\documentclass[aps,prl,reprint]{revtex4-1} \usepackage[utf8]{inputenc} \usepackage{amsmath,graphicx,upgreek,amssymb} % Our mysterious boy \def\urusi{URu$_2$Si$_2\ $} \def\e{{\mathrm e}} % "elastic" \def\o{{\mathrm o}} % "order parameter" \def\i{{\mathrm i}} % "interaction" \def\Dfh{D$_{4\mathrm h}$} % Irreducible representations (use in math mode) \def\Aog{{\mathrm A_{1\mathrm g}}} \def\Atg{{\mathrm A_{2\mathrm g}}} \def\Bog{{\mathrm B_{1\mathrm g}}} \def\Btg{{\mathrm B_{2\mathrm g}}} \def\Eg {{\mathrm E_{ \mathrm g}}} \def\Aou{{\mathrm A_{1\mathrm u}}} \def\Atu{{\mathrm A_{2\mathrm u}}} \def\Bou{{\mathrm B_{1\mathrm u}}} \def\Btu{{\mathrm B_{2\mathrm u}}} \def\Eu {{\mathrm E_{ \mathrm u}}} % Variables to represent some representation \def\X{\mathrm X} \def\Y{\mathrm Y} % Units \def\J{\mathrm J} \def\m{\mathrm m} \def\K{\mathrm K} \def\GPa{\mathrm{GPa}} \def\A{\mathrm{\c A}} % Other \def\G{\mathrm G} % Ginzburg \begin{document} \title{\urusi mft} \author{Jaron Kent-Dobias} \author{Mike Matty} \author{Brad Ramshaw} \affiliation{Laboratory of Atomic \& Solid State Physics, Cornell University, Ithaca, NY, USA} \date\today \begin{abstract} blah blah blah its-a abstract \end{abstract} \maketitle \begin{enumerate} \item Introduction \begin{enumerate} \item \urusi hidden order intro paragraph, discuss the phase diagram \item Strain/OP coupling discussion/RUS \item Discussion of experimental data \item Analogy of lack of divergence/AFM w/ FM $\chi$ \item We look at MFT's for OP's of various symmetries \end{enumerate} \item Theory \begin{enumerate} \item Introduce various pieces of free energy \item Summary of MFT results \end{enumerate} \item Data piece \item Talk about more cool stuff like AFM C4 breaking etc \end{enumerate} The point group of \urusi is \Dfh, and any coarse-grained theory must locally respect this symmetry. We will introduce a phenomenological free energy density in three parts: that of the strain, the order parameter, and their interaction. The most general quadratic free energy of the strain $\epsilon$ is $f_\e=\lambda_{ijkl}\epsilon_{ij}\epsilon_{kl}$, but the form of the $\lambda$ tensor is constrained by both that $\epsilon$ is a symmetric tensor and by the point group symmetry \cite{landau_theory_1995}. The latter can be seen in a systematic way. First, the six independent components of strain are written as linear combinations that behave like irreducible representations under the action of the point group, or \begin{equation} \begin{aligned} \epsilon_\Aog^{(1)}=\epsilon_{11}+\epsilon_{22} && \hspace{0.1\columnwidth} \epsilon_\Aog^{(2)}=\epsilon_{33} \\ \epsilon_\Bog^{(1)}=\epsilon_{11}-\epsilon_{22} && \epsilon_\Btg^{(1)}=\epsilon_{12} \\ \epsilon_\Eg^{(1)} =\{\epsilon_{11},\epsilon_{22}\}. \end{aligned} \end{equation} Next, all quadratic combinations of these irreducible strains that transform like $\Aog$ are included in the free energy as \begin{equation} f_\e=\frac12\sum_\X\lambda_\X^{(ij)}\epsilon_\X^{(i)}\epsilon_\X^{(j)}, \end{equation} where the sum is over irreducible representations of the point group and the $\lambda_\X^{(ij)}$ are \begin{equation} \begin{aligned} &\lambda_{\Aog}^{(11)}=\tfrac12(\lambda_{1111}+\lambda_{1122}) && \lambda_{\Aog}^{(22)}=\lambda_{3333} \\ &\lambda_{\Aog}^{(12)}=\lambda_{1133} && \lambda_{\Bog}^{(11)}=\tfrac12(\lambda_{1111}-\lambda_{1122}) \\ &\lambda_{\Btg}^{(11)}=4\lambda_{1212} && \lambda_{\Eg}^{(11)}=4\lambda_{1313}. \end{aligned} \end{equation} The interaction between strain and the order parameter $\eta$ depends on the representation of the point group that $\eta$ transforms as. If this representation is $\X$, then the most general coupling to linear order is \begin{equation} f_\i=b^{(i)}\epsilon_\X^{(i)}\eta \end{equation} If $\X$ is a representation not present in the strain there can be no linear coupling, and the effect of $\eta$ going through a continuous phase transition is to produce a jump in the $\Aog$ strain stiffness. We will therefore focus our attention on order parameter symmetries that produce linear couplings to strain. If the order parameter transforms like $\Aog$, odd terms are allow in its free energy and any transition will be abrupt and not continuous without tuning. For $\X$ as any of $\Bog$, $\Btg$, or $\Eg$, the most general quartic free energy density is \begin{equation} \begin{aligned} f_\o=\frac12\big[&r\eta^2+c_\parallel(\nabla_\parallel\eta)^2 +c_\perp(\nabla_\perp\eta)^2 \\ &\quad+D_\parallel(\nabla_\parallel^2\eta)^2 +D_\perp(\nabla_\perp^2\eta)^2\big]+u\eta^4 \end{aligned} \label{eq:fo} \end{equation} where $\nabla_\parallel=\{\partial_1,\partial_2\}$ transforms like $\Eu$ and $\nabla_\perp=\partial_3$ transforms like $\Atu$. We'll take $D_\parallel=0$ since this does not affect the physics at hand. Neglecting interaction terms higher than quadratic order, the only strain relevant to the problem is $\epsilon_\X$, and this can be traced out of the problem exactly, since \begin{equation} 0=\frac{\delta F}{\delta\epsilon_{\X i}(x)}=\lambda_\X\epsilon_{\X i}(x)+\frac12b\eta_i(x) \end{equation} gives $\epsilon_\X(x)=-(b/2\lambda_\X)\eta(x)$. Upon substitution into the free energy, tracing out $\epsilon_\X$ has the effect of shifting $r$ in $f_\o$, with $r\to\tilde r=r-b^2/4\lambda_\X$. With the strain traced out \eqref{eq:fo} describes the theory of a Lifshitz point at $\tilde r=c_\perp=0$ \cite{lifshitz_theory_1942, lifshitz_theory_1942-1}. For a scalar order parameter ($\Bog$ or $\Btg$) it is traditional to make the field ansatz $\eta(x)=\eta_*\cos(q_*x_3)$. For $\tilde r>0$ and $c_\perp>0$, or $\tilde r0$, and the modulated phase is now characterized by helical order with $\eta(x)=\eta_*\{\cos(q_*x_3),\sin(q_*x_3)\}$ and \begin{equation} \eta_*^2=\frac{c_\perp^2-4D_\perp\tilde r}{16D_\perp u}=\frac{\tilde r_c-\tilde r}{4u} \end{equation} The uniform--modulated transition is now continuous. The schematic phase diagrams for this model are shown in Figure \ref{fig:phases}. \begin{figure}[htpb] \includegraphics[width=0.51\columnwidth]{phases_scalar}\hspace{-1.5em} \includegraphics[width=0.51\columnwidth]{phases_vector} \caption{Schematic phase diagrams for this model. Solid lines denote continuous transitions, while dashed lines indicated abrupt transitions. (a) The phases for a scalar ($\Bog$ or $\Btg$). (b) The phases for a vector ($\Eg$).} \label{fig:phases} \end{figure} The susceptibility is given by \begin{equation} \begin{aligned} &\chi_{ij}^{-1}(x,x') =\frac{\delta^2F}{\delta\eta_i(x)\delta\eta_j(x')} \\ &\quad=\Big[\big(\tilde r-c_\parallel\nabla_\parallel^2-c_\perp\nabla_\perp^2+D_\perp\nabla_\perp^4+4u\eta^2(x)\big)\delta_{ij} \\ &\qquad\qquad +8u\eta_i(x)\eta_j(x)\Big]\delta(x-x'), \end{aligned} \end{equation} or in Fourier space, \begin{equation} \begin{aligned} \chi_{ij}^{-1}(q) &=8u\sum_{q'}\tilde\eta_i(q')\eta_j(-q')+\bigg(\tilde r+c_\parallel q_\parallel^2-c_\perp q_\perp^2 \\ &\qquad+D_\perp q_\perp^4+4u\sum_{q'}\tilde\eta_k(q')\tilde\eta_k(-q')\bigg)\delta_{ij}. \end{aligned} \end{equation} Near the unordered--modulated transition this yields \begin{equation} \begin{aligned} \chi(q) &=\frac1{c_\parallel q_\parallel^2+D_\perp(q_*^2-q_\perp^2)^2+|\tilde r-\tilde r_c|} \\ &=\frac1{D_\perp}\frac{\xi_\perp^4}{1+\xi_\parallel^2q_\parallel^2+\xi_\perp^4(q_*^2-q_\perp^2)^2}, \end{aligned} \label{eq:susceptibility} \end{equation} with $\xi_\perp=(|\tilde r-\tilde r_c|/D_\perp)^{-1/4}$ and $\xi_\parallel=(|\tilde r-\tilde r_c|/c_\parallel)^{-1/2}$. The elastic susceptibility (inverse stiffness) is given in the same way: we must trace over $\eta$ and take the second variation of the resulting free energy. Extremizing over $\eta$ yields \begin{equation} 0=\frac{\delta F}{\delta\eta_i(x)}=\frac{\delta F_\o}{\delta\eta_i(x)}+\frac12b\epsilon_{\X i}(x), \label{eq:implicit.eta} \end{equation} which implicitly gives $\eta$ as a functional of $\epsilon_\X$. Though this cannot be solved explicitly, we can make use of the inverse function theorem to write \begin{equation} \begin{aligned} \bigg(\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}\bigg)^{-1} &=\frac{\delta\eta_j^{-1}[\eta](x)}{\delta\eta_i(x')} =-\frac2b\frac{\delta^2F_\o}{\delta\eta_i(x)\delta\eta_j(x')} \\ &=-\frac2b\chi^{-1}(x,x')-\frac{b}{2\lambda_\X}\delta(x-x') \end{aligned} \label{eq:inv.func} \end{equation} It follows from \eqref{eq:implicit.eta} and \eqref{eq:inv.func} that the susceptibility of the material to $\epsilon_\X$ strain is given by \begin{widetext} \begin{equation} \begin{aligned} \chi_{\X ij}^{-1}(x,x') &=\frac{\delta^2F}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\ &=\lambda_\X\delta(x-x')+ b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')} +\frac12b\int dx''\,\epsilon_{\X k}(x'')\frac{\delta^2\eta_k(x)}{\delta\epsilon_{\X i}(x')\delta\epsilon_{\X j}(x'')} \\ &\qquad+\int dx''\,dx'''\,\frac{\delta^2F_\o}{\delta\eta_k(x'')\delta\eta_\ell(x''')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')} +\int dx''\,\frac{\delta F_\o}{\delta\eta_k(x'')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\ &=\lambda_\X\delta(x-x')+ b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')} -\frac12b\int dx''\,dx'''\,\bigg(\frac{\partial\eta_k(x'')}{\partial\epsilon_{\X\ell}(x''')}\bigg)^{-1}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')} \\ &=\lambda_\X\delta(x-x')+ b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')} -\frac12b\int dx''\,\delta_{i\ell}\delta(x-x'')\frac{\delta\eta_\ell(x'')}{\delta\epsilon_{\X j}(x')} =\lambda_\X\delta(x-x')+ \frac12b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}, \end{aligned} \end{equation} \end{widetext} whose Fourier transform follows from \eqref{eq:inv.func} as \begin{equation} \chi_{\X ij}(q)=\frac1{\lambda_\X}+\frac{b^2}{4\lambda_\X^2}\chi_{ij}(q). \label{eq:elastic.susceptibility} \end{equation} At $q=0$, which is where the stiffness measurements used here were taken, this predicts a cusp in the elastic susceptibility of the form $|\tilde r-\tilde r_c|^\gamma$ for $\gamma=1$. \begin{figure}[htpb] \centering \includegraphics[width=0.49\columnwidth]{stiff_a11.pdf} \includegraphics[width=0.49\columnwidth]{stiff_a22.pdf} \includegraphics[width=0.49\columnwidth]{stiff_a12.pdf} \includegraphics[width=0.49\columnwidth]{stiff_b1.pdf} \includegraphics[width=0.49\columnwidth]{stiff_b2.pdf} \includegraphics[width=0.49\columnwidth]{stiff_e.pdf} \caption{ Measurements of the effective strain stiffness as a function of temperature for the six independent components of strain from ultrasound. The vertical dashed lines show the location of the hidden order transition. } \label{fig:data} \end{figure} We have seen that mean field theory predicts that whatever component of strain transforms like the order parameter will see a $t^{-1}$ softening in the stiffness that ends in a cusp. Ultrasound experiments \textbf{[Elaborate???]} yield the strain stiffness for various components of the strain; this data is shown in Figure \ref{fig:data}. The $\Btg$ and $\Eg$ stiffnesses don't appear to have any response to the presence of the transition, exhibiting the expected linear stiffening with a low-temperature cutoff \textbf{[What's this called? Citation?]}. The $\Bog$ stiffness has a dramatic response, softening over the course of roughly $100\,\K$. There is a kink in the curve right at the transition. While the low-temperature response is not as dramatic as the theory predicts, mean field theory---which is based on a small-$\eta$ expansion---will not work quantitatively far below the transition where $\eta$ has a large nonzero value and higher powers in the free energy become important. The data in the high-temperature phase can be fit to the theory \eqref{eq:elastic.susceptibility}, with a linear background stiffness $\lambda_\Bog^{(11)}$ and $\tilde r-\tilde r_c=a(T-T_c)$, and the result is shown in Figure \ref{fig:fit}. The data and theory appear consistent. \begin{figure}[htpb] \includegraphics[width=\columnwidth]{cusp} \caption{ Strain stiffness data for the $\Bog$ component of strain (solid) along with a fit of \eqref{eq:elastic.susceptibility} to the data above $T_c$ (dashed). The fit gives $\lambda_\Bog^{(11)}\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$, $b^2/4D_\perp q_*^4\simeq6.2\,\GPa$, and $a/D_\perp q_*^4\simeq0.0038\,\K^{-1}$. } \label{fig:fit} \end{figure} Mean field theory neglects the effect of fluctuations on critical behavior, yet also predicts the magnitude of those fluctuations. This allows a mean field theory to undergo an internal consistency check to ensure the predicted fluctuations are indeed negligible. This is typically done by computing the Ginzburg criterion \cite{ginzburg_remarks_1961}, which gives the proximity to the critical point $t=(T-T_c)/T_c$ at which mean field theory is expected to break down by comparing the magnitude of fluctuations in a correlation-length sized box to the magnitude of the field, or since the correlation function is $k_BT\chi(x,x')$, \begin{equation} V_\xi^{-1}k_BT\int_{V_\xi}d^3x\,\chi(x,0) =\langle\delta\eta^2\rangle_{V_\xi} \lesssim\frac12\eta_*^2=\frac{|\Delta\tilde r|}{6u} \end{equation} with $V_\xi$ the correlation volume, which we will take to be a cylinder of radius $\xi_\parallel/2$ and height $\xi_\perp$. Upon substitution of \eqref{eq:susceptibility} and using the jump in the specific heat at the transition from \begin{equation} c_V=-T\frac{\partial^2f}{\partial T^2}=\begin{cases}0&T>T_c\\Ta^2/12 u&T