\documentclass[portrait]{a0poster} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[]{amsmath} \usepackage{amssymb,latexsym,mathtools,multicol,lipsum,wrapfig} \usepackage[font=normalsize,labelfont=bf]{caption} \usepackage{tgheros} \usepackage[helvet]{sfmath} \usepackage[export]{adjustbox} \renewcommand*\familydefault{\sfdefault} \mathtoolsset{showonlyrefs=true} \setlength\textwidth{194pc} \begin{document} \setlength\columnseprule{2pt} \setlength\columnsep{5pc} \renewenvironment{figure} {\par\medskip\noindent\minipage{\linewidth}} {\endminipage\par\medskip} \renewcommand\section[1]{ \vspace{3pc} \noindent\huge\textbf{#1}\large \vspace{1.5pc} } \newcommand\unit[1]{\hat{\vec{#1}}} \renewcommand\vec[1]{\boldsymbol{\mathbf{#1}}} \newcommand\norm[1]{\|#1\|} \def\rr{\rho} \newcommand\abs[1]{|#1|} \def\dd{\mathrm d} \def\rec{\mathrm{rec}} \def\CC{{C\kern-.05em\lower-.4ex\hbox{\cpp +\kern-0.05em+}} } \font\cpp=cmr24 \def\max{\mathrm{max}} % Our mysterious boy \def\urusi{URu$_{\text2}$Si$_{\text2}$} \def\e{{\text{\textsc{elastic}}}} % "elastic" \def\i{{\text{\textsc{int}}}} % "interaction" \def\Dfh{D$_{\text{4h}}$} % Irreducible representations (use in math mode) \def\Aog{{\text A_{\text{1g}}}} \def\Atg{{\text A_{\text{2g}}}} \def\Bog{{\text B_{\text{1g}}}} \def\Btg{{\text B_{\text{2g}}}} \def\Eg {{\text E_{\text g}}} \def\Aou{{\text A_{\text{1u}}}} \def\Atu{{\text A_{\text{2u}}}} \def\Bou{{\text B_{\text{1u}}}} \def\Btu{{\text B_{\text{2u}}}} \def\Eu {{\text E_{\text u}}} % Variables to represent some representation \def\X{\text X} \def\Y{\text Y} % Units \def\J{\text J} \def\m{\text m} \def\K{\text K} \def\GPa{\text{GPa}} \def\A{\text{\r A}} % Other \def\op{\textsc{op}} % order parameter \def\ho{\textsc{ho}} % hidden order \def\rus{\textsc{rus}} % resonant ultrasound spectroscopy \def\Rus{\textsc{Rus}} % Resonant ultrasound spectroscopy \def\afm{\textsc{afm}} % antiferromagnetism \def\recip{{\{-1\}}} % functional reciprocal \noindent\hspace{177pc}\includegraphics[width=18pc]{CULogo-red120px.eps} \vspace{-24.5pc}\\ \Huge \textbf{Elastic properties of hidden order in URu$_{\text2}$Si$_{\text2}$ are reproduced by\\ staggered nematic order} \bigskip\\ \huge \textbf{Jaron~Kent-Dobias, Michael Matty \& Brad J Ramshaw} \vspace{1pc} \begin{multicols}{2} \section{Resonant ultrasound spectroscopy} \Large \begin{wrapfigure}{R}{.25\textwidth} \centering \includegraphics[width=0.25\textwidth]{rus_resonances.jpg} \caption{Resonances } \end{wrapfigure} Strain measures the displacement of material from its equilibrium configuration. \lipsum[1] \begin{wrapfigure}{L}{.25\textwidth} \centering \includegraphics[width=0.55\columnwidth]{urusi_modes.png} \captionof{figure}{ The crystal structure of \urusi\ and the influence of irreducible strains on it. } \label{nets} \end{wrapfigure} \lipsum[2-4] \begin{wrapfigure}{R}{0.6\columnwidth} \centering \includegraphics[width=0.6\columnwidth]{paper/phase_diagram_experiments} \vspace{1em} \includegraphics[width=0.3\columnwidth]{paper/phases_scalar}\hspace{-0.75em} \includegraphics[width=0.3\columnwidth]{paper/phases_vector} \captionof{figure}{ Phase diagrams for (a) \urusi\ from Phys Rev B \textbf{77} 115117 (2008) (b) mean field theory of a one-component ($\Bog$ or $\Btg$) Lifshitz point (c) mean field theory of a two-component ($\Eg$) Lifshitz point. Solid lines denote continuous transitions, while dashed lines denote first order transitions. } \label{phase_diagram} \end{wrapfigure} \lipsum[4-5] \begin{equation} C_\X(0)=C_\X^0\bigg[1+\frac{b^2}{C_\X^0}\big(D_\perp q_*^4+|\Delta\tilde r|\big)^{-1}\bigg]^{-1}. \label{eq:static_modulus} \end{equation} \begin{figure} \vspace{1pc} \centering \includegraphics[width=\columnwidth]{paper/fig-stiffnesses.pdf} \captionof{figure}{ \Rus\ measurements of the elastic moduli of \urusi\ at ambient pressure as a function of temperature from \texttt{arXiv:1903.00552 [cond-mat.str-el]} (blue, solid) alongside fits to theory (magenta, dashed). The solid yellow region shows the location of the \ho\ phase. (a) $\Btg$ modulus data and a fit to the standard form. (b) $\Bog$ modulus data and a fit to \eqref{eq:static_modulus}. (c) $\Bog$ modulus data and the fit of the \emph{bare} $\Bog$ modulus. (d) $\Bog$ modulus data and the fit transformed by $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is predicted from \eqref{eq:static_modulus} to equal $D_\perp q_*^4/b^2+a/b^2|T-T_c|$, e.g., an absolute value function. } \label{homo} \vspace{1pc} \end{figure} \end{multicols} \end{document}