From 672a84bf8e24408060509b24a5f53a41c597e90f Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Fri, 28 Jun 2019 14:18:01 -0400 Subject: added ginzburg criterion stuff --- cusp.pdf | Bin 34527 -> 34489 bytes hidden_order.bib | 11 +++++++++++ main.tex | 54 ++++++++++++++++++++++++++++++++++++++++++++++-------- 3 files changed, 57 insertions(+), 8 deletions(-) diff --git a/cusp.pdf b/cusp.pdf index b0500ef..337b8a9 100644 Binary files a/cusp.pdf and b/cusp.pdf differ diff --git a/hidden_order.bib b/hidden_order.bib index 8cbe971..7a24ef4 100644 --- a/hidden_order.bib +++ b/hidden_order.bib @@ -61,4 +61,15 @@ file = {/home/pants/.zotero/data/storage/D9BYG3FK/Lifshitz - 1942 - On the theory of phase transitions of the second o.pdf} } +@article{ginzburg_remarks_1961, + title = {Some {{Remarks}} on {{Phase Transitions}} of the {{Second Kind}} and the {{Microscopic}} Theory of {{Ferroelectric Materials}}}, + volume = {2}, + number = {9}, + journal = {Soviet Physics, Solid State}, + author = {Ginzburg, V. L.}, + year = {1961}, + keywords = {⛔ No DOI found}, + pages = {1824-1834} +} + diff --git a/main.tex b/main.tex index 794f30d..c92400b 100644 --- a/main.tex +++ b/main.tex @@ -1,6 +1,6 @@ -\documentclass[aps,prl,reprint]{revtex4-2} +\documentclass[aps,prl,reprint]{revtex4-1} \usepackage[utf8]{inputenc} -\usepackage{amsmath,graphicx} +\usepackage{amsmath,graphicx,upgreek,amssymb} % Our mysterious boy \def\urusi{URu$_2$Si$_2\ $} @@ -27,6 +27,16 @@ \def\X{\mathrm X} \def\Y{\mathrm Y} +% Units +\def\J{\mathrm J} +\def\m{\mathrm m} +\def\K{\mathrm K} +\def\GPa{\mathrm{GPa}} +\def\A{\mathrm{\c A}} + +% Other +\def\G{\mathrm G} % Ginzburg + \begin{document} \title{\urusi mft} @@ -112,7 +122,7 @@ where $\nabla_\parallel=\{\partial_1,\partial_2\}$ transforms like $\Eu$ and $\n \end{equation} gives $\epsilon_\X(x)=-(b/2\lambda_\X)\eta(x)$. Upon substitution into the free energy, tracing out $\epsilon_\X$ has the effect of shifting $r$ in $f_\o$, with $r\to\tilde r=r-b^2/4\lambda_\X$. -With the strain traced out \eqref{eq:fo} describes the theory of a Lifshitz point at $\tilde r=c_\perp=0$ \cite{lifshitz_theory_1942, lifshitz_theory_1942-1, hornreich_lifshitz_1980}. For a scalar order parameter ($\Bog$ or $\Btg$) it is traditional to make the field ansatz $\eta(x)=\eta_*\cos(q_*x_3)$. For $\tilde r>0$ and $c_\perp>0$, or $\tilde r0$ and $c_\perp>0$, or $\tilde r