#include "fracture.h" bool break_edge(net_t *instance, uint_t edge, cholmod_common *c) { instance->fuses[edge] = true; if (instance->factor != NULL) { uint_t w1 = instance->graph->ev_break[2 * edge]; uint_t w2 = instance->graph->ev_break[2 * edge + 1]; factor_update(instance->factor, w1, w2, c); } uint_t v1, v2, s1, s2, dv1, dv2, ds1, ds2; v1 = instance->graph->ev[2 * edge]; v2 = instance->graph->ev[2 * edge + 1]; dv1 = instance->graph->dev[2 * edge]; dv2 = instance->graph->dev[2 * edge + 1]; s1 = v1 > v2 ? v1 : v2; s2 = v1 > v2 ? v2 : v1; ds1 = dv1 > dv2 ? dv1 : dv2; ds2 = dv1 > dv2 ? dv2 : dv1; { int_t *lap_p = (int_t *)instance->adjacency->p; int_t *lap_i = (int_t *)instance->adjacency->i; double *lap_x = (double *)instance->adjacency->x; for (int i = 0; i < lap_p[s1 + 1] - lap_p[s1]; i++) { if (lap_i[lap_p[s1] + i] == s2) lap_x[lap_p[s1] + i] = 0; } for (int i = 0; i < lap_p[s2 + 1] - lap_p[s2]; i++) { if (lap_i[lap_p[s2] + i] == s1) lap_x[lap_p[s2] + i] = 0; } } int_t old_num_components = instance->num_components; instance->num_components = update_components( instance->adjacency, instance->marks, old_num_components, s1, s2, 0); if (instance->graph->boundary == TORUS_BOUND) { if (instance->dual_marks[dv1] == instance->dual_marks[dv2]) { int **cycles = (int **)malloc(4*instance->graph->ne * sizeof(int *)); unsigned int num_cycles = find_cycles(instance->graph->ne, instance->fuses, instance->graph->dev, instance->graph->dvei, instance->graph->dve, cycles); for (unsigned int i = 0; i < num_cycles; i++) { int x_num_crossings = 0; int y_num_crossings = 0; int ee; unsigned int j = 0; while ((ee = cycles[2*i][j]) >= 0) { int side = cycles[2*i+1][j]; j++; unsigned int v1, v2; double v1x, v1y, v2x, v2y; v1 = instance->graph->dev[2 * ee + !side]; v2 = instance->graph->dev[2 * ee + side]; v1x = instance->graph->dvx[2 * v1]; v1y = instance->graph->dvx[2 * v1 + 1]; v2x = instance->graph->dvx[2 * v2]; v2y = instance->graph->dvx[2 * v2 + 1]; double dx = v1x - v2x; double dy = v1y - v2y; if (((v1x > 0.5 && v2x < 0.5) || (v1x < 0.5 && v2x > 0.5)) && fabs(dx) < 0.5) { x_num_crossings += dx > 0 ? 1 : -1; } if (((v1y > 0.5 && v2y < 0.5) || (v1y < 0.5 && v2y > 0.5)) && fabs(dy) < 0.5) { y_num_crossings += dy > 0 ? 1 : -1; } } if ((abs(y_num_crossings) == 0 && abs(x_num_crossings) > 0) || (abs(y_num_crossings) > 0 && abs(x_num_crossings) > 0 && num_cycles > 1)) { instance->num_components = 2; } free(cycles[2*i]); free(cycles[2*i+1]); } free(cycles); } } { int_t *lap_p = (int_t *)instance->dual_adjacency->p; int_t *lap_i = (int_t *)instance->dual_adjacency->i; double *lap_x = (double *)instance->dual_adjacency->x; for (int i = 0; i < lap_p[ds1 + 1] - lap_p[ds1]; i++) { if (lap_i[lap_p[ds1] + i] == ds2) lap_x[lap_p[ds1] + i] = 1; } for (int i = 0; i < lap_p[ds2 + 1] - lap_p[ds2]; i++) { if (lap_i[lap_p[ds2] + i] == ds1) lap_x[lap_p[ds2] + i] = 1; } } set_connected(instance->dual_adjacency, instance->dual_marks, dv1, instance->dual_marks[dv2], -1, 0); return true; }