#include "measurements.hpp" bool trivial(boost::detail::edge_desc_impl) { return true; } void update_distribution_data(std::string id, const std::vector& data, unsigned int N, unsigned int L, double beta) { std::string filename = "fracture_" + std::to_string(L) + "_" + std::to_string(beta) + "_" + id + ".dat"; std::ifstream file(filename); uint64_t N_old = 0; std::vector data_old(data.size(), 0); if (file.is_open()) { file >> N_old; for (unsigned int i = 0; i < data.size(); i++) { uint64_t num; file >> num; data_old[i] = num; } file.close(); } std::ofstream file_out(filename); file_out <& data, unsigned int L, double beta) { std::string filename = "fracture_" + std::to_string(L) + "_" + std::to_string(beta) + "_" + id + ".dat"; std::ifstream file(filename); uint64_t N_old = 0; uint64_t tot_old = 0; uint64_t tot_2_old = 0; std::vector data_old(data.size(), 0); std::vector data_old_2(data.size(), 0); if (file.is_open()) { file >> N_old; file >> tot_old; file >> tot_2_old; for (unsigned int i = 0; i < data.size(); i++) { uint64_t num; file >> num; data_old[i] = num; } for (unsigned int i = 0; i < data.size(); i++) { uint64_t num; file >> num; data_old_2[i] = num; } file.close(); } std::ofstream file_out(filename); file_out < data_transform(unsigned int L, const std::vector& data, fftw_plan forward_plan, double *fftw_forward_in, fftw_complex *fftw_forward_out) { for (unsigned int i = 0; i < pow(L, 2); i++) { fftw_forward_in[i] = data[i]; } fftw_execute(forward_plan); std::vector output(pow(L, 2)); for (unsigned int i = 0; i < pow(L, 2); i++) { output[i][0] = fftw_forward_out[i][0]; output[i][1] = fftw_forward_out[i][1]; } return output; } std::vector correlation(unsigned int L, const std::vector& tx1, const std::vector& tx2, fftw_plan reverse_plan, fftw_complex *fftw_reverse_in, double *fftw_reverse_out) { for (unsigned int i = 0; i < pow(L, 2); i++) { fftw_reverse_in[i][0] = tx1[i][0] * tx2[i][0] + tx1[i][1] * tx2[i][1]; fftw_reverse_in[i][1] = tx1[i][0] * tx2[i][1] - tx1[i][1] * tx2[i][0]; } fftw_execute(reverse_plan); std::vector output(pow(L / 2 + 1, 2)); for (unsigned int i = 0; i < pow(L / 2 + 1, 2); i++) { output[i] = fftw_reverse_out[L * (i / (L / 2 + 1)) + i % (L / 2 + 1)] / pow(L, 2); } return output; } ma::ma(unsigned int N, unsigned int L, double beta) : L(L), G(2 * pow(L / 2, 2)), bin_counts(log2(L) + 1, 0), N(N), beta(beta) { ad.resize(pow(L, 2), 0); cd.resize(pow(L, 2), 0); // FFTW setup for correlation functions fftw_set_timelimit(1); fftw_forward_in = (double *)fftw_malloc(pow(L, 2) * sizeof(double)); fftw_forward_out = (fftw_complex *)fftw_malloc(pow(L, 2) * sizeof(fftw_complex)); fftw_reverse_in = (fftw_complex *)fftw_malloc(pow(L, 2) * sizeof(fftw_complex)); fftw_reverse_out = (double *)fftw_malloc(pow(L, 2) * sizeof(double)); forward_plan = fftw_plan_dft_r2c_2d(L, L, fftw_forward_in, fftw_forward_out, 0); reverse_plan = fftw_plan_dft_c2r_2d(L, L, fftw_reverse_in, fftw_reverse_out, 0); } ma::~ma() { // clean up FFTW objects fftw_free(fftw_forward_in); fftw_free(fftw_forward_out); fftw_free(fftw_reverse_in); fftw_free(fftw_reverse_out); fftw_destroy_plan(forward_plan); fftw_destroy_plan(reverse_plan); fftw_cleanup(); update_distribution_data("na", ad, N, L, beta); update_distribution_data("nc", cd, N, L, beta); update_distribution_data("bc", bin_counts, N, L, beta); } void ma::pre_fracture(const network &) { lv = 0; as = 0; avalanches.clear(); boost::remove_edge_if(trivial, G); } void ma::bond_broken(const network& net, const std::pair>& cur, unsigned int i) { if (cur.first / fabs(cur.second[i]) * net.thresholds[i] > lv) { ad[as]++; as = 0; lv = cur.first / fabs(cur.second[i]) * net.thresholds[i]; avalanches.push_back({}); } else { as++; avalanches.back().push_back(i); } boost::add_edge(net.G.dual_edges[i][0], net.G.dual_edges[i][1], G); } void ma::post_fracture(network &n) { std::vector component(boost::num_vertices(G)); unsigned int num = boost::connected_components(G, &component[0]); std::vector comp_sizes(num, 0); for (unsigned int c : component) { comp_sizes[c]++; } unsigned int max_i = 0; unsigned int max_size = 0; for (unsigned int i = 0; i < num; i++) { if (comp_sizes[i] > max_size) { max_i = i; max_size = comp_sizes[i]; } } for (unsigned int be = 0; be < log2(L); be++) { unsigned int bin = pow(2, be); for (unsigned int i = 0; i < pow(L / bin, 2); i++) { bool in_bin = false; for (unsigned int j = 0; j < pow(bin, 2); j++) { unsigned int edge = L * (bin * ((i * bin) / L) + j / bin) + (i * bin) % L + j % bin; if (!n.fuses[edge] && max_i == component[n.G.dual_edges[edge][0]]) { in_bin = true; break; } } if (in_bin) { bin_counts[be]++; } } } bin_counts[log2(L)]++; std::vector crack_damage(pow(L, 2), 0.0); double damage_tot = 0; for (unsigned int i = 0; i < pow(L, 2); i++) { if (!n.fuses[i] && max_i == component[n.G.dual_edges[i][0]]) { damage_tot++; crack_damage[i] = 1.0; } } std::vector t_crack_damage = data_transform(L, crack_damage, forward_plan, fftw_forward_in, fftw_forward_out); std::vector Ccc = correlation(L, t_crack_damage, t_crack_damage, reverse_plan, fftw_reverse_in, fftw_reverse_out); update_field_data("Ccc", damage_tot, Ccc, L, beta); for (auto e = avalanches.back().rbegin(); e != avalanches.back().rend(); e++) { boost::remove_edge(n.G.dual_edges[*e][0], n.G.dual_edges[*e][1], G); } num = boost::connected_components(G, &component[0]); for (unsigned int i = 0; i < num; i++) { double size = 0; std::fill(crack_damage.begin(), crack_damage.end(), 0.0); for (unsigned int j = 0; j < pow(L, 2); j++) { if (component[n.G.edges[j][0]] == i && n.fuses[j]) { size++; crack_damage[j] = 1.0; } } if (size > 0) { cd[size - 1]++; t_crack_damage = data_transform(L, crack_damage, forward_plan, fftw_forward_in, fftw_forward_out); Ccc = correlation(L, t_crack_damage, t_crack_damage, reverse_plan, fftw_reverse_in, fftw_reverse_out); update_field_data("Cclcl", size, Ccc, L, beta); } } }