#include "measurements.hpp" #include void update_distribution_file(std::string id, const std::vector& data, unsigned int N, double Lx, double Ly, double beta) { std::string filename = "fracture_" + std::to_string(Lx) + "_" + std::to_string(Ly) + "_" + std::to_string(beta) + "_" + id + ".dat"; std::ifstream file(filename); uint64_t N_old = 0; std::vector data_old(data.size(), 0); if (file.is_open()) { file >> N_old; for (unsigned int i = 0; i < data.size(); i++) { uint64_t num; file >> num; data_old[i] = num; } file.close(); } std::ofstream file_out(filename); file_out < void update_field_file(std::string id, const std::vector& data, unsigned int N, double Lx, double Ly, double beta, unsigned int Mx, unsigned int My) { std::string filename = "fracture_" + std::to_string(Lx) + "_" + std::to_string(Ly) + "_" + std::to_string(beta) + "_" + id + "_" + std::to_string(Mx) + "_" + std::to_string(My) + ".dat"; std::ifstream file(filename); uint64_t N_old = 0; std::vector data_old(data.size(), 0); if (file.is_open()) { file >> N_old; for (unsigned int i = 0; i < data.size(); i++) { file >> data_old[i]; } file.close(); } std::ofstream file_out(filename); file_out < std::vector data_transform(unsigned int Mx, unsigned int My, const std::vector& data, fftw_plan forward_plan, double *fftw_forward_in, fftw_complex *fftw_forward_out) { for (unsigned int i = 0; i < Mx * My; i++) { fftw_forward_in[i] = (double)data[i]; } fftw_execute(forward_plan); std::vector output(Mx * (My / 2 + 1)); for (unsigned int i = 0; i < Mx * (My / 2 + 1); i++) { output[i][0] = fftw_forward_out[i][0]; output[i][1] = fftw_forward_out[i][1]; } return output; } template void correlation(unsigned int Mx, unsigned int My, std::vector& data, const std::vector& tx1, const std::vector& tx2, fftw_plan reverse_plan, fftw_complex *fftw_reverse_in, double *fftw_reverse_out) { for (unsigned int i = 0; i < Mx * (My / 2 + 1); i++) { fftw_reverse_in[i][0] = tx1[i][0] * tx2[i][0] + tx1[i][1] * tx2[i][1]; fftw_reverse_in[i][1] = tx1[i][0] * tx2[i][1] - tx1[i][1] * tx2[i][0]; } fftw_execute(reverse_plan); for (unsigned int i = 0; i < (Mx / 2 + 1) * (My / 2 + 1); i++) { data[i] += (T)(fftw_reverse_out[Mx * (i / (Mx / 2 + 1)) + i % (Mx / 2 + 1)] / (Mx * My)); } } template void autocorrelation(unsigned int Mx, unsigned int My, std::vector& out_data, fftw_plan forward_plan, double *fftw_forward_in, fftw_complex *fftw_forward_out, fftw_plan reverse_plan, fftw_complex *fftw_reverse_in, double *fftw_reverse_out) { fftw_execute(forward_plan); for (unsigned int i = 0; i < My * (Mx / 2 + 1); i++) { fftw_reverse_in[i][0] = pow(fftw_forward_out[i][0], 2) + pow(fftw_forward_out[i][1], 2); fftw_reverse_in[i][1] = 0.0; } fftw_execute(reverse_plan); for (unsigned int i = 0; i < (Mx / 2 + 1) * (My / 2 + 1); i++) { out_data[i] += (T)(fftw_reverse_out[Mx * (i / (Mx / 2 + 1)) + i % (Mx / 2 + 1)] / (Mx * My)); } } unsigned int edge_r_to_ind(graph::coordinate r, double Lx, double Ly, unsigned int Mx, unsigned int My) { return floor((Mx * r.x) / Lx) + Mx * floor((My * r.y) / Ly); } ma::ma(double Lx, double Ly, unsigned int Mx, unsigned int My, double beta) : Lx(Lx), Ly(Ly), Mx(Mx), My(My), beta(beta), G(2 * (unsigned int)ceil(Lx * Ly / 2)), sc(2 * (unsigned int)ceil(Lx * Ly / 2), 0), sa(2 * (unsigned int)ceil(Lx * Ly / 2), 0), sd(2 * (unsigned int)ceil(Lx * Ly / 2), 0), sb(log2(Mx < My ? Mx : My) + 1, 0), Ccc((Mx / 2 + 1) * (My / 2 + 1), 0), Css((Mx / 2 + 1) * (My / 2 + 1), 0), Cmm((Mx / 2 + 1) * (My / 2 + 1), 0), Caa((Mx / 2 + 1) * (My / 2 + 1), 0), Cdd((Mx / 2 + 1) * (My / 2 + 1), 0), Cll((Mx / 2 + 1) * (My / 2 + 1), 0), Cee((Mx / 2 + 1) * (My / 2 + 1), 0) { N = 0; Nc = 0; Na = 0; // FFTW setup for correlation functions fftw_set_timelimit(1); fftw_forward_in = (double *)fftw_malloc(Mx * My * sizeof(double)); fftw_forward_out = (fftw_complex *)fftw_malloc(Mx * My * sizeof(fftw_complex)); fftw_reverse_in = (fftw_complex *)fftw_malloc(Mx * My * sizeof(fftw_complex)); fftw_reverse_out = (double *)fftw_malloc(Mx * My * sizeof(double)); forward_plan = fftw_plan_dft_r2c_2d(My, Mx, fftw_forward_in, fftw_forward_out, 0); reverse_plan = fftw_plan_dft_c2r_2d(My, Mx, fftw_reverse_in, fftw_reverse_out, 0); } ma::~ma() { // clean up FFTW objects fftw_free(fftw_forward_in); fftw_free(fftw_forward_out); fftw_free(fftw_reverse_in); fftw_free(fftw_reverse_out); fftw_destroy_plan(forward_plan); fftw_destroy_plan(reverse_plan); fftw_cleanup(); update_distribution_file("sa", sa, Na, Lx, Ly, beta); update_distribution_file("sc", sc, Nc, Lx, Ly, beta); update_distribution_file("sd", sd, N, Lx, Ly, beta); update_distribution_file("sb", sb, N, Lx, Ly, beta); update_field_file("Ccc", Ccc, Nc, Lx, Ly, beta, Mx, My); update_field_file("Css", Css, N, Lx, Ly, beta, Mx, My); update_field_file("Cmm", Cmm, N, Lx, Ly, beta, Mx, My); update_field_file("Cdd", Cdd, N, Lx, Ly, beta, Mx, My); update_field_file("Caa", Caa, Na, Lx, Ly, beta, Mx, My); update_field_file("Cll", Cll, N, Lx, Ly, beta, Mx, My); update_field_file("Cee", Cee, N, Lx, Ly, beta, Mx, My); } void ma::pre_fracture(const network&) { lv = std::numeric_limits::lowest(); avalanches = {{}}; boost::remove_edge_if(trivial, G); } void ma::bond_broken(const network& net, const current_info& cur, unsigned int i) { long double c = logl(cur.conductivity / fabs(cur.currents[i])) + net.thresholds[i]; if (c > lv && avalanches.back().size() > 0) { sa[avalanches.back().size() - 1]++; Na++; std::fill_n(fftw_forward_in, Mx * My, 0.0); for (auto e : avalanches.back()) { fftw_forward_in[edge_r_to_ind(net.G.edges[e].r, Lx, Ly, Mx, My)] += 1.0; } autocorrelation(Mx, My, Caa, forward_plan, fftw_forward_in, fftw_forward_out, reverse_plan, fftw_reverse_in, fftw_reverse_out); lv = c; avalanches.push_back({i}); } else { avalanches.back().push_back(i); } boost::add_edge(net.G.dual_edges[i].v[0], net.G.dual_edges[i].v[1], {i}, G); } void ma::post_fracture(network &n) { std::vector component(boost::num_vertices(G)); unsigned int num = boost::connected_components(G, &component[0]); std::list crack = find_minimal_crack(G, n); // crack surface correlations std::fill_n(fftw_forward_in, Mx * My, 0.0); for (auto edge : crack) { fftw_forward_in[edge_r_to_ind(n.G.dual_vertices[n.G.dual_edges[edge].v[0]].r, Lx, Ly, Mx, My)] = 0.5; fftw_forward_in[edge_r_to_ind(n.G.dual_vertices[n.G.dual_edges[edge].v[1]].r, Lx, Ly, Mx, My)] = 0.5; } autocorrelation(Mx, My, Css, forward_plan, fftw_forward_in, fftw_forward_out, reverse_plan, fftw_reverse_in, fftw_reverse_out); unsigned int crack_component = component[n.G.dual_edges[crack.front()].v[0]]; std::vector> components(num); for (unsigned int i = 0; i < n.G.dual_vertices.size(); i++) { components[component[i]].push_back(i); } // non-spanning clusters std::fill_n(fftw_forward_in, Mx * My, 0.0); for (unsigned int i = 0; i < num; i++) { if (i != crack_component && components[i].size() > 0) { for (auto it = components[i].begin(); it != components[i].end(); it++) { fftw_forward_in[edge_r_to_ind(n.G.dual_vertices[*it].r, Lx, Ly, Mx, My)] += 1.0; } sc[components[i].size() - 1]++; autocorrelation(Mx, My, Ccc, forward_plan, fftw_forward_in, fftw_forward_out, reverse_plan, fftw_reverse_in, fftw_reverse_out); Nc++; for (auto it = components[i].begin(); it != components[i].end(); it++) { fftw_forward_in[edge_r_to_ind(n.G.dual_vertices[*it].r, Lx, Ly, Mx, My)] = 0.0; } } } unsigned int max_factor = log2(Mx < My ? Mx : My) + 1; std::vector> bins(max_factor); for (unsigned int i = 0; i < max_factor; i++) { bins[i].resize(Mx * My / (unsigned int)pow(2, 2 * i)); } for (auto it = components[crack_component].begin(); it != components[crack_component].end(); it++) { for (unsigned int i = 0; i < max_factor; i++) { bins[i][edge_r_to_ind(n.G.dual_vertices[*it].r, Lx, Ly, Mx / pow(2, i), My / pow(2, i))] = 1; } } for (unsigned int i =0 ; i < max_factor; i++) { sb[i] += bins[i].sum(); } // spanning cluster std::fill_n(fftw_forward_in, Mx * My, 0.0); for (unsigned int i = 0; i < n.G.dual_vertices.size(); i++) { if (component[i] == crack_component) { fftw_forward_in[edge_r_to_ind(n.G.dual_vertices[i].r, Lx, Ly, Mx, My)] += 1.0; } } autocorrelation(Mx, My, Cmm, forward_plan, fftw_forward_in, fftw_forward_out, reverse_plan, fftw_reverse_in, fftw_reverse_out); std::function inCrack = [&](unsigned int i) -> bool { return component[n.G.dual_edges[i].v[0]] == crack_component; }; for (auto avalanche : avalanches) { if (avalanche.end() != std::find_if(avalanche.begin(), avalanche.end(), inCrack)) { for (auto edge : avalanche) { fftw_forward_in[edge_r_to_ind(n.G.edges[edge].r, Lx, Ly, Mx, My)] += 1.0; } } } autocorrelation(Mx, My, Cee, forward_plan, fftw_forward_in, fftw_forward_out, reverse_plan, fftw_reverse_in, fftw_reverse_out); std::fill_n(fftw_forward_in, Mx * My, 0.0); // rewind the last avalanche for (auto e : avalanches.back()) { boost::remove_edge(n.G.dual_edges[e].v[0], n.G.dual_edges[e].v[1], G); n.break_edge(e, true); fftw_forward_in[edge_r_to_ind(n.G.edges[e].r, Lx, Ly, Mx, My)] += 1.0; } autocorrelation(Mx, My, Cll, forward_plan, fftw_forward_in, fftw_forward_out, reverse_plan, fftw_reverse_in, fftw_reverse_out); // damage size distribution unsigned int total_broken = 0; std::fill_n(fftw_forward_in, Mx * My, 0.0); for (unsigned int i = 0; i < n.G.edges.size(); i++) { if (n.fuses[i]) { total_broken++; fftw_forward_in[edge_r_to_ind(n.G.edges[i].r, Lx, Ly, Mx, My)] += 1.0; } } autocorrelation(Mx, My, Cdd, forward_plan, fftw_forward_in, fftw_forward_out, reverse_plan, fftw_reverse_in, fftw_reverse_out); sd[total_broken]++; N++; }