#include "fracture.h" int main(int argc, char *argv[]) { int opt; // defining variables to be (potentially) set by command line flags uint8_t filename_len; uint32_t N; uint_t L; double beta, inf, cutoff, crack_len; bool save_data, save_cluster_dist, use_voltage_boundaries, use_dual, save_network, save_crit_stress, save_energy, save_conductivity, save_damage, save_threshold, save_current_load; bound_t boundary; lattice_t lattice; // assume filenames will be less than 100 characters filename_len = 100; // set default values N = 100; L = 16; crack_len = 0.; beta = .3; inf = 1e10; cutoff = 1e-9; boundary = FREE_BOUND; lattice = VORONOI_LATTICE; save_data = false; save_cluster_dist = false; use_voltage_boundaries = false; use_dual = false; save_network = false; save_crit_stress = false; save_damage = false; save_conductivity = false; save_energy = false; save_threshold = false; save_current_load = false; uint8_t bound_i; char boundc2 = 'f'; uint8_t lattice_i; char lattice_c = 'v'; char dual_c = 'o'; // get commandline options while ((opt = getopt(argc, argv, "n:L:b:B:q:dVcoNsCrDl:TE")) != -1) { switch (opt) { case 'n': N = atoi(optarg); break; case 'L': L = atoi(optarg); break; case 'b': beta = atof(optarg); break; case 'l': crack_len = atof(optarg); break; case 'B': bound_i = atoi(optarg); switch (bound_i) { case 0: boundary = FREE_BOUND; boundc2 = 'f'; break; case 1: boundary = CYLINDER_BOUND; boundc2 = 'c'; break; case 2: boundary = TORUS_BOUND; use_voltage_boundaries = true; boundc2 = 't'; break; case 3: boundary = EMBEDDED_BOUND; boundc2 = 'e'; use_dual = true; use_voltage_boundaries = true; break; default: printf("boundary specifier must be 0 (FREE_BOUND), 1 (CYLINDER_BOUND), or 2 (TORUS_BOUND).\n"); exit(EXIT_FAILURE); } break; case 'q': lattice_i = atoi(optarg); switch (lattice_i) { case 0: lattice = VORONOI_LATTICE; lattice_c = 'v'; break; case 1: lattice = SQUARE_LATTICE; lattice_c = 's'; break; case 2: lattice = VORONOI_HYPERUNIFORM_LATTICE; lattice_c = 'h'; break; default: printf("lattice specifier must be 0 (VORONOI_LATTICE), 1 (SQUARE_LATTICE), or 2 (VORONOI_HYPERUNIFORM_LATTICE).\n"); exit(EXIT_FAILURE); } break; case 'd': save_damage = true; break; case 'V': use_voltage_boundaries = true; break; case 'D': use_dual = true; dual_c = 'd'; break; case 'c': save_cluster_dist = true; break; case 'o': save_data = true; break; case 'N': save_network = true; break; case 's': save_crit_stress = true; break; case 'r': save_conductivity = true; break; case 'E': save_energy = true; break; case 'T': save_threshold = true; break; case 'C': save_current_load = true; break; default: /* '?' */ exit(EXIT_FAILURE); } } char boundc; if (use_voltage_boundaries) boundc = 'v'; else boundc = 'c'; FILE *data_out; if (save_data) { char *data_filename = (char *)malloc(filename_len * sizeof(char)); snprintf(data_filename, filename_len, "data_%c_%c_%c_%c_%u_%g_%g.txt", lattice_c, dual_c, boundc, boundc2, L, beta, crack_len); data_out = fopen(data_filename, "a"); free(data_filename); } uint_t max_verts, max_edges; // these are very liberal estimates max_verts = 4 * pow(L, 2); max_edges = 4 * pow(L, 2); if (max_verts > CINT_MAX) { exit(EXIT_FAILURE); } // define arrays for saving cluster and avalanche distributions uint32_t *cluster_size_dist; uint32_t *avalanche_size_dist; char *c_filename; char *a_filename; if (save_cluster_dist) { cluster_size_dist = (uint32_t *)calloc(max_verts, sizeof(uint32_t)); avalanche_size_dist = (uint32_t *)calloc(max_edges, sizeof(uint32_t)); c_filename = (char *)malloc(filename_len * sizeof(char)); a_filename = (char *)malloc(filename_len * sizeof(char)); snprintf(c_filename, filename_len, "cstr_%c_%c_%c_%c_%d_%g_%g.dat", lattice_c, dual_c, boundc, boundc2, L, beta, crack_len); snprintf(a_filename, filename_len, "avln_%c_%c_%c_%c_%d_%g_%g.dat", lattice_c, dual_c, boundc, boundc2, L, beta, crack_len); FILE *cluster_out = fopen(c_filename, "rb"); FILE *avalanche_out = fopen(a_filename, "rb"); if (cluster_out != NULL) { fread(cluster_size_dist, sizeof(uint32_t), max_verts, cluster_out); fclose(cluster_out); } if (avalanche_out != NULL) { fread(avalanche_size_dist, sizeof(uint32_t), max_edges, avalanche_out); fclose(avalanche_out); } } long double *crit_stress; if (save_crit_stress) { crit_stress = (long double *)malloc(N * sizeof(long double)); } double *conductivity; if (save_conductivity) { conductivity = (double *)malloc(N * sizeof(double)); } // define arrays for saving damage distributions uint32_t *damage; char *d_filename; if (save_damage) { damage = (uint32_t *)calloc(max_edges, sizeof(uint32_t)); d_filename = (char *)malloc(filename_len * sizeof(char)); snprintf(d_filename, filename_len, "damg_%c_%c_%c_%c_%d_%g_%g.dat", lattice_c, dual_c, boundc, boundc2, L, beta, crack_len); FILE *damage_out = fopen(d_filename, "rb"); if (damage_out != NULL) { fread(damage, sizeof(uint32_t), max_edges, damage_out); fclose(damage_out); } } long double *energy; if (save_energy) { energy = (long double *)malloc(N * sizeof(long double)); } long double *thresholds; if (save_threshold) { thresholds = (long double *)malloc(N * sizeof(long double)); } long double *loads; if (save_current_load) { loads = (long double *)malloc(N * sizeof(long double)); } // start cholmod cholmod_common c; CHOL_F(start)(&c); /* if we use voltage boundary conditions, the laplacian matrix is positive * definite and we can use a supernodal LL decomposition. otherwise we need * to use the simplicial LDL decomposition */ if (use_voltage_boundaries) { //(&c)->supernodal = CHOLMOD_SUPERNODAL; (&c)->supernodal = CHOLMOD_SIMPLICIAL; } else { (&c)->supernodal = CHOLMOD_SIMPLICIAL; } printf("\n"); for (uint32_t i = 0; i < N; i++) { printf("\033[F\033[JFRACTURE: %0*d / %d\n", (uint8_t)log10(N) + 1, i + 1, N); graph_t *g = graph_create(lattice, boundary, L, use_dual); net_t *net = net_create(g, inf, beta, crack_len, use_voltage_boundaries, &c); net_t *tmp_net = net_copy(net, &c); data_t *data = net_fracture(tmp_net, &c, cutoff); net_free(tmp_net, &c); uint_t max_pos = 0; long double max_val = 0; double cond0; { double *tmp_voltages = net_voltages(net, &c); cond0 = net_conductivity(net, tmp_voltages); free(tmp_voltages); } for (uint_t j = 0; j < data->num_broken; j++) { long double val = data->extern_field[j]; if (val > max_val) { max_pos = j; max_val = val; } } uint_t av_size = 0; long double cur_val = 0; for (uint_t j = 0; j < max_pos; j++) { uint_t next_broken = data->break_list[j]; break_edge(net, next_broken, &c); long double val = data->extern_field[j]; if (save_cluster_dist) { if (val < cur_val) { av_size++; } if (val > cur_val) { avalanche_size_dist[av_size]++; av_size = 0; cur_val = val; } } } if (save_crit_stress) crit_stress[i] = data->extern_field[max_pos]; if (save_conductivity) { if (max_pos > 0) { conductivity[i] = data->conductivity[max_pos - 1]; } else { conductivity[i] = cond0; } } if (save_damage) { uint_t would_break = 0; double *tmp_voltage = net_voltages(net, &c); double *tmp_current = net_currents(net, tmp_voltage, &c); free(tmp_voltage); for (uint_t j = 0; j < g->ne; j++) { bool broken = net->fuses[j]; bool under_thres = net->thres[j] < net->thres[data->break_list[max_pos]]; bool zero_field = fabs(tmp_current[j]) < cutoff; if (!broken && under_thres && zero_field) { break_edge(net, j, &c); } } damage[net->num_broken]++; free(tmp_current); } if (save_energy) { long double tmp_energy = 0; if (max_pos > 0) { long double sigma1 = data->extern_field[0]; double cond1 = cond0; for (uint_t j = 0; j < max_pos - 1; j++) { long double sigma2 = data->extern_field[j+1]; double cond2 = data->conductivity[j]; if (sigma2 > sigma1) { tmp_energy += 0.5 * gsl_pow_2(sigma1) * (1 - cond2 / cond1) / cond1; sigma1 = sigma2; cond1 = cond2; } } } energy[i] = tmp_energy; } if (save_threshold) { thresholds[i] = net->thres[data->break_list[max_pos]]; } if (save_current_load) { loads[i] = data->extern_field[max_pos] / net->thres[data->break_list[max_pos]]; } if (save_data) { for (uint_t j = 0; j < data->num_broken; j++) { fprintf(data_out, "%u %Lg %g ", data->break_list[j], data->extern_field[j], data->conductivity[j]); } fprintf(data_out, "\n"); } data_free(data); if (save_network) { FILE *net_out = fopen("network.txt", "w"); for (uint_t j = 0; j < g->nv; j++) { fprintf(net_out, "%f %f ", g->vx[2 * j], g->vx[2 * j + 1]); } fprintf(net_out, "\n"); for (uint_t j = 0; j < g->ne; j++) { fprintf(net_out, "%u %u ", g->ev[2 * j], g->ev[2 * j + 1]); } fprintf(net_out, "\n"); for (uint_t j = 0; j < g->dnv; j++) { fprintf(net_out, "%f %f ", g->dvx[2 * j], g->dvx[2 * j + 1]); } fprintf(net_out, "\n"); for (uint_t j = 0; j < g->ne; j++) { fprintf(net_out, "%u %u ", g->dev[2 * j], g->dev[2 * j + 1]); } fprintf(net_out, "\n"); for (uint_t j = 0; j < g->ne; j++) { fprintf(net_out, "%d ", net->fuses[j]); } fclose(net_out); } if (save_cluster_dist) { uint_t *tmp_cluster_dist = get_cluster_dist(net); for (uint_t j = 0; j < g->dnv; j++) { cluster_size_dist[j] += tmp_cluster_dist[j]; } free(tmp_cluster_dist); } net_free(net, &c); graph_free(g); } printf("\033[F\033[JFRACTURE: COMPLETE\n"); if (save_cluster_dist) { FILE *cluster_out = fopen(c_filename, "wb"); FILE *avalanche_out = fopen(a_filename, "wb"); fwrite(cluster_size_dist, sizeof(uint32_t), max_verts, cluster_out); fwrite(avalanche_size_dist, sizeof(uint32_t), max_edges, avalanche_out); fclose(cluster_out); fclose(avalanche_out); free(c_filename); free(a_filename); free(cluster_size_dist); free(avalanche_size_dist); } if (save_conductivity) { char *cond_filename = (char *)malloc(filename_len * sizeof(char)); snprintf(cond_filename, filename_len, "cond_%c_%c_%c_%c_%d_%g_%g.dat", lattice_c, dual_c, boundc, boundc2, L, beta, crack_len); FILE *cond_file = fopen(cond_filename, "ab"); fwrite(conductivity, sizeof(double), N, cond_file); fclose(cond_file); free(cond_filename); free(conductivity); } if (save_energy) { char *tough_filename = (char *)malloc(filename_len * sizeof(char)); snprintf(tough_filename, filename_len, "enrg_%c_%c_%c_%c_%d_%g_%g.dat", lattice_c, dual_c, boundc, boundc2, L, beta, crack_len); FILE *tough_file = fopen(tough_filename, "ab"); fwrite(energy, sizeof(long double), N, tough_file); fclose(tough_file); free(tough_filename); free(energy); } if (save_threshold) { char *thres_filename = (char *)malloc(filename_len * sizeof(char)); snprintf(thres_filename, filename_len, "thrs_%c_%c_%c_%c_%d_%g_%g.dat", lattice_c, dual_c, boundc, boundc2, L, beta, crack_len); FILE *thres_file = fopen(thres_filename, "ab"); fwrite(thresholds, sizeof(long double), N, thres_file); fclose(thres_file); free(thres_filename); free(thresholds); } if (save_current_load) { char *load_filename = (char *)malloc(filename_len * sizeof(char)); snprintf(load_filename, filename_len, "load_%c_%c_%c_%c_%d_%g_%g.dat", lattice_c, dual_c, boundc, boundc2, L, beta, crack_len); FILE *load_file = fopen(load_filename, "ab"); fwrite(loads, sizeof(long double), N, load_file); fclose(load_file); free(load_filename); free(loads); } if (save_damage) { FILE *hdam_file = fopen(d_filename, "wb"); fwrite(damage, sizeof(uint32_t), max_edges, hdam_file); fclose(hdam_file); free(d_filename); free(damage); } if (save_data) { fclose(data_out); } if (save_crit_stress) { char *str_filename = (char *)malloc(filename_len * sizeof(char)); snprintf(str_filename, filename_len, "strs_%c_%c_%c_%c_%d_%g_%g.dat", lattice_c, dual_c, boundc, boundc2, L, beta, crack_len); FILE *str_file = fopen(str_filename, "ab"); fwrite(crit_stress, sizeof(long double), N, str_file); fclose(str_file); free(str_filename); free(crit_stress); } CHOL_F(finish)(&c); return 0; }