1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
|
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 32921, 652]
NotebookOptionsPosition[ 31832, 626]
NotebookOutlinePosition[ 32165, 641]
CellTagsIndexPosition[ 32122, 638]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"a", "=",
RowBox[{"Import", "[", "\"\</tmp/test.dat\>\"", "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.785674448548069*^9, 3.78567445600434*^9}, {
3.785701584548991*^9, 3.785701588070231*^9}},
CellLabel->"In[92]:=",ExpressionUUID->"c6876c08-19bf-4470-8acc-b64d39219064"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"a", "[",
RowBox[{"[",
RowBox[{
RowBox[{"-", "10"}], ";;"}], "]"}], "]"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}], "]"}]], "Input",
CellChangeTimes->{{3.78567445973678*^9, 3.785674470780582*^9}, {
3.785674746435912*^9, 3.785674747756837*^9}, {3.785698731119149*^9,
3.7856987587812347`*^9}, {3.785701145565137*^9, 3.785701198492713*^9}, {
3.7857015922555532`*^9, 3.785701636433536*^9}, {3.785701669799861*^9,
3.785701676466174*^9}, {3.785701897716303*^9, 3.785701907156402*^9}, {
3.785702094087538*^9, 3.78570211877253*^9}},
CellLabel->"In[94]:=",ExpressionUUID->"08960285-93e3-4f32-9a53-e3061f800e58"],
Cell[BoxData[
GraphicsBox[{{}, {{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw10XlIE2AYx/GViZogygq1RNIOm7dpplO3n/PWubJMcrIQQwtUgrKJmmY4
54w8Ei0NxaAwWh50gEQHLo+ayfJCE7dZosQS0tAOTbKk533g5eHzfv98XDLO
H8/cyuFwwv69zf1/loS3mzbnmZA+oHJfdzS2M1tCUFfnrEx5TraFf1t61RPT
C/IO5JcLTg0oX5Ed0D02oUp36iE7Qd5zqf/6EvMe5Ml+aVbHNWRX2PidXlbr
XpP3IdXwJdhU3Es+gJB+dXjjNPNB5DpXaNZ39pHd8bhZMWovYvbEneTfeaFZ
zN7wSMi7mapg9oWVRl242sLsh76CoKump8yH4CXTBM5qmf3xwG6tqdDAHAC7
XZqB74vMh8G9PLYytaWfHAhry44KHy7zEUh52y5U7mUOgsAqR6fxZw6GskbF
uxHJzEeDm6382knmEDyUjibZZDGHoprP74yWM4fhXu565aCSWYD3Yt/m7EZm
IfSKokyjmhnY3tpRVvaSXAqErhg6PEdYD4dEZLJ2+cx6OHoncub3b7AuQu20
T2u7wwB1ETzOSTMyA8icCJg1tUQtJrMegek1kzC7hPVI9CevWZ3tZj0Sviuq
kYvWb6hH4cfXmp/qBnJpFBInuTL7krfUo3HMnldf3qWlHg3pisRcvzxIPQYS
XlfDsGyIegyS/HQzCpGOeiz4eYXGKvNh6rGYXO1+V2Igc+Iw01fbLNaPUI/D
nJ0+dsp1jHo8inWGzltt49TjkWZhUcSNmKCegJ6h/CWuxQfqCQhMK9BuzE1R
F6N88xwL09TFuHK0/cR8kZF6Iqrrverkdz9ST4TC+9NwWugsdQm0tWcWHEVz
wpY/Po/um0nQ/c3NfXfKnPAveDAmOw==
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw10H8sFGAcx/FLSS6iWLMVw+qSjHORHx338eM4zvm1WP643JiFVnbVRsnt
/BhJqSalbF1razVjZaa6VRddGNYwOXGqc6hZJdmNCluZ7/Pdnj17Pe89/3w9
sgpSc6w4HI7w/1m712dedOf22mhF9ICqpNDriibmLZgTCVxDw16QHbEhhZ/N
NbwkO6M90NPF5paO7ILGWs6pnX4d5N3IzPIZ9tveSXaHdb5/UcMisyd6npvN
jybekPeAq8v7+12tJ/Og2yGplhuZvfDYps485fSW7I16zZHls0JmH/Car7Q6
HWP2xbdrjZObLzDzIdYGqCbrmf2R41JYntvCLEDSrGJVo2c+iC6rzKGWUeYA
PDmqF8/NMgdCm+a4Ub7MfAidqfKOfrsuchCqaiaGR1yZg+FuJ1xy82UOwcJ5
/v7wcOZQBHUnFtkmMh+Gw2BJSJucWYiGz3mCqZPMYdCVa4LVKuZw4Hfy/b1X
mUXofshxGbjHDARXckwf2shqIN/I55b1sB6B4yV9/hkTrEcAH1FauMB6JMrc
1n50U4/EgGNtxuIeMicKYQo3wUwU61GwVzbXGHNZj0acRXBp5ibr0Xj2a5/3
LgPrYhR5cS3Vwh7qYvCU6dEyC5kTg3nn0w/uWvdSj4HHjSVlQGwf9VjUWW1V
9HX0U49FlsOPbOvX76hLsCko9alkfIC6BJov02KeaZB6HJJ6Q1qrFoeox6HA
YCpJ8x2mHg/3c1+TK5veU4+HOr7eq1hqoC6F6rL2hO2fUepSpEjPHKgYGaOe
gIsVP1ftx43UE5CgTBsrFH+iLsO2V1364loTdRlWVpZM7VKzqGVIVVpnka3v
K31a9A9v8xWJ
"]]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw1z3lIE2AYx/EpSQs0XYV5Vdrh1KLMa85rP13qnHOllM08AjUzcy2Tgtmo
ZfmH0UHUDAM1CUtBTIXUGtK8z+F9oba0JZXkVFiHqKT0vg+8PHze71+PU7Is
5oIpg8EI3Hib+/8s8l4Ubs57HvlAdNOMGauCmgl9cdWCJFNNbAXjeIHJRddG
4l1I35pwtpf5kdgG5tm5PlyFhtgBJSbGtGFFE7EjbqbvO/xH2ky8HyK7V9dP
e7cQH8TAlvuS1mpqZ1ghYyf7N7ULNDlT9efYrcRuWCjQKxOjqI9g9YzS4COj
PorIA2m/5A+o3TEv26bhlVEfR0pql0OPmtoDJ1UG2/x+ak9Umyrq5V+ovdB9
NWDjJGpvSDuGEyfM2oh9MHZs3GLSmpqDPnXNS3cXal9UMnTST77UXNySDZWs
Caj9II///m5CQu0Pv7iMRl06dQD2cAdtbeTUgVh80x7JyacOQu7DeZ2xkJqH
H6pa86xKasDX4/Fqk4ZYCcTWWcp7RmgPRuny26+qedqDsXhJnJRq2k56CCqa
S2a0dsTKEDgMlmu6fGjnY673Rl6QhHY+PC+7Ov68TfsJWP818jOraT+BTlWO
9b1l2kNhuMbS5cd1kB6K7JSc5h2WnaSH4WkLu0jg3kV6GFYUz1i7ld2kh8M/
i5t051sP6eFY/zBUxC7Wki7AtEvt6KmMPtIFSGyb5eSp+kmPgHvD3KP15wOk
R6D2rjCho2GQdCHsl1I5nitDpAuxvVSo3Zs+Qnok1kSNV1g2Y6RH4pDTk7ol
9gTpIhg6JdL185Oki1DulZxW0jFNehSqjKEh8eLPpEchhm+vtGDOki5GTfSo
zNlZz5t6rdaWMcWoX2K72cfqef8AiJEiYw==
"]]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw10n0sFHAcx/GbxzxNzUNX6AHrkClEd3m4j8c7z8Kwmod1bJUZJX+wxWVq
rp2RjZOuGutisjxkyXAeusulzrNFpTCZZpEUNelB/X7f7bfvXr/3v9+DZzKi
UjUYDIbX37e9/89nbtXN7Wnnkg+IjR9J0mupd6A7f21OEddBvBMx7IKY61Zd
xKYYeuvXt/FLTsyEkZVHnSK7h9gSzREMpaqsl/gANHNnB6/e6CO2Rpw6y18e
8pTYFnGJX7g/OqgP4btIc3Fji9oOD2xbjFscFcQOENiXNWpFUTuisH36xeWL
1E4wyxxaqy2mPoqBYus0Ixm1M+oF5aOuXdQuiMxsrtEZo3ZFQt3PtJwP1Mdg
MKFWvl+ndkO3dOrhsK6S2B2KRLtkDyb1cWxmjZSu2lGzcVpHKkvhUHOQlzF2
d4tPfQJuEgvD7HhqD3Td19WWnaX2hCi3t5aTQ+2F3pLzkysiam/MVqZGaNyi
5mJUpBWtbqAGkhubZvJ6iIVAvqtzQtEE7T44Yn5N9XGJdh/cq9erWdZ8Rrov
RBWedyr2Ewt94cBhrQ970+4HzljhJ5aAdj8UiIX6vFLa/RGesqAh6afdH9Mr
kaaLJv2kB0DV/M1wtpJYGABBIs+y5YqK9EAwT92WVj95TnogSqIv2Up+D5DO
Q2tsK2cw/SXpPBgkJS1F2QySzkchz4LXoBwinQ/tooI90U3DpAch32mvyz7Z
COlBKG+zkZp3jpIeDBN79cIF5jjpwZB3MjYXxydID8G/8xe/Ij0E0t0s+euT
U6SHwow9pbOMN6SHYtfMV6d3JdOkh6F6Ur+qIn6G9DDoPg5uYlvOkR6O9Ur+
OXfjea5eTbX4sFE42lZZDhax89w/Ly4e6w==
"]]},
{RGBColor[0.528488, 0.470624, 0.701351], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw10XlI02Ecx/HlkaUzUjNChXQ4FZNYzs3M1u+zOY+p08xykmkXpaCgkWYk
kUp2DclIJs5QtLko1LDwGF5zmlfXwqMsTBmzshIyozSppfQ8X3j48nref369
TmQfOGXFYrFEq29t/59vjLpybXQM+YDBIFMzWuoNaBSUv1VmdBBvRrrje8Ws
pIt4C1hCT8mRkB7ibTBkVgg9VHpiD/DdljtN93uJPbEYkt+RpjYQc5AUtSxr
ie8j9kbxrQpBs57aB30TWbNcC7Uf5h27eZX+/cT+qHeuNn6Jpw5AyvHfaWE5
1Dth7a2Gk5KahzbxfNu5OupdqJePix7pqAPBFbEb415Q82Hx+vMzb4Y6CDO1
fkbf79QCLOY2+XFtnhALoZDky+64UgejZui2JtOHejc0N0yHJoTUIehNntab
I6j34MFoUcO9JOpQLP94o1qXTr0XJUxfleA8tQicFc+nxdep96Ep3MHYqqZm
MOnNmBQN1MDNQfbBgR7iQqBgKTDh8hjtYqweh6Ofo12Mh7ZdwVdYA6RLoOO7
sD+6ERdKkGP3uTwymPYwLFp9vZuooD0Mdo838gIu0S7FRLaP1qGZdimKVE3H
3BdoD0cN5+q1qsRB0sMh75F25v0lZkVgU8acfavTMOkRaJmymQ66OEJ6JCwX
Smx/WT8jPRJlS66Z7UPPSY/CKL+rP1n7kvQoJJdyG0qbjaTLIEnV7N/a/Yp0
GTSsBN5J+1HSo1HQfVqXlTtGejQ+lI1Jhs3jpMdgfL1v3dGU16THYMc037nW
aZL0WEg12tRY/jvSY1FiFFfkfJoiXQ6lJbROkjdDuhzVqu3tIy4m0uMwsHJm
ZdbFzJw1KA9bsePQtuDr755kZv4BbF4eJg==
"]]},
{RGBColor[0.772079, 0.431554, 0.102387], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw1zH0sFHAcx/FL8/BHjHmIHcdZc9itOA/Rcfdxd+483GlITtwmXGdaMVlm
rbo2mlnTpiRS/jHa5XFYbkYeEiMqFW5iqiupZVeSuuqW1u/33X777vV7b192
TmGK2orBYETvvH/7/5iEDfX/Ri8kH/jjyOQ2NlPbwbXapzZHNkDsiDRN3zDL
eZDYBTWZ104nGoeI3bEd/bEzXTlM7Al3SXOLSj5C7APV6ldlCG+U2Bd3jY2L
4l/U+zCo6zmWfXWM2A9d7U2WnvfU/sgWZARneT0kDsSeDxX8vVJqLjrUPM8n
Gur9uMw0/TxeTh2EjTJLb/Jt6mBsP65hhPVR8+CW7HxeMEUdgq620ADrZepQ
5HcKWOYN6jBEDH3fuTBOHI6eulOt7U7UBzF6YGuzxZc6ApX5JbbdIdSR0H5T
NNjEUh9CLcfxbFUaNR8zUfoWnKCOwpqurHqylDoatr0l1kuV1AIsqzRiSz21
EB4dDtr+e9SAiTcmzXhArAWKfM19W89pj4EmICNJtE57DLj93qZhxiPSRVBO
ZnkcYRJrRfBqL4iXRdIuxu9UncSQSbsYrz+dVBWU0y6B/63iilI97RKIblg7
X3SZID0WrcowuzMDxNpYcBelUYaZSdKl4LcVTctSpkiXYr5Y4+c+O026DPxd
inL7wzOkyzDifcFyzjRLehyq2JH1/WlPSY/DgmbWfD33Genx2GYX6s3dc6TH
411u6aUaqxekJ0A357bwQ/6S9AS41L11rbwzT3oi9CvhqWzWIumJ8Buf4OSt
GUiXI9uoVnBNS6TLsfuzQ4BN3ArpChQXrd/cvLJKugKvDOmsZs4b0pMQlNPE
qHIyCiPUeWsx9km4/4UTyDxqFP4F54EY1w==
"]]},
{RGBColor[0.363898, 0.618501, 0.782349], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw1yQ0sFHAYx/FjVl56URiLddfNW9ZOinNezv1w59zhWhpRluYl8jK7a7Ws
y9i8TBeqTUnEqoWVkpQUQ14O5f2l5LpZsRSzuBVrqVj//7M9e/Z5vnti0kLj
9RkMBn99N+7/+S4ovbkxTQLywNe4mh8Zd6kNYTpQVRgmfUVsCjMnXjOL3UJs
jvJTWefyzFuJrRDl3fylTdFGbINHceoA1ol2YhZc46uYY6LXxGzE6OSp1VYd
xLZglr9cjrxNbQ/zwUl9v3lqRyguFc4sMzuJnbDZcaubsYR6H2Tj/PqmJGoO
fo1MVahyqffDWVs05VxB7YJIMxOlqJH6ALR8rMy+pT6I5NiF7BvT1K7geDtb
WOuo3dAZFfrso0EXMRcCbm/RqgW1O8JOq5KV9tQ88CQ6dQOX2gN5SdL6bWJq
T3Tt4igOHaX2wp3o44K1BGpvnDeSXWSlU/NRt3uldiKf2gcFsbYXskupBahN
YS5ff0AN6N3jyhWtxJnAySe5Ks0o7b5Y2uFid22Odl9oWjQOYr1u0v3QI5Q+
TbchzvRDwd6IzymetPuj0TimMjmadn8k9skE1SrahSjpWPTKVdMuxK2C4pIE
OzXpIlTpL6b/aSDOFGFnYl2NrrqH9ADII3P6GZZ9pAeAvfbz7HTZG9LF6LaK
UC/595MuRs7gRHu7doD0QAyVSMZMfIZID8SLTc+ldbxh0iU4MtfczTk8QroE
usezxfOpo6RLIdqu3BJeNka6FAZXPnT2ro2THoRFW/ZvVeU70oNwZsXD51jZ
JOnBkD9UTSUyNKQH4/K60rK0pIdAuGrpG3t/mvQQXB3Wk7x3/0S6DBle+YZ/
2TOCBfW3eKWRDI1LDk7W4TOCf64yHaY=
"]]},
{RGBColor[1, 0.75, 0], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw1yXlI03EYx3GzSJE8gjUnbc4ipllMUyubs99Ht6mb27RMCVEj6YDQpuWB
IbTywljrMsoVFh7NCArSkrkUszyy1EzTVmmm6w9Nc3lFhlDS9/vAw8PreW9K
1ew/am9nZxf6b1fu/7ExhvKVMTHkgUWDJ6usktoRimlZPS/OTOyGkuHcdZeW
nxGzcD9AZw6rbybmwMrivfrGtBBzkd+QN17t/5zYC51SRV0et5V4M8Incxav
O7wg3gKX8/qEJ9XUAmAY53JnqX1wWJMapRa8JPZFNl87IFBTb4fOcjV+/Ulq
IU61te0zlVL74810yo9rVdQ7sNzE8gwyUwcgUC058LWXOhATNrf2mHHqIDSJ
OrRTC9Q7oZOf9StyaCPehdS5zPRaDvVutLeI9Hxf6mCMCv9kG0Oo92DptjnZ
T0Utwo2DHhfzU6hDkHTl5t1iDbUY7vMjHHstdSgaFblDlsvUezGiz0i0VVIz
6Ob3fwx6Sg08OtMiPtJFrAXw6cSgxxfaw6DUh9QULNAehsaSwpll53bSw2FL
X6rjbyXWhsPHab5ULKddAkm8suZOBu0SsFXHvQuqaJeCa3jc7zpJuxRJ44EW
JqaDdBk4Th9cIqaItTIkmGJ/D812kh4BbnKN+XtaF+kRiOU9KKuYeE16JNwV
AmNOcTfpkWA3xa36Je4lPQrlro5ZgvS3pEehh+2W6Hqoj3Q5zLeMIuuxd6TL
YUrL6onJ7CddAX8XIe90xQDpCoytudff6DxIejQsfcEDM61DpEejOUDzPrvW
QroShrWyOTv2Z9KV6FvNL9hgHCFdBZ1qWxEejpKuglA3X5nDjJGuBvtCFmP0
sjLD+kKpykmNhp/evhsTrMxfVv4bjA==
"]]},
{RGBColor[0.647624, 0.37816, 0.614037], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw1z3lIE2AYx/FRrraITE3RMvPWzMwjz5z76dS5TR1Kh1SirgQtypYGZQcT
U2mzqMDI0EwFjUmWmauwrHklOmya1yZTh66SsnlEfxR0SO/7wMvD5/3+9bhI
8lKz1zAYDM6/t7r/zyL3XuXqvOSSD3i0FpZN1lKz8KRXV2Bxpp14M0rWSXQa
l9fEW7CwM9zrh7aD2B5Fnp2ljYfeEjviSs9Wv7NiNbEzeH0X/uzw6iR2xUiC
yLTA6iJ2R5he2mVuoPbEo3olu+4btTfMkUtVu527iX1Q4+LY+lVA7YvRdB2z
+CS1H6YVe/SzJdT+0D9MXv/0PnUAxJzhGZWKOhBZCkNUk4Y6CFp2bbGfkXov
rm1sOu+2Qh2MoN+Xe0vW9hCHwG7K5NphQx2KMqObROhOHYZ0hd2DU8HU4chY
8B5M4VNHQK45OrOcRr0P7fEDRU4nqCPhK2SrlYXUHDgwlC+kCuooxE4b+q2r
qbmQMzvqjjymBubGLVvUncQyQLZpxcScoD0avzgtyRVm2qPhL8iWh7N6SY+B
fcUIO8eVWBYDDSvPMga08/B5Itqj+RjtPLwqtHXYfpP2WNQXzGfc7qc9Fmn5
sswbTu9Ij8PpDitDazOxLA4Nw+Kw9rY+0uNxVXaJbevYT3o8+LfaSlMvDpDO
x/KXsolMo4Z0Pko/Rlx/tn+Q9AQEVPr8O+E96QnQjqnVU91a0gUQMW0PvBke
Il2A3PKxlFGLD6QLYaOqKV/KGiFdiO/d+SqZdpR0Ee4cNofqpeOkiyDPHxmS
ButIT4SpmueglEySnohd/sfPNX0ykJ6EnPkNKivxDOlJuDudGzi7YCQ9GeXV
i9ZVP2e5fKOwMcQqGc+XvHy2HZzj/gUKnCKK
"]]},
{RGBColor[0.571589, 0.586483, 0.], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw1zmtIE1AYxvHNQsxIjKzmdWWlpSLzbjq3Z7pN5zUKCzUzk4qpEEpEWOpS
E4do5UzzhmhghiUqlNjMvCdZVLNNtomtvH1IVrGVlVoZnfPC4eV3/l/evWcu
HD1rwWAwuBvv3/4/X/j1df+mj08+sCRfyma2UFshNbOkoO2UktgWzYrZoIHv
/cR26NjSatx0c4CYBR3Xpvin5yCxE5LVVZW5nCHiPTinVQwuOg0Tu6LF5KAU
fqPej/TEp2vxihFiNzQwvSdqFqgPQiYqWLd1HCX2QE5lSEinmNoL/ZekI+lS
am9YSysE7iXUHLys3X2a3UTtg8UUtsbxEbUvangXBfmT1H7IylguqTVQ+6M+
3+Uu10QdgLx1yVXj5jHiQEyZtczpndRBUDka9/W6UQfjVp9ve2Aw9WGYS1cn
HkqoQ/DkWd5MbzJ1KFJ37Wi4kUXNBduuuvX2FeowXBfUiRXl1DyY5ust6pqo
+ZD+vqNp66YGyorsj3WNE8sAeVp3afkM7QJsH5vfxjHRLoCu8r6yZ+s46eHw
PWGptnQnloUjk8VzbRPSHoHHem//aSntEeBkWGuCG2gXwjbskMJBR7sQ59MT
QtcCnpMugmpuJXBdSywTQdQY36NemCBdDOVnlstq0gvSxSiUX/60pp8kPRIb
x7WmpbwiPRKDBxh/qj1ekx6F5gesThvZG9KjkORz0pmR85Z0CT6EuwxVVKtI
l8Aq98hwrH6K9GjMGVQ+S/Zq0qPR0WVvKMrWkB6DawLVvUTzNOkxKGU3Jjh3
aEmPBXOFW6hr15Mei5iqpV88p1nS4+ApXy72KjeQHge/oPdlxqSP/GXzj9F3
pjj0fnX3cDw+z/8LIxEeAw==
"]]}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.528488, 0.470624, 0.701351], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.772079, 0.431554, 0.102387], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.363898, 0.618501, 0.782349], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[1, 0.75, 0], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.647624, 0.37816, 0.614037], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.571589, 0.586483, 0.], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.528488, 0.470624, 0.701351], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.772079, 0.431554, 0.102387], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.363898, 0.618501, 0.782349], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[1, 0.75, 0], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.647624, 0.37816, 0.614037], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.571589, 0.586483, 0.], PointSize[0.007333333333333334],
AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.528488, 0.470624, 0.701351], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.772079, 0.431554, 0.102387], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.363898, 0.618501, 0.782349], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[1, 0.75, 0], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.647624, 0.37816, 0.614037], PointSize[0.007333333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.571589, 0.586483, 0.], PointSize[0.007333333333333334],
AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, \
{{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0., 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 64.}, {0, 0.635511}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.7857016181581783`*^9, 3.7857017034502373`*^9},
3.785701801456729*^9, {3.7857018935016403`*^9, 3.785701941222301*^9}, {
3.785702075669763*^9, 3.785702120348659*^9}},
CellLabel->"Out[94]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztXAd4VGW6PhBCEywI9oLYVkFFVCyrrOIqu+7VdW33qrur9FASkNB7C+mT
MpmWKSkz6YGEFJJAAEF6ifSSAKFDqAkhbVLe+/3/+c8wYTOZ2ce999nnXs/z
zEnOnPO19//+7/v+cubj4VN9RvsOnzpu5PC+w6YMn+wzbqR/3w8nTaGvvDpI
UgcfSZLO9pXY/6B/xYkf49hJXLj5fyj/442goCBMmzYNY8aMwfTp06HX66WO
4t6ePXswZ84czJgxAzqdDvX19dKz/J4XDAYDJkyYwGjoeXbuhG3btkE5cnNz
OzJCenTlypXKt9IzgrXRaMTUqVO5yMWLF2PHjh0OsSSGs2f3Zs+ejZKSEqk/
v9cNCxcuxNGjRx1iLl68iGXLlnEVAwICcP78eaFiZ1RVVWHRokXcPMYrOjoa
FRUVipi2SH8j7h0+fJiLmjt3LoKDg3HmzJl2UblfBvV9AQ6T7OPjw686Cm3q
6urwww8/4OzZs1zz+Ph4ZGdnK3iSdMyaNQuHDh0iJGWSI0eOYN68eZyUgcI0
ovsySU8cP34cLS0tnNvJkycxadIknDt3jl/n5ORwjNn9CxcuYMqUKaipqZGe
d4FjaGgoNmzYwP/fsmULM9qBIxN95coVfo/xy8/Px9KlSxU8XJP2hN1u5zgp
ajEPYRaxwwUgnmBJ3gKVSuXQvry8nDXJb5ywZI7DsPQSJFarFXl5eQ6SoqIi
JCQk9BdGhIWFca7sYAqWlpYKaV7cb4RrS0/z851Yt24d91/WZOwzbtw4fr1z
505UVlZi4sSJaGxs5Pyam5vh5+eHa9euyfB3x40bN7hRDM52Hn9GtNbevXsd
sCnQsQ7L4BVYOLQVWPCr+9xB2QWFhYUMBwdrptn48eOZZpKCJ3MgZiQ5jKMJ
oqKisHXrVgcdMzwiIuJ5cZtpwTRmItnBQgUZpCiZlJSEVatWOUHajfUx3teY
/exwdtETJ06wFhWt6YUFCxbg2LFj/EoGqSsuX77M8WQ4Ll++nEc2J9q2SBXR
69ev58CI73nrMvHsEAA58HUG6Bfi+5wAi4n19/dnHZQ/I7BVJO7atYtBy6/k
jtUJxcXFmDlzJmfleLSzArNDWnJyMsP5WQER6wBMIRfwtocui5CKs8fGxjqk
eIDuxo0bER4ezuMRu8/6E3OpX4yuy0Cg9GqmNAvX7LDZbCxyOSSJAMCvlIZg
gYN1RdYl2cE8uKysrK1AIOPSk3sri4DMIGdI2+rVLEATbo4cytRjgVu+kv2l
PbpnxJOkEm98BpKSK1wgIYLpe8JtWP+gqMgNJSyV4KiEYiVMt8pNPbF//37e
u9hx6dIl/uipU6f4NbNXyVENDQ0cA8qejgxw/fp1R49mGDEPVYIC1QgwmUz8
f5aNWZKqra0VcacT15I5DnMakqMkHBarmU+xg4WgkJAQR6hyhrST2+d78CDB
1GAqso+S51wgchucjIJ1VtZ5CU5FIAvXrHJgfYXqKae6yZv7Dyt4WFHCwjRl
TtH2nXhiVfoYJXClGGFfs+ZmNQyDmlg4ihEGOeuOjISJJG8XOd4Lq1ev5lni
Vtj2ZvUPt5mlR1b8EOyOoodhxyxhctiHoqJHdKyJNRoNx+t2uragECByXNuo
THsL9Znq4pDvf/avud9T/o5uf8tOHVxTdWnju64ePvdLaP83ZPxq27+/bd78
/Ktr/mrbv51tv7rmr7b9m9rWjmu+7OF3A38BbVvfPeRaJX7+Zyqbjo7bn/8L
uf5P3/9V6//DWkv38Cs2XFMmVMUYgX/PpjUYaXV1Nb9m8xlsnODr68snutj/
x48fl7zcienOr9gc0aZNm/j/7C8b3rGjqakJu3fvZiNnhZMY8/OrTu64d+Fz
GkwpxknhyK5pvEqDZFcsezqz5Mf2Ai0MqscQq3ocRvrEqvrSX/Z5Aonhr2DD
8rmy6D8I0V58zkTM8DlmKNi4iQ3j4QhqbYjvxKSTdltXqqCLuA/aiD7QRrJP
b2ijenVEtFaiJ6M1HWCO6IflUcNQVVHKpX/QrnR27VZ6myG6G1qaGrFS8z3i
Ql+COsab6QBN9F1IjnwVW9J/AD0gAzD0F2LfWjz3D8oJB7bkISn4fWhV93PR
3PjIR5GleRPXTspzlu8KyZw3mxK43ae4zR3ZBABJYbPH7UnuIQy319chM3I0
LMGvQa3uxqXHxHSBLfopbF7+HRrtdbLh77QSryxFsNF1YGAgG217C1nbt2/n
8wVs5os08G5D+F3C7O1FObAu+wz64Ge5yUy4Xn0XsnX9cfzIav7wb2W5bfXo
e4QNly9chjVoBuICPkQMeZSCYHz0/VibNQq1dbWyDW848eIxp7fgUF9vh00f
j/iAMTAGvIFo4QJ69R3INg1CaVmJzGGwa236iBZtampGXvYa6AiWhCWfQhv+
IOel1nghVfswflwdiboG2Wdecc1OnnMg9FqAndsPIjJQj8TFY2BYNkhS+ohN
0werUkbg2OmLaBGEA12zfEhoeOrYeUSE2mBePBvGxe+Qw3fiGibE9Ea+6W2s
37QVtfXybN6Lrtk9Ithdrqik4JEEPTW6efFQAq8zZ2dS34NVuueQu8KMs5du
cKIBrtk9xs934Mr564hT2RC9KAzmJcMQE91T7o7q7siKfhq5cb4oOXiCzyVy
yudub9UnBKeK05eRHJqM0EVmWJZ9BW3YI8I3vJAY8SRWad7H5i2bYG9sljk9
61q7foLn9UuVyNdmIHBhCozBYxEb0p94yq5riLoXKyJfwLqcaFTXCJ972jXP
p/i5BxpqG7A5OQ8R85IRFbQUCSFDoYnsJbymEyyRj2NF9GBsKYjCjWp5JrKf
a7bP8HMXPnV6uuQAcsItUC2MgzXkGxhDBjCWwoO8ERv1AGyRA5Fr/hL7t6aj
uuqarPZjrvk/p/Bvbkb59p+REWoieAOREvwVLEGDqQv2IgrGvxs1Wg8YKZDF
qwbAqnoLKVF/RJbx7/hxZTBOlW2l8CJgus+1vBf4mUJVTR2Ob9qGIq0GmUGj
kBw0DAlBb1ATPAsNJRFqBol3WwoMDDZN1D3QRzxMSewpWMIHIJ4SmTXst0gK
ew+pqmFIj/oU2dq/oSDeD1tyw1FakoMbF4+hyV59K953vt255C57J++XtVU3
cKpkB7amqJAbORzLwz5FRtgHSA57G4lhryAurD+MYU9Cp3oQMVF3sY7WnSv4
MO9zMdHduZK6yPthiHiEsm4/mFTPwhI2AHHhLyEh7FVi87pQ+l0kh/8eKeF/
QLrqE2RGfUHZ4e/IM47DGtsMbM4Oxb4NSTh3dAtuXj2NpoYb1EB20rVFuuIa
2yH83BtNdbW4UrYDewt0WJs4DbmUC7OiPidRHyEtjMSG/Y5UeItUeQ3xYQPJ
sudhDn+GFwhMdV3E/ZTAe5FJPVj+vJtb+SQ1gzdlle48lWoj7+WWsiZhdUZs
eD8C5xli85xscdhLiA8dhITQwUgMfRPW0Lfp8y5soe9TL/4QKaEf0edjpDKQ
VV8hM+IbigcjkKObgELzDKxLCcC2PCOhkIMLx39G3fULhEI1odDIUdjlGoVP
+flReqoZDTcv49KpHZSSrdicFYjixB+Qrx+JnJhvqHN/RmL/g1AZhlRqjFTW
KLxx3oA1nBor/GXyshfJ2/rT5zfUmE/R5wky91Ey+yHoI+9jJQ4PaTEx3XhP
7M2heoo7hFrdld/TRN3NSyJ9xIMUWR8lqJ6AMfxJmMKfhZkhT3BZyEHiwggu
apGE0DfIUX5LcA0huBhkvyedhpFufyI9/4w01RfIiPiagsj3yNaPoyA/HcXJ
AeT1JpTuKMSV0/thr7qA5oYqcvwGBlema7Qm8vMTHK3muipcvXAQx/YXomS9
EZtygrAueSoK4nyQa/gr9a8vSOqfkRn9R6RHfIC0CNb3hiBZRaiFvwmbajDF
hVcIuYFIIOTiw58ny54lS5/ivmWMeIwQeIg7jo4KRIaM7GNdGWLSvRy9R3l/
545G9zX0nI5o9OFU0BJqRsaPeqIldCA5mEAr9B36vIfEkA8JrY9gC/mU0PqC
WvRb0nMklqt9kWOehw0ZkTiwMQUVxzejofI4mmovoaWxljtUjGuIwpwcCs01
sN88i4vlm3F0Zwp+LorGpuXzsdbqi0LTCOTqvqbS8y/U3f6E5ZHDyLffpwYb
QjC9RTC9DhsLWyqKBhRC41TUV1RPw0yRgtfpEQwaqp2Z2dF3sP5GoYlB0ofX
MNyZIhgcD8PA+9tvYA4lBw0ZjPjgdyjTfIDE4I8pjH6JxMDvKUX4IjNmDlan
BWH/hnhcP/UT7JUn0FxfyWyRAlybnMbPfeipBorU51F1fjvKdydhd9Ey/Jjq
hyLL38jUT8kbhlHB+S55AjNvMJk3CImqF4Rp1F8iHqeI8iB0Ub25+uoYL6oU
mUl3Qs0CpuoBGEIp8gS/CkvgUJgD/gLT4u9gmjcZKUsnk+dNQ8maSFw8lAX7
taMEf9M811qv5eeeZFwj7NXluHIsH4fWB2Nj6misMn6MLPUQpEUNohz5PBIi
KTxTvtSqe/Jcw4smKglYr9WG9kPssjepnPoU+jmTYJyzlHrnfORaF2LvegNq
Lu7lPjPz9nSyXSQ36ndorj2ByjNpKNs0lRQYxstgm/oRGKgkZgI7iqTKYDEs
fQuGeWMQNUON0Jlp0AaHUKuF4PrZfVzQNNc2/8zPVIM33UDT1XU4W+KLYusL
SNTc66jCWTTSBwyCbtZcBM3KROCslYgOjEZhciQaqq9I/q7Z71cgba5H3cUV
2FdMgVLf61aBv+wl6GfPQtCcNCyblYsQqnoKkqIp8F6TfpDZihUvT4fnbAlw
0qRJpAfb1eXNV3ydDzbePMI5s1FPC26coVFZ/EOI0XSUNQocwDUKmWtD4Mxc
hM63oTglhtz42iSh0J2ckQcDeX7N5gvYaPTq1avKSNAZIb7eTo5TfW45ChIf
gVrLyyUYFw1F7IxIhM9NdOixgzIa5XHJVyjS/rhTGWwpCrA1+LYGYGX83B1V
ZzKw3CRXmhoaexpmzEbm1HkImZ3ONTCHBeJ62Y8ThXDPR/2KApWVlU6j/jJh
OFoasL/wPWg03rx4Ns3/E6z+QUiYEcjFBs9Pxo/J09F447Q0vl3ZzmN+BeqC
ggJlY0GbMzQnhBZVp1ORZuzBjWdDA5P/Iqz2nYKw2SlcC33IQpzboeW1oI9H
8CsTvmz/2dixY/nWgLY0KFdwoB64K6s/YrQdeQYzzaIc7bsEqf4yDiHzrYTD
aDRWn5XGCg3aH/7TbbZer+zLKSkp4Yvczc3NbelxSuhx6VAIrMbOjs6QMDEM
68f5IWwmDXRm5sAcNRlXj6SwziONbqWHy3kAb2RmZvKv2WQZW6hnG9Tamok4
LZRoqj2N9any/AdL8fGT/ZDnswAW/xi5NyzVYFvOGAor16VRshJthZ8zCrbU
0cu3DofZIHfy2IXvIWlsFFaNn8NtCpqTgWTLd7CTj410Ysej8nnRP2qubkFe
YnfZRah/JE6Yj6KRcxE1LYnrpNVMRlVFyQjX6iicqFLC3lWvQqfrQP29I0yz
qbgeGYUEPx3npAoLwMkT+cNdc+Kxj6L/taOhSLfIRulCnobVJwTpY6IQNCMH
IUt02LFTJ33vmk2FUKil+iA2Z9wjJnzuoDafg7QRWqimrkDwPBtyi+bRCLL5
7645XXKYVosT699BrF7ippmn+iDpexMME5IQNHs5EjOm0RC75m+uOV1WOFGb
XTs4E4kmSfZFyqZJw01IGBWH0GlZ0MVPxY3ai3+9vbmuCWjqKlYiM14OpnrK
2taReqI3Q+2XTrXDXFy8dlD61rUaCpummjIUpd7F2Zhj74PZN5oMMsPkY4Nm
aSCOni2WvnHN5rpiTdNNbM8fwNlYWO9aEMzZJI6Ig36aBj/tMTCE/8s1p0on
XI5s+w4a5sexHaCN8SPbTJxbrG8csormwN5U+5+uOd0Qpp07Fkvt1BEanYS0
xHdhmmjmXMw+ibAZJxO6F6SvXLOpFmyuX92JeLM8W1iY8hA0s2Vl4kclIHHJ
bJy//LP0pWs2NwWb2rpLSE96iLMpSO6BiEADbMTGOsKCRH8VSsvXSF/c3ti1
griRyvC85QM58cpEb6h0kbCNNHI9EvxicORIttTOcoLCpoUKr3UFf+Rs0uI6
IiZuEWxjDDIbXw0O7ImX2llVqBNsWBPt2DiWs7GS+5qtE2EbqxdstNizWS39
xTWbBsHmUEkAYqhtTAYJybbvKGLJLBIn6FBClTSLwH92zcbOz11xbJ+BO0tc
rIT0ZGLjoxNs9Pg5Z0E7HBoFh6M7VZSWZFuy0r5Dso+Wc0gZH4lDawI/ub1V
mgVdSaEvxyDFIiE/41uCMpaa1ILc8fNRujH6Y9eSFQ4bkj7iHDLjJRQlf8Md
3Trcgp98fCigm/7DHYdufMRfoH1ReIaENYmkxwjW8SzY4/MVzuxOkf4ks5Hu
5qSeVpptvATQVkprUVy05jpWhMv+vTZFQrHpew6idaQFpWM/xPl9K6WPhCLy
ipSnFaaLnfSuV6RIm5oLh5EUKk+m7llOsGhGcW1so4wonzAElRUHpT8Kbdqv
c5RFbKc96I6K7B8kdxDiL+2lQkLVmVKEhJO5ElaHT+Di00dH48jsIVQ0VUqe
Ly8pxZ7Ttm3Z+E4ODRTBpXkLoY/2glbvhatFEvIWzuKC14yehd3qT6g4apSG
tSvYucrsJM637Wd2uVgn8+jOpwJ2xP6ZBh1U7xq7o7qISqTJYbxz7Bv1NXZm
sxK/5UOPGkApNJ22/7puei+BQ1N9NYpD+/P2t8X3QlVub6SMNvCucWLMUOzb
pZEU8W6rTBe7ZF0q0UkoUXfpBFYE8kkvZCfdj/O2ATzFp43SoGzyazhxplj6
oJUS7ZSYbe0zddkQ3kKD64fWwhYs56516fdjX+Qn3B1WjVqIHUveQFXNOen3
sgYul5E7C15n1mlgCZcL591ZfbBuzg+c165Rw1GQ+Tl3rfedeN1a6FYWHqkX
46B1LJUrXpSUvXEk+wFkTQhFEmWyfX4f4qf9qlYc2tJG4dVsr8fWiHehiekI
g6EnytP6IWVELFJHa1AUNhjlFZvEW1SueXUVvBqqKlC85GnqreSusfdgv+Y9
bln+6IVIXP4uqusqxKZi17y6CV7Vp/Ygd6Hc5jZzL6yf58t5Ffv/DRmbRrEi
SHrXDS9lpfTyriykLZUHbQXWPsgaH4YkCmBp6iHYckTnjs0dgk15TgDiQ7tw
NjusjyN5uBEpY2MQs+JVVFQe/p1HbFimacJe/ZcwsNaj0ne7+ndyTPOfh6Qf
v0YzDR2HtNn+PYUijbVV2Bg4kIcFs6EzCmdN4hws6k9RcjxpiBtFFDY1F44i
f9ED3J50Uw+kjY6h8iMWmuwhrKZ7xw2bOwWbq/sKHOjm6frKNd20QKzcziZC
Wt52w0Ze1+2CU6tCEBcmd4vs+d/wGlyr/U+UnS+WPOPRlcfLPfrPqdalwZLB
G8mjoxDvQ/Xuqo9Qb69uZ1mYn+8WqjTevIaCJY9zVTI0D8sl8wwV1u0LlJx5
3GqZXoKy8shGJAXJY7+M+V/yMBmlGY0rN8qkt9xIl3l0RmnmTBjUXtBT6rGO
CacyOwFZG2d5Rt4FzY0NWLNMHkHY1A/wQKmZHY6K64ekN93wuFeoUHP+MNID
5Ca1zfsMiVR7JK1Y7I68tyA/VhgFs7oTxaaOZEEIDL7xOHPp5zc8JGetuHrZ
IJ7041V9uQWmqMh/WIjnRPcpKl89i4yQO7jKcTSYNI9JwP4jm193I1Mh32n1
h0HnBYO2Kw0INNDPMrMw287SfStyBnr+ErkrWZYO4cO14qJiQS629HhQMCqJ
iL3RxF5ulK9cCL9fgXtTJmy67hyvhAkLEDvRhrqahtdaCfegSPynhD/A//XG
2qWDqZ07wBhFrjbCiBWWlZIiuf16RHkX6PTp0/ydGOWdELZZipWmaWlp7sR3
xtXTpVipltOEefpfabhtRW1N/atCA/c1ofKOFZt+W7JkieONLwHCrXnIVlZv
1I6gcZI3n4y0jlYh25IrtS/TuRz0ElxKS0v521ZO8lyXIg8KRe31tVQG93XM
T8kWN7ziEebKfhvCFps3b25lZVtCHxKa7s6OpIFuNz5VYx0biFxLvqRIdFn2
dRbC2Pub7K0a9hqxe2Gd+RhlnfZ5eXvEksEwjmf+bB/USl4bFZ5S4DKY2Uai
duF8WFh2sDgBuVY57bDOk2/Ok4Qkl73+YaEoq8M2W16kMW8HPgUaO44Uvdnw
shvyR4Toss3JWJcizzzF+U1HYWyW5Ex7K8g9JihKUl+AloKqNqQfYidYUVdd
L7Wzd4efHxW0x3clYVu6PEcWN2UiinWZbmkVuaU5z/DoqKFxqXmihZUw0kse
0p7crcGeTHkZxzRtFA7nFXpMyzLBxYIHoNN689n2lCkxbmkfF7TlOxdga5o8
5WmaMgtVB0sk541Jt9DtKyhammpwrUh2cn3AyyicFyK1s5WpFe3R4q+Qn9CF
r0xY/ILRdOG02IPintZ+4zAqCuSWiZ0/DHsjlrqlfULQnip8CTbDHXwbXuqE
IDRXXZPa2S/VivZaeQpKV4qWmflXVKREeEjbma99Xl/TC3ptN766WjR+Flrq
a/u3CfCTirI7/LE9Td4lZ5kyCTdXW6X+bgT2Uxqn/hxq1njxJQ/W13bPGOeW
VpFbvvYDrIqXa4MU39loqjgtXh90T1t/uRhXCuXGMS54HxdSwzymZfN7V9Y8
hgSdvAFh7aTpbmmfErQVh4KxN1PeY5foPx72s8ekf9i0ximeVqQ1VuLGms7c
fQ1LX8dhw+JWFG1JU2iPb/gcy83d+Ta8nAnzWWQTLz66p62/upkChIyQZdoI
VB/brdD+kzNl7PVKZaaMrf4cOHDAZfx2WE0YXyh8lIYKnaAjv9gWNN8hne9X
9Xh67Ny5c0qyZi8PszLkVpnShgbPCA3Kdy9GkdWLd/30cYs4dmJToIdTYuLN
X37lckpMEddiv4KTeXLWMM/4Gme2rXKIc1/uKO9CM7WY4SzXMhAmT57MmuG2
2TBZZiccLRoKo74TtKFPYM3sxe2La6vSycjIcPyQBMO/rKzMdWpWXiK+ejof
G1Nlx7KNW4imxgaxT9EdsAprJpa9AS/b7EYcSzZlefK6tmnOJ9i7IsEhzs3U
loeSlDe+D2ycgkRjRwqcfZA9Oai1kHamrpgQVhkrry6bzWbXKCrvLdtrzmB7
hhzlE3xnUYFSJbWzv5SfnxOK7sl9Sc5KC4ZiV5rVU7Ljh2xIMXdETOTdyPIP
dSa7Fbaed8DeiE3pXeVAR6Gnsd4uNrm6FvS8ELQp+z25uWZ/hr0FBZ6SnT+5
DqbYDtCFPImV06M8I5NDzaok0lRD/khFf5O9SXrSDW1/IbI4/XU5QPqPwpGf
tnpKdupYPl+TYWVwzjyNM9ktJAc46ZcR3wUxMTSGHa6nQWmz1M6WXyfaTshP
foHrF+87Ayd2HvSUrPRAgihb/oD8pWbPyGRNE0yUyKP60KAxFs1NzdITbmhf
ECJXWPvJvjI2GGf3nfCUbM/2ABEyv0VBmM2Z7BaSLwr9mpvt0OlpUBv2NJJG
Gvi28b5uBL0oBKVYHuB7M2wjtLh26rKnZFvXjpNL88l+2Jpa5ClZbc0FuTRZ
/DYy/LXuyF4SZHHGO6GL6YGkUXq2JftxD8lyM4bI2Pssw+VjF53JboE4UDx8
4nCCqAm+x0Zztqcy7PYbULMJhYDXkO6ndkemSIsz3gO9uieSRxhZx2xnK3or
slWZcgSxjgnFhQNnBNk/+aoXS6TsR1ZYyGbJNisri7uMy9JBkX50r1qGaOpo
rA1Pai3d07plzZo1sFgsPJUrsxjsh8bcSq+rvSRLD3iDxg6RinRPUmtnXp8p
PyXFjvT0dPZ7RC6FviyEmmPvQqz6Lr7Zw15nf1QI9bxyYRv32EwCM5/9js78
+fMZHLdVLoqN+envyPXD6AgafpS2L66tyoX9gkl2djZvf/arLwUFBa5zrmLk
oZ1ysIn7YQJWLdIqUj0rWtg2tJ9++kmY60bSzapyOW4HvIW08RGKJLdLcVRa
c3dlv3jCDvaLMC42fPHzICHPZOgBs7oXnxKvr65/pJW8NkqXzgJG9ss07GtW
BDIY7Xa7awdVhOWnviY33sgYHC3YKoS57NMK2d4tMwT6k5AzM9SZ7FaUekU8
XHllnxwAlv0WaeMi3clQyIz6rrCo+3Acaq7efNhDspzkAXx1LGmEDnuSsz0l
2/3jBLmV/aYib/4ST8kun9soA0HZeYV/gKdkLDvrdN4wRzyGtLExzmS38HtN
cDl3PB/rkwNx+eQxyZ2A/9evD/P/xY//SB3+G4fDLvk=\
\>"],ExpressionUUID->"774e49fa-6e5d-493f-8bc5-6d98d9a34967"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"1", "-",
RowBox[{"14", "/",
RowBox[{"(",
RowBox[{"16", "-", "1"}], ")"}]}]}], "//", "N"}]], "Input",
CellChangeTimes->{{3.7856785354556637`*^9, 3.7856785674124403`*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"e4137148-f2be-462c-be21-ae41f8fd57e5"],
Cell[BoxData["0.06666666666666667`"], "Output",
CellChangeTimes->{{3.785678549429151*^9, 3.7856785677936373`*^9}},
CellLabel->"Out[7]=",ExpressionUUID->"12765426-1365-4919-b2e8-25fffdfe8263"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"T", "[",
RowBox[{"i", "+", "1"}], "]"}], "-",
RowBox[{"T", "[", "i", "]"}]}], ")"}],
RowBox[{"\[Eta]", "[", "i", "]"}]}], "+", "sumBelow"}], ")"}], "/",
RowBox[{"(",
RowBox[{"sumAbove", "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"T", "[",
RowBox[{"i", "+", "2"}], "]"}], "-",
RowBox[{"T", "[",
RowBox[{"i", "+", "1"}], "]"}]}], ")"}],
RowBox[{"\[Eta]", "[",
RowBox[{"i", "+", "1"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"T", "[",
RowBox[{"i", "+", "1"}], "]"}], "-",
RowBox[{"T", "[", "i", "]"}]}], ")"}],
RowBox[{"\[Eta]", "[", "i", "]"}]}], "+", "sumBelow"}], ")"}]}],
"\[Equal]", "cc"}], ",",
RowBox[{"T", "[",
RowBox[{"i", "+", "1"}], "]"}]}], "]"}], "//", "Simplify"}]], "Input",
CellChangeTimes->{{3.78567938525543*^9, 3.7856795849721518`*^9}, {
3.78568012036362*^9, 3.785680123601137*^9}, {3.785680180022838*^9,
3.7856802036443367`*^9}, {3.785680295913398*^9, 3.785680296095108*^9}, {
3.78569796922115*^9, 3.78569801195823*^9}, {3.785698047770179*^9,
3.785698057393585*^9}, {3.785698096733224*^9, 3.785698115034399*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"68615798-7ecd-428e-af60-14a14c5571fd"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"T", "[",
RowBox[{"1", "+", "i"}], "]"}], "\[Rule]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"cc", " ", "sumAbove"}], "-", "sumBelow", "+",
RowBox[{"cc", " ", "sumBelow"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "cc"}], ")"}], " ",
RowBox[{"T", "[", "i", "]"}], " ",
RowBox[{"\[Eta]", "[", "i", "]"}]}], "+",
RowBox[{"cc", " ",
RowBox[{"T", "[",
RowBox[{"2", "+", "i"}], "]"}], " ",
RowBox[{"\[Eta]", "[",
RowBox[{"1", "+", "i"}], "]"}]}]}], ")"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"\[Eta]", "[", "i", "]"}], "-",
RowBox[{"cc", " ",
RowBox[{"\[Eta]", "[", "i", "]"}]}], "+",
RowBox[{"cc", " ",
RowBox[{"\[Eta]", "[",
RowBox[{"1", "+", "i"}], "]"}]}]}], ")"}]}]}], "}"}],
"}"}]], "Output",
CellChangeTimes->{{3.785679579637249*^9, 3.785679586497634*^9},
3.785680204743363*^9, 3.785680297035953*^9, 3.7856974608796253`*^9,
3.785698070411208*^9, 3.785698115554138*^9},
CellLabel->"Out[3]=",ExpressionUUID->"703451e5-ad12-4198-8e03-41d48f0e9c33"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"T", "[",
RowBox[{"j", "+", "1"}], "]"}], "-",
RowBox[{"T", "[", "j", "]"}]}], ")"}], "[", "j", "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "i"}], "}"}]}], "]"}], "\[Equal]",
RowBox[{"(",
RowBox[{"i", "+", "1"}], ")"}]}]], "Input",
CellChangeTimes->{{3.785679142062937*^9, 3.785679206043578*^9}, {
3.785679324852599*^9,
3.785679326964624*^9}},ExpressionUUID->"d3e86f9d-04f4-47b0-ace8-\
50b1544afc35"]
},
WindowSize->{1150, 508},
WindowMargins->{{Automatic, 1}, {1, Automatic}},
FrontEndVersion->"12.0 for Linux ARM (32-bit) (June 23, 2019)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 314, 6, 31, "Input",ExpressionUUID->"c6876c08-19bf-4470-8acc-b64d39219064"],
Cell[CellGroupData[{
Cell[897, 30, 742, 15, 31, "Input",ExpressionUUID->"08960285-93e3-4f32-9a53-e3061f800e58"],
Cell[1642, 47, 26203, 459, 245, 15398, 282, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"774e49fa-6e5d-493f-8bc5-6d98d9a34967"]
}, Open ]],
Cell[CellGroupData[{
Cell[27882, 511, 298, 7, 31, "Input",ExpressionUUID->"e4137148-f2be-462c-be21-ae41f8fd57e5"],
Cell[28183, 520, 193, 2, 35, "Output",ExpressionUUID->"12765426-1365-4919-b2e8-25fffdfe8263"]
}, Open ]],
Cell[CellGroupData[{
Cell[28413, 527, 1577, 41, 55, "Input",ExpressionUUID->"68615798-7ecd-428e-af60-14a14c5571fd"],
Cell[29993, 570, 1249, 34, 35, "Output",ExpressionUUID->"703451e5-ad12-4198-8e03-41d48f0e9c33"]
}, Open ]],
Cell[31257, 607, 571, 17, 31, "Input",ExpressionUUID->"d3e86f9d-04f4-47b0-ace8-50b1544afc35"]
}
]
*)
|