From 55217a41b7e35e193c06bf965036331d1a089e6a Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Mon, 24 Jun 2019 10:15:43 -0400 Subject: better way of getting results, some cleaning --- hidden-order.tex | 298 ++++++++++++++++++++++++++++++++++++++----------------- 1 file changed, 206 insertions(+), 92 deletions(-) (limited to 'hidden-order.tex') diff --git a/hidden-order.tex b/hidden-order.tex index 57ec702..364602e 100644 --- a/hidden-order.tex +++ b/hidden-order.tex @@ -44,7 +44,7 @@ The most general quadratic free energy density is built from combinations of str f_{\mathrm e}&=\frac12\sum_{\X}\lambda_{\X}^{(ij)}\epsilon_{\X}^{(i)}\epsilon_{\X}^{(j)}\\ &=\frac12\Big[\lambda^{(11)}_{\Aog}(\epsilon_{\Aog}^{(1)})^2+ \lambda_{\Aog}^{(22)}(\epsilon_{\Aog}^{(2)})^2+ - \lambda_{\Aog}^{(12)}\epsilon_{\Aog}^{(1)}\epsilon_{\Aog}^{(2)}+ + 2\lambda_{\Aog}^{(12)}\epsilon_{\Aog}^{(1)}\epsilon_{\Aog}^{(2)}+ \lambda_{\Bog}^{(11)}(\epsilon_{\Bog}^{(1)})^2+ \lambda_{\Btg}^{(11)}(\epsilon_{\Btg}^{(1)})^2+ \lambda_{\Eg}^{(11)}\epsilon_{\Eg}^{(1)}\cdot\epsilon_{\Eg}^{(1)}\Big] @@ -53,144 +53,185 @@ The most general quadratic free energy density is built from combinations of str where the sum is over the irreducible representations of the point group. We can now identify \begin{align*} - \lambda_{\Aog}^{(1)}=\tfrac12(\lambda_{1111}+\lambda_{1122}) + \lambda_{\Aog}^{(11)}=\tfrac12(\lambda_{1111}+\lambda_{1122}) && - \lambda_{\Aog}^{(2)}=\lambda_{3333} + \lambda_{\Aog}^{(22)}=\lambda_{3333} && - \lambda_{\Aog}^{(3)}=2\lambda_{1133} + \lambda_{\Aog}^{(12)}=\lambda_{1133} \\ - \lambda_{\Bog}^{(1)}=\tfrac12(\lambda_{1111}-\lambda_{1122}) + \lambda_{\Bog}^{(11)}=\tfrac12(\lambda_{1111}-\lambda_{1122}) && - \lambda_{\Btg}^{(1)}=4\lambda_{1212} + \lambda_{\Btg}^{(11)}=4\lambda_{1212} && - \lambda_{\Eg}^{(1)}=4\lambda_{1313} + \lambda_{\Eg}^{(11)}=4\lambda_{1313} \end{align*} -Consider a generic order parameter $\eta$. To write down its free energy, we in principle must know both how it transforms under symmetry operations of the lattice and how derivative operators transform. For derivative operators, the two independent combinations are $\nabla_\parallel=\{\partial_x,\partial_y\}$ which transforms like $\Eg$, and $\nabla_\perp=\partial_3$ which transform like $\Aog$. The most general quartic free energy density (discounting total derivatives) is -\[ - f_{\mathrm o}=\frac12\Big[r\eta^2+ - c_\parallel(\nabla_\parallel\eta)^2+ - c_\perp(\partial_3\eta)^2+ - D\big[(\nabla_\parallel^2+\partial_3^2)\eta\big]^2\Big] - +u\eta^4 -\] -independent of the symmetry of $\eta$. This is the free energy for a Lifshitz point, and so we expect to see that phenomenology in $\eta$. The irreducible symmetry that $\eta$ transforms like determines its coupling to strain. To quadratic order we have +Consider a generic order parameter $\eta$. To write down its free energy, we in principle must know both how it transforms under symmetry operations of the lattice and how derivative operators transform. For derivative operators, the two independent combinations are $\nabla_\parallel=\{\partial_x,\partial_y\}$ which transforms like $\Eg$, and $\nabla_\perp=\partial_3$ which transform like $\Aog$. The irreducible symmetry that $\eta$ transforms like determines its coupling to strain. To quadratic order we have \[ f_{\X}=\tfrac12b^{(i)}\epsilon_{\X}^{(i)}\cdot\eta +\tfrac12e^{(i)}\epsilon_{\Aog}^{(i)}\eta^2 -\] +V\] The total free energy is \[ F=\int d^3x\,(f_{\mathrm e}+f_{\mathrm o}+f_{\X}) \] -Replacing $\eta$ with its inverse Fourier transform, we have +There are three distinct possibilities here: $\eta$ transforms like a one-component irreducible representation of the point group that is not $\Aog$ ($\Bog$ or $\Btg$), $\eta$ transforms like $\Aog$, and $\eta$ is a two-component vector that transforms like $\Eg$. + +\section{$\Bog$ or $\Btg$ order parameter} + +We will first tackle the case of a non-$\Aog$, one-component order parameter. +The most general quartic free energy density (discounting total derivatives) is \[ - F_{\mathrm e}=\frac V2\sum_q\sum_X\lambda_X^{(ij)}\tilde\epsilon_X^{(i)}(q)\tilde\epsilon_X^{(j)}(-q) + f_{\mathrm o}=\frac12\Big[r\eta^2+ + c_\parallel(\nabla_\parallel\eta)^2+ + c_\perp(\nabla_\perp\eta)^2+ + D(\nabla^2\eta)^2\Big] + +u\eta^4 \] +independent of the symmetry of $\eta$. In principle we could have $D_\parallel\neq D_\perp$, but this does not affect the physics at hand. This is the free energy for a Lifshitz point, and so we expect to see that phenomenology in $\eta$. +Before doing anything, we can minimize the free energy with respect to strain alone to find the strain in terms of $\eta$ exactly. We have \[ - F_{\mathrm o}=\frac V2\sum_q\Big[r|\tilde\eta_q|^2+c_\parallel q_{\parallel}^2|\tilde\eta_q|^2 - +c_\perp q_{\perp}^2|\tilde\eta_q|^2+Dq^4|\tilde\eta_q|^2\Big] - +Vu\sum_q\sum_{q'}\sum_{q''}\tilde\eta_q\tilde\eta_{q'}\tilde\eta_{q''}\tilde\eta_{-(q+q'+q'')} + 0=\frac{\delta F}{\delta\epsilon_{\mathrm X}^{(1)}(x)}=\lambda_{\mathrm X}^{(11)}\epsilon_{\mathrm X}^{(1)}(x)+\frac12b^{(1)}\eta(x) \] +whence we immediately have $\epsilon_{\mathrm X}^{(1)}=-\frac{b^{(1)}}{2\lambda_{\mathrm X}^{(11)}}\eta(x)$. We also have \[ - F_{\X}=\frac V2\sum_q\Big[b^{(i)}\tilde\epsilon^{(i)}_{\X}(-q)\tilde\eta_q+\sum_qe^{(i)}\tilde\epsilon_{\Aog}^{(i)}(-(q+q'))\tilde\eta_q\tilde\eta_{q'}\Big] + 0=\frac{\delta F}{\delta\epsilon_{\Aog}^{(i)}(x)} + =\lambda_{\Aog}^{(ij)}\epsilon_{\Aog}^{(j)}(x)+\frac12 e^{(i)}\eta^2(x) \] -There are three distinct possibilities here: $\eta$ transforms like a one-component irreducible representation of the point group that is not $\Aog$ ($\Bog$ or $\Btg$), $\eta$ transforms like $\Aog$, and $\eta$ is a two-component vector that transforms like $\Eg$. - -We will first tackle the case of a non-$\Aog$, one-component order parameter. We will simply write $\epsilon=\epsilon_{\X}^{(1)}$, $\lambda=\lambda_{\X}^{(11)}$, and $\alpha^{(i)}=\epsilon_{\Aog}^{(i)}$ for the duration of this section. -We will assume that our system orders at some specific $q_\perp=q^*$. This ansatz is equivalent to +which is a linear system whose solutions are \begin{align*} - \tilde\eta_q=\tfrac12\eta_*\big[\delta_{q_\perp,q_*}+\delta_{q_\perp,-q_*}\big]\delta_{q_\parallel,0} + \epsilon_{\Aog}^{(1)}(x)=\frac12\frac{e^{(1)}\lambda_{\Aog}^{(22)}-e^{(2)}\lambda_{\Aog}^{(12)}}{((\lambda_{\Aog}^{(12)})^2-\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}}\eta^2(x) && - \tilde\epsilon_q=\tfrac12\epsilon_*\big[\delta_{q_\perp,q_*}+\delta_{q_\perp,-q_*}\big]\delta_{q_\parallel,0} + \epsilon_{\Aog}^{(2)}(x)=\frac12\frac{e^{(2)}\lambda_{\Aog}^{(11)}-e^{(1)}\lambda_{\Aog}^{(12)}}{((\lambda_{\Aog}^{(12)})^2-\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}}\eta^2(x) +\end{align*} +All other strain fields are extremized for $\epsilon_{\mathrm Y}^{(i)}(x)=0$. These solutions may be substituted into the free energy to arrive at one that is only a functional of $\eta(x)$ whose free energy density is identical to $f_{\mathrm o}$ but with +\begin{align*} + r\to \tilde r=r-\frac{(b^{(1)})^2}{4\lambda_{\X}^{(11)}} && - \tilde\alpha_q^{(i)}=\delta_{q,0} + u\to \tilde u=u+\frac18\frac{(e^{(1)})^2\lambda_{\Aog}^{(22)}+(e^{(2)})^2\lambda_{\Aog}^{(11)}-2e^{(1)}e^{(2)}\lambda_{\Aog}^{(12)}}{(\lambda_{(12)}^{\Aog})^2-\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}} \end{align*} -where because of the coupling of $\alpha$ to $\eta$ we don't expect it to produce modulated order (this can also be confirmed directly by minimizing over a modulated $\alpha$). -For $q_*\neq0$, we have +so that the total free energy is \[ - F=\frac V2\bigg[\frac12(r+c_\perp q_*^2+Dq_*^4)\eta_*^2+\frac34u\eta_*^4+\frac12\lambda\epsilon_*^2+\lambda^{(ij)}\alpha^{(i)}_*\alpha^{(j)}_*+\frac12b\epsilon_*\eta_*+\frac12e^{(i)}\alpha_*^{(i)}\eta_*^2\bigg] + F=\int dx\bigg(\frac12\Big[\tilde r\eta^2+c_\parallel(\nabla_\parallel\eta)^2+c_\perp(\nabla_\perp\eta)^2+D(\nabla^2\eta)^2\Big]+\tilde u\eta^4\bigg) \] -while for $q^*=0$ we have +Replacing $\eta$ with its inverse Fourier transform, the free energy is \[ - F=\frac V2\big(r\eta_*^2+2u\eta_*^4+\lambda\epsilon_*^2+\lambda^{(ij)}\alpha^{(i)}_*\alpha^{(j)}_*+b\epsilon_*\eta_*+e^{(i)}\alpha_*^{(i)}\eta_*^2\big) + F=\frac V2\sum_q\Big[\tilde r|\tilde\eta_q|^2+c_\parallel q_{\parallel}^2|\tilde\eta_q|^2 + +c_\perp q_{\perp}^2|\tilde\eta_q|^2+Dq^4|\tilde\eta_q|^2\Big] + +V\tilde u\sum_q\sum_{q'}\sum_{q''}\tilde\eta_q\tilde\eta_{q'}\tilde\eta_{q''}\tilde\eta_{-(q+q'+q'')} \] -For $r>b^2/4\lambda$ and $c_\perp>0$ or $r>b^2/4\lambda+c_\perp^2/4D$ and $c_\perp<0$, there is a free energy minimizer with all fields zero. For $rr_c\\\big[Dq^4+c_\parallel q_\parallel^2+c_\perp q_\perp^2+2|\Delta r|\big]^{-1}&rr_c\end{cases} - && - \xi_\parallel=\begin{cases}(|\Delta r|/c_\parallel)^{-1/2}&rr_c\end{cases} + (\chi_{\X}^{(11)}(x,x'))^{-1} + &=\frac{\delta^2F}{\delta\epsilon_{\X}^{(1)}(x)\delta\epsilon_{\X}^{(1)}(x')} \\ + &=\lambda_\X^{(11)}\delta(x-x')+ + b^{(1)}\frac{\delta\eta(x)}{\delta\epsilon_\X^{(1)}(x')}+\frac12b^{(1)}\int dx''\,\epsilon(x'')\frac{\delta^2\eta(x)}{\delta\epsilon_\X^{(1)}(x')\delta\epsilon_\X^{(1)}(x'')} \\ + &\qquad+\int dx''\,dx'''\,\frac{\delta^2F_\eta}{\delta\eta(x'')\delta\eta(x''')}\frac{\delta\eta(x'')}{\delta\epsilon_\X^{(1)}(x)}\frac{\delta\eta(x''')}{\delta\epsilon_\X^{(1)}(x')} \\ + &=\lambda_\X^{(11)}\delta(x-x')+ + b^{(1)}\frac{\delta\eta(x)}{\delta\epsilon_\X^{(1)}(x')} + -\frac12b^{(1)}\int dx''\,dx'''\,\bigg(\frac{\partial\eta(x'')}{\partial\epsilon_\X^{(1)}(x''')}\bigg)^{-1}\frac{\delta\eta(x'')}{\delta\epsilon_\X^{(1)}(x)}\frac{\delta\eta(x''')}{\delta\epsilon_\X^{(1)}(x')} \\ + &=\lambda_\X^{(11)}\delta(x-x')+ + b^{(1)}\frac{\delta\eta(x)}{\delta\epsilon_\X^{(1)}(x')} + -\frac12b^{(1)}\int dx''\,\delta(x-x'')\frac{\delta\eta(x'')}{\delta\epsilon_\X^{(1)}(x')} \\ + &=\lambda_\X^{(11)}\delta(x-x')+ + \frac12b^{(1)}\frac{\delta\eta(x)}{\delta\epsilon_\X^{(1)}(x')} +\end{align*} +whence +\[ + \chi_\X^{(11)}(x,x') + =\bigg(\lambda\delta(x-x')+\frac12b^{(1)}\frac{\delta\eta(x)}{\delta\epsilon_\X^{(1)}(x')}\bigg)^{-1} + =\frac1{\lambda_\X^{(11)}}\bigg(\delta(x-x')+\frac{(b^{(1)})^2}{4\lambda_\X^{(11)}}\chi(x,x')\bigg) +\] +or +\[ + \chi_\X^{(11)}(q)=\frac1{\lambda_\X^{(11)}}\bigg(1+\frac{(b^{(1)})^2}{4\lambda_\X^{(11)}}\chi(q)\bigg) +\] +The same process can be used to get the susceptibility for the $\Aog$ components. Now extremizing over $\epsilon_{\X}^{(1)}$ and $\eta$, we have +\[ + 0=\frac{\delta F}{\delta\eta}=\frac{\delta F_\eta}{\delta\eta}+e^{(i)}\epsilon_{\Aog}^{(i)}\eta +\] +Unfortunately we cannot use the inverse function theorem as before. I'm still figuring out how to do this cleanly. + +We will assume that our system orders at some specific $q_\perp=q^*$. This ansatz is equivalent to +\begin{align*} + \tilde\eta(q)=\tfrac12\eta_*\big[\delta_{q_\perp,q_*}+\delta_{q_\perp,-q_*}\big]\delta_{q_\parallel,0} \end{align*} -and the susceptibility near the disordered--modulated transition is +For $q_*\neq0$, we have +\[ + F=\frac V2\bigg[\frac12(\tilde r+c_\perp q_*^2+Dq_*^4)\eta_*^2+\frac34\tilde u\eta_*^4\bigg] +\] +while for $q^*=0$ we have +\[ + F=\frac V2\big(\tilde r\eta_*^2+2\tilde u\eta_*^4\big) +\] +For $\tilde r>0$ and $c_\perp>0$ or $r>c_\perp^2/4D$ and $c_\perp<0$, there is a free energy minimizer with $\eta_*=0$. For $r<0$ there is a local minimum with $q_*=0$ and $\eta_*^2=-\tilde r/4\tilde u$. For $c_\perp<0$ and $rr_c\\ - \big[Dq^4+c_\perp q_\perp^2+c_\parallel q_\parallel^2+2|\Delta r|\big]^{-1}&rr_c\\-e^{(i)}e^{(j)}/4u&r0\\\big[Dq^4+c_\parallel q_\parallel^2+c_\perp q_\perp^2+2|\Delta\tilde r|\big]^{-1}&\Delta\tilde r<0\end{cases}=\frac1{c_\perp}\frac{\xi_\perp^2}{1+\xi_\parallel^2q_\parallel^2+\xi_\perp^2q_\perp^2+\xi_\perp^2(D/c_\perp)q^4} \] -and +where the correlation lengths are +\begin{align*} + \xi_\perp=\begin{cases}(|\Delta\tilde r|/c_\perp)^{-1/2}&\tilde r<\tilde r_c\\(2|\Delta \tilde r|/c_\perp)^{-1/2}&\tilde r>\tilde r_c\end{cases} + && + \xi_\parallel=\begin{cases}(|\Delta\tilde r|/c_\parallel)^{-1/2}&\tilde r<\tilde r_c\\(2|\Delta \tilde r|/c_\parallel)^{-1/2}&\tilde r>\tilde r_c\end{cases} +\end{align*} +At the disordered--modulated transition with $\tilde r_c=c_\perp^2/4D$, this yields \[ - \tilde\lambda_{\Aog}^{(ij)}(q)-\lambda_{\Aog}^{(ij)}=\delta_{q,0}\begin{cases}0&r>r_c\\-e^{(i)}e^{(j)}/6u&r