From 9d4c8399b99f7c7aaec361fd91642d909749ef80 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Mon, 22 Apr 2024 12:02:15 +0200 Subject: Some renaming of functions and variables. --- least_squares.cpp | 56 ++++++++++++++++++++++++------------------------------- 1 file changed, 24 insertions(+), 32 deletions(-) diff --git a/least_squares.cpp b/least_squares.cpp index 7e85663..a4ee727 100644 --- a/least_squares.cpp +++ b/least_squares.cpp @@ -54,16 +54,13 @@ private: Matrix Jx = J * x; Vector V = VFromABJx(b, A, Jx, x); Matrix ∂V = A + Jx; - return {V, ∂V, J}; } std::tuple ∂H_∂∂H(const Vector& x) const { auto [V, ∂V, ∂∂V] = V_∂V_∂∂V(x); - Vector ∂H = ∂HFromV∂V(V, ∂V); Matrix ∂∂H = V.transpose() * ∂∂V + ∂V.transpose() * ∂V; - return {∂H, ∂∂H}; } @@ -91,73 +88,68 @@ public: } } - Real getHamiltonian(const Vector& x) const { + Real H(const Vector& x) const { Vector V = VFromABJx(b, A, J * x, x); return 0.5 * V.squaredNorm(); } - Vector getGradient(const Vector& x) const { + Vector ∇H(const Vector& x) const { auto [V, ∂V, ∂∂V] = V_∂V_∂∂V(x); Vector ∂H = ∂HFromV∂V(V, ∂V); return ∂H - (∂H.dot(x) / x.squaredNorm()) * x; } - Matrix getHessian(const Vector& x) const { + Matrix HessH(const Vector& x) const { auto [∂H, ∂∂H] = ∂H_∂∂H(x); - Matrix P = Matrix::Identity(N, N) - x * x.transpose() / x.squaredNorm(); - Matrix HessH = P * ∂∂H * P.transpose() - (x.dot(∂H) / N) * Matrix::Identity(N, N); - - return HessH; + return P * ∂∂H * P.transpose() - (x.dot(∂H) / N) * Matrix::Identity(N, N); } Vector spectrum(const Vector& x) const { - Matrix HessH = getHessian(x); - Eigen::EigenSolver eigenS(HessH); + Matrix hessH = HessH(x); + Eigen::EigenSolver eigenS(hessH); return eigenS.eigenvalues().real(); } - Real maxEigenvalue(const Vector& x) const { + Real λmax(const Vector& x) const { return spectrum(x).maxCoeff(); } }; -Vector gradientAscent(const QuadraticModel& M, const Vector& x0, Real ε = 1e-13) { - Vector x = x0; +Vector gradientAscent(const QuadraticModel& M, const Vector& x₀, Real ε = 1e-13) { + Vector xₜ = x₀; Real α = 1; - Real H = M.getHamiltonian(x0); + Real Hₜ = M.H(x₀); Real m; Vector ∇H; while ( - ∇H = M.getGradient(x), - m = ∇H.squaredNorm(), + ∇H = M.∇H(xₜ), m = ∇H.squaredNorm(), m / M.N > ε ) { - Real HNew; - Vector xNew; + Real Hₜ₊₁; + Vector xₜ₊₁; while( - xNew = normalize(x + α * ∇H), - HNew = M.getHamiltonian(xNew), - HNew < H + 0.5 * α * m + xₜ₊₁ = normalize(xₜ + α * ∇H), Hₜ₊₁ = M.H(xₜ₊₁), + Hₜ₊₁ < Hₜ + 0.5 * α * m ) { α /= 2; } - x = xNew; - H = HNew; + xₜ = xₜ₊₁; + Hₜ = Hₜ₊₁; α *= 1.25; } - return x; + return xₜ; } -Vector subagAlgorithm(const QuadraticModel& M, const Vector& x0) { - Vector σ = x0 / x0.norm(); +Vector messagePassing(const QuadraticModel& M, const Vector& x₀) { + Vector σ = x₀ / x₀.norm(); for (unsigned i = 0; i < M.N; i++) { - Vector ∇H = M.getGradient(σ); + Vector ∇H = M.∇H(σ); Vector v = ∇H / ∇H.norm(); σ += v; @@ -213,13 +205,13 @@ int main(int argc, char* argv[]) { for (unsigned sample = 0; sample < samples; sample++) { QuadraticModel* ls = new QuadraticModel(N, M, σ², μA, μJ, r); Vector xGD = gradientAscent(*ls, x); - std::cout << ls->getHamiltonian(xGD) / N << " " << ls->maxEigenvalue(xGD) << " "; + std::cout << ls->H(xGD) / N << " " << ls->λmax(xGD) << " "; delete ls; ls = new QuadraticModel(N, M, σ², μA, μJ, r); - Vector xMP = subagAlgorithm(*ls, x); + Vector xMP = messagePassing(*ls, x); xMP = gradientAscent(*ls, xMP); - std::cout << ls->getHamiltonian(xMP) / N << " " << ls->maxEigenvalue(xMP) << std::endl; + std::cout << ls->H(xMP) / N << " " << ls->λmax(xMP) << std::endl; delete ls; } -- cgit v1.2.3-70-g09d2