From bc455f449cab2c1c36baf257bdafc48653947091 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Thu, 27 Feb 2020 20:53:15 -0500 Subject: small changes for brad --- poster_aps_mm_2020.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/poster_aps_mm_2020.tex b/poster_aps_mm_2020.tex index 90e3794..b156dbe 100644 --- a/poster_aps_mm_2020.tex +++ b/poster_aps_mm_2020.tex @@ -4,7 +4,7 @@ \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[]{amsmath} -\usepackage{amssymb,latexsym,mathtools,multicol,lipsum,wrapfig,floatrow} +\usepackage{amssymb,latexsym,mathtools,multicol,lipsum,wrapfig,floatrow,bm} \usepackage[font=normalsize,labelfont=bf]{caption} \usepackage{tgheros} \usepackage[helvet]{sfmath} @@ -96,7 +96,7 @@ \hspace{1em} The modulus tensor of \urusi\ anomalously softens over several hundred - Kelvin and is cut off by the \ho\ transition. + Kelvin and is cut off by the \ho\ transition, seen in Fig.~\ref{fig:plots}(b). \textbf{ We show that only one order parameter symmetry is consistent with this softening and the topology of the phase diagram. @@ -108,7 +108,7 @@ \hspace{1em} Resonant ultrasound spectroscopy drives a sample with sound and measures its - resonances by looking for spikes in the response. Using the sample geometry + resonances by looking for peaks in the response. Using the sample geometry and the location of sufficiently many resonances, the modulus tensor $C$---which gives the energetic cost of strain---can be calculated. \textbf{ @@ -149,7 +149,7 @@ - \section{Landau--Ginzburg theory} + \section{Landau theory} \Large \hspace{1em} @@ -158,8 +158,8 @@ only if they correspond to the same irrep. Higher order couplings lead to thermodynamic discontinuities but not diverging responses. \textbf{ - The anomalous softening of \urusi\ suggests the hidden order parameter - couples linearly to strain. + The anomalous softening of \urusi\ in Fig.~\ref{fig:plots}(b) suggests the + hidden order parameter couples linearly to strain. } \hspace{1em} @@ -202,7 +202,7 @@ \hspace{1em} \textbf{ - This theory has a \emph{Lifshitz triple point} at $\tilde r=c_\perp=0$. + This theory has a \emph{Lifshitz triple point} at $\bm{\tilde r=c_\perp=0}$. } The three phases that meet are \begin{itemize} -- cgit v1.2.3-70-g09d2