - v2y) < 0.25) && ((v1y < cut && v2y > cut) || (v1y > cut && v2y < cut))) { - spanning_edges[*n] = i; - (*n)++; - } - } - return spanning_edges; -} - -double *get_edge_coords(unsigned int num_edges, double *vert_coords, - unsigned int *edges_to_verts) { - double *output = (double *)malloc(2 * num_edges * sizeof(double)); - - #pragma omp parallel for - for (unsigned int i = 0; i < num_edges; i++) { - unsigned int v1, v2; - double v1x, v1y, v2x, v2y, dx, dy; - v1 = edges_to_verts[2 * i]; - v2 = edges_to_verts[2 * i + 1]; - output[2 * i] = 0; - output[2 * i + 1] = 0; - v1x = vert_coords[2 * v1]; - v1y = vert_coords[2 * v1 + 1]; - v2x = vert_coords[2 * v2]; - v2y = vert_coords[2 * v2 + 1]; - dx = v1x - v2x; - dy = v1y - v2y; - if (fabs(dx) > 0.5) { - if (dx > 0) { - v2x = v2x + 1; - } else { - v1x = v1x + 1; - } - } - if (fabs(dy) > 0.5) { - if (dy > 0) { - v2y = v2y + 1; - } else { - v1y = v1y + 1; - } - } - output[2 * i] = (v1x + v2x) / 2; - output[2 * i + 1] = (v1y + v2y) / 2; - } - - return output; -} - -unsigned int *get_verts_to_edges_ind(unsigned int num_verts, - unsigned int num_edges, - const unsigned int *edges_to_verts) { - unsigned int *output = - (unsigned int *)calloc(num_verts + 1, sizeof(unsigned int)); - assert(output != NULL); - - for (unsigned int i = 0; i < 2 * num_edges; i++) { - if (edges_to_verts[i] < num_verts) { - output[edges_to_verts[i] + 1]++; - } - } - - for (unsigned int i = 0; i < num_verts; i++) { - output[i + 1] += output[i]; - } - - return output; -} - -unsigned int *get_verts_to_edges(unsigned int num_verts, unsigned int num_edges, - const unsigned int *edges_to_verts, - const unsigned int *verts_to_edges_ind) { - unsigned int *output = (unsigned int *)calloc(verts_to_edges_ind[num_verts], - sizeof(unsigned int)); - unsigned int *counts = - (unsigned int *)calloc(num_verts, sizeof(unsigned int)); - for (int i = 0; i < 2 * num_edges; i++) { - if (edges_to_verts[i] < num_verts) { - output[verts_to_edges_ind[edges_to_verts[i]] + - counts[edges_to_verts[i]]] = i / 2; - counts[edges_to_verts[i]]++; - } - } - - free(counts); - - return output; -} - -graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_bounds, - cholmod_common *c) { - graph_t *network = (graph_t *)calloc(1, sizeof(graph_t)); - - network->boundary = boundary; - bool periodic = (boundary == CYLINDER_BOUND) || (boundary == TORUS_BOUND) ? true : false; - - network->ne = pow(width, 2); - if (boundary == CYLINDER_BOUND) { - assert(width % 2 == 0); - assert(!side_bounds); - network->nv = (width / 2) * (width + 1); - network->nv_break = (width / 2) * (width + 1); - network->dnv = (width / 2 + 1) * (width / 2) + pow(width / 2, 2); - network->num_bounds = 2; - network->bound_inds = (unsigned int *)malloc((network->num_bounds + 1) * - sizeof(unsigned int)); - network->bound_inds[0] = 0; - network->bound_inds[1] = width / 2; - network->bound_inds[2] = width; - network->bound_verts = (unsigned int *)calloc(width, sizeof(unsigned int)); - network->break_dim = network->nv + network->num_bounds; - } else if (boundary == FREE_BOUND) { - network->nv = 2 * ((width + 1) / 2) * (width / 2 + 1); - network->nv_break = 2 * ((width + 1) / 2) * (width / 2 + 1); - network->dnv = pow(width / 2 + 1, 2) + pow((width + 1) / 2, 2); - if (side_bounds) - network->num_bounds = 4; - else - network->num_bounds = 2; - network->bound_inds = (unsigned int *)malloc((network->num_bounds + 1) * - sizeof(unsigned int)); - for (unsigned int i = 0; i < network->num_bounds + 1; i++) { - network->bound_inds[i] = i * ((width + 1) / 2); - } - network->bound_verts = (unsigned int *)calloc( - network->num_bounds * ((width + 1) / 2), sizeof(unsigned int)); - if (side_bounds) { - for (unsigned int i = 0; i < (width + 1) / 2; i++) { - network->bound_verts[2 * ((width + 1) / 2) + i] = - (width + 1) / 2 + i * (width + 1); - if (width % 2) { - network->bound_verts[3 * ((width + 1) / 2) + i] = - (width + 1) / 2 + i * (width + 1) - 1; - } else { - network->bound_verts[3 * ((width + 1) / 2) + i] = - (width + 1) / 2 + i * (width + 1) + width / 2; - } - } - } - network->break_dim = network->nv + network->num_bounds; - } else if (boundary == TORUS_BOUND) { - network->nv = (width / 2) * (width + 1) - (width / 2); - network->nv_break = (width / 2) * (width + 1); - network->dnv = (width / 2 + 1) * (width / 2) + pow(width / 2, 2) - (width / 2); - network->num_bounds = 1; - network->bound_inds = (unsigned int *)malloc((network->num_bounds + 1) * - sizeof(unsigned int)); - network->bound_inds[0] = 0; - network->bound_inds[1] = width / 2; - network->bound_verts = (unsigned int *)calloc(width / 2, sizeof(unsigned int)); - network->break_dim = network->nv_break; - } - if (boundary != TORUS_BOUND) { - for (unsigned int i = 0; i < (width + 1) / 2; i++) { - network->bound_verts[i] = i; - network->bound_verts[(width + 1) / 2 + i] = network->nv - 1 - i; - } - } else { - for (unsigned int i = 0; i < width / 2; i++) { - network->bound_verts[i] = i; - } - } - network->ev_break = - (unsigned int *)calloc(2 * network->ne, sizeof(unsigned int)); - network->ev = - (unsigned int *)calloc(2 * network->ne, sizeof(unsigned int)); - for (unsigned int i = 0; i < network->ne; i++) { - network->ev_break[2 * i] = edge_to_verts(width, periodic, i, 1); - network->ev_break[2 * i + 1] = edge_to_verts(width, periodic, i, 0); - network->ev[2 * i] = network->ev_break[2 * i] % network->nv; - network->ev[2 * i + 1] = network->ev_break[2 * i + 1] % network->nv; - } - network->vei = - (unsigned int *)calloc(network->nv + 1, sizeof(unsigned int)); - network->vei[0] = 0; - unsigned int pos1 = 0; - for (unsigned int i = 0; i < network->nv; i++) { - bool in_bound = false; - for (unsigned int j = 0; j < network->num_bounds; j++) { - for (unsigned int k = 0; - k < network->bound_inds[j + 1] - network->bound_inds[j]; k++) { - if (i == network->bound_verts[network->bound_inds[j] + k]) { - in_bound = true; - break; - } - } - } - if (in_bound) - pos1 += 2; - else - pos1 += 4; - - network->vei[i + 1] = pos1; - } - network->ve = (unsigned int *)calloc( - network->vei[network->nv], sizeof(unsigned int)); - unsigned int *vert_counts = - (unsigned int *)calloc(network->nv, sizeof(unsigned int)); - for (unsigned int i = 0; i < network->ne; i++) { - unsigned int v0 = network->ev[2 * i]; - unsigned int v1 = network->ev[2 * i + 1]; - network->ve[network->vei[v0] + vert_counts[v0]] = - i; - network->ve[network->vei[v1] + vert_counts[v1]] = - i; - vert_counts[v0]++; - vert_counts[v1]++; - } - free(vert_counts); - - network->vx = - (double *)malloc(2 * network->nv * sizeof(double)); - for (unsigned int i = 0; i < network->nv; i++) { - if (!periodic) { - network->vx[2 * i] = ((double)((2 * i + 1) / (width + 1)))/width; - network->vx[2 * i + 1] = ((double)((2 * i + 1) % (width + 1)))/width; - } else { - network->vx[2 * i] = ((double)((2 * i + 1) / (width)))/width; - network->vx[2 * i + 1] = ((double)((((2 * i + 1) / (width)+1) % 2) + ((2 * i) % (width))))/width; - } - } - - network->L = width; - network->ex = get_edge_coords( - network->ne, network->vx, network->ev); - - network->dev = - (unsigned int *)malloc(2 * network->ne * sizeof(unsigned int)); - for (unsigned int i = 0; i < network->ne; i++) { - network->dev[2 * i] = - dual_edge_to_verts(width, periodic, i, 0) % network->dnv; - network->dev[2 * i + 1] = - dual_edge_to_verts(width, periodic, i, 1) % network->dnv; - } - network->dvx = - (double *)malloc(2 * network->dnv * sizeof(double)); - for (unsigned int i = 0; i < network->dnv; i++) { - network->dvx[2 * i] = - 2*dual_vert_to_coord(width, periodic, i, 0); - network->dvx[2 * i + 1] = - 2*dual_vert_to_coord(width, periodic, i, 1); - } - - network->voltcurmat = gen_voltcurmat(network->ne, - network->break_dim, - network->ev_break, c); - - network->dvei = - get_verts_to_edges_ind(network->dnv, network->ne, - network->dev); - network->dve = get_verts_to_edges( - network->dnv, network->ne, network->dev, - network->dvei); - network->spanning_edges = get_spanning_edges(network->ne, network->ev_break, network->vx, 0.51, &(network->num_spanning_edges)); - - return network; -} - -unsigned int *get_voro_dual_edges(unsigned int num_edges, - unsigned int num_verts, unsigned int *edges, - unsigned int *triangles) { - unsigned int *dual_edges = - (unsigned int *)malloc(2 * num_edges * sizeof(unsigned int)); - unsigned int place = 0; - #pragma omp parallel for - for (unsigned int i = 0; i < num_edges; i++) { - unsigned int v1, v2; - v1 = edges[2 * i]; - v2 = edges[2 * i + 1]; - if (v1 < num_verts && v2 < num_verts) { - bool found_match = false; - for (unsigned int j = 0; j < 3; j++) { - for (unsigned int k = 0; k < 3; k++) { - unsigned int t11, t12, t21, t22; - t11 = triangles[3 * v1 + j]; - t12 = triangles[3 * v1 + ((j + 1) % 3)]; - t21 = triangles[3 * v2 + k]; - t22 = triangles[3 * v2 + ((k + 1) % 3)]; - if ((t11 == t21 && t12 == t22) || (t11 == t22 && t12 == t21)) { - dual_edges[2 * place] = t11 < t12 ? t11 : t12; - dual_edges[2 * place + 1] = t11 < t12 ? t12 : t11; - place++; - found_match = true; - break; - } - } - if (found_match) - break; - } - } - } - - return dual_edges; -} - -graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, - double *(*genfunc)(unsigned int, bound_t, gsl_rng *, unsigned int *), - cholmod_common *c) { - graph_t *g = (graph_t *)calloc(1, sizeof(graph_t)); - - // generate the dual lattice - double *lattice; - unsigned int num; - { - gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); - FILE *rf = fopen("/dev/urandom", "r"); - unsigned long int seed; - fread(&seed, sizeof(unsigned long int), 1, rf); - fclose(rf); - gsl_rng_set(r, seed); - lattice = genfunc(L, boundary, r, &num); - gsl_rng_free(r); - } - - // retrieve a periodic voronoi tesselation of the lattice - bool run_periodic; - if (boundary == EMBEDDED_BOUND) run_periodic = false; - else run_periodic = true; - intptr_t *vout = run_voronoi(num, lattice, run_periodic, 0, 1, 0, 1); - - unsigned int tmp_num_verts = ((unsigned int *)vout[0])[0]; - unsigned int tmp_num_edges = ((unsigned int *)vout[0])[1]; - double *tmp_vert_coords = (double *)vout[2]; - unsigned int *tmp_edges = (unsigned int *)vout[3]; - unsigned int *tmp_tris = (unsigned int *)vout[5]; - - free((void *)vout[0]); - free((void *)vout[1]); - free((void *)vout[4]); - free(vout); - - // get dual edges of the fully periodic graph - unsigned int *tmp_dual_edges = - get_voro_dual_edges(tmp_num_edges, tmp_num_verts, tmp_edges, tmp_tris); - - // when use_dual is specificed, the edge and vertex sets are swapped with the - // dual edge and dual vertex sets. once formally relabelled, everything - // works the same way - if (use_dual) { - unsigned int *tmp_tmp_dual_edges = tmp_edges; - double *tmp_lattice = tmp_vert_coords; - unsigned int tmp_num = tmp_num_verts; - - tmp_edges = tmp_dual_edges; - tmp_dual_edges = tmp_tmp_dual_edges; - - tmp_vert_coords = lattice; - lattice = tmp_lattice; - - tmp_num_verts = num; - num = tmp_num; - } - - // prune the edges of the lattice and assign boundary vertices based on the - // desired boundary conditions - unsigned int num_bounds; - unsigned int num_verts; - double *vert_coords; - unsigned int *bound_inds; - unsigned int *bound_verts; - unsigned int num_edges; - unsigned int *edges; - unsigned int *dual_edges; - switch (boundary) { - case FREE_BOUND: { - num_bounds = 4; - bound_inds = (unsigned int *)malloc((1 + num_bounds) * sizeof(unsigned int)); - bound_inds[0] = 0; - vert_coords = tmp_vert_coords; - num_verts = tmp_num_verts; - num_edges = 0; - edges = (unsigned int *)malloc(2 * tmp_num_edges * sizeof(unsigned int)); - dual_edges = (unsigned int *)malloc(2 * tmp_num_edges * sizeof(unsigned int)); - unsigned int num_t, num_b, num_l, num_r; - bool *bound_top, *bound_b, *bound_l, *bound_r; - num_t = 0; num_b = 0; num_l = 0; num_r = 0; - bound_top = (bool *)calloc(num_verts, sizeof(bool)); - bound_b = (bool *)calloc(num_verts, sizeof(bool)); - bound_l = (bool *)calloc(num_verts, sizeof(bool)); - bound_r = (bool *)calloc(num_verts, sizeof(bool)); - for (unsigned int i = 0; i < tmp_num_edges; i++) { - unsigned int v1, v2; - double v1x, v1y, v2x, v2y, dx, dy; - v1 = tmp_edges[2 * i]; v2 = tmp_edges[2 * i + 1]; - v1x = vert_coords[2 * v1]; v1y = vert_coords[2 * v1 + 1]; - v2x = vert_coords[2 * v2]; v2y = vert_coords[2 * v2 + 1]; - dx = v1x - v2x; dy = v1y - v2y; - if (fabs(dy) > 0.5) { - if (dy > 0) { - if (!bound_top[v1] && !bound_l[v1] && !bound_r[v1]) { - bound_top[v1] = true; num_t++; - } - if (!bound_b[v2] && !bound_l[v2] && !bound_r[v2]) { - bound_b[v2] = true; num_b++; - } - } else { - if (!bound_top[v2] && !bound_l[v2] && !bound_r[v2]) { - bound_top[v2] = true; num_t++; - } - if (!bound_b[v1] && !bound_l[v1] && !bound_r[v1]) { - bound_b[v1] = true; num_b++; - } - } - } else if (fabs(dx) > 0.5) { - if (dx > 0) { - if (!bound_r[v1] && !bound_top[v1] && !bound_b[v1]) { - bound_r[v1] = true; num_r++; - } - if (!bound_l[v2] && !bound_top[v2] && !bound_b[v2]) { - bound_l[v2] = true; num_l++; - } - } else { - if (!bound_r[v2] && !bound_top[v2] && !bound_b[v2]) { - bound_r[v2] = true; num_r++; - } - if (!bound_l[v1] && !bound_top[v1] && !bound_b[v1]) { - bound_l[v1] = true; num_l++; - } - } - } else { - edges[2 * num_edges] = v1 < v2 ? v1 : v2; - edges[2 * num_edges + 1] = v1 < v2 ? v2 : v1; - unsigned int d1 = tmp_dual_edges[2 * i]; - unsigned int d2 = tmp_dual_edges[2 * i + 1]; - dual_edges[2 * num_edges] = d1 < d2 ? d1 : d2; - dual_edges[2 * num_edges + 1] = d1 < d2 ? d2 : d1; - num_edges++; - } - } - bound_verts = malloc((num_t + num_b + num_l + num_r) * sizeof(unsigned int)); - bound_inds[1] = num_t; bound_inds[2] = num_t + num_b; - bound_inds[3] = num_l + num_t + num_b; - bound_inds[4] = num_t + num_b + num_r + num_l; - unsigned int pos_t, pos_b, pos_l, pos_r; - pos_t = 0; pos_b = 0; pos_l = 0; pos_r = 0; - for (unsigned int i = 0; i < num_verts; i++) { - if (bound_top[i]) { - bound_verts[pos_t] = i; pos_t++; - } else if (bound_b[i]) { - bound_verts[num_t + pos_b] = i; pos_b++; - } else if (bound_l[i]) { - bound_verts[num_t + num_b + pos_l] = i; pos_l++; - } else if (bound_r[i]) { - bound_verts[num_t + num_b + num_l + pos_r] = i; pos_r++; - } - } - free(bound_l); free(bound_r); free(bound_top); free(bound_b); - free(tmp_edges); - free(tmp_dual_edges); - num_bounds = 2; - g->ev_break = edges; - g->ev = edges; - g->nv_break = num_verts; - g->nv = num_verts; - g->break_dim = num_verts + num_bounds; - break; - } - case CYLINDER_BOUND: { - num_bounds = 2; - bound_inds = (unsigned int *)malloc((1 + num_bounds) * sizeof(unsigned int)); - bound_inds[0] = 0; - vert_coords = tmp_vert_coords; - num_verts = tmp_num_verts; - num_edges = 0; - edges = (unsigned int *)malloc(2 * tmp_num_edges * sizeof(unsigned int)); - dual_edges = (unsigned int *)malloc(2 * tmp_num_edges * sizeof(unsigned int)); - unsigned int num_t, num_b; - bool *bound_top, *bound_b; - num_t = 0; num_b = 0; - bound_top = (bool *)calloc(num_verts, sizeof(bool)); - bound_b = (bool *)calloc(num_verts, sizeof(bool)); - for (unsigned int i = 0; i < tmp_num_edges; i++) { - unsigned int v1, v2; - double v1x, v1y, v2x, v2y, dx, dy; - v1 = tmp_edges[2 * i]; v2 = tmp_edges[2 * i + 1]; - v1y = vert_coords[2 * v1 + 1]; v2y = vert_coords[2 * v2 + 1]; - dy = v1y - v2y; - if (fabs(dy) > 0.5) { - if (dy > 0) { - if (!bound_top[v1]) { - bound_top[v1] = true; num_t++; - } - if (!bound_b[v2]) { - bound_b[v2] = true; num_b++; - } - } else { - if (!bound_top[v2]) { - bound_top[v2] = true; num_t++; - } - if (!bound_b[v1]) { - bound_b[v1] = true; num_b++; - } - } - } else { - edges[2 * num_edges] = v1 < v2 ? v1 : v2; - edges[2 * num_edges + 1] = v1 < v2 ? v2 : v1; - unsigned int d1 = tmp_dual_edges[2 * i]; - unsigned int d2 = tmp_dual_edges[2 * i + 1]; - dual_edges[2 * num_edges] = d1 < d2 ? d1 : d2; - dual_edges[2 * num_edges + 1] = d1 < d2 ? d2 : d1; - num_edges++; - } - } - bound_verts = malloc((num_t + num_b) * sizeof(unsigned int)); - bound_inds[1] = num_t; bound_inds[2] = num_t + num_b; - unsigned int pos_t, pos_b; - pos_t = 0; pos_b = 0; - for (unsigned int i = 0; i < num_verts; i++) { - if (bound_top[i]) { - bound_verts[pos_t] = i; pos_t++; - } else if (bound_b[i]) { - bound_verts[num_t + pos_b] = i; pos_b++; - } - } - free(bound_top); free(bound_b); - free(tmp_edges); - free(tmp_dual_edges); - g->ev_break = edges; - g->ev = edges; - g->nv_break = num_verts; - g->nv = num_verts; - g->break_dim = num_verts + num_bounds; - break; - } - case TORUS_BOUND: { - num_bounds = 1; - bound_inds = (unsigned int *)malloc((1 + num_bounds) * sizeof(unsigned int)); - bound_inds[0] = 0; - num_edges = tmp_num_edges; - edges = (unsigned int *)malloc(2* num_edges*sizeof(unsigned int)); - for (unsigned int i = 0; i < num_edges; i++) { - edges[2*i] = tmp_edges[2*i]; - edges[2*i+1] = tmp_edges[2*i+1]; - } - dual_edges = tmp_dual_edges; - bool *bound_top = (bool *)calloc(tmp_num_verts, sizeof(bool)); - int *edge_change = (int *)calloc(num_edges, sizeof(int)); - unsigned int num_t = 0; - for (unsigned int i = 0; i < num_edges; i++) { - unsigned int v1, v2; - double v1x, v1y, v2x, v2y, dx, dy; - v1 = edges[2 * i]; v2 = edges[2 * i + 1]; - v1x = tmp_vert_coords[2 * v1]; v1y = tmp_vert_coords[2 * v1 + 1]; - v2x = tmp_vert_coords[2 * v2]; v2y = tmp_vert_coords[2 * v2 + 1]; - dy = v1y - v2y; - if (fabs(dy) > 0.5) { - if (dy > 0) { - edge_change[i] = 1; - if (!bound_top[v1]) { - bound_top[v1] = true; num_t++; - } - } else { - edge_change[i] = 2; - if (!bound_top[v2]) { - bound_top[v2] = true; num_t++; - } - } - } - } - num_verts = tmp_num_verts + num_t; - vert_coords = (double *)malloc(2 * num_verts * sizeof(double)); - bound_verts = malloc(num_t * sizeof(unsigned int)); - bound_inds[1] = num_t; - unsigned int pos_t = 0; - for (unsigned int i = 0; i < tmp_num_verts; i++) { - vert_coords[2*i] = tmp_vert_coords[2*i]; - vert_coords[2*i+1] = tmp_vert_coords[2*i+1]; - if (bound_top[i]) { - bound_verts[pos_t] = i; - vert_coords[2*(tmp_num_verts + pos_t)] = tmp_vert_coords[2*i]; - vert_coords[2*(tmp_num_verts + pos_t)+1] = tmp_vert_coords[2*i+1]; - pos_t++; - } - } - for (unsigned int i = 0; i < num_edges; i++) { - if (edge_change[i]) { - for (unsigned int j = 0; j < num_t; j++) { - if (edges[2*i+(edge_change[i]-1)] == bound_verts[j]) { - edges[2*i+(edge_change[i]-1)] = tmp_num_verts + j; - break; - } - } - } - } - free(tmp_vert_coords); - free(bound_top); - free(edge_change); - g->nv_break = num_verts; - g->nv = tmp_num_verts; - g->ev_break = edges; - g->ev = tmp_edges; - g->break_dim = num_verts; - break; - } - case EMBEDDED_BOUND: { - num_bounds = 4; - bound_inds = (unsigned int *)malloc(5 * sizeof(unsigned int)); - bound_verts = (unsigned int *)malloc(2 * L * sizeof(unsigned int)); - for (unsigned int i = 0; i < 5; i++) bound_inds[i] = i * L / 2; - for (unsigned int i = 0; i < 2 * L; i++) bound_verts[i] = i; - unsigned int num_away = 0; - for (unsigned int i = 0; i < tmp_num_edges; i++) { - if (tmp_dual_edges[2*i] > num || tmp_dual_edges[2*i+1] > num) num_away++; - } - num_edges = (int)tmp_num_edges - (int)num_away; - num_verts = tmp_num_verts; - edges = tmp_edges; - dual_edges = tmp_dual_edges; - vert_coords = tmp_vert_coords; - g->nv_break = num_verts; - g->nv = num_verts; - g->ev_break = edges; - g->ev = edges; - g->break_dim = num_verts + 2; - } - } - - g->boundary = boundary; - g->num_bounds = num_bounds; - g->bound_inds = bound_inds; - g->bound_verts = bound_verts; - g->ne = num_edges; - g->dev = dual_edges; - g->vx = vert_coords; - - g->vei = get_verts_to_edges_ind(g->nv, g->ne, g->ev); - g->ve = - get_verts_to_edges(g->nv, g->ne, - g->ev, g->vei); - - g->L = L; - - g->ex = get_edge_coords( - g->ne, g->vx, g->ev); - - free(tmp_tris); - - g->dvx = lattice; - g->dnv = num; - - g->voltcurmat = gen_voltcurmat(g->ne, - g->break_dim, - g->ev_break, c); - - g->dvei = - get_verts_to_edges_ind(g->dnv, g->ne, - g->dev); - g->dve = get_verts_to_edges( - g->dnv, g->ne, g->dev, - g->dvei); - - g->spanning_edges = get_spanning_edges(g->ne, g->ev_break, g->vx, 0.5, &(g->num_spanning_edges)); - - return g; -} -- cgit v1.2.3-70-g09d2