From e2edf2e648b2f5f4fc95250a992e7085c7c2c33e Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Mon, 5 Aug 2019 22:01:42 -0400 Subject: scalar vector component pedantry --- main.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/main.tex b/main.tex index a194abd..094e3a4 100644 --- a/main.tex +++ b/main.tex @@ -213,7 +213,7 @@ with $r\to\tilde r=r-b^2/4\lambda_\X$. With the strain traced out \eqref{eq:fo} describes the theory of a Lifshitz point at $\tilde r=c_\perp=0$ \cite{lifshitz_theory_1942, -lifshitz_theory_1942-1}. For a scalar order parameter ($\Bog$ or $\Btg$) it is +lifshitz_theory_1942-1}. For a one-component order parameter ($\Bog$ or $\Btg$) it is traditional to make the field ansatz $\eta(x)=\eta_*\cos(q_*x_3)$. For $\tilde r>0$ and $c_\perp>0$, or $\tilde r0$, and the modulated phase is now characterized by helical order with $\eta(x)=\eta_*\{\cos(q_*x_3),\sin(q_*x_3)\}$ and @@ -249,9 +249,9 @@ diagrams for this model are shown in Figure \ref{fig:phases}. \caption{ Phase diagrams for (a) \urusi\ from experiments (neglecting the superconducting phase) \cite{hassinger_temperature-pressure_2008} (b) mean - field theory of a scalar ($\Bog$ or $\Btg$) Lifshitz point (c) mean field - theory of a vector ($\Eg$) Lifshitz point. Solid lines denote continuous - transitions, while dashed lines denote abrupt transitions. + field theory of a one-component ($\Bog$ or $\Btg$) Lifshitz point (c) mean + field theory of a two-component ($\Eg$) Lifshitz point. Solid lines denote + continuous transitions, while dashed lines denote abrupt transitions. } \label{fig:phases} \end{figure} -- cgit v1.2.3-70-g09d2