From 587a8223b47d1c7b21ff8ddea3cb6e4193d99a12 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Tue, 12 May 2020 11:18:14 -0400 Subject: Braket a frac opening. --- main.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'main.tex') diff --git a/main.tex b/main.tex index 374519e..22b1405 100644 --- a/main.tex +++ b/main.tex @@ -723,7 +723,7 @@ The order parameter term relies on some other identities. First, \eqref{eq:eta_s \end{equation} and therefore that the functional inverse $\eta_\star^{-1}[\eta]$ is \begin{equation} - \eta_\star^{-1}[\eta](x)=\frac b{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg). + \eta_\star^{-1}[\eta](x)=\frac{b}{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg). \end{equation} The inverse function theorem further implies (with substitution of \eqref{eq:dFodeta} after the derivative is evaluated) that \begin{equation} -- cgit v1.2.3-70-g09d2