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Elastic properties of hidden order in URu2Si2 are reproduced by a staggered nematic2
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We develop a phenomenological mean-field theory describing the hidden-order phase in URu2Si2 as a nematic
of the B1g representation staggered along the c axis. Several experimental features are reproduced by this theory:
the topology of the temperature-pressure phase diagram, the response of the elastic modulus (C11 − C12)/2 above
the transition at ambient pressure, and orthorhombic symmetry breaking in the high-pressure antiferromagnetic
phase. In this scenario, hidden order is characterized by broken rotational symmetry that is modulated along the
c axis, the primary order of the high-pressure phase is an unmodulated nematic, and the triple point joining those
two phases with the high-temperature paramagnetic phase is a Lifshitz point.
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I. INTRODUCTION15

URu2Si2 is a paradigmatic example of a material with16

an ordered state whose broken symmetry remains unknown.17

This state, known as hidden order (HO), sets the stage for18

unconventional superconductivity that emerges at even lower19

temperatures. At sufficiently large hydrostatic pressures, both20

superconductivity and HO give way to local moment antifer-21

romagnetism (AFM) [1]. Modern theories [2–19] propose as-22

sociating any of a variety of broken symmetries with HO. Mo-23

tivated by the anomalous temperature dependence of one of24

the elastic moduli, this work analyzes a family of phenomeno-25

logical models with order parameters of general symmetry26

that couple linearly to strain. Of these, only one is compatible27

with two experimental observations: first, the B1g “nematic”28

elastic susceptibility (C11 − C12)/2 softens anomalously from29

room temperature down to THO = 17.5 K [20], and second, a30

B1g nematic distortion is observed by x-ray scattering under31

sufficient pressure to destroy the HO state [21].32

Recent resonant ultrasound spectroscopy (RUS) measure-33

ments were used to examine the thermodynamic discontinu-34

ities in the elastic moduli at THO [22]. The observation of35

discontinuities only in compressional, or A1g, elastic moduli36

requires that the point-group representation of HO be one-37

dimensional. This rules out many order parameter candi-38

dates [11–15,19,23] in a model-independent way but does not39

differentiate between those that remain.40

Recent x-ray experiments discovered rotational symmetry41

breaking in URu2Si2 under pressure [21]. Above 0.13–0.542

GPa (depending on temperature), URu2Si2 undergoes a B1g43

nematic distortion, which might be related to the anomalous44

softening of the B1g elastic modulus (C11 − C12)/2 that occurs45

over a broad temperature range at zero pressure [24,25]. Moti-2 46

vated by these results—which hint at a B1g strain susceptibility47

associated with the HO state—we construct a phenomenolog-48

ical mean-field theory for an arbitrary OP coupled to strain3 49

and then determine the effect of its phase transitions on the50

elastic response in different symmetry channels.51

We find that only one OP representation reproduces the 52

anomalous B1g elastic modulus, which softens in a Curie- 53

Weiss-like manner from room temperature and then cusps at 54

THO. That theory associates HO with a B1g OP modulated 55

along the c axis, the high-pressure state with uniform B1g 56

order, and the triple point between them with a Lifshitz 57

point. In addition to the agreement with the ultrasound data 58

across a broad temperature range, our model predicts uni- 59

form B1g strain at high pressure—the same distortion that 60

was recently seen in x-ray scattering experiments [21]. This 61

work strongly motivates future ultrasound experiments under 62

pressure approaching the Lifshitz point, which should find 63

that the (C11 − C12)/2 modulus diverges as the uniform B1g 64

strain of the high-pressure phase is approached. 65

II. MODEL AND PHASE DIAGRAM 66

The point group of URu2Si2 is D4h, and any theory must 67

locally respect this symmetry in the high-temperature phase. 68

Our phenomenological free-energy density contains three 69

parts: the elastic free energy, the OP, and the interaction 70

between strain and OP. The most general quadratic free energy 71

of the strain ε is fELASTIC = C0
i jklεi jεkl [26]. The form of the 72

bare moduli tensor C0 is further restricted by symmetry [27]. 73

Linear combinations of the six independent components of 74

strain form five irreducible components of strain in D4h as 75

εA1g,1 = ε11 + ε22, εB1g = ε11 − ε22, εA1g,2 = ε33,

εB2g = 2ε12, εEg = 2{ε11, ε22}. (1)

All quadratic combinations of these irreducible strains that 76

transform like A1g are included in the free energy, 77

fELASTIC = 1

2

∑
X

C0
X,i jεX,iεX, j, (2)
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where the sum is over irreducible representations (irreps) of78

the point group and the bare elastic moduli C0
X are79

C0
A1g,11 = 1

2

(
C0

1111 + C0
1122

)
, C0

B1g
= 1

2

(
C0

1111 − C0
1122

)
,

C0
A1g,22 = C0

3333, C0
B2g

= C0
1212, C0

A1g,12 = C0
1133,

C0
Eg

= C0
1313. (3)

The interaction between strain and an OP η depends on the80

point-group representation of η. If this representation is X ,81

the most general coupling to linear order is82

fINT = −b(i)ε
(i)
X η. (4)

Many high-order interactions are permitted, and in the Ap-83

pendix another of the form ε2η2 is added to the following84

analysis. If there exists no component of strain that transforms85

like the representation X then there can be no linear coupling.86

The next-order coupling is linear in strain and quadratic in87

order parameter, and the effect of this coupling at a continuous88

phase transition is to produce a jump in the A1g elastic moduli89

if η is single component [28–30] and jumps in other elastic90

moduli if it is multicomponent [22]. Because we are interested91

in physics that anticipates the phase transition—for instance,92

that the growing OP susceptibility is reflected directly in the93

elastic susceptibility—we will focus our attention on OPs94

that can produce linear couplings to strain. Looking at the95

components present in (1), this rules out all of the u-reps4 96

(which are odd under inversion), the A2g irrep, and all half-97

integer (spinor) representations.98

If the OP transforms like A1g (e.g., a fluctuation in valence99

number), odd terms are allowed in its free energy and without100

fine-tuning any transition will be first order and not contin-101

uous. Since the HO phase transition is second order [20],102

we will henceforth rule out A1g OPs as well. For the OP103

representation X as any of those remaining—B1g, B2g, or104

Eg—the most general quadratic free-energy density is105

fOP = 1
2

[
rη2 + c‖(∇‖η)2+ c⊥(∇⊥η)2+ D⊥

(∇2
⊥η

)2]+ uη4,

(5)
where ∇‖ = {∂1, ∂2} transforms like Eu and ∇⊥ = ∂3 trans-106

forms like A2u. Other quartic terms are allowed—especially107

many for an Eg OP—but we have included only those terms108

necessary for stability when either r or c⊥ becomes negative109

as a function of temperature. The full free-energy functional110

of η and ε is111

F [η, ε] = FOP[η] + FELASTIC[ε] + FINT[η, ε]

=
∫

dx ( fOP + fELASTIC + fINT). (6)

Rather than analyze this two-argument functional directly,112

we begin by tracing out the strain and studying the behavior113

of the OP alone. Later, we will invert this procedure and trace114

out the OP when we compute the effective elastic moduli.115

The only strain relevant to an OP of representation X at116

linear coupling is εX, which can be traced out of the problem117

exactly in mean-field theory. Extremizing the functional (6)118

with respect to εX gives119

0 = δF [η, ε]

δεX(x)

∣∣∣∣
ε=ε�

= C0
Xε�

X(x) − bη(x), (7)

which in turn gives the strain field conditioned on the state 120

of the OP field as ε�
X[η](x) = (b/C0

X)η(x) at all spatial co- 121

ordinates x and ε�
Y[η] = 0 for all other irreps Y �= X . Upon 122

substitution into (6), the resulting single-argument free-energy 123

functional F [η, ε�[η]] has a density identical to fOP with the 124

identification r → r̃ = r − b2/2C0
X. 125

With the strain traced out, (5) describes the theory of a 126

Lifshitz point at r̃ = c⊥ = 0 [31,32]. The properties discussed 127

in the remainder of this section can all be found in a standard 128

text (e.g., [33]). For a one-component OP (B1g or B2g) and 129

positive c‖, it is traditional to make the field ansatz 〈η(x)〉 = 130

η∗ cos(q∗x3). For r̃ > 0 and c⊥ > 0 or r̃ > c2
⊥/4D⊥ and c⊥ < 131

0, the only stable solution is η∗ = q∗ = 0, and the system is 132

unordered. For r̃ < 0 there are free-energy minima for q∗ = 0 133

and η2
∗ = −r̃/4u, and this system has uniform order of the OP 134

representation, e.g., B1g or B2g. For c⊥ < 0 and r̃ < c2
⊥/4D⊥ 135

there are free-energy minima for q2
∗ = −c⊥/2D⊥ and 136

η2
∗ = c2

⊥ − 4D⊥r̃

12D⊥u
= r̃c − r̃

3u
= |�r̃|

3u
, (8)

with r̃c = c2
⊥/4D⊥, and the system has modulated order. The 137

transition between the uniform and modulated orderings is 138

first order for a one-component OP and occurs along the line 139

c⊥ = −2
√−D⊥r̃/5. 140

For a two-component OP (Eg) we must also allow a relative 141

phase between the two components of the OP. In this case 142

the uniform ordered phase is stable only for c⊥ > 0, and 143

the modulated phase is now characterized by helical order 144

with 〈η(x)〉 = η∗{cos(q∗x3), sin(q∗x3)}. The uniform to mod- 145

ulated transition is now continuous. This does not reproduce 146

the physics of URu2Si2, whose HO phase is bounded by 147

a line of first-order transitions at high pressure, and so we 148

will henceforth neglect the possibility of a multicomponent 149

order parameter—consistent with earlier ultrasound measure- 150

ments [22]. Schematic phase diagrams for both the one- and 151

two-component models are shown in Fig. 1. 152

III. SUSCEPTIBILITY AND ELASTIC MODULI 153

We will now derive the effective elastic tensor C that results 154

from the coupling of strain to the OP. The ultimate result, 155

found in (17), is that CX differs from its bare value C0
X only 156

for the representation X of the OP. Moreover, this modulus 157

does not vanish at the unordered to modulated transition—as 158

it would if the transition were a q = 0 phase transition—but 159

instead ends in a cusp. In this section we start by computing 160

the susceptibility of the OP at the unordered to modulated 161

transition and then compute the elastic modulus for the same. 162

The susceptibility of a single-component (B1g or B2g) OP is 163

χ {−1}(x, x′) = δ2F [η, ε�[η]]
δη(x)δη(x′)

∣∣∣∣
η=〈η〉

= [
r̃ − c‖∇2

‖ − c⊥∇2
⊥ + D⊥∇4

⊥ + 12u〈η(x)〉2
]

× δ(x − x′), (9)

where {−1} indicates a functional reciprocal defined as 164∫
dx′′ χ {−1}(x, x′′)χ (x′′, x′) = δ(x − x′). (10)

005100-2
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(a)

(b) (c)

FIG. 1. Phase diagrams for (a) URu2Si2 from experiments (ne-
glecting the superconducting phase) [1], (b) mean-field theory of a
one-component (B1g or B2g) Lifshitz point, and (c) mean-field theory
of a two-component (Eg) Lifshitz point. Solid lines denote second-
order transitions, while dashed lines denote first-order transitions.
Later, when we fit the elastic moduli predictions for a B1g OP to
data along the ambient pressure line, we will take �r̃ = r̃ − r̃c =
a(T − Tc ).

Taking the Fourier transform and integrating out q′ give165

χ (q) =
⎛⎝r̃+ c‖q2

‖+ c⊥q2
⊥+ D⊥q4

⊥+ 12u
∑

q′
〈η̃q′ 〉〈η̃−q′ 〉

⎞⎠−1

.

(11)
Near the unordered to modulated transition this yields166

χ (q) = [
c‖q2

‖ + D⊥
(
q2

∗ − q2
⊥
)2 + |�r̃|]−1

= 1

D⊥

ξ 4
⊥

1 + ξ 2
‖ q2

‖ + ξ 4
⊥
(
q2∗ − q2

⊥
)2 , (12)

with ξ⊥ = (|�r̃|/D⊥)−1/4 = ξ⊥0|t |−1/4 and ξ‖ = 167

(|�r̃|/c‖)−1/2 = ξ‖0|t |−1/2, where t = (T − Tc)/Tc is 168

the reduced temperature and ξ⊥0 = (D⊥/aTc)1/4 and 169

ξ‖0 = (c‖/aTc)1/2 are the bare correlation lengths 170

perpendicular and parallel to the plane, respectively. The 171

static susceptibility χ (0) = (D⊥q4
∗ + |�r̃|)−1 does not 172

diverge at the unordered to modulated transition. Although it 173

anticipates a transition with Curie-Weiss-like divergence at 174

the lower point a(T − Tc) = �r̃ = −D⊥q4
∗ < 0, this is cut 175

off with a cusp at the phase transition at �r̃ = 0. 176

The elastic susceptibility, which is the reciprocal of the 177

effective elastic modulus, is found in a way similar to the 178

OP susceptibility: we must trace over η and take the second 179

variation of the resulting effective free-energy functional of ε 180

alone. Extremizing over η yields 181

0 = δF [η, ε]

δη(x)

∣∣∣∣
η=η�

= δFOP[η]

δη(x)

∣∣∣∣
η=η�

− bεX(x), (13)

which implicitly gives η�[ε], the OP conditioned on the con- 182

figuration of the strain. Since η� is a functional of εX alone, 183

only the modulus CX will be modified from its bare value C0
X. 184

Although the differential equation for η� cannot be solved 185

explicitly, we can use the inverse function theorem to make 186

use of (13) anyway. First, denote by η−1
� [η] the inverse 187

functional of η� implied by (13), which gives the func- 188

tion εX corresponding to each solution of (13) it receives. 189

This we can immediately identify from (13) as η−1
� [η](x) = 190

b−1{δFOP[η]/δη(x)}. Now, we use the inverse function theo- 191

rem to relate the functional reciprocal of the derivative of η�[ε] 192

with respect to εX to the derivative of η−1
� [η] with respect to 193

η, yielding 194(
δη�[ε](x)

δεX(x′)

){−1}
= δη−1

� [η](x)

δη(x′)

∣∣∣∣
η=η�[ε]

= b−1 δ2FOP[η]

δη(x)δη(x′)

∣∣∣∣
η=η�[ε]

. (14)

Next, (13) and (14) can be used in concert with the ordinary 195

rules of functional calculus to yield the second variation 196

δ2F [η�[ε], ε]
δεX(x)δεX(x′)

= C0
Xδ(x − x′) − 2b

δη�[ε](x)

δεX(x′)
− b

∫
dx′′ δ2η�[ε](x)

δεX(x′)δεX(x′′)
εX(x′′)

+
∫

dx′′ δ2η�[ε](x′′)
δεX(x)δεX(x′)

δFOP[η]

δη(x′′)

∣∣∣∣
η=η�[ε]

+
∫

dx′′ dx′′′ δη�[ε](x′′)
δεX(x)

δη�[ε](x′′′)
δεX(x′)

δ2FOP[η]

δη(x′′)δη(x′′′)

∣∣∣∣
η=η�[ε]

= C0
Xδ(x − x′) − 2b

δη�[ε](x)

δεX(x′)
− b

∫
dx′′ δ2η�[ε](x)

δεX(x′)δεX(x′′)
εX(x′′)

+
∫

dx′′ δ2η�[ε](x′′)
δεX(x)δεX(x′)

[bεX(x′′)] + b
∫

dx′′ dx′′′ δη�[ε](x′′)
δεX(x)

δη�[ε](x′′′)
δεX(x′)

(
∂η�[ε](x′′)
∂εX(x′′′)

){−1}

= C0
Xδ(x − x′) − 2b

δη�[ε](x)

δεX(x′)
+ b

∫
dx′′ δ(x − x′′)

δη�[ε](x′′)
δεX(x′)

= C0
Xδ(x − x′) − b

δη�[ε](x)

δεX(x′)
. (15)
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FIG. 2. RUS measurements of the elastic moduli of URu2Si2 at ambient pressure as a function of temperature from recent experiments [22]
(blue solid line) alongside fits to theory (magenta dashed and black dashed lines). The solid yellow region shows the location of the HO phase.
(a) B2g modulus data and a fit to the standard form [34]. (b) B1g modulus data and a fit to (18) (magenta dashed line) and a fit to (A21) (black
dashed line). The fit gives C0

B1g
� [71 − (0.010 K−1)T ] GPa, b2/D⊥q4

∗ � 6.28 GPa, and b2/a � 1665 GPa K−1. Addition of a quadratic term in

C0
B1g

was not needed here for the fit [34]. (c) B1g modulus data and the fit of the bare B1g modulus. (d) B1g modulus data and the fits transformed

by [C0
B1g

(C0
B1g

/CB1g − 1)]−1, which is predicted from (18) to equal D⊥q4
∗/b2 + a/b2|T − Tc|, e.g., an absolute-value function.

The elastic modulus is given by the second variation (15)197

evaluated at the extremized strain 〈ε〉. To calculate it, note198

that evaluating the second variation of FOP in (14) at 〈ε〉 (or199

η�(〈ε〉) = 〈η〉) yields200 (
δη�[ε](x)

δεX(x′)

){−1}∣∣∣∣
ε=〈ε〉

= b−1χ {−1}(x, x′) + b

C0
X

δ(x − x′),

(16)
where χ {−1} is the OP susceptibility given by (9). Upon201

substitution into (15) and taking the Fourier transform of the202

result, we finally arrive at203

CX(q) = C0
X − b

(
1

bχ (q)
+ b

C0
X

)−1

= C0
X

(
1 + b2

C0
X

χ (q)

)−1

.

(17)
Although not relevant here, this result generalizes to multi-204

component OPs.205

What does (17) predict in the vicinity of the HO transi-206

tion? Near the disordered-to-modulated transition—the zero-207

pressure transition to the HO state—the static modulus is208

given by209

CX(0) = C0
X

[
1 + b2

C0
X

(D⊥q4
∗ + |�r̃|)−1

]−1

. (18)

This corresponds to a softening in the X modulus approaching 210

the transition that is cut off with a cusp of the form |�r̃|γ ∝ 211

|T − Tc|γ , with γ = 1. This is our main result. The only 212

OP irreps that couple linearly with strain and reproduce the 213

topology of the URu2Si2 phase diagram are B1g and B2g. 214

For either of these irreps, the transition into a modulated 215

rather than uniform phase masks traditional signatures of a 216

continuous transition by locating thermodynamic singularities 217

at nonzero q = q∗. The remaining clue at q = 0 is a particular 218

kink in the corresponding modulus. 219

IV. COMPARISON TO EXPERIMENT 220

RUS experiments [22] yield the individual elastic moduli 221

broken into irreps; data for the B1g and B2g components de- 222

fined in (1) are shown in Figs. 2(a) and 2(b). The B2g modulus 223

in Fig. 2(a) does not appear to have any response to the pres- 224

ence of the transition, exhibiting the expected linear stiffening 225

upon cooling from room temperature, with a low-temperature 226

cutoff at some fraction of the Debye temperature [34]. The 227

B1g modulus in Fig. 2(b) has a dramatic response, softening 228

over the course of roughly 100 K and then cusping at the HO 229

transition. The data in the high-temperature phase can be fit 230
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to the theory (18), with a linear background modulus C0
B1g

and231

r̃ − r̃c = a(T − Tc), and the result is shown in Fig. 2(b).232

The behavior of the modulus below the transition does not233

match (18) well, but this is because of the truncation of the234

free-energy expansion used above. Higher-order terms like235

η2ε2 and ε4 contribute to the modulus starting at order η2
∗236

and therefore change the behavior below the transition, where237

the expectation value of η is finite, but not above it, where238

the expectation value of η is zero. To demonstrate this, in239

the Appendix we compute the modulus in a theory where240

the interaction free energy is truncated after fourth order with241

the new term 1
2 gη2ε2. The dashed black line in Fig. 2 shows242

the fit of the RUS data to (A21) and shows that successive243

high-order corrections can account for the low-temperature244

behavior.245

The data and theory appear quantitatively consistent, sug-246

gesting that HO can be described as a B1g-nematic phase that247

is modulated at finite q along the c axis. The predicted soften-248

ing appears over hundreds of kelvins; Figs. 2(c) and 2(d) show249

the background modulus C0
B1g

and the OP-induced response250

isolated from each other.251

We have seen that the mean-field theory of a B1g OP252

recreates the topology of the HO phase diagram and the253

temperature dependence of the B1g elastic modulus at zero254

pressure. This theory has several other physical implications.255

First, the association of a modulated B1g order with the256

HO phase implies a uniform B1g order associated with the257

high-pressure phase and, moreover, a uniform B1g strain of258

magnitude 〈εB1g〉2 = b2r̃/4u(C0
B1g

)2, which corresponds to an259

orthorhombic structural phase. The onset of orthorhombic260

symmetry breaking was recently detected at high pressure in261

URu2Si2 using x-ray diffraction, a further consistency of this262

theory with the phenomenology of URu2Si2[21].263

Second, as the Lifshitz point is approached from low264

pressure, this theory predicts that the modulation wave vector265

q∗ should vanish continuously. Far from the Lifshitz point266

we expect the wave vector to lock into values commensu-267

rate with the space group of the lattice and, moreover, that268

at zero pressure, where the RUS data here were collected,269

the half-wavelength of the modulation should be commen-270

surate with the lattice spacing a3 � 9.68 Å, or q∗ = π/a3 �271

0.328 Å−1 [35–42]. In between these two regimes, mean-272

field theory predicts that the ordering wave vector shrinks273

by jumping between ever-closer commensurate values in the274

style of the devil’s staircase [43]. In reality the presence of275

fluctuations may wash out these transitions.276

This motivates future ultrasound experiments done under277

pressure, where the depth of the cusp in the B1g modulus278

should deepen (perhaps with these commensurability jumps)279

at low pressure and approach zero as q4
∗ ∼ (c⊥/2D⊥)2 near the280

Lifshitz point. Alternatively, RUS done at ambient pressure281

might examine the heavy Fermi liquid to AFM transition by282

doping. Although previous RUS studies have doped URu2Si2283

with rhodium [44], rhodium changes the carrier concentration284

as well as the lattice spacing and may favor the promotion285

of the magnetic phase. An isoelectronic (as well as isomag-286

netic) dopant such as iron may more faithfully explore the287

transition out of the HO phase. Our work also motivates ex-288

periments that can probe the entire correlation function—like289

x-ray and neutron scattering—and directly resolve its finite- 290

q divergence. The presence of spatial commensurability is 291

known to be irrelevant to critical behavior at a one-component 292

disordered-to-modulated transition and therefore is not ex- 293

pected to modify the thermodynamic behavior otherwise [45]. 294

There are two apparent discrepancies between the or- 295

thorhombic strain in the phase diagram presented by recent 296

x-ray data [21] and that predicted by our mean-field theory if 297

its uniform B1g phase is taken to be coincident with URu2Si2’s 298

AFM. The first is the apparent onset of the orthorhombic 299

phase in the HO state at slightly lower pressures than the 300

onset of AFM. As recent x-ray research [21] notes, this 301

misalignment of the two transitions as a function of doping 302

could be due to the lack of an ambient pressure calibration 303

for the lattice constant. The second discrepancy is the onset 304

of orthorhombicity at higher temperatures than the onset of 305

AFM. We note that magnetic susceptibility data see no trace 306

of another phase transition at these higher temperatures [46]. 307

It is therefore possible that the high-temperature orthorhombic 308

signature in x-ray scattering is not the result of a bulk thermo- 309

dynamic phase but, instead, marks the onset of short-range 310

correlations, as it does in the high-Tc cuprates [47] (where 311

the onset of the charge density wave correlations also lacks 312

a thermodynamic phase transition). 313

Three dimensions is below the upper critical dimension 314

4 1
2 of a one-component disordered-to-modulated transition, 315

and so mean-field theory should break down sufficiently close 316

to the critical point due to fluctuations at the Ginzburg tem- 317

perature [48,49]. Magnetic phase transitions tend to have a 318

Ginzburg temperature of order 1. Our fit above gives ξ⊥0q∗ = 319

(D⊥q4
∗/aTc)1/4 � 2, which combined with the speculation of 320

q∗ � π/a3 puts the bare correlation length ξ⊥0 on the order 321

of lattice constant, which is about what one would expect for 322

a generic magnetic transition. The agreement of these data 323

in the (T − THO)/THO ∼ 0.1–10 range with the mean-field 324

exponent suggests that this region is outside the Ginzburg 325

region, but an experiment may begin to see deviations from 326

mean-field behavior within approximately several kelvins of 327

the critical point. An ultrasound experiment with finer temper- 328

ature resolution near the critical point may be able to resolve 329

a modified cusp exponent γ � 1.31 [50] since, according to 330

one analysis, the universality class of a uniaxial modulated 331

one-component OP is that of the O(2), three-dimensional 332

XY transition [45]. A crossover from mean-field theory may 333

explain the small discrepancy in our fit very close to the 334

critical point. 335

V. CONCLUSION AND OUTLOOK 336

We have developed a general phenomenological treatment 337

of HO OPs that have the potential for linear coupling to strain. 338

The two representations with mean-field phase diagrams that 339

are consistent with the phase diagram of URu2Si2 are B1g and 340

B2g. Of these, only a staggered B1g OP is consistent with zero- 341

pressure RUS data, with a cusp appearing in the associated 342

elastic modulus. In this picture, the HO phase is characterized 343

by uniaxial modulated B1g order, while the high-pressure 344

phase is characterized by uniform B1g order. The staggered 345

nematic of HO is similar to the striped superconducting phase 346

found in LBCO and other cuprates [51]. 5347
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We can also connect our results to the large body of348

work concerning various multipolar orders as candidate349

states for HO (e.g., Refs. [3–5,7–9]). Physically, our phe-350

nomenological order parameter could correspond to B1g351

multipolar ordering originating from the localized compo-352

nent of the U 5 f electrons. For the crystal field states of353

URu2Si2, this could correspond either to electric quadrupolar354

or hexadecapolar order based on the available multipolar355

operators [4].356

The coincidence of our theory’s orthorhombic high-357

pressure phase and URu2Si2’s AFM is compelling, but our358

mean-field theory does not make any explicit connection with359

the physics of AFM. Neglecting this physics could be rea-360

sonable since correlations often lead to AFM as a secondary361

effect, like what occurs in many Mott insulators. An electronic362

theory of this phase diagram may find that the AFM observed363

in URu2Si2 indeed follows along with an independent high-364

pressure orthorhombic phase associated with uniform B1g365

electronic order.366

The corresponding prediction of uniform B1g symmetry 367

breaking in the high-pressure phase is consistent with recent 368

diffraction experiments [21], except for the apparent earlier 369

onset in temperature of the B1g symmetry breaking, which 370

we believe may be due to fluctuating order at temperatures 371

above the actual transition temperature. This work motivates 372

both further theoretical work regarding a microscopic theory 373

with modulated B1g order and preforming symmetry-sensitive 374

thermodynamic experiments at pressure, such as pulse-echo 375

ultrasound, that could further support or disprove this idea. 6376
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APPENDIX: ADDING A HIGHER-ORDER INTERACTION 385

In this Appendix, we compute the B1g modulus for a theory with a high-order interaction truncation to better match the 386

low-temperature behavior. Consider the free-energy density f = fELASTIC + fINT + fOP, with 387

fELASTIC = 1
2C0ε

2, fINT = −bεη + 1
2 gε2η2, fOP = 1

2

[
rη2 + c‖(∇‖η)2 + c⊥(∇⊥η)2 + D

(∇2
⊥η

)2] + uη4. (A1)

The mean-field strain conditioned on the order parameter is found from 388

= δF [η, ε]

δε(x)

∣∣∣∣
ε=ε�[η]

= C0ε�[η](x) − bη(x) + gε�[η](x)η(x)2, (A2)

which yields 389

ε�[η](x) = bη(x)

C0 + gη(x)2
. (A3)

Upon substitution into (A1) and expanded to fourth order in η, F [η, ε�[η]] can be written in the form FOP[η] alone with r → 390

r̃ = r − b2/C0 and u → ũ = u + b2g/2C2
0 . The phase diagram in η follows as before with the shifted coefficients, namely, 391

〈η(x)〉 = η∗ cos(q∗x3) for r̃ < c2
⊥/4D = r̃c, with q2

∗ = −c⊥/2D, and 392

η2
∗ = c2

⊥ − 4Dr̃

12Dũ
= |�r̃|

3ũ
. (A4)

We would like to calculate the q-dependent modulus 393

C(q) = 1

V

∫
dx dx′ C(x, x′)e−iq(x−x′ ), (A5)

where 394

C(x, x′) = δ2F [η�[ε], ε]
δε(x)δε(x′)

∣∣∣∣
ε=〈ε〉

= δ2FELASTIC[η�[ε], ε]
δε(x)δε(x′)

+ δ2FINT[η�[ε], ε]
δε(x)δε(x′)

+ δ2FOP[η�[ε], ε]
δε(x)δε(x′)

∣∣∣∣
ε=〈ε〉

(A6)

and η� is the mean-field order parameter conditioned on the strain defined implicitly by 395

0 = δF [η, ε]

δη(x)

∣∣∣∣
η=η�[ε]

= −bε(x) + gε(x)2η�[ε](x) + δFOP[η]

δη(x)

∣∣∣∣
η=η�[ε]

. (A7)

We will work this out term by term. The elastic term is the most straightforward, giving 396

δ2FELASTIC[ε]

δε(x)δε(x′)
= 1

2
C0

δ2

δε(x)δε(x′)

∫
dx′′ ε(x′′)2 = C0δ(x − x′). (A8)
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The interaction term gives397

δ2FINT[η�[ε], ε]
δε(x)δε(x′)

= −b
δ2

δε(x)δε(x′)

∫
dx′′ ε(x′′)η�[ε](x′′) + 1

2
g

δ2

δε(x)δε(x′)

∫
dx′′ ε(x′′)2η�[ε](x′′)2

= −b
δη�[ε](x′)

δε(x)
− b

δ

δε(x)

∫
dx′′ ε(x′′)

δη�[ε](x′′)
δε(x′)

+ g
δ

δε(x)
{ε(x′)η�[ε](x′)2}

+ g
δ

δε(x)

∫
dx′′ ε(x′′)2η�[ε](x′′)

δη�[ε](x′′)
δε(x′)

= −2{b − 2gε(x)η�[ε](x)}δη�[ε](x)

δε(x′)
− b

∫
dx′′ ε(x′′)

δ2η�[ε](x′′)
δε(x)δε(x′)

+ gη�[ε](x)2δ(x − x′)

+ g
∫

dx′′ ε(x′′)2 δη�[ε](x′′)
δε(x)

δη�[ε](x′′)
δε(x′)

+ g
∫

dx′′ ε(x′′)2η�[ε](x′′)
δ2η�[ε](x′′)
δε(x)δε(x′)

. (A9)

The order parameter term relies on some other identities. First, (A7) implies398

δFOP[η]

δη(x)

∣∣∣∣
η=η�[ε]

= bε(x) − gε(x)2η�[ε](x) (A10)

and therefore that the functional inverse η−1
� [η] is399

η−1
� [η](x) = b

2gη(x)

(
1 −

√
1 − 4gη(x)

b2

δFOP[η]

δη(x)

)
. (A11)

The inverse function theorem further implies [with substitution of (A10) after the derivative is evaluated] that400 (
δη�[ε](x)

δε(x′)

){−1}
= δη−1

� [η](x)

δη(x′)

∣∣∣∣
η=η�[ε]

=
gε(x)2δ(x − x′) + δ2FOP[η]

δη(x)δη(x′ )

∣∣
η=η�[ε]

b − 2gε(x)η�[ε](x)
(A12)

and therefore that401

δ2FOP[η]

δη(x)δη(x′)

∣∣∣∣
η=η�[ε]

= {b − 2gε(x)η�[ε](x)}
(

δη�[ε](x)

δε(x′)

){−1}
− gε(x)2δ(x − x′). (A13)

Finally, we evaluate the order parameter term, using (A10) and (A13), which give402

δ2FOP[η�[ε]]
δε(x)δε(x′)

= δ

δε(x)

∫
dx′′ δη�[ε](x′′)

δε(x′)
δFOP[η]

δη(x′′)

∣∣∣∣
η=η�[ε]

=
∫

dx′′ δ2η�[ε](x′′)
δε(x)δε(x′)

δFOP[η]

δη(x′′)

∣∣∣∣
η=η�[ε]

+
∫

dx′′dx′′′ δη�[ε](x′′)
δε(x)

δη�[ε](x′′′)
δε(x′)

δ2FOP[η]

δη(x′′)δη(x′′′)

∣∣∣∣
η=η�[ε]

=
∫

dx′′ δ2η�[ε](x′′)
δε(x)δε(x′)

{bε(x) − gε(x)2η�[ε](x)} + {b − 2gε(x)η�[ε](x)}δη�[ε](x)

δε(x′)

− g
∫

dx′′ ε(x′′)2 δη�[ε](x′′)
δε(x)

δη�[ε](x′′)
δε(x′)

. (A14)

Summing all three terms, we see a great deal of cancellation, with403

δ2F [η�[ε], ε]
δε(x)δε(x′)

= C0δ(x − x′) + gη�[ε](x)2δ(x − x′) − {b − 2gε(x)η�[ε](x)}δη�[ε](x)

δε(x′)
.

We now need to evaluate this at 〈ε〉. First, η�[〈ε〉] = 〈η〉, and404

δ2F [η�[ε], ε]
δε(x)δε(x′)

∣∣∣∣
ε=〈ε〉

= C0δ(x − x′) + g〈η(x)〉2δ(x − x′) − [b − 2g〈ε(x)〉〈η(x)〉]δη�[ε](x)

δε(x′)

∣∣∣∣
ε=〈ε〉

.

Computing the final functional derivative is the most challenging part. We will first compute its functional inverse, take the405

Fourier transform of that, and then use the basic relationship between Fourier functional inverses to find the form of the406

noninverse. First, we note407

δ2FOP[η]

δη(x)δη(x′)

∣∣∣∣
η=〈η〉

= [
r − c⊥∇2

⊥ − c‖∇2
‖ + D∇4

⊥ + 12u〈η(x)〉2
]
δ(x − x′), (A15)
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which gives408 (
δη�[ε](x)

δε(x′)

){−1}∣∣∣∣
ε=〈ε〉

= 1

b − 2g〈ε(x)〉〈η(x)〉
[

g〈ε(x)〉2δ(x − x′) + δ2FOP[η]

δη(x)δη(x′)

]
η=〈η〉

= 1

b − 2g〈ε(x)〉〈η(x)〉
[
g〈ε(x)〉2 + r − c⊥∇2

⊥ − c‖∇2
‖ + D∇4

⊥ + 12u〈η(x)〉2
]
δ(x − x′). (A16)

Upon substitution of (A3) and expansion to quadratic order 〈η(x)〉, we find409 (
δη�[ε](x)

δε(x′)

){−1}∣∣∣∣
ε=〈ε〉

= 1

b

{
r − c⊥∇2

⊥ − c‖∇2
‖ + D∇4

⊥

+ 〈η(x)〉2

[
12u + b2g

C2
0

+ 2g

C0
(r − c⊥∇2

⊥ − c‖∇2
‖ + D∇4

⊥)

]
+ O(〈η〉4)

}
δ(x − x′). (A17)

Defining 〈̂η〉2 = ∫
dq′ 〈η̂(q′)〉〈η̂(−q′)〉, its Fourier transform is then410

G(q) = 1

V

∫
dx dx′ e−iq(x−x′ )

(
δη�[ε](x)

δε(x′)

){−1}∣∣∣∣
ε=〈ε〉

= 1

b

{
r + c⊥q2

⊥ + c‖q2
‖ + Dq4

⊥ + 〈̂η〉2

[
12u + b2g

C2
0

+ 2g

C0
(r + c⊥q2

⊥ + c‖q2
‖ + Dq4

⊥)

]
+ O(〈η̂〉4)

}
. (A18)

We can now compute C(q) by taking its Fourier transform, using the convolution theorem for the second term:411

C(q) = C0 + g〈̂η〉2 −
∫

dq′′
(

bδ(q′′) − gb

C0

∫
dq′〈η̂q′ 〉〈η̂q′′−q′ 〉

)
/G(q − q′′)

= C0 + g〈̂η〉2 − b2

(
1

r + c⊥q2
⊥ + c‖q2

‖ + Dq4
⊥

− 〈̂η〉2
12u + b2g/C2

0 + 2g
C0

(r + c⊥q2 + c‖q2
‖ + Dq4

⊥)

(r + c⊥q2
⊥ + c‖q2

‖ + Dq4
⊥)2

)

+ gb2

C0

∫
dq′ dq′′ 〈η̂q′ 〉〈η̂q′′−q′ 〉

r + c⊥(q⊥ − q′′
⊥)2 + c‖(q‖ − q′′

‖ )2 + D(q⊥ − q′′
⊥)4

+ O(〈η̂〉4). (A19)

Upon substitution of 〈η̂q〉 = 1
2η∗[δ(q⊥ − q∗) + δ(q⊥ + q∗)]δ(q‖), we have412

C(q) = C0 + 1

4
gη2

∗ − b2

(
1

r + c⊥q2
⊥ + c‖q2

‖ + Dq4
⊥

− η2
∗

4

12u + b2g/C2
0 + 2g

C0
(r + c⊥q2 + c‖q2

‖ + Dq4
⊥)

(r + c⊥q2
⊥ + c‖q2

‖ + Dq4
⊥)2

)

+ gb2η2
∗

4C0

(
2

r + c‖q2
‖ + c⊥q2

⊥ + Dq4
⊥

+ 1

r + c‖q2
‖ + c⊥(q⊥ − 2q∗)2 + D(q⊥ − 2q∗)4

+ 1

r + c‖q2
‖ + c⊥(q⊥ + 2q∗)2 + D(q⊥ + 2q∗)4

)
+ O(η4

∗). (A20)

Evaluating at q = 0, we have413

C(0) = C0 − b2

r
+ η2

∗
4

(
g + b2

r2
(12u + b2g/C2

0 ) + 2gb2

C0r

16Dq4
∗ + 3r

8Dq4∗ + r

)
. (A21)

Above the transition this has exactly the form of (18) for any g; below the transition it has the same form at g = 0 to order η2
∗.414

With r = a�T + c2/4D + b2/C0, u = ũ − b2g/2C2
0 , and415

η2
∗ =

{
0 �T > 0,

−a�T/3ũ �T � 0,
(A22)

we can fit the ratios b2/a = 1665 GPa K, b2/Dq4
∗ = 6.28 GPa, and b

√−g/ũ = 14.58 GPa with C0 = [71.14 −416

(0.010426 K−1)T ] GPa. The resulting fit is shown as a dashed black line in Fig. 2.417
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