From 8239c93cd0888531cb0af098bde6aedabb65b0a3 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Thu, 27 Jun 2019 00:11:50 -0400 Subject: lots of progress on writing the theory sections --- main.tex | 218 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 208 insertions(+), 10 deletions(-) (limited to 'main.tex') diff --git a/main.tex b/main.tex index 3334127..794f30d 100644 --- a/main.tex +++ b/main.tex @@ -1,7 +1,31 @@ \documentclass[aps,prl,reprint]{revtex4-2} \usepackage[utf8]{inputenc} +\usepackage{amsmath,graphicx} -\newcommand{\urusi}{URu$_2$Si$_2\ $} +% Our mysterious boy +\def\urusi{URu$_2$Si$_2\ $} + +\def\e{{\mathrm e}} % "elastic" +\def\o{{\mathrm o}} % "order parameter" +\def\i{{\mathrm i}} % "interaction" + +\def\Dfh{D$_{4\mathrm h}$} + +% Irreducible representations (use in math mode) +\def\Aog{{\mathrm A_{1\mathrm g}}} +\def\Atg{{\mathrm A_{2\mathrm g}}} +\def\Bog{{\mathrm B_{1\mathrm g}}} +\def\Btg{{\mathrm B_{2\mathrm g}}} +\def\Eg {{\mathrm E_{ \mathrm g}}} +\def\Aou{{\mathrm A_{1\mathrm u}}} +\def\Atu{{\mathrm A_{2\mathrm u}}} +\def\Bou{{\mathrm B_{1\mathrm u}}} +\def\Btu{{\mathrm B_{2\mathrm u}}} +\def\Eu {{\mathrm E_{ \mathrm u}}} + +% Variables to represent some representation +\def\X{\mathrm X} +\def\Y{\mathrm Y} \begin{document} @@ -20,19 +44,193 @@ \maketitle \begin{enumerate} - \item \urusi HO intro paragraph/discuss the phase diagram - \item Strain/OP coupling discussion/RUS - \item Discussion of experimental data - \item Analogy of lack of divergence/AFM w/ FM $\chi$ - \item We look at MFT's for OP's of various symmetries - - \item Introduce various pieces of free energy - - \item MFT piece + \item Introduction + \begin{enumerate} + \item \urusi hidden order intro paragraph, discuss the phase diagram + \item Strain/OP coupling discussion/RUS + \item Discussion of experimental data + \item Analogy of lack of divergence/AFM w/ FM $\chi$ + \item We look at MFT's for OP's of various symmetries + \end{enumerate} + + \item Theory + \begin{enumerate} + \item Introduce various pieces of free energy + + \item Summary of MFT results + \end{enumerate} \item Data piece \item Talk about more cool stuff like AFM C4 breaking etc \end{enumerate} +The point group of \urusi is \Dfh, and any coarse-grained theory must locally respect this symmetry. We will introduce a phenomenological free energy density in three parts: that of the strain, the order parameter, and their interaction. The most general quadratic free energy of the strain $\epsilon$ is $f_\e=\lambda_{ijkl}\epsilon_{ij}\epsilon_{kl}$, but the form of the $\lambda$ tensor is constrained by both that $\epsilon$ is a symmetric tensor and by the point group symmetry \cite{landau_theory_1995}. The latter can be seen in a systematic way. First, the six independent components of strain are written as linear combinations that behave like irreducible representations under the action of the point group, or +\begin{equation} + \begin{aligned} + \epsilon_\Aog^{(1)}=\epsilon_{11}+\epsilon_{22} && \hspace{0.1\columnwidth} + \epsilon_\Aog^{(2)}=\epsilon_{33} \\ + \epsilon_\Bog^{(1)}=\epsilon_{11}-\epsilon_{22} && + \epsilon_\Btg^{(1)}=\epsilon_{12} \\ + \epsilon_\Eg^{(1)} =\{\epsilon_{11},\epsilon_{22}\}. + \end{aligned} +\end{equation} +Next, all quadratic combinations of these irreducible strains that transform like $\Aog$ are included in the free energy as +\begin{equation} + f_\e=\frac12\sum_\X\lambda_\X^{(ij)}\epsilon_\X^{(i)}\epsilon_\X^{(j)}, +\end{equation} +where the sum is over irreducible representations of the point group and the $\lambda_\X^{(ij)}$ are +\begin{equation} + \begin{aligned} + &\lambda_{\Aog}^{(11)}=\tfrac12(\lambda_{1111}+\lambda_{1122}) && + \lambda_{\Aog}^{(22)}=\lambda_{3333} \\ + &\lambda_{\Aog}^{(12)}=\lambda_{1133} && + \lambda_{\Bog}^{(11)}=\tfrac12(\lambda_{1111}-\lambda_{1122}) \\ + &\lambda_{\Btg}^{(11)}=4\lambda_{1212} && + \lambda_{\Eg}^{(11)}=4\lambda_{1313}. + \end{aligned} +\end{equation} +The interaction between strain and the order parameter $\eta$ depends on the representation of the point group that $\eta$ transforms as. If this representation is $\X$, then the most general coupling to linear order is +\begin{equation} + f_\i=b^{(i)}\epsilon_\X^{(i)}\eta +\end{equation} +If $\X$ is a representation not present in the strain there can be no linear coupling, and the effect of $\eta$ going through a continuous phase transition is to produce a jump in the $\Aog$ strain stiffness. We will therefore focus our attention on order parameter symmetries that produce linear couplings to strain. + +If the order parameter transforms like $\Aog$, odd terms are allow in its free energy and any transition will be abrupt and not continuous without tuning. For $\X$ as any of $\Bog$, $\Btg$, or $\Eg$, the most general quartic free energy density is +\begin{equation} + \begin{aligned} + f_\o=\frac12\big[&r\eta^2+c_\parallel(\nabla_\parallel\eta)^2 + +c_\perp(\nabla_\perp\eta)^2 \\ + &\quad+D_\parallel(\nabla_\parallel^2\eta)^2 + +D_\perp(\nabla_\perp^2\eta)^2\big]+u\eta^4 + \end{aligned} + \label{eq:fo} +\end{equation} +where $\nabla_\parallel=\{\partial_1,\partial_2\}$ transforms like $\Eu$ and $\nabla_\perp=\partial_3$ transforms like $\Atu$. We'll take $D_\parallel=0$ since this does not affect the physics at hand. Neglecting interaction terms higher than quadratic order, the only strain relevant to the problem is $\epsilon_\X$, and this can be traced out of the problem exactly, since +\begin{equation} + 0=\frac{\delta F}{\delta\epsilon_{\X i}(x)}=\lambda_\X\epsilon_{\X i}(x)+\frac12b\eta_i(x) +\end{equation} +gives $\epsilon_\X(x)=-(b/2\lambda_\X)\eta(x)$. Upon substitution into the free energy, tracing out $\epsilon_\X$ has the effect of shifting $r$ in $f_\o$, with $r\to\tilde r=r-b^2/4\lambda_\X$. + +With the strain traced out \eqref{eq:fo} describes the theory of a Lifshitz point at $\tilde r=c_\perp=0$ \cite{lifshitz_theory_1942, lifshitz_theory_1942-1, hornreich_lifshitz_1980}. For a scalar order parameter ($\Bog$ or $\Btg$) it is traditional to make the field ansatz $\eta(x)=\eta_*\cos(q_*x_3)$. For $\tilde r>0$ and $c_\perp>0$, or $\tilde r0$, and the modulated phase is now characterized by helical order with $\eta(x)=\eta_*\{\cos(q_*x_3),\sin(q_*x_3)\}$ and +\begin{equation} + \eta_*^2=\frac{c_\perp^2-4D_\perp\tilde r}{16D_\perp u}=\frac{\tilde r_c-\tilde r}{4u} +\end{equation} +The uniform--modulated transition is now continuous. The schematic phase diagrams for this model are shown in Figure \ref{fig:phases}. + +\begin{figure} + \includegraphics[width=0.51\columnwidth]{phases_scalar}\hspace{-1.5em} + \includegraphics[width=0.51\columnwidth]{phases_vector} + \caption{Schematic phase diagrams for this model. Solid lines denote + continuous transitions, while dashed lines indicated abrupt transitions. (a) + The phases for a scalar ($\Bog$ or $\Btg$). (b) The phases for a vector + ($\Eg$).} + \label{fig:phases} +\end{figure} + +The susceptibility is given by +\begin{equation} + \begin{aligned} + &\chi_{ij}^{-1}(x,x') + =\frac{\delta^2F}{\delta\eta_i(x)\delta\eta_j(x')} \\ + &\quad=\Big[\big(\tilde r-c_\parallel\nabla_\parallel^2-c_\perp\nabla_\perp^2+D_\perp\nabla_\perp^4+4u\eta^2(x)\big)\delta_{ij} \\ + &\qquad\qquad +8u\eta_i(x)\eta_j(x)\Big]\delta(x-x'), + \end{aligned} +\end{equation} +or in Fourier space, +\begin{equation} + \begin{aligned} + \chi_{ij}^{-1}(q) + &=8u\sum_{q'}\tilde\eta_i(q')\eta_j(-q')+\bigg(\tilde r+c_\parallel q_\parallel^2-c_\perp q_\perp^2 \\ + &\qquad+D_\perp q_\perp^4+4u\sum_{q'}\tilde\eta_k(q')\tilde\eta_k(-q')\bigg)\delta_{ij}. + \end{aligned} +\end{equation} +Near the unordered--modulated transition this yields +\begin{equation} + \begin{aligned} + \chi(q) + &=\frac1{c_\parallel q_\parallel^2+D_\perp(q_*^2-q_\perp^2)^2+|\tilde r-\tilde r_c|} \\ + &=\frac1{D_\perp}\frac{\xi_\perp^4}{1+\xi_\parallel^2q_\parallel^2+\xi_\perp^4(q_*^2-q_\perp^2)^2}, + \end{aligned} +\end{equation} +with $\xi_\perp=(|\tilde r-\tilde r_c|/D_\perp)^{-1/4}$ and $\xi_\parallel=(|\tilde r-\tilde r_c|/c_\parallel)^{-1/2}$. + +The elastic susceptibility (inverse stiffness) is given in the same way: we must trace over $\eta$ and take the second variation of the resulting free energy. Extremizing over $\eta$ yields +\begin{equation} + 0=\frac{\delta F}{\delta\eta_i(x)}=\frac{\delta F_\o}{\delta\eta_i(x)}+\frac12b\epsilon_{\X i}(x), + \label{eq:implicit.eta} +\end{equation} +which implicitly gives $\eta$ as a functional of $\epsilon_\X$. Though this cannot be solved explicitly, we can make use of the inverse function theorem to write +\begin{equation} + \begin{aligned} + \bigg(\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}\bigg)^{-1} + &=\frac{\delta\eta_j^{-1}[\eta](x)}{\delta\eta_i(x')} + =-\frac2b\frac{\delta^2F_\o}{\delta\eta_i(x)\delta\eta_j(x')} \\ + &=-\frac2b\chi^{-1}(x,x')-\frac{b}{2\lambda_\X}\delta(x-x') + \end{aligned} + \label{eq:inv.func} +\end{equation} +It follows from \eqref{eq:implicit.eta} and \eqref{eq:inv.func} that the susceptibility of the material to $\epsilon_\X$ strain is given by +\begin{widetext} +\begin{equation} + \begin{aligned} + \chi_{\X ij}^{-1}(x,x') + &=\frac{\delta^2F}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\ + &=\lambda_\X\delta(x-x')+ + b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')} + +\frac12b\int dx''\,\epsilon_{\X k}(x'')\frac{\delta^2\eta_k(x)}{\delta\epsilon_{\X i}(x')\delta\epsilon_{\X j}(x'')} \\ + &\qquad+\int dx''\,dx'''\,\frac{\delta^2F_\o}{\delta\eta_k(x'')\delta\eta_\ell(x''')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')} + +\int dx''\,\frac{\delta F_\o}{\delta\eta_k(x'')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\ + &=\lambda_\X\delta(x-x')+ + b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')} + -\frac12b\int dx''\,dx'''\,\bigg(\frac{\partial\eta_k(x'')}{\partial\epsilon_{\X\ell}(x''')}\bigg)^{-1}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')} \\ + &=\lambda_\X\delta(x-x')+ + b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')} + -\frac12b\int dx''\,\delta_{i\ell}\delta(x-x'')\frac{\delta\eta_\ell(x'')}{\delta\epsilon_{\X j}(x')} + =\lambda_\X\delta(x-x')+ + \frac12b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}, + \end{aligned} +\end{equation} +\end{widetext} +whose Fourier transform follows from \eqref{eq:inv.func} as +\begin{equation} + \chi_{\X ij}(q)=\frac1{\lambda_\X}+\frac{b^2}{4\lambda_\X^2}\chi_{ij}(q). + \label{eq:elastic.susceptibility} +\end{equation} +At $q=0$, which is where the stiffness measurements used here were taken, this predicts a cusp in the elastic susceptibility of the form $|\tilde r-\tilde r_c|^\gamma$ for $\gamma=1$. + +\begin{figure} + \centering + \includegraphics[width=0.49\columnwidth]{stiff_a11.pdf} + \includegraphics[width=0.49\columnwidth]{stiff_a22.pdf} + \includegraphics[width=0.49\columnwidth]{stiff_a12.pdf} + \includegraphics[width=0.49\columnwidth]{stiff_b1.pdf} + \includegraphics[width=0.49\columnwidth]{stiff_b2.pdf} + \includegraphics[width=0.49\columnwidth]{stiff_e.pdf} + \caption{ + Measurements of the effective strain stiffness as a function of temperature + for the six independent components of strain from ultrasound. The vertical + dashed lines show the location of the hidden order transition. + } +\end{figure} + +\begin{figure} + \includegraphics[width=\columnwidth]{cusp} + \caption{ + Strain stiffness data for the $\Bog$ component of strain (solid) along with + a fit of \eqref{eq:elastic.susceptibility} (dashed). + } + } +\end{figure} + +\begin{acknowledgements} + +\end{acknowledgements} + +\bibliography{hidden_order} + \end{document} -- cgit v1.2.3-70-g09d2