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Abstract

We develop a phenomenological mean -field theory describing the hidden -order phase in URu2Si2

as a nematic of the B1g representation staggered along the c- axis. Several experimental features are

reproduced by this theory: the topology of the temperature-pressure phase diagram, the response

of the elastic modulus (C11 − C12)/2 above the transition at ambient pressure, and orthorhombic

symmetry breaking in the high-pressure antiferromagnetic phase. In this scenario, hidden order

is characterized by broken rotational symmetry that is modulated along the c- axis, the primary

order of the high-pressure phase is an unmodulated nematic, and the triple point joining those two

phases with the high-temperature paramagnetic phase is a Lifshitz point.
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I. INTRODUCTION

URu2Si2 is a paradigmatic example of a material with an ordered state whose broken

symmetry remains unknown. This state, known as hidden order (hoHO), sets the stage for

unconventional superconductivity that emerges at even lower temperatures. At sufficiently

large hydrostatic pressures, both superconductivity and hoHO give way to local moment

antiferromagnetism (afmAFM). [1]. Modern theories [2–19] propose associating any of a

variety of broken symmetries with hoHO. Motivated by the anomalous temperature depen-

dence of one of the elastic moduli, this work analyzes a family of phenomenological models

with order parameters of general symmetry that couple linearly to strain. Of these, only one

is compatible with two experimental observations: first, the B1g “nematic” elastic suscep-

tibility (C11 − C12)/2 softens anomalously from room temperature down to THO = 17.5 K;

[20], and second, a B1g nematic distortion is observed by x-ray scattering under sufficient

pressure to destroy the hoHO state. [21].

Recent resonant ultrasound spectroscopy (rusRUS) measurements were used to examine

the thermodynamic discontinuities in the elastic moduli at THO. [22]. The observation of

discontinuities only in compressional, or A1g, elastic moduli requires that the point-group

representation of hoHO be one-dimensional. This rules out many order parameter candi-

dates [11–15, 19, 23] in a model-independent way, but does n’ot differentiate between those

that remain.

Recent x-ray experiments discovered rotational symmetry breaking in URu2Si2 under

pressure. [21]. Above 0.13–0.5 GPa (depending on temperature), URu2Si2 undergoes a B1g

nematic distortion, which might be related to the anomalous softening of the B1g elastic

modulus (C11 − C12)/2 that occurs over a broad temperature range at zero pressure. [24?

, 25]. [AU: Please provide the reference with the label yanagisawa2012gamma3 cited

with Refs. [24,25] but not included in the reference list.]Motivated by these results—

which hint at a B1g strain susceptibility associated with the hoHO state—we construct a

phenomenological mean -field theory for an arbitrary[AU: Please define OP.]opOP coupled

to strain, and then determine the effect of its phase transitions on the elastic response in

different symmetry channels.

We find that only one opOP representation reproduces the anomalous B1g elastic mod-

ulus, which softens in a Curie-Weiss-like manner from room temperature and then cusps at
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THO. That theory associates hoHO with a B1g opOP modulated along the c- axis, the high

-pressure state with uniform B1g order, and the triple point between them with a Lifshitz

point. In addition to the agreement with the ultrasound data across a broad temperature

range, our model predicts uniform B1g strain at high pressure—the same distortion that

was recently seen in x-ray scattering experiments. [21]. This work strongly motivates future

ultrasound experiments under pressure approaching the Lifshitz point, which should find

that the (C11 − C12)/2 modulus diverges as the uniform B1g strain of the high -pressure

phase is approached.

II. MODEL AND PHASE DIAGRAM

The point group of URu2Si2 is D4h, and any theory must locally respect this symmetry

in the high-temperature phase. Our phenomenological free -energy density contains three

parts: the elastic free energy, the opOP, and the interaction between strain and opOP. The

most general quadratic free energy of the strain ε is felastic = C0
ijklεijεkl. [26]. The form of

the bare moduli tensor C0 is further restricted by symmetry. [27]. Linear combinations of

the six independent components of strain form five irreducible components of strain in D4h

as

εA1g ,1 = ε11 + ε22, εB1g = ε11 − ε22,

εA1g ,2 = ε33, εB2g = 2ε12,

εEg = 2{ε11, ε22}.

(1)

All quadratic combinations of these irreducible strains that transform like A1g are included

in the free energy,

felastic =
1

2

∑

X

C0
X,ijεX,iεX,j , (2)

where the sum is over irreducible representations (irreps) of the point group and the bare

elastic moduli C0
X are

C0
A1g ,11 = 1

2
(C0

1111 + C0
1122), C0

B1g
= 1

2
(C0

1111 − C
0
1122),

C0
A1g ,22 = C0

3333, C0
B2g

= C0
1212,

C0
A1g ,12 = C0

1133, C0
Eg = C0

1313.

(3)
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The interaction between strain and an opOP η depends on the point -group representation

of η. If this representation is XX, the most general coupling to linear order is

fint = −b(i)ε
(i)
X η. (4)

Many high-order interactions are permitted, and in the aAppendix another of the form ε2η2

is added to the following analysis. If there exists no component of strain that transforms

like the representation XX then there can be no linear coupling. The next-order coupling

is linear in strain, and quadratic in order parameter, and the effect of this coupling at a

continuous phase transition is to produce a jump in the A1g elastic moduli if η is single-

component, [28–30] and jumps in other elastic moduli if it is multicomponent. [22]. Because

we are interested in physics that anticipates the phase transition—for instance, that the

growing opOP susceptibility is reflected directly in the elastic susceptibility—we will focus

our attention on opOP s that can produce linear couplings to strain. Looking at the com-

ponents present in (1), this rules out all of the u-reps[AU: Please define u-reps.](which are

odd under inversion), the A2g irrep, and all half-integer (spinor) representations.

If the opOP transforms like A1g (e.g., a fluctuation in valence number), odd terms are

allowed in its free energy and without fine-tuning any transition will be first order and not

continuous. Since the hoHO phase transition is second- order, [20], we will henceforth rule

out A1g opOP s as well. For the opOP representation XX as any of those remaining—B1g,

B2g, or Eg—the most general quadratic free -energy density is

fOP =
1

2

[
rη2 + c‖(∇∇‖η)2 + c⊥(∇∇⊥η)2

+D⊥(∇2
⊥η)2

]
+ uη4,

(5)

where ∇‖ = {∂1, ∂2}∇‖ = {∂1, ∂2} transforms like Eu, and ∇⊥ = ∂3∇⊥ = ∂3 transforms like

A2u. Other quartic terms are allowed—especially many for an Eg opOP—but we have

included only those terms necessary for stability when either r or c⊥ becomes negative as a

function of temperature. The full free -energy functional of η and ε is

F [η, ε] = FOP[η] + Felastic[ε] + Fint[η, ε]

=

∫
dx (fOP + felastic + fint).

(6)

Rather than analyze this two-argument functional directly, we begin by tracing out the

strain and studying the behavior of the opOP alone. Later, we will invert this procedure
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and trace out the opOP when we compute the effective elastic moduli. The only strain

relevant to an opOP of representation XX at linear coupling is εX, which can be traced out

of the problem exactly in mean -field theory. Extremizing the functional (6) with respect to

εX gives

0 =
δF [η, ε]

δεX(x)

∣
∣
∣
∣
ε=ε?

= C0
Xε

?
X(x)− bη(x), (7)

which in turn gives the strain field conditioned on the state of the opOP field as ε?X[η](x) =

(b/C0
X)η(x) at all spatial coordinates x, and ε?Y[η] = 0 for all other irreps Y 6= XY 6= X.

Upon substitution into (6), the resulting single-argument free -energy functional F [η, ε?[η]]

has a density identical to fop with the identification r → r̃ = r − b2/2C0
X.

FIG. 1. Phase diagrams for (a) URu2Si2 from experiments (neglecting the superconducting phase)

[1], (b) mean -field theory of a one-component (B1g or B2g) Lifshitz point, and (c) mean -field

theory of a two-component (Eg) Lifshitz point. Solid lines denote second-order transitions, while

dashed lines denote first -order transitions. Later, when we fit the elastic moduli predictions for a

B1g opOP to data along the ambient pressure line, we will take ∆r̃ = r̃ − r̃c = a(T − Tc).

With the strain traced out, (5) describes the theory of a Lifshitz point at r̃ = c⊥ = 0.

[31, 32]. The properties discussed in the remainder of this section can all be found in a

standard text, (e.g., in Chapter 4 §6.5 of Chaikin & Lubensky. [33]). For a one-component

opOP (B1g or B2g) and positive c‖, it is traditional to make the field ansatz 〈η(x)〉 =

η∗ cos(q∗x3). For r̃ > 0 and c⊥ > 0, or r̃ > c2
⊥/4D⊥ and c⊥ < 0, the only stable solution is

η∗ = q∗ = 0, and the system is unordered. For r̃ < 0 there are free -energy minima for q∗ = 0

and η2
∗ = −r̃/4u, and this system has uniform order of the opOP representation, e.g., B1g

or B2g. For c⊥ < 0 and r̃ < c2
⊥/4D⊥ there are free -energy minima for q2

∗ = −c⊥/2D⊥ and

η2
∗ =

c2
⊥ − 4D⊥r̃

12D⊥u
=
r̃c − r̃

3u
=
|∆r̃|
3u

, (8)

with r̃c = c2
⊥/4D⊥, and the system has modulated order. The transition between the uniform

and modulated orderings is first order for a one-component opOP and occurs along the line

c⊥ = −2
√
−D⊥r̃/5.

For a two-component opOP (Eg) we must also allow a relative phase between the two

components of the opOP. In this case the uniform ordered phase is only stable only for
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c⊥ > 0, and the modulated phase is now characterized by helical order with 〈η(x)〉 =

η∗{cos(q∗x3), sin(q∗x3)}. The uniform to modulated transition is now continuous. This

does not reproduce the physics of URu2Si2, whose hoHO phase is bounded by a line of

first -order transitions at high pressure, and so we will henceforth neglect the possibility of

a multicomponent order parameter—consistent with earlier ultrasound measurements [22].

Schematic phase diagrams for both the one- and two-component models are shown in Figure.

1.

III. SUSCEPTIBILITY AND ELASTIC MODULI

We will now derive the effective elastic tensor C that results from the coupling of strain

to the opOP. The ultimate result, found in (17), is that CX differs from its bare value C0
X

only for the representation XX of the opOP. Moreover, this modulus does not vanish at

the unordered to modulated transition—as it would if the transition were a q = 0 phase

transition—but instead ends in a cusp. In this section we start by computing the suscepti-

bility of the opOP at the unordered to modulated transition, and then compute the elastic

modulus for the same.

The susceptibility of a single-component (B1g or B2g) opOP is

χ{−1}(x, x′) =
δ2F [η, ε?[η]]

δη(x)δη(x′)

∣
∣
∣
∣
η=〈η〉

=
[
r̃ − c‖∇

2
‖

− c⊥∇
2
⊥ +D⊥∇

4
⊥ + 12u〈η(x)〉2

]
δ(x− x′),

(9)

where {−1} indicates a functional reciprocal defined as

∫
dx′′ χ{−1}(x, x′′)χ(x′′, x′) = δ(x− x′). (10)

Taking the Fourier transform and integrating out q′ gives

χ(q) =
(
r̃ + c‖q

2
‖ + c⊥q

2
⊥ +D⊥q

4
⊥ + 12u

∑

q′

〈η̃q′〉〈η̃−q′〉
)−1

. (11)

Near the unordered to modulated transition this yields

χ(q) =
[
c‖q

2
‖ +D⊥(q2

∗ − q
2
⊥)2 + |∆r̃|

]−1

=
1

D⊥

ξ4
⊥

1 + ξ2
‖q

2
‖ + ξ4

⊥(q2
∗ − q

2
⊥)2

,
(12)
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with ξ⊥ = (|∆r̃|/D⊥)−1/4 = ξ⊥0|t|−1/4 and ξ‖ = (|∆r̃|/c‖)−1/2 = ξ‖0|t|−1/2, where t =

(T − Tc)/Tc is the reduced temperature and ξ⊥0 = (D⊥/aTc)
1/4 and ξ‖0 = (c‖/aTc)

1/2 are

the bare correlation lengths perpendicular and parallel to the plane, respectively. The static

susceptibility χ(0) = (D⊥q
4
∗ + |∆r̃|)−1 does not diverge at the unordered to modulated

transition. TAlthough it anticipates a transition with Curie-Weiss-like divergence at the

lower point a(T −Tc) = ∆r̃ = −D⊥q4
∗ < 0, this is cut off with a cusp at the phase transition

at ∆r̃ = 0.

The elastic susceptibility, which is the reciprocal of the effective elastic modulus, is found

in a similar way similar to the opOP susceptibility: we must trace over η and take the

second variation of the resulting effective free -energy functional of ε alone. Extremizing

over η yields

0 =
δF [η, ε]

δη(x)

∣
∣
∣
∣
η=η?

=
δFop[η]

δη(x)

∣
∣
∣
∣
η=η?

− bεX(x), (13)

which implicitly gives η?[ε], the opOP conditioned on the configuration of the strain. Since

η? is a functional of εX alone, only the modulus CX will be modified from its bare value C0
X.

TAlthough the differential equation for η? cannot be solved explicitly, we can use the

inverse function theorem to make use of (13) anyway. First, denote by η−1
? [η] the inverse func-

tional of η? implied by (13), which gives the function εX corresponding to each solution of (13)

it receives. This we can immediately identify from (13) as η−1
? [η](x) = b−1(δFop[η]/δη(x))η−1

? [η](x) = b−1{δFop[η]/δη(x)}.

Now, we use the inverse function theorem to relate the functional reciprocal of the derivative

of η?[ε] with respect to εX to the derivative of η−1
? [η] with respect to η, yielding

(
δη?[ε](x)

δεX(x′)

){−1}

=
δη−1

? [η](x)

δη(x′)

∣
∣
∣
∣
η=η?[ε]

= b−1 δ2Fop[η]

δη(x)δη(x′)

∣
∣
∣
∣
η=η?[ε]

.

(14)

Next, (13) and (14) can be used in concert with the ordinary rules of functional calculus to

yield the second variation
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δ2F [η?[ε], ε]
δεX(x)δεX(x′)

= C0
Xδ(x− x

′)− 2b
δη?[ε](x)
δεX(x′)

− b
∫
dx′′

δ2η?[ε](x)
δεX(x′)δεX(x′′)

εX(x′′)

+
∫
dx′′

δ2η?[ε](x′′)
δεX(x)δεX(x′)

δFop[η]
δη(x′′)

∣
∣
∣
∣
η=η?[ε]

+
∫
dx′′ dx′′′

δη?[ε](x′′)
δεX(x)

δη?[ε](x′′′)
δεX(x′)

δ2Fop[η]
δη(x′′)δη(x′′′)

∣
∣
∣
∣
η=η?[ε]

= C0
Xδ(x− x

′)− 2b
δη?[ε](x)
δεX(x′)

− b
∫
dx′′

δ2η?[ε](x)
δεX(x′)δεX(x′′)

εX(x′′)

+
∫
dx′′

δ2η?[ε](x′′)
δεX(x)δεX(x′)

([bεX(x′′))] + b

∫
dx′′ dx′′′

δη?[ε](x′′)
δεX(x)

δη?[ε](x′′′)
δεX(x′)

(
∂η?[ε](x′′)
∂εX(x′′′)

){−1}

= C0
Xδ(x− x

′)− 2b
δη?[ε](x)
δεX(x′)

+ b

∫
dx′′ δ(x− x′′)

δη?[ε](x′′)
δεX(x′)

= C0
Xδ(x− x

′)− b
δη?[ε](x)
δεX(x′)

.

(15)

The elastic modulus is given by the second variation (15) evaluated at the extremized strain

〈ε〉. To calculate it, note that evaluating the second variation of Fop in (14) at 〈ε〉 (or

η?(〈ε〉) = 〈η〉) yields

(
δη?[ε](x)

δεX(x′)

){−1}∣∣
∣
∣
ε=〈ε〉

= b−1χ{−1}(x, x′) +
b

C0
X

δ(x− x′), (16)

where χ{−1} is the opOP susceptibility given by (9). Upon substitution into (15) and taking

the Fourier transform of the result, we finally arrive at

CX(q) = C0
X − b

(
1

bχ(q)
+

b

C0
X

)−1

= C0
X

(

1 +
b2

C0
X

χ(q)

)−1

. (17)

TAlthough not relevant here, this result generalizes to multicomponent opOP s.

What does (17) predict in the vicinity of the hoHO transition? Near the disordered -to

-modulated transition—the zero-pressure transition to the HO state—the static modulus is

given by

CX(0) = C0
X

[

1 +
b2

C0
X

(
D⊥q

4
∗ + |∆r̃|

)−1
]−1

. (18)

This corresponds to a softening in the XX- modulus approaching the transition that is cut

off with a cusp of the form |∆r̃|γ ∝ |T −Tc|γ , with γ = 1. This is our main result. The only

opOP irreps that couple linearly with strain and reproduce the topology of the URu2Si2

phase diagram are B1g and B2g. For either of these irreps, the transition into a modulated

rather than uniform phase masks traditional signatures of a continuous transition by locating

thermodynamic singularities at nonzero q = q∗. The remaining clue at q = 0 is a particular

kink in the corresponding modulus.
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IV. COMPARISON TO EXPERIMENT

FIG. 2. RusRUS measurements of the elastic moduli of URu2Si2 at ambient pressure as a

function of temperature from recent experiments [22] (blue, solid line) alongside fits to theory

(magenta, dashed and black, dashed lines). The solid yellow region shows the location of the

hoHO phase. (a) B2g modulus data and a fit to the standard form. [34]. (b) B1g modulus

data and a fit to (18) (magenta, dashed line) and a fit to (A21) (black, dashed line). The fit

gives C0
B1g
'
[
71 − (0.010 K−1)T

]
GPa, b2/D⊥q4

∗ ' 6.28 GPa, and b2/a ' 1665 GPa K−1. Ad-

dition of a quadratic term in C0
B1g

was here not needed here for the fit. [34]. (c) B1g mod-

ulus data and the fit of the bare B1g modulus. (d) B1g modulus data and the fits trans-

formed by [C0
B1g

(C0
B1g

/CB1g − 1)]]−1[C0
B1g

(C0
B1g

/CB1g − 1)]−1, which is predicted from (18) to equal

D⊥q
4
∗/b

2 + a/b2|T − Tc|, e.g., an absolute -value function.

RusRUS experiments [22] yield the individual elastic moduli broken into irreps; data for

the B1g and B2g components defined in (1) are shown in Figures. 2(a–) and 2(b). The

B2g modulus in Fig. 2(a) does n’ot appear to have any response to the presence of the

transition, exhibiting the expected linear stiffening upon cooling from room temperature,

with a low-temperature cutoff at some fraction of the Debye temperature. [34]. The B1g

modulus in Fig. 2(b) has a dramatic response, softening over the course of roughly 100 K

and then cusping at the hoHO transition. The data in the high-temperature phase can be

fit to the theory (18), with a linear background modulus C0
B1g

and r̃ − r̃c = a(T − Tc), and

the result is shown in Figure. 2(b).

The behavior of the modulus below the transition does not match (18) well, but this is

because of the truncation of the free -energy expansion used above. Higher -order terms like

η2ε2 and ε4 contribute to the modulus starting at order η2
∗ and therefore change the behavior

below the transition, where the expectation value of η is finite, but not above it, where the

expectation value of η is zero. To demonstrate this, in the Appendix A we compute the

modulus in a theory where the interaction free energy is truncated after fourth order with

the new term 1
2
gη2ε2. The dashed black line in Fig. 2 shows the fit of the rusRUS data to

(A21) and shows that successive high-order corrections can account for the low-temperature

behavior.

The data and theory appear quantitatively consistent, suggesting that hoHO can be
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described as a B1g-nematic phase that is modulated at finite q along the c−c axis. The

predicted softening appears over hundreds of Kkelvins; Figures. 2(c–) and 2(d) show the

background modulus C0
B1g

and the opOP-induced response isolated from each other.

We have seen that the mean-field theory of a B1g opOP recreates the topology of the

hoHO phase diagram and the temperature dependence of the B1g elastic modulus at zero

pressure. This theory has several other physical implications. First, the association of a mod-

ulated B1g order with the hoHO phase implies a uniform B1g order associated with the high

-pressure phase, and, moreover, a uniform B1g strain of magnitude 〈εB1g〉
2 = b2r̃/4u(C0

B1g
)2,

which corresponds to an orthorhombic structural phase. The onset of orthorhombic sym-

metry breaking was recently detected at high pressure in URu2Si2 using x-ray diffraction, a

further consistency of this theory with the phenomenology of URu2Si2. [21].

Second, as the Lifshitz point is approached from low pressure, this theory predicts that the

modulation wave vector q∗ should vanish continuously. Far from the Lifshitz point we expect

the wave vector to lock into values commensurate with the space group of the lattice , and,

moreover, that at zero pressure, where the rusRUS data here waswere collected, the half-

wavelength of the modulation should be commensurate with the lattice spacing a3 ' 9.68 Å,

or q∗ = π/a3 ' 0.328 Å
−1

. [35–42]. In between these two regimes, mean -field theory predicts

that the ordering wave vector shrinks by jumping between ever-closer commensurate values

in the style of the devil’s staircase. [43]. In reality the presence of fluctuations may wash

out these transitions.

This motivates future ultrasound experiments done under pressure, where the depth of

the cusp in the B1g modulus should deepen (perhaps with these commensurability jumps)

at low pressure and approach zero as q4
∗ ∼ (c⊥/2D⊥)2 near the Lifshitz point. Alternatively,

rusRUS done at ambient pressure might examine the heavy Fermi liquid to afmAFM tran-

sition by doping. TAlthough previous rusRUS studies have doped URu2Si2 with rhodium,

[44], rhodium changes the carrier concentration as well as the lattice spacing, and may

favour the promotion of the magnetic phase. An iso-electronic (as well as iso-magnetic)

dopant such as iron may more faithfully explore the transition out of the HO phase. Our

work also motivates experiments that can probe the entire correlation function—like x-ray

and neutron scattering—and directly resolve its finite-q divergence. The presence of spatial

commensurability is known to be irrelevant to critical behavior at a one-component disor-

dered -to -modulated transition, and therefore is not expected to modify the thermodynamic
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behavior otherwise. [45].

There are two apparent discrepancies between the orthorhombic strain in the phase di-

agram presented by recent x-ray data [21], and that predicted by our mean -field theory

if its uniform B1g phase is taken to be coincident with URu2Si2’s afmAFM. The first is

the apparent onset of the orthorhombic phase in the hoHO state at slightly lower pressures

than the onset of afmAFM. As the recent x-ray research [21] notes, this misalignment of

the two transitions as a function of doping could be due to the lack of an ambient pressure

calibration for the lattice constant. The second discrepancy is the onset of orthorhombicity

at higher temperatures than the onset of afmAFM. We note that magnetic susceptibility

data sees no trace of another phase transition at these higher temperatures. [46]. It is

therefore possible that the high-temperature orthorhombic signature in x-ray scattering is

not the result of a bulk thermodynamic phase, but, instead, marks the onset of short-range

correlations, as it does in the high-TcTc cuprates [47] (where the onset of CDWthe charge

density wave correlations also lacks a thermodynamic phase transition).

Three dimensions is below the upper critical dimension 41
2

of a one-component disordered-

to-modulated transition, and so mean -field theory should break down sufficiently close to

the critical point due to fluctuations, at the Ginzburg temperature. [48, 49]. Magnetic

phase transitions tend to have a Ginzburg temperature of order one1. Our fit above gives

ξ⊥0q∗ = (D⊥q
4
∗/aTc)

1/4 ' 2, which combined with the speculation of q∗ ' π/a3 puts the bare

correlation length ξ⊥0 on the order of lattice constant, which is about what one would expect

for a generic magnetic transition. The agreement of thiese data in the (T−THO)/THO ∼ 0.1–

10 range with the mean -field exponent suggests that this region is outside the Ginzburg

region, but an experiment may begin to see deviations from mean -field behavior within

approximately several Kkelvins of the critical point. An ultrasound experiment with finer

temperature resolution near the critical point may be able to resolve a modified cusp ex-

ponent γ ' 1.31, [50] since, according to one analysis, the universality class of a uniaxial

modulated one-component opOP is that of the O(2), 3Dthree-dimensional XYXY transi-

tion. [45]. A crossover from mean -field theory may explain the small discrepancy in our fit

very close to the critical point.
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V. CONCLUSION AND OUTLOOK

We have developed a general phenomenological treatment of hoHO opOP s that have

the potential for linear coupling to strain. The two representations with mean -field phase

diagrams that are consistent with the phase diagram of URu2Si2 are B1g and B2g. Of these,

only a staggered B1g opOP is consistent with zero-pressure rusRUS data, with a cusp

appearing in the associated elastic modulus. In this picture, the hoHO phase is characterized

by uniaxial modulated B1g order, while the high -pressure phase is characterized by uniform

B1g order. The staggered nematic of hoHO is similar to the striped superconducting phase

found in[AU: Please define LBCO.]LBCO and other cuperates. [51].

We can also connect our results to the large body of work concerning various multipolar

orders as candidate states for hoHO (e.g., rRefs. [3–5, 7–9]). Physically, our phenomeno-

logical order parameter could correspond to B1g multipolar ordering originating from the

localized component of the U- 5f5f electrons. For the crystal field states of URu2Si2, this

could correspond either to electric quadroupolar or hexadecapolar order based on the avail-

able multipolar operators. [4].

The coincidence of our theory’s orthorhombic high-pressure phase and URu2Si2’s afmAFM

is compelling, but our mean -field theory does not make any explicit connection with the

physics of afmAFM. Neglecting this physics could be reasonable since correlations often

lead to afmAFM as a secondary effect, like what occurs in many Mott insulators. An

electronic theory of this phase diagram may find that the afmAFM observed in URu2Si2

indeed follows along with an independent high-pressure orthorhombic phase associated with

uniform B1g electronic order.

The corresponding prediction of uniform B1g symmetry breaking in the high -pressure

phase is consistent with recent diffraction experiments, [21], except for the apparent earlier

onset in temperature of the B1g symmetry breaking, which we believe may be due to fluctu-

ating order at temperatures above the actual transition temperature. This work motivates

both further theoretical work regarding a microscopic theory with modulated B1g order, and

preforming symmetry-sensitive thermodynamic experiments at pressure, such as pulse-echo

ultrasound, that could further support or falsifydisprove this[AU: As meant to change

“falsify” to “disprove” in “further support or falsify this idea”? Please check.]idea.



ELASTIC PROPERTIES OF HIDDEN ORDER IN ... 13

ACKNOWLEDGMENTS

Jaron .Kent.-Dobias. is supported by NSF Grant No. DMR-1719490, Michael .Matty. is

supported by NSF Grant No. DMR-1719875, and Brad .J.Ramshaw. is supported by NSF

Grant No. DMR-1752784. We are grateful for helpful discussions with Sri. Raghu, Steve.

Kivelson, Danilo. Liarte, and Jim. Sethna, and for permission to reproduce experimental

data in our figure by Elena. Hassinger. We thank Sayak. Ghosh for rusRUS data.

Appendix A: Adding a higher-order interaction

In this appendix, we compute the B1g modulus for a theory with a high-order interaction

truncation to better match the low-temperature behavior. Consider the free -energy density

f = felastic + fint + fop, with

felastic =
1

2
C0ε

2,

fint = −bεη +
1

2
gε2η2,

fop =
1

2

[
rη2 + c‖(∇∇‖η)2 + c⊥(∇∇⊥η)2 +D(∇2

⊥η)2
]

+ uη4.

(A1)

The mean-field strain conditioned on the order parameter is found from

0 =
δF [η, ε]

δε(x)

∣
∣
∣
∣
ε=ε?[η]

= C0ε?[η](x)− bη(x) + gε?[η](x)η(x)2,

(A2)

which yields

ε?[η](x) =
bη(x)

C0 + gη(x)2
. (A3)

Upon substitution into (A1) and expanded to fourth order in η, F [η, ε?[η]] can be written in

the form Fop[η] alone with r → r̃ = r−b2/C0 and u→ ũ = u+b2g/2C2
0 . The phase diagram

in η follows as before with the shifted coefficients, and namely, 〈η(x)〉 = η∗ cos(q∗x3) for

r̃ < c2
⊥/4D = r̃c, with q2

∗ = −c⊥/2D, and

η2
∗ =

c2
⊥ − 4Dr̃

12Dũ
=
|∆r̃|
3ũ

. (A4)

We would like to calculate the q-dependent modulus

C(q) =
1

V

∫
dx dx′C(x, x′)e−iq(x−x

′), (A5)

where
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C(x, x′) =
δ2F [η?[ε], ε]

δε(x)δε(x′)

∣
∣
∣
∣
ε=〈ε〉

=
δ2Felastic[η?[ε], ε]

δε(x)δε(x′)
+
δ2Fint[η?[ε], ε]

δε(x)δε(x′)
+
δ2Fop[η?[ε], ε]

δε(x)δε(x′)

∣
∣
∣
∣
ε=〈ε〉

(A6)

and η? is the mean-field order parameter conditioned on the strain defined implicitly by

0 =
δF [η, ε]

δη(x)

∣
∣
∣
∣
η=η?[ε]

= −bε(x) + gε(x)2η?[ε](x) +
δFop[η]

δη(x)

∣
∣
∣
∣
η=η?[ε]

. (A7)

We will work this out term by term. The elastic term is the most straightforward, giving

δ2Felastic[ε]

δε(x)δε(x′)
=

1

2
C0

δ2

δε(x)δε(x′)

∫
dx′′ ε(x′′)2 = C0δ(x− x

′). (A8)

The interaction term gives

δ2Fint[η?[ε], ε]

δε(x)δε(x′)
= −b

δ2

δε(x)δε(x′)

∫
dx′′ ε(x′′)η?[ε](x

′′) +
1

2
g

δ2

δε(x)δε(x′)

∫
dx′′ ε(x′′)2η?[ε](x

′′)2

= −b
δη?[ε](x

′)

δε(x)
− b

δ

δε(x)

∫
dx′′ ε(x′′)

δη?[ε](x
′′)

δε(x′)
+ g

δ

δε(x)
[{ε(x′)η?[ε](x

′)2]}

+ g
δ

δε(x)

∫
dx′′ ε(x′′)2η?[ε](x

′′)
δη?[ε](x

′′)

δε(x′)

= −2({b− 2gε(x)η?[ε](x))}
δη?[ε](x)

δε(x′)
− b

∫
dx′′ ε(x′′)

δ2η?[ε](x
′′)

δε(x)δε(x′)
+ gη?[ε](x)2δ(x− x′)

+ g

∫
dx′′ ε(x′′)2 δη?[ε](x

′′)

δε(x)

δη?[ε](x
′′)

δε(x′)
+ g

∫
dx′′ ε(x′′)2η?[ε](x

′′)
δ2η?[ε](x

′′)

δε(x)δε(x′)
.

(A9)

The order parameter term relies on some other identities. First, (A7) implies

δFop[η]

δη(x)

∣
∣
∣
∣
η=η?[ε]

= bε(x)− gε(x)2η?[ε](x), (A10)

and therefore that the functional inverse η−1
? [η] is

η−1
? [η](x) =

b

2gη(x)

(

1−

√

1−
4gη(x)

b2

δFop[η]

δη(x)

)

. (A11)

The inverse function theorem further implies ([with substitution of (A10) after the derivative

is evaluated)] that

(
δη?[ε](x)

δε(x′)

){−1}

=
δη−1

? [η](x)

δη(x′)

∣
∣
∣
∣
η=η?[ε]

=
gε(x)2δ(x− x′) + δ2Fop[η]

δη(x)δη(x′)

∣
∣
η=η?[ε]

b− 2gε(x)η?[ε](x)
(A12)
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and therefore that

δ2Fop[η]

δη(x)δη(x′)

∣
∣
∣
∣
η=η?[ε]

= ({b− 2gε(x)η?[ε](x))}

(
δη?[ε](x)

δε(x′)

){−1}

− gε(x)2δ(x− x′). (A13)

Finally, we evaluate the order parameter term, using (A10) and (A13), which give

δ2Fop[η?[ε]]

δε(x)δε(x′)
=

δ

δε(x)

∫
dx′′

δη?[ε](x
′′)

δε(x′)

δFop[η]

δη(x′′)

∣
∣
∣
∣
η=η?[ε]

=

∫
dx′′

δ2η?[ε](x
′′)

δε(x)δε(x′)

δFop[η]

δη(x′′)

∣
∣
∣
∣
η=η?[ε]

+

∫
dx′′dx′′′

δη?[ε](x
′′)

δε(x)

δη?[ε](x
′′′)

δε(x′)

δ2Fop[η]

δη(x′′)δη(x′′′)

∣
∣
∣
∣
η=η?[ε]

=

∫
dx′′

δ2η?[ε](x
′′)

δε(x)δε(x′)
({bε(x)− gε(x)2η?[ε](x))}+ ({b− 2gε(x)η?[ε](x))}

δη?[ε](x)

δε(x′)

− g
∫
dx′′ ε(x′′)2 δη?[ε](x

′′)

δε(x)

δη?[ε](x
′′)

δε(x′)
.

(A14)

Summing all three terms, we see a great deal of cancellation, with

δ2F [η?[ε], ε]

δε(x)δε(x′)
= C0δ(x− x

′) + gη?[ε](x)2δ(x− x′)− ({b− 2gε(x)η?[ε](x))}
δη?[ε](x)

δε(x′)
.

We neow need to evaluate this at 〈ε〉. First, η?[〈ε〉] = 〈η〉, and

δ2F [η?[ε], ε]

δε(x)δε(x′)

∣
∣
∣
∣
ε=〈ε〉

= C0δ(x−x
′) + g〈η(x)〉2δ(x−x′)− ([b−2g〈ε(x)〉〈η(x)〉)]

δη?[ε](x)

δε(x′)

∣
∣
∣
∣
ε=〈ε〉

.

Computing the final functional derivative is the most challenging part. We will first compute

its functional inverse, take the Fourier transform of that, and then use the basic relationship

between Fourier functional inverses to find the form of the non-inverse. First, we note

δ2Fop[η]

δη(x)δη(x′)

∣
∣
∣
∣
η=〈η〉

=
[
r − c⊥∇

2
⊥ − c‖∇

2
‖ +D∇4

⊥ + 12u〈η(x)〉2
]
δ(x− x′), (A15)

which gives

(
δη?[ε](x)

δε(x′)

){−1}∣∣
∣
∣
ε=〈ε〉

=
1

b− 2g〈ε(x)〉〈η(x)〉

[

g〈ε(x)〉2δ(x− x′) +
δ2Fop[η]

δη(x)δη(x′)

]

η=〈η〉

=
1

b− 2g〈ε(x)〉〈η(x)〉

[
g〈ε(x)〉2 + r − c⊥∇

2
⊥ − c‖∇

2
‖ +D∇4

⊥ + 12u〈η(x)〉2
]
δ(x− x′).

(A16)
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Upon substitution of (A3) and expansion to quadratic order it 〈η(x)〉, we find

(
δη?[ε](x)
δε(x′)

){−1}∣∣
∣
∣
ε=〈ε〉

=
1
b

{

r − c⊥∇
2
⊥ − c‖∇

2
‖ +D∇4

⊥

+ 〈η(x)〉2
[

12u+
b2g

C2
0

+
2g
C0

(r − c⊥∇
2
⊥ − c‖∇

2
‖ +D∇4

⊥)

]

+O(〈η〉4)

}

δ(x− x′).

(A17)

Defining 〈̂η〉2 =
∫
dq′ 〈η̂(q′)〉〈η̂(−q′)〉, its Fourier transform is then

G(q) =
1

V

∫
dx dx′ e−iq(x−x

′)

(
δη?[ε](x)

δε(x′)

){−1}∣∣
∣
∣
ε=〈ε〉

=
1

b

{

r + c⊥q
2
⊥ + c‖q

2
‖ +Dq4

⊥ + 〈̂η〉2
[

12u+
b2g

C2
0

+
2g

C0

(r + c⊥q
2
⊥ + c‖q

2
‖ +Dq4

⊥)

]

+O(〈η̂〉4)

}

.

(A18)

We can now compute C(q) by taking its Fourier transform, using the convolution theorem

for the second term:

C(q) = C0 + g〈̂η〉2 −
∫
dq′′
(

bδ(q′′)−
gb

C0

∫
dq′〈η̂q′〉〈η̂q′′−q′〉

)

/G(q − q′′)

= C0 + g〈̂η〉2 − b2

(
1

r + c⊥q2
⊥ + c‖q

2
‖ +Dq4

⊥

− 〈̂η〉2
12u+ b2g/C2

0 + 2g
C0

(r + c⊥q
2 + c‖q

2
‖ +Dq4

⊥)

(r + c⊥q2
⊥ + c‖q

2
‖ +Dq4

⊥)2

)

+
gb2

C0

∫
dq′ dq′′

〈η̂q′〉〈η̂q′′−q′〉
r + c⊥(q⊥ − q′′⊥)2 + c‖(q‖ − q′′‖)

2 +D(q⊥ − q′′⊥)4
+O(〈η̂〉4).

(A19)

Upon substitution of 〈η̂q〉 = 1
2
η∗
[
δ(q⊥ − q∗) + δ(q⊥ + q∗)

]
δ(q‖), we have

C(q) = C0 +
1

4
gη2
∗ − b

2

(
1

r + c⊥q2
⊥ + c‖q2

‖ +Dq4
⊥

−
η2
∗

4

12u+ b2g/C2
0 + 2g

C0
(r + c⊥q

2 + c‖q
2
‖ +Dq4

⊥)

(r + c⊥q2
⊥ + c‖q2

‖ +Dq4
⊥)2

)

+
gb2η2

∗

4C0

(
2

r + c‖q2
‖ + c⊥q2

⊥ +Dq4
⊥

+
1

r + c‖q2
‖ + c⊥(q⊥ − 2q∗)2 +D(q⊥ − 2q∗)4

+
1

r + c‖q2
‖ + c⊥(q⊥ + 2q∗)2 +D(q⊥ + 2q∗)4

)

+O(η4
∗).

(A20)

Evaluating at q = 0, we have

C(0) = C0 −
b2

r
+
η2
∗

4

(

g +
b2

r2
(12u+ b2g/C2

0 ) +
2gb2

C0r

16Dq4
∗ + 3r

8Dq4
∗ + r

)

. (A21)
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Above the transition this has exactly the form of (18) for any g; below the transition it has

the same form at g = 0 to order η2
∗. With r = a∆T + c2/4D+ b2/C0, u = ũ− b2g/2C2

0 , and

η2
∗ =






0 ∆T > 0,

−a∆T/3ũ ∆T ≤ 0,
(A22)

we can fit the ratios b2/a = 1665 GPa K, b2/Dq4
∗ = 6.28 GPa, and b

√
−g/ũ = 14.58 GPa with

C0 = (71.14− (0.010426 K−1)T ) GPaC0 = [71.14− (0.010426 K−1)T ] GPa. The resulting fit

is shown as a dashed black line in Fig. 2.
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