\documentclass[fleqn,aspectratio=169]{beamer} \setbeamerfont{frametitle}{family=\bf} \setbeamerfont{title}{family=\bf} \setbeamerfont{author}{family=\bf} \setbeamerfont{normal text}{family=\rm} \setbeamertemplate{navigation symbols}{} \usepackage{textcomp,rotating} \title{Scaling and spatial correlations\\ in the quasibrittle process zone} %\subtitle{``Broke again\ldots''} \author{Jaron Kent-Dobias \and James P Sethna} \institute{Cornell University} \date{} \begin{document} \begin{frame} \maketitle \end{frame} \begin{frame} \frametitle{Quasibrittle materials \& fracture} \begin{columns} \begin{column}{0.35\textwidth} Brittle with quenched disorder \bigskip Process zone of correlated microfracture, large as meters \bigskip Size and boundary effects dominate statistics of fracture \bigskip Depending on substance and scale, fracture can look clean or crumbly \end{column} \begin{column}{0.6\textwidth} \includegraphics[width=\textwidth]{figs/concrete} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Crossover theory} \begin{columns} \begin{column}{0.5\textwidth} \hfill\tiny Shekhawat \textit{et al}, Phys Rev Lett \textbf{110} 185505\hspace{2em}\\ \includegraphics[width=\textwidth]{figs/shekhawat} \end{column} \begin{column}{0.5\textwidth} Previous work suggests a \emph{scaling crossover} between fracture regimes \bigskip Crumbly regime controlled by percolation fixed point, clean by nucleation \bigskip Avalanches dominate intermediate disorder, vanish when first fractures system \bigskip Analogous idea for crack structure: crumbly crack surface coarse-grains to clean one through microcracked crossover \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Our simulations: Fuse networks} \begin{columns} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/plain_square} \onslide<2>\includegraphics[width=\textwidth]{figs/perc_square} \onslide<3>\includegraphics[width=\textwidth]{figs/med_square} \onslide<4>\includegraphics[width=\textwidth]{figs/nuke_square} \onslide<5>\includegraphics[width=\textwidth]{figs/nuke_voronoi} \end{overprint} \end{column} \begin{column}{0.5\textwidth} \vspace{0.5em} Resistive fuses as scalar elastic analogue \bigskip Quenched disorder via breaking thresholds $0{Small $\beta$} is disordered, \alert<4->{large $\beta$} ordered \medskip \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/dist-all} \onslide<2>\includegraphics[width=\textwidth]{figs/dist-small} \onslide<3>\includegraphics[width=\textwidth]{figs/dist-med} \onslide<4->\includegraphics[width=\textwidth]{figs/dist-large} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Properties of interest} \begin{columns} \begin{column}{0.5\textwidth} Many spatial properties to study: \begin{itemize} \item\alert<3>{backbone} \item\alert<4>{spanning cluster} \item\alert<5,8->{all clusters} \item\alert<6>{non-spanning clusters} \item\alert<7>{final avalanche} \end{itemize} \medskip Focus on $g(\Delta x,\Delta y)$: probability that site displaced by $(\Delta x, \Delta y)$ is in same cluster \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/prop-none} \onslide<2>\includegraphics[width=\textwidth]{figs/prop-broken} \onslide<3>\includegraphics[width=\textwidth]{figs/prop-backbone} \onslide<4>\includegraphics[width=\textwidth]{figs/prop-spanning} \onslide<5>\includegraphics[width=\textwidth]{figs/prop-allclusters} \onslide<6>\includegraphics[width=\textwidth]{figs/prop-clusters} \onslide<7>\includegraphics[width=\textwidth]{figs/prop-lastavalanche} \onslide<8->\includegraphics[width=\textwidth]{figs/prop-allclusters} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Fixed points} \framesubtitle{$\pmb\beta\pmb=\pmb0$ -- isotropic, self-similar percolation} \begin{columns} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/perc-plain} \onslide<2>\includegraphics[width=\textwidth]{figs/perc-voronoi} \onslide<3>\includegraphics[width=\textwidth]{figs/perc-backbone} \onslide<4>\includegraphics[width=\textwidth]{figs/perc-spanning} \onslide<5,8->\includegraphics[width=\textwidth]{figs/perc-allclusters} \onslide<6>\includegraphics[width=\textwidth]{figs/perc-clusters} \onslide<7>\includegraphics[width=\textwidth]{figs/perc-avalanche} \end{overprint} \end{column} \begin{column}{0.5\textwidth} As $\beta\to0$, $L\to\infty$, reduces (almost) exactly to percolation \begin{itemize} \item\alert<3>{backbone --- $\ell(L)\sim L^{d_{\text{min}}}$} \item\alert<4>{spanning cluster --- $M(L)\sim L^{d_f}$} \item\alert<5,8->{clusters --- $g(r)\sim|r|^{-2(d-d_f)}$} \item\alert<6>{non-spanning clusters --- $n^c_s\sim s^{-\tau}$} \item\alert<7>{final avalanche --- $n^a_s=\delta_{1s}$} \end{itemize} \ \\ \includegraphics[width=\textwidth]{figs/plot_percgvx} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Fixed points} \framesubtitle{$\pmb\beta=\infty$ -- anisotropic, self-affine nucleation} \begin{columns} \begin{column}{0.5\textwidth} As $L\to\infty$, $\beta\to\infty$, reduces to nucleated crack propagation \begin{itemize} \item\alert<3>{backbone} \item\alert<4>{spanning cluster} \item\alert<5,8->{clusters} \item\alert<6>{non-spanning clusters} \item\alert<7>{final avalanche} \end{itemize} \ \\ \includegraphics[width=\textwidth]{figs/plot_nukegvx} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/nuke-voro} \onslide<2>\includegraphics[width=\textwidth]{figs/nuke-broken} \onslide<3>\includegraphics[width=\textwidth]{figs/nuke-backbone} \onslide<4>\includegraphics[width=\textwidth]{figs/nuke-spanning} \onslide<5,8->\includegraphics[width=\textwidth]{figs/nuke-allclusters} \onslide<6>\includegraphics[width=\textwidth]{figs/nuke-clusters} \onslide<7>\includegraphics[width=\textwidth]{figs/nuke-avalanche} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Self-similarity to self-affinity} Voltage (strain) applied along one direction---we should expect anisotropy! \bigskip Self-affine anisotropy emerges at different scales in different properties, but well within the intermediate microfractured regime. \begin{overprint} \onslide<1>\centering\includegraphics[height=\textwidth, angle=90]{figs/skinny} \onslide<2>\centering\includegraphics[height=\textwidth, angle=90]{figs/skinny_long_clusters} \onslide<3>\centering\includegraphics[height=\textwidth, angle=90]{figs/skinny_short_clusters} \end{overprint} \end{frame} \begin{frame} \frametitle{Scaling theory} \begin{columns} \begin{column}{0.5\textwidth} Quantities like moments of $g$ depend on $L_x\beta^{\nu_x}$ and $L_y\beta^{\nu_y}$, no simple ``collapse'' \bigskip Show expected isotropic percolation scaling in disordered limit, unusual crossover in the intermediate regieme. \bigskip Spatial properties of avalanches remain anisotropic in all regiemes. \vspace{18pc} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1> \vspace{-1em} \includegraphics[width=\textwidth]{figs/plot-cluster-x} \vspace{1em} \includegraphics[width=\textwidth]{figs/plot-cluster-y} \vspace{1em} \includegraphics[width=\textwidth]{figs/plot-cluster-ratio} \onslide<2>\includegraphics[width=\textwidth]{figs/plot-avalanche-aspect} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Continuing work} \begin{columns} \begin{column}{0.5\textwidth} Need to make consistent cross-property measurement of exponents; working on expected form of scaling functions through different regiemes \bigskip How does the established multifractal distribution of bond currents (stresses) affect this analysis, if at all? \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/multi-all} \onslide<2>\includegraphics[width=\textwidth]{figs/multi-carriers} \onslide<3>\includegraphics[width=\textwidth]{figs/multi-weighted} \onslide<4>\includegraphics[width=\textwidth]{figs/multi-q1} \onslide<5>\includegraphics[width=\textwidth]{figs/multi-q2} \onslide<6>\includegraphics[width=\textwidth]{figs/multi-q3} \onslide<7>\includegraphics[width=\textwidth]{figs/multi-q4} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \centering \Huge\bf Questions? \end{frame} \end{document}