#include #include #include "pcg-cpp/include/pcg_random.hpp" #include "randutils/randutils.hpp" #include "tensor.hpp" Vector normalize(const Vector& z) { return z * sqrt((Real)z.size() / (Real)(z.transpose() * z)); } template class Model { private: std::tuple...> Js; public: unsigned N; unsigned M; template Model(unsigned N, unsigned M, Generator& r, T... μs) : N(N), M(M) { Js = std::make_tuple(μs * generateRealPSpinCouplings(N, M, r)...); } unsigned numPs() const { return std::tuple_size(Js); } private: std::tuple> hamGradTensorHelper(const Vector& z, const Tensor<1>& J) const { Tensor<3> J3(N, N, M);; J3.setZero(); Matrix Jz = Matrix::Zero(N, M); Vector Jzz = Eigen::Map(J.data(), M); return {Jzz, Jz, J3}; } std::tuple> hamGradTensorHelper(const Vector& z, const Tensor<2>& J) const { Tensor<3> J3(N, N, M);; J3.setZero(); Matrix Jz = Eigen::Map(J.data(), N, M); Vector Jzz = z.transpose() * Jz; return {Jzz, Jz, J3}; } template std::tuple> hamGradTensorHelper(const Vector z, const Tensor

& J) const { Tensor<3> J3 = contractDown(J, z); Tensor<1> zT = Eigen::TensorMap>(z.data(), N); Tensor<2> J3zT = J3.contract(zT, ip00); Matrix Jz = Eigen::Map(J3zT.data(), N, M); Vector Jzz = z.transpose() * Jz; return {Jzz, Jz, J3}; } template std::tuple> hamGradHessHelper(const Vector& z, const Tensor

& J, const Tensor& ...Js) const { auto [Jzz, Jz, J3] = hamGradTensorHelper(z, J); Real pBang = factorial(p-1); Tensor<3> ddH = ((p - 1) * p / pBang) * J3; Matrix dH = (p / pBang) * Jz; Vector H = Jzz / pBang; if constexpr (sizeof...(Js) > 0) { auto [Hs, dHs, ddHs] = hamGradHessHelper(z, Js...); H += Hs; dH += dHs; ddH += ddHs; } return {H, dH, ddH}; } public: std::tuple> VdVddV(const Vector& z) const { return std::apply([&z, this](const Tensor& ...Ks) -> std::tuple> { return hamGradHessHelper(z, Ks...); }, Js); } std::tuple HdHddH(const Vector& z) const { auto [V, dV, ddV] = VdVddV(z); Real H = 0.5 * V.squaredNorm(); Vector dH = dV * V; Tensor<1> VT = Eigen::TensorMap>(V.data(), M); Tensor<2> ddVzT = ddV.contract(VT, ip20); Matrix ddH = Eigen::Map(ddVzT.data(), N, N) + dV * dV.transpose(); return {H, dH, ddH}; } std::tuple hamGradHess(const Vector& x) const { auto [H, dH, ddH] = HdHddH(x); Vector gradH = dH - dH.dot(x) * x / (Real)N; Matrix hessH = ddH - (dH * x.transpose() + x.dot(dH) * Matrix::Identity(N, N) + (ddH * x) * x.transpose()) / (Real)N + 2.0 * x * x.transpose(); return {H, gradH, hessH}; } Vector HessSpectrum(const Vector& x) const { Matrix hessH; std::tie(std::ignore, std::ignore, hessH) = hamGradHess(x); Eigen::EigenSolver eigenS(hessH); return eigenS.eigenvalues().real(); } }; template Vector findMinimum(const Model& M, const Vector& x0, Real ε) { Vector x = x0; Real λ = 100; auto [H, g, m] = M.hamGradHess(x0); while (g.norm() / x.size() > ε && λ < 1e8) { Vector dz = (m + λ * (Matrix)abs(m.diagonal().array()).matrix().asDiagonal()).partialPivLu().solve(g); dz -= x.dot(dz) * x / M.N; Vector zNew = normalize(x - dz); auto [HNew, gNew, mNew] = M.hamGradHess(zNew); if (HNew * 1.0001 <= H) { x = zNew; H = HNew; g = gNew; m = mNew; λ /= 2; } else { λ *= 1.5; } } return x; } using Rng = randutils::random_generator; using Real = double; int main(int argc, char* argv[]) { unsigned N = 10; Real α = 1; Real σ = 1; int opt; while ((opt = getopt(argc, argv, "N:a:s:")) != -1) { switch (opt) { case 'N': N = (unsigned)atof(optarg); break; case 'a': α = atof(optarg); break; case 's': σ = atof(optarg); break; default: exit(1); } } unsigned M = (unsigned)(α * N); Rng r; Model<1, 2> leastSquares(N, M, r.engine(), σ, 1); Vector x = Vector::Zero(N); x(0) = sqrt(N); double energy; std::tie(energy, std::ignore, std::ignore) = leastSquares.hamGradHess(x); std::cout << energy / N << std::endl; Vector xMin = findMinimum(leastSquares, x, 1e-12); std::tie(energy, std::ignore, std::ignore) = leastSquares.hamGradHess(xMin); std::cout << energy / N << std::endl; std::cout << leastSquares.HessSpectrum(xMin)(1) / N << std::endl; return 0; }