\documentclass[portrait]{a0poster} \usepackage{pifont} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[]{amsmath} \usepackage{amssymb,latexsym,mathtools,multicol,lipsum,wrapfig,floatrow} \usepackage[font=normalsize,labelfont=bf]{caption} \usepackage{tgheros} \usepackage[helvet]{sfmath} \usepackage[export]{adjustbox} \renewcommand*\familydefault{\sfdefault} \mathtoolsset{showonlyrefs=true} \setlength\textwidth{194pc} \begin{document} \setlength\columnseprule{2pt} \setlength\columnsep{5pc} \renewenvironment{figure} {\par\medskip\noindent\minipage{\linewidth}} {\endminipage\par\medskip} \renewcommand\section[1]{ \vspace{3pc} \noindent\huge\textbf{#1}\large \vspace{1.5pc} } \newcommand\unit[1]{\hat{\vec{#1}}} \renewcommand\vec[1]{\boldsymbol{\mathbf{#1}}} \newcommand\norm[1]{\|#1\|} \def\rr{\rho} \newcommand\abs[1]{|#1|} \def\dd{\mathrm d} \def\rec{\mathrm{rec}} \def\CC{{C\kern-.05em\lower-.4ex\hbox{\cpp +\kern-0.05em+}} } \font\cpp=cmr24 \def\max{\mathrm{max}} % Our mysterious boy \def\urusi{URu$_{\text2}$Si$_{\text2}$} \def\e{{\text{\textsc{elastic}}}} % "elastic" \def\i{{\text{\textsc{int}}}} % "interaction" \def\Dfh{D$_{\text{4h}}$} % Irreducible representations (use in math mode) \def\Aog{{\text A_{\text{1g}}}} \def\Atg{{\text A_{\text{2g}}}} \def\Bog{{\text B_{\text{1g}}}} \def\Btg{{\text B_{\text{2g}}}} \def\Eg {{\text E_{\text g}}} \def\Aou{{\text A_{\text{1u}}}} \def\Atu{{\text A_{\text{2u}}}} \def\Bou{{\text B_{\text{1u}}}} \def\Btu{{\text B_{\text{2u}}}} \def\Eu {{\text E_{\text u}}} % Variables to represent some representation \def\X{\text X} \def\Y{\text Y} % Units \def\J{\text J} \def\m{\text m} \def\K{\text K} \def\GPa{\text{GPa}} \def\A{\text{\r A}} % Other \def\op{\textsc{op}} % order parameter \def\ho{\textsc{ho}} % hidden order \def\rus{\textsc{rus}} % resonant ultrasound spectroscopy \def\Rus{\textsc{Rus}} % Resonant ultrasound spectroscopy \def\afm{\textsc{afm}} % antiferromagnetism \def\recip{{\{-1\}}} % functional reciprocal \noindent\hspace{176pc}\includegraphics[width=18pc]{CULogo-red120px.eps} \vspace{-24.5pc}\\ \Huge \textbf{Elastic properties of hidden order in URu$_{\text2}$Si$_{\text2}$ are reproduced by\\ staggered nematic order}\hspace{37.5pc}\textbf{\LARGE arXiv:1910.01669 [cond-mat.str-el]} \bigskip\\ \huge \textbf{Jaron~Kent-Dobias, Michael Matty \& B J Ramshaw}\hspace{7pc}\ding{81}\hspace{7pc}\textbf{Cornell University} \begin{multicols}{2} \Large \urusi\ is a heavy fermion material with a continuous transition into a `hidden order' (\ho) phase whose broken symmetry is unknown. Under sufficient pressure it instead transitions into an antiferromagnet (\afm), with phase diagram in Fig.~\ref{phase_diagram}(a). \urusi\ also has a lower-temperature superconducting phase within \ho\ that is destroyed by the \afm. Resonant ultrasound spectroscopy measures anomalous softening in its stiffness tensor over several hundred Kelvin approaching the \ho\ transition. Starting with a general Ginzburg--Landau theory of \urusi, we show that only one order parameter symmetry is consistent with both this softening and the topology of the phase diagram. This choice reproduces other \urusi\ phenomena and motivates new experiments. \section{Resonant ultrasound spectroscopy \&\\ irreducible strains} \Large \Rus\ drives material with sound and measures the response. Resonances produced by driving at the natural frequency of a normal mode are visible as spikes in the response amplitude. The stiffness tensor $C$ is uniquely determined by the frequencies of sufficiently many normal modes and the sample geometry. The structure of the stiffness tensor and its behavior as a function of temperature yield a lot of information about symmetry breaking. \begin{figure} \centering \vspace{1em} \includegraphics[width=0.5\textwidth]{rus_resonances.jpg} \hfill\raisebox{2em}{\includegraphics[width=0.48\textwidth]{urusi_modes.png}} \captionof{figure}{ \textbf{Left:} Response amplitude versus driving frequency for a sample at some temperature. The spikes correspond to resonances, and the strains corresponding to a few dominant modes are depicted in the cartoons. \textbf{Right:} The crystal structure of \urusi\ and the influence of the irreducible strains of \Dfh\ on it. } \label{fig:rus} \vspace{1em} \end{figure} The strain tensor $\epsilon$ has six independent components that can be divided into tuples upon which symmetry transformations act with irreducible representations of the crystallographic point group. \urusi's point group is \Dfh\ and has five `irreducible' strains, depicted in Fig.~\ref{fig:rus}. Of these, four are one-tuples (single-component) and one is a two-tuple (multi-component). \section{Landau--Ginzburg theory} \Large Symmetry transformations must act trivially on the free energy, so all its terms must correspond to $\Aog$ irreps. An order parameter can only linearly couple to a strain that shares its irrep. Any other coupling must be higher-order, which leads to thermodynamic discontinuities but not diverging responses. The anomalous softening seen in \urusi\ suggests the \ho\ order parameter $\eta$ couple linearly to a strain. Of the irreps found in strains, $\Aog$ yields a first-order transition and therefore can't describe \ho. For any of those remaining, the effective free energy has three components: the bare elastic energy of the strain $f_\e=\sum_\X C^0_\X\epsilon_\X\epsilon_\X$, the bare energy of the order parameter $\eta$ \begin{equation} f_\op=\frac12\big[r\eta^2+c_\parallel(\nabla_\parallel\eta)^2 +c_\perp(\nabla_\perp\eta)^2 +D_\perp(\nabla_\perp^2\eta)^2\big]+u\eta^4, \label{eq:fo} \end{equation} and the coupling between them $f_\i=-b\epsilon_\X\eta$. Tracing out the strain gives an effective free energy with the form of \eqref{eq:fo} but with $r\to\tilde r$. \vfill\null \begin{wrapfigure}{R}{0.6\columnwidth} \centering \includegraphics[width=\columnwidth]{paper/phase_diagram_experiments} \vspace{1em} \includegraphics[width=0.51\columnwidth]{paper/phases_scalar}\hspace{-0.75em} \includegraphics[width=0.51\columnwidth]{paper/phases_vector} \captionof{figure}{ Phase diagrams for (a) \urusi\ from Phys Rev B \textbf{77} 115117 (2008) (b) mean field theory of a one-component ($\Bog$ or $\Btg$) Lifshitz point (c) mean field theory of a two-component ($\Eg$) Lifshitz point. Solid lines denote continuous transitions, while dashed lines denote first order transitions. } \label{phase_diagram} \end{wrapfigure} This is the theory of a \emph{Lifshitz point} at $\tilde r=c_\perp=0$. This triple point lies where three phases meet: an unordered phase with $\eta=0$, a uniform ordered phase with $\eta\neq0$, and a modulated ordered phase with $\eta\propto\cos q_*x_3$. Phase diagrams are shown in Fig.~\ref{phase_diagram}(b--c). The type of transition between the ordered phases depends on how many components $\eta$ has: a one-component theory is first order while a two-component one is continuous. The irreps consistent with the first order transition between \ho\ and \afm\ in \urusi\ are $\Bog$ and $\Btg$. \section{Anomalous stiffness response} \Large The stiffness $C$ can be calculated like any other response function. Approaching the modulated phase, the strain stiffness with the same symmetry $\X$ of the order parameter is \begin{equation} C_\X=C_\X^0\bigg[1+\frac{b^2}{C_\X^0}\big(D_\perp q_*^4+|\Delta\tilde r|\big)^{-1}\bigg]^{-1} \label{eq:static_modulus} \end{equation} which has the form of an inverted cusp at the critical point. Compared with experimental \rus\ measurements, this doesn't resemble the $\Btg$ stiffness in Fig.~\ref{fig:plots}(a), but fits the $\Bog$ stiffness in Fig.~\ref{fig:plots}(b). This suggests \ho\ is a $\Bog$ nematic modulated along the $c$-axis. This theory explains the presence of the 0.4--0.5 inverse lattice constant scattering peak seen in some experiments and is consistent with $\Bog$ symmetry breaking observed in the \afm\ phase. \Rus\ experiments at pressure might resolve the divergence of the modulation wavevector $q_*$ and the vanishing of the $\Bog$ stiffness at the Lifshitz point. \begin{figure} \vspace{1pc} \centering \includegraphics[width=\columnwidth]{paper/fig-stiffnesses.pdf} \captionof{figure}{ \Rus\ measurements of the elastic moduli of \urusi\ at ambient pressure as a function of temperature from \texttt{arXiv:1903.00552 [cond-mat.str-el]} (blue, solid) alongside fits to theory (magenta, dashed). The solid yellow region shows the location of the \ho\ phase. (a) $\Btg$ modulus data and a fit to the standard form. (b) $\Bog$ modulus data and a fit to \eqref{eq:static_modulus}. (c) $\Bog$ modulus data and the fit of the \emph{bare} $\Bog$ modulus. (d) $\Bog$ modulus data and the fit transformed by $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is predicted from \eqref{eq:static_modulus} to equal $D_\perp q_*^4/b^2+a/b^2|T-T_c|$, e.g., an absolute value function. } \label{fig:plots} \vspace{1pc} \end{figure} \end{multicols} \end{document}